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1 Introduction

The goal of this paper is the generalization of the following result to sym-
plectic diffeomorphisms (see [3, 4] for more details):

Let {fa}a∈V be a smooth family of planar diffeomorphisms such that
fa : IR2 −→ IR2 is smooth enough with respect to the variables and the
parameter and V is an open neighbourhood of a0. Suppose that for a = a0,
fa0 has a dissipative saddle fixed point p0 with a non-degenerate homoclinic
tangency of its invariant manifolds, which unfolds generically with {fa}a∈V .
Then, under generic assumptions and for n large enough, there exist values
of the parameter a+n and a−n such that a) fa+n has an n-periodic saddle-

node point p+n and b) fa−n has an n-periodic flip point. Moreover the family
{fa}a∈V tends, after an n-dependent change of variables and parameter,
and near the homoclinic tangency point, to the logistic map in the following
form: gε(x, y) = (y, y2 + ε).

We will obtain a similar result for area-preserving maps. But in this
case the limit map is the conservative Hénon map, and the bifurcations
are pararabolic. For a four dimensional symplectic diffeomorphisms we can
obtain also a similar result for the existence of bifurcations, but we only
consider the case in which all the eigenvalues of the initial fixed points
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are real and different. In this last case it is not possible to have a limit
diffeomorphism as we will see. The main difference between the conservative
and dissipative case is that in the conservative case there is not a smooth
change of variables that transforms a map near a hyperbolic fixed point to
its linear part. But with the aid of the normal form we can prove our results
in a similar way than in the dissipative case.

We will split our results in two sections: one corresponding to 1-parameter
families of area preserving maps and the other to 1-parameter families of
four dimensional symplectic diffeomorphisms. From now on, when we say
smooth, we mean sufficiently differentiable.

2 Families of area preserving maps

Let a0 ∈ IR and V ⊂ IR be a neighbourhood of a0. Let {fa}a∈V be a smooth
family of smooth area preserving maps, fa : IR2 −→ IR2, such that for
a = a0 there exists a hyperbolic fixed point p0. Then there exists a smooth
map p = p(a) such that p(a0) = p0 and p(a) is a hyperbolic fixed point of
fa. We denote λ = λ(a) and λ−1 the eigenvalues of p(a). It is not restrictive
to suppose that λ > 1 (if not we take f2a instead of fa).

Let ga : IR2 −→ IR2 such that

ga

(
t1
t2

)
=

(
t1 exp(−α− k(t1t2, a))
t2 exp(α+ k(t1t2, a))

)
,

where α = log(λ) and k is a smooth map such that k(0) = 0. Then it is
possible to prove, using [1]:

Theorem 2.1 There exist a C3 area preserving map ~x : W × V1 ⊂ IR2 ×
IR −→ IR2 and ga as before, where W is a neighbourhood of {(t1, t2) : t1t2 =
0}, and V1 ⊂ V is a neighbourhood of a0, such that:

1. ~x(ga(t1, t2), a) = fa(~x(t1, t2, a)).

2. ~x(·, a) is a local conjugacy of fa with ga.

We notice that using the previous result we can suppose that the fixed point
p(a) is always (0, 0) and the map fa is equal to ga in a neighbourhood of
(0, 0). Then the map ~x will be the identity map in a neighbourhood of (0, 0).
Finally we can also assume that a0 = 0. From now on, we will suppose that
our family satisfies these properties.
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Now we need to give a definition of homoclinic tangency unfolding generi-
cally. Suppose that there is a homoclinic tangency corresponding to the fixed
point (0, 0) of f0. It is not restrictive to assume that the point of homoclinic
tangency is p1 = (t̄1, 0). By the definition of homoclinic point we have that
there exists a real number t̄2 such that ~x(0, t̄2, 0) = p1. Here ~x = (x, y) is
the map of theorem 2.1.

