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Abstract. The purpose of this paper is to extend the study of the so called p-q resonant orbits of the
planar restricted three-body problem to the spatial case. The p-q resonant orbits are solutions of the
restricted three-body problem which have consecutive close encounters with the smaller primary. If
E,M and P denote the larger primary, the smaller one and the infinitesimal body, respectively, then
p and q are the number of revolutions that P gives aroundM andM around E, respectively, between
two consecutive close approaches. For fixed values of p and q and suitable initial conditions on a
sphere of radius µα around the smaller primary, we will derive expressions for the final position and
velocity on this sphere for the orbits under consideration.
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1. Introduction

As it is well known, the spatial circular restricted three-body problem (RTBP) de-
scribes the motion in the three-dimensional space of a massless particle, P , under
the attraction of two bodies, E and M, called primaries, which move in circular
orbits around their center of mass. The motion of P does not affect the primaries.
Using suitable units, the primaries can be assumed to have masses 1−µ and µwith
µ ∈ [0, 1] and to complete one inertial revolution in 2π time units. The variable µ,
which is the mass of the smaller primary M, is called the mass parameter. If the
distance between the two primaries is set equal to one, the gravitational constant
equals one too.

In this study, we will consider two reference systems: the sidereal and the
synodic. The sidereal system, OXYZ, is an inertial reference frame with origin
at the center of masses. We will assume that the primaries E and M are moving
in circular orbits on the Z= 0 plane, of radii µ and 1 − µ, respectively. In this
reference system, Newton’s equations of motion for P are

R̈ = − (1 − µ)R − R
E

R3
1

− µR − R
M

R3
2

, (1)

where R = (X, Y,Z)T denotes the position vector of P and R1, R2 are the dis-
tances from P to E and M, respectively. The synodic system, Oxyz, is a rotating
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frame, also with the origin at the center of masses, in which the primaries are fixed
on the x axis: E is located at r

E
= (µ, 0, 0)T and M is at r

M
= (µ − 1, 0, 0)T . If

r = (x, y, z)T represents the position of P in the synodic system, the change from
one system to the other is given by, R = G(t)r, where G(t) is a planar rotation of
angle t and the equations of motion are (see, for instance, Szebehely, 1967)

r̈ + A3ṙ = ∇�(r), (2)

where

A3 =

 0 −2 0

2 0 0

0 0 0


 , �(x, y, z) = 1

2
(x2 + y2)+ 1 − µ

r1
+ µ

r2
,

and r1, r2 denote the distances from P to both primaries: r2
1 = (x −µ)2 + y2 + z2,

r2
2 = (x−µ+1)2 +y2 + z2. It is well known that the Equation (2) has the Jacobi’s

first integral

|ṙ|2 = 2�(x, y, z) − CJ , (3)

where CJ is the so called Jacobi constant.
The aim of the present paper is to study the spatial p-q resonant orbits. We

will always assume that µ
 1 − µ so, far from M, the motion will be close to
the one of a two-body problem. A p-q resonant orbit is such that, between two
consecutive close approaches of P to the smaller primaryM, P does approximately
p revolutions around E while M makes q revolutions around the origin. More
precisely:

DEFINITION 1.1. Let R(t) be the solution of (1) with initial conditions R(t1) =
Ri , Ṙ(t1) = Ṙi and R

TB
(t) the solution of R̈ = −R /R3 with the same initial

conditions. Denoting by B(M,µα) the sphere of centerM and radius µα , 0 < α <
1, we will assume that Ri is on B(M,µα) and that for a certain t2 > t1, R(t2)
belongs to B(M,µα) too, but if t ∈ (t1, t2) then |R(t)− R

M
(t)| > µα . Under these

conditions, we say that the orbit is p-q resonant if

t2 − t1 = 2πq + εµα +O(µ2α) = 2πpτ + δµα +O(µ2α), (4)

where p, q ∈ N are relatively prime and 2πτ is the period of R
TB

.

As a remark, the values of α will be specified later.
This kind of solutions have been considered by Yen (1985) in the framework

of the analysis of a Mercury mission. Yen uses near resonant returns to Mercury,
with several values for p-q, in order to reduce the orbit capture %v requirements.
Since the Mercury year lasts 90 days, the penalty in the flight time is 270 days for
the 2–3 case, but a substantial reduction of the v∞ at Mercury is achieved: from
5.7 to 4.7 km/s.
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In the line of the present paper, the planar p-q resonant orbits have been stud-
ied by Font, Nunes and Simó in Font (2001). In this paper the authors give the
restrictions on the initial conditions necessary to ensure that an orbit is a p-q
resonant one. Our purpose is to give an extension of this result to the spatial case
and derive approximated expressions (up to terms of order µα) of the final position
and velocity at t2 (return map).

In this paper, we will first study the behaviour of the solutions of (1) for t ∈
[t1, t2]. This is the so called outer solution. As in the outer solution P is far from
M, the influence of this primary can be considered as a perturbation. In Section 2,
we will give a bound of the error involved when the outer solution is approximated
by a solution of the two-body problem. The main result of this section is Theorem
2.3, which states that outside a neighbourhood around the small primary of radius
µα this error can be bounded by O(µ1−α).

Section 3 will be devoted to the study of the restrictions on the initial conditions
that ensure that an orbit is p-q resonant. For fixed values of p and q, these restric-
tions are for the value of the Jacobi constant and the spherical coordinates of both
the initial position (on a sphere of radius µα aroundM) and the initial velocity. The
result is stated precisely in Theorem 3.1.

In Section 4, the explicit expression for the outer map of the p-q resonant orbits
will be given.

In what follows we introduce some of the notations and conventions used
through the paper. From now on, the subscript i will be used to denote initial
conditions (in both systems of coordinates) and when a position vector has the
subscript 1 (resp. 2), it means that it is measured with respect to the large primary
E (resp. small primary M), that is, r1 = r − r

E
, r2 = r − r

M
.

When we take initial conditions for P on B(M,µα), we will always assume
that P leaves the sphere B moving away from M. In synodic coordinates these
conditions can be written as, r2i = |ri−r

M
| = µα and that r2i and ṙi form an angle

a ∈ (−π/2, π/2) or, equivalently, that

cos a = 〈r2i , ṙi〉
viµα

� 0, (5)

where vi = |ṙi | and 〈, 〉 denotes the scalar product.
Using the Jacobi integral, we can compute the norm of the initial velocity vi =

|ṙi | in terms of CJ and µ. If ri = (xi, yi, zi), taking into account that r1(t1)2 = 1 −
2(xi−µ+1)+µ2α , r2(t1) = µα and x2

i + y2
i = 1−2(1−µ)(xi−µ+1)+O(µ2α),

it follows that

v2
i = 3 − CJ + 2µ1−α +O(µ2α). (6)

This equation implies that CJ � 3. This is a logical restriction, since it is known
that there are no zero velocity curves in the planar case for CJ � 3 − µ(1 − µ). In
the spatial case, there are zero velocity surfaces for values of CJ > −µ(1 − µ),
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but for values of the Jacobi constant between −µ(1 − µ) and 3 − µ(1 − µ) these
surfaces do not intersect the z = 0 plane.

2. The Outer Solution

In this section, we will compute a bound for the error involved in the approximation
of the outer solution by a Keplerian orbit. Initially, we will estimate this error using
only that the distance from the third body P to the primary M is greater than µα .
Next, using the fact that the distance between P and M grows (at least for values
of t close to t1), we will see that the bound for the error can be improved.

Assume that we have an orbit of the RTBP with initial conditions, at t = t1, on
the sphere B(M,µα) and the velocity verifying the requirements mentioned at the
end of the preceding section. Moreover, suppose that exists t2> t1 for which

R2(t2) = µα, R2(t) > µα, ∀ t ∈ (t1, t2).