Definition 2.2 We say that the fixed point (0, 0) of f0 has a a non-degenerate
homoclinic tangency which unfolds generically with a if: y(0, t̄2, 0) = 0,
D2y(0, t̄2, 0) = 0, D22y(0, t̄2, 0) 6= 0 and D3y(0, t̄2, 0) 6= 0.

The main result of the section is the following theorem:

Theorem 2.3 Let {fa}a∈V a smooth family of area preserving maps having,
for a = a0, a non-degenerate homoclinic tangency which unfolds generically
with a. Then, for n large enough, there exist values of the parameter a+n , a

−
n

such that:

1. fa+n has an n-periodic parabolic point (double egeinvalue 1).

2. fa−n has an n periodic parabolic point with reflection (double eigenvalue
-1).

3. limn→∞ a
±
n = a0.

Moroever, there exist open sets U1 ⊂ IR, U2 ⊂ IR2 and maps Mn : U1 −→
Mn(U1) ⊂ IR, ψn,ε : U2 −→ ψn,ε(U2) ⊂ IR2 such that:

(a) Mn is a diffeomorphism.

(b) For each compact set K in the (ε, t̃1, t̃2) space the images of K under
the maps (ε, t̃1, t̃2) −→ (Mn(ε), ψn,ε(t̃1, t̃2)) converge for n → ∞ to
(0, 1, 0).

(c) The domains of the maps (ε, t̃1, t̃2) −→ (ε, ψ−1n,ε◦fnMn(ε)
◦ψn,ε), converge,

for n→∞, to all of IR3 and the maps converge, in the C3 topology to
the map:

(ε, t̃1, t̃2) 7→ (ε, hε(t̃1, t̃2))

with hε(t̃1, t̃2) = (1− t̃2 − εt̃21, t̃1).
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Idea of the proof:
First we define a map C = C(n, t1, t2, a) such that C = exp[(−α −

k(C, a))n]t1t2. It is possible to prove that such a map exists for n large
enough and (t1, t2) near (0, 0). Moreover C is diferentiable with respect
(t1, t2, a). Then we define:

s1 = exp((−α− k(C, a))n), s2 = n exp((−α− k(C, a))n).

To find a fixed point of fna with a double eigenvalue 1 is equivalent to solve
the system of equations:

fna (t1, s1t2)− (t1, s1t2) = 0
trDfna (t1, s1t2) + 2 = 0.

Using the map ~x defined before, we can substitute the first equation by
~x(s1t1, t2, a) − (t1, s1t2) = 0 and the second equation by another equation
depending on (s1, s2, t1, t2, a). When we put s1 = s2 = 0 in the two equa-
tions, they are satisfied for (t1, t2) = (t̄1, t̄2) because there is a homoclinic
tangency in (t̄1, 0) = ~x(0, t̄2, a0). Moreover, as the homoclinic tangency is
non-degenerate and unfolds generically, we can aply the implicit function
theorem and obtain functions a = a(s1, s2), t1 = t1(s1, s2), t2 = t2(s1, s2),
such that satisfy the system of equations and t1(0, 0) = t̄1, t2(0, 0) = t̄2,
a(0, 0) = a0. Taking into acount the definition of s1 and s2 we can easily
prove the items 1., 2. and 3.

For the second part of the theorem, we can suppose, via a change of vari-
ables and parameter, that the map ~x = (x, y) has the following properties:
a) The point of homoclinic tangency is (1, 0) for a = 0. b) x(0, 1, a) = 1,
y(0, 1, a) = a, D2y(0, 1, a) = 0, D22y(0, 1, 0) 6= 0, D1y(0, 1, 0)D2x(0, 1, 0) =
−1, for all a in a neighbourhood of 0.

Let β = D22y(0, 1, 0), γ = D1y(0, 1, 0), δ0 = D1x(0, 1, 0) δ1 = D11y(0, 1, 0),
δ2 = D12y(0, 1, 0). We consider the following change of variables and param-
eters for the map fa with variables (t1, t2) :

(a, t1, t2) = ((1− γ)s1 + εs21, 1 + s1t̃1, s1 + s21t̃2).

It is possible to prove that if we perform this change to the map fna and
make n tend to infinity, then we obtain the map:(

t̃1
t̃2

)
7→
(

δ0 − γ−1t̃2
γt̃1 + 1

2δ1 + δ2t̃2 + 1
2βt̃

2
2 + ε

)
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It is easy to see that this map is conjugate to the map hε of the item (c) of
the theorem. 2

Remark 2.4 The thesis of the first part of the theorem is also proved, with
other tools in [2].

3 Symplectic maps of dimension four

Let {fa}a∈V as in the beginning of the previous section, but now fa : IR4 −→
IR4, and fa is a symplectic map. We suppose that for a = a0 fa has a
hyperbolic fixed point p0. As before there exists a smooth map p = p(a)
such that p(a0) = a0 and p(a) is a hyperbolic fixed point of fa for a ∈ V (if
this is true only in a subset of V we substitute V by the new neighbourhood).
We suppose that the eigenvalues of p(a) are λ = λ(a) > 1, µ = µ(a) > 1 and
λ−1, µ−1. Moreover we assume that λ 6= µ. Let Ga : IR4 −→ IR4 a symplectic
map such that:

Ga


t1
t2
t3
t4

 =


t1 exp((−α1 − k1(t1t3, t2t4, a))
t2 exp((−α2 − k2(t1t3, t2t4, a))
t3 exp((α1 + k1(t1t3, t2t4, a))
t4 exp((α2 + k2(t1t3, t2t4, a))


where α1 = log(λ), α2 = log(µ), k1 and k2 are smooth maps and k1(0, 0, a) =
k2(0, 0, a) = 0 for all a. Then again it is possible to prove, using [1]:

Theorem 3.1 Assume that the map fa0 does not have resonaces of low
order (as many as we need, see [1] for details), but the unavoidable. Then
there exist a C3 symplectic map ~x : W × V1 ⊂ IR4 × IR −→ IR4 and Ga as
before, where W is a neighbourhood of {(t1, t2, t3, t4) : t1 = t3 = 0 or t2 =
t4 = 0} and V1 ⊂ V is a neighbourhood of a0, such that:

1. ~x(Ga(t1, t2, t3, t4), a) = fa(~x(t1, t2, t3, t4, a)).

2. ~x(·, a) is a local conjugacy of fa with Ga.

As before, we can suppose that the fixed point p(a) is always (0, 0, 0, 0) and
the map fa is equal to Ga in a neighbourhood of (0, 0, 0, 0). Then the map ~x
will be the identity in a negihbourhood of (0, 0, 0, 0). We also shall assume
that a0 = 0. From now on, we shall suppose that our family satisfies these
properties.
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Now we need to give a definition of homoclinic tangency unfolding gener-
ically. Suppose that there is a homoclinic tangency corresponding to the
fixed point (0, 0, 0, 0) of fa0 . It is not restrictive to assume that the point
of homoclinic tangency p1 = (t̄1, t̄2, 0, 0). By the definition of homoclinic
point we have that there exists (t̄3, t̄4) such that ~x(0, 0, t̄3, t̄4, 0) = p1. Here
~x = (x, y, z, t) is the map of theorem 3.1.