See the Figure 1.
We denote by q = (R, Ṙ) the solution of the initial value problem,

q̇ = G(q, µ)+ F(q, µ),
q(t1) = qi =

(
Ri
Ṙi

)
, (7)

Figure 1. Example of behaviour of the outer solution in the synodic system (planar case). For this
example µ = 10−3 and α = 0.4.
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where the equations of motion (1) have been written as a first order system, so G
and F are defined by

G(q, µ) =
(

Ṙ
g(R, µ)

)
=


 Ṙ

−(1 − µ)R − R
E

R3
1


 ,

F (q, µ) =
(

0
f (R, µ)

)
=


 0

−µ R − R
M

R3
2


 . (8)

Let q
TB

= (RTB, ṘT B) be the solution of the two-body problem with the same
initial conditions as above, that is, the solution of

q̇ = G(q, 0),
q(t1) = qi . (9)

Since in these equations we have removed a term which, outside the sphere
B(M,µα), is of the order µ1−2α, the following result holds.

THEOREM 2.1. With the preceding notations and hypothesis and assuming, fur-
thermore, that R = |R| cannot be arbitrarily small, we have that

q(t) = q
TB
(t)+O(µ1−2α), ∀t ∈ [t1, t2].

Proof. We write the solutions of (7) and (8) as

q(t) = qi +
∫ t

t1

(G(q(τ ), µ)+ F(q(τ ), µ)) dτ,

q
TB
(t) = qi +

∫ t

t1

G(q
TB
(τ ), 0) dτ.

Subtracting both expressions, it follows that

|q(t)− q
TB
(t)|

�
∫ t

t1

|G(q(τ ), µ)−G(q
TB
(τ ), 0)| dτ︸ ︷︷ ︸+

∫ t

t1

|F(q(τ ), µ)| dτ︸ ︷︷ ︸ .
(a) (b)

Let us find a bound for the first term (a). The distance from P to the body E can
be written as

R2
1 = (X − µ cos t)2 + (Y − µ sin t)2 + Z2

= R2 − 2µ(X cos t + Y sin t)+ µ2,
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were R2 = X2 + Y 2 + Z2. Since P must come back to the sphere B(M,µα) at
t = t2<∞, its distance to the origin is bounded from above. By hypothesis it is
also bounded from below, so 0<m<R<M, and we can write

R1 = R

(
1 − X cos t + Y sin t

R2
µ+O(µ2)

)
.

Using this equality, the fact thatR is bounded and the expression for R
E

= µ (cos t,
sin t, 0)T , we can expand the function g(q, µ) appearing in Equation (8) in terms
of µ to get

g(q, µ) = −(1 − µ)R − R
E

R3
1

= − R
R3

+O(µ) = g(q, 0)+O(µ).

Using this expression, the mean value theorem and that |DG| is bounded, the
integrand in (a) can be bounded as

|G(q(τ ), µ)−G(q
TB
(τ ), 0)| � |DG(η)| |q(τ )− q

TB
(τ )| + C1µ

� C2 |q(τ )− q
TB
(τ )| + C1µ.

Now, let us bound the integrand in (b). From the definition of F in (8) and just
using that the distance from P to M, R2(t), is greater than µα for t ∈ (t1, t2), it is
clear that

|F(q(τ ), µ)| = µ

R2
2

� µ

µ2α
= µ1−2α.

Therefore, we can set that

|q(t)− q
TB
(t)|� C0µ

1−2α + C2

∫ t

t1

|q(τ )− q
TB
(τ )| dτ,

where C0 and C2 are suitable constants. Using Gronwal’s lemma (see, for instance,
Perko, 1996) we get

|q(t)− q
TB
(t)|�C0µ

1−2αeC2(t−t1), ∀ t ∈ [t1, t2],

which ends the proof. �
We want to remark two things. First, to ensure that q

TB
is an approximation of

q it is necessary that α< 1/2, so we will assume this in what follows. Second, the
bound for the error in the approximation of the outer solution is due to the fact that
R2(t) >µ

α so, if we can improve this last bound then we will be able to improve
the error for the outer solution.

Recall that we are assuming that for t close to t1, P is moving away fromM, so
initially its distance grows and, for some time, it will be true that

R2(t)�µα + k(t − t1), (10)
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for certain k. If we use this inequality to bound (b), for the values of t for which
(10) is true, we get

(b) =
∫ t

t1

µ

R2(τ )
2

dτ �
∫ t

t1

µ

(µα + k(τ − t1))2 dτ

= µ

( −1/k

µα + k(τ − t1)
)t
t1

= µ

k

(
1

µα
− 1

µα + k(t − t1)
)

= µ1−α

k

(
1 − µα

µα + k(t − t1)
)

� µ
1−α

k
.

Suppose that k cannot be arbitrarily small, then this bound of (b) implies that the
error involved in the approximation of (R, Ṙ) by (R

TB
, Ṙ

TB
) will be of order µ1−α ,

for t verifying (10), which is smaller than the bound obtained in Theorem 2.1. By
the same argument, we can obtain the same result for t close to t2. On the other
hand, if we are far enough from M, the error of the approximation will be also
small. For instance, with the same hypothesis of Theorem 2.1, it is clear that for
any time interval [ta, t ′a] for which R2(t)�µα/2, then

|q(t)− q
TB
(t)|�C0µ

1−αeC2(t−ta).

Thus, we obtain that q = q
TB

+O(µ1−α) near and far fromM. It only remains
to see that R2(t)�µα/2 for some time and that (10) is true, at least till P is at a
distance µα/2 from M. We will proof the following

LEMMA 2.2. Let q(t) the solution of (7) with initial conditions (Ri , Ṙi ) such that

|Ri − R
M
(t1)| = µα, cos a� ε > 0,

for some ε (see (5). Then, there exists k� ε′ > 0 and tα/2 such that R2(tα/2) = µα/2
and

R2(t)�µα + k(t − t1), ∀t ∈ [t1, tα/2].

Using this lemma and the preceding arguments, is easy to see that under the
same hypothesis as in Theorem 2.1, we have the following:

THEOREM 2.3. If there exists tα/2 and t ′α/2 such that t1 < tα/2 < t ′α/2 < t2,

R2(tα/2) = R2(t
′
α/2) = µα/2, R2(t) > µα/2 ∀ t ∈ (tα/2, t ′α/2),

and the initial conditions verify that cos a� ε > 0, then

q(t) = q
TB
(t)+O(µ1−α), ∀ t ∈ [t1, t2].
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We will use this result in the following sections, such that the terms of order
µ1−α will be neglected. For this reason, from now on we will impose that µ2α =
O(µ1−α) or, equivalently, α > 1/3. Thus, we have α ∈ (1/3, 1/2).

Let us now proof Lemma 2.2. We want to see that Ṙ2(t)� k > 0 for t ∈
[t1, tα/2]. We start with the Taylor expansion of R2(t) up to the first order

R2(t) = R2(t1)+ Ṙ2(τ )(t − t1) = µα + Ṙ2(τ )(t − t1). (11)

It is clear that, if at t = t1, P is leaving the sphere B(M,µα), R2(t) grows during
some time and its derivative must be positive. From R2(t) = 〈R2(t),R2(t)〉1/2 we
get

Ṙ2(t) = 1

R2(t)
〈R2(t), Ṙ2(t)〉.

As the condition of leaving B(M,µα) is expressed in synodic coordinates, 〈r2i , ṙi〉
> 0, it will be better to rewrite the above expression as

Ṙ2(t) = 1

R2(t)
〈r2(t), ṙ(t)〉 = v(t) cos(a(t)),

where v(t) = |ṙ(t)| and a(t) is the angle between the vectors r2(t) and ṙ(t). Then,

Ṙ2(t1) = 1

µα
〈r2(t1), ṙ(t1)〉 = vi cos a > 0,

where a = a(t1). As it has already been said, we can assure that Ṙ2(t) > k > 0
for some time so it only remains to prove that this inequality is also true while the
distance from P toM grows from µα to µα/2. Taking again a Taylor development,
we have that

Ṙ2(t) = vi cos a + R̈2(η)(t − t1). (12)

We want a lower bound for Ṙ, so let us look for a lower bound for the second
derivative.

R̈2(t) = −Ṙ2(t)

R2
2(t)

〈r2(t), ṙ(t)〉 + 1

R2(t)
(〈ṙ(t), ṙ(t)〉 + 〈r2(t), r̈(t)〉)

= v(t)2 − Ṙ2
2(t)

R2(t)
+ 〈r2(t), r̈(t)〉

R2(t)
� 〈r2(t), r̈(t)〉

R2(t)
. (13)

From the equations of motion (2), we can write

〈r2(t), r̈(t)〉 = 〈r2(t),∇�〉︸ ︷︷ ︸ + 〈r2(t),−A3ṙ〉︸ ︷︷ ︸ .
(I ) (I I )

(14)

For the second summand we have

(I I ) = 2 〈r2(t), (ẏ,−ẋ, 0)T 〉 = 2 〈r2(t)× ṙ(t), (0, 0, 1)T 〉
� −2 |r2(t)× ṙ(t)|� − 2 r2(t) v(t).
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If we compute ∇� and substitute its expression into (I ), it follows that

(I ) = 〈r2(t), (x, y, 0)
T 〉︸ ︷︷ ︸ − 1 − µ

r3
1

〈r2, r1〉︸ ︷︷ ︸ −µ
r2
.

(I1) (I2)

The lower bounds for the terms (I1) and (I2) will be:

(I1) � −(1 − µ)(x − µ+ 1)� − (1 − µ) r2(t),
(I2) = −1 − µ

r3
1

〈r2, r1〉 � − (1 − µ) r2(t)
r2

1 (t)
.

From the fact that µα � r2(t)�µα/2 and that the distance between the primaries is
one, it follows that r1(t)� 1 − µα/2 and

(I2)� r2(t)(−1 − 2µα/2 − 3µα − 4µ3α/2 +O(µ2α)).

Therefore, (I ) can be bounded as

(I )� − r2(t)(2 + 2µα/2 + 3µα + 4µ3α/2)− µ1−α +O(µ2α),

and, coming back to (14), it follows that

〈r2(t), r̈(t)〉
� − r2(t)(2v(t)+ 2 + 2µα/2 + 3µα + 4µ3α/2)− µ1−α +O(µ2α).

If in (13) we take only into account terms up to µα , we can write

R̈2(t)� − 2v(t)− 2 − 2µα/2 − µ1−2α +O(µα). (15)

The final step is find an upper bound for v(t). For this, we will use the Jacobi
integral (3) and the fact that x2 + y2 � r2 � (1 − µ + µα/2)2. Then, we will have
that

v(t)2 = −CJ + x2 + y2 + 2
µ

r2
+ 2

1 − µ
r1

� − CJ + 3 + 4µα/2 +O(µα).

Finally, from (15) and using the above inequality, we can establish a lower bound
for R̈2(t):

R̈2(t)� − 2
(

1 + √
3 − CJ

)
− 2

(
1 + 2√

3 − CJ

)
µα/2 −

− µ1−2α +O(µα) = −Kα,
where Kα > 0.

Let us use this bound in (12). Given k, we have that

Ṙ2(t)� vi cos a − Kα(t − t1)� k > 0,
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only for values of t such that t � t1 + (vi cos a − k)/Kα = t + %t and, coming
back to (11), this implies that

R2(t)�µα + k(t − t1) for all t ∈ [t1, t1 +%t].
This was the relation that we wanted to proof. It remains to show that we can choose
k not arbitrarily small and such that exists tα/2 � t1 +%t verifying R2(tα/2) = µα/2.
Let be h̄(t) and h(t) be defined as h̄(t) = R2(t)−µα/2, h(t) = µα−µα/2+k(t−t1).
They verify the following properties

h̄(t)� h(t) for t ∈ [t1, t1 +%t],
h̄(t1) = µα − µα/2 < 0,

h(t) = 0 ⇐⇒ t = t∗ = t1 + µα/2 − µα
k

.

Suppose that t∗ � t1 +%t . Then h̄(t∗)� h(t∗) = 0 and, using Bolzano’s theorem,
we can conclude that there exists tα/2 � t∗ � t1 + %t such that h̄(tα/2) = 0 and
R2(tα/2) = µα/2. So it is necessary to proof that exists k such that

t∗ = t1 + µα/2 − µα
k

� t1 + vi cos a − k

Kα