Definition 3.2 We say that the fixed point (0, 0, 0, 0) of f0 has a non-
degenerate homoclinic tangency in p1 which unfolds generically with a if:

1. z(0, 0, t̄3, t̄4, 0) = 0, t(0, 0, t̄3, t̄4, 0) = 0. (existence of intersection)

2. ∣∣∣∣∣ D3z(0, 0, t̄3, t̄4, 0) D4z(0, 0, t̄3, t̄4, 0)
D3t(0, 0, t̄3, t̄4, 0) D4t(0, 0, t̄3, t̄4, 0)

∣∣∣∣∣ = 0 (tangential intersection)

3. Let

g(t3, t4, a) =

∣∣∣∣∣ D3z(0, 0, t3, t4, a) D3t(0, 0, t3, t4, a)
D4z(0, 0, t3, t4, a) D4t(0, 0, t3, t4, a)

∣∣∣∣∣
Then rangD(g(·, ·, 0), z(0, 0, ·, ·, 0), t(0, 0, ·, ·, 0))(t̄3, t̄4) = 2. (nondegen-
erate tangency).

4. rangD(z(0, 0, ·, ·, ·), t(0, 0, ·, ·, ·))(t̄3, t̄4, 0) = 2 (good dependence on the
parameter).

The first condition says that there is an intersection between the invari-
ant manifolds, the second that the intersection is tangential, the third that
the tangency is nondegenerate and the last one that the tangency unfolds
generically with respect to the parameter.

Using this definition it is possible to prove that there exist smooth maps
a = a(r), t3 = t3(r), t4 = t4(r) defined for r ∈ IR in a neighbourhood of 0,
such that a(0) = 0, t3(0) = t̄3, t4(0) = t̄4, ȧ(0) = 0, ä(0) 6= 0, and fa(r) has a
homoclinic point in ~x(0, 0, t3(r), t4(r), a(r)). The main result of this section
is the following theorem:

Theorem 3.3 Let {fa}a∈V a family of symplectic maps in dimension four
with the same hypothesis than in the beginning of the section. We suppose
that for a = a0, fa has a non-degenerate homoclinic tangency which un-
folds generically with a. Then, for n large enough, there exist values of the
parameter a+n , a

−
n such that:
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1. fa+n has an n-periodic partially parabolic point (double egeinvalue 1). If

the other eigenvalues are λn > 1 and λ−1n then λn →∞ when n→∞.

2. fa−n has an n-periodic partially parabolic point with reflection ( double
eigenvalue -1). The other eigenvalues satisfy the same property of the
previous item.

3. limn→∞ a
±
n = a0.

Idea of the proof:
We proceed as in the area preserving case. We define maps

C1 = C1(n, t1, t2, t3, t4, a) and C2 = C2(n, t1, t2, t3, t4, a)

such that

C1 = exp[(−α1−k1(C1, C2, a))n]t1t3 and C2 = exp[(−α2−k2(C1, C2, a))n]t2t4.

Then we define:

s1 = exp((−α1 − k1(C1, C2, a))n), s2 = n exp((−α1 − k1(C1, C2, a))n),

s3 = exp((−α2 − k2(C1, C2, a))n), s4 = n exp((−α2 − k2(C1, C2, a))n).

To find a fixed point of fna with double eigenvalue 1 is equivalent to solve
the system:

fna (t1, t2, s1t3, s3t4)− (t1, t2, s1t3, s3t4) = 0
1 ∈ SpecDfna (t1, t2, s1t3, s3t4)

It is easy to put the first equation in terms of the map ~x :

x(s1t1, s3t2, t3, t4, a)− (t1, t2, s1t3, s3t4, a) = 0.

It is also possible to put the second condition in terms of the derivatives of
~x and as a function of (s1, s2, s3, s4, t1, t2, t3, t4). The rest is also similar to
the area preserving case. When s1 = s2 = s3 = s4 = 0 we have a solution of
the system of equation given by the existence of the homoclinic tangency.
Then, using that the tangency is nondegenerate and unfolds generically, we
can apply the implicit function theorem to the system. Hence, we obtain
maps a = a(s1, s2, s3, s4), ti = ti(s1, s2, s3, s4), for i = 1, . . . 4 and such that:
a(0, 0, 0, 0) = a0, ti(0, 0, 0, 0) = t̄i. Using these properties one easily verifies
the thesis of the theorem. 2
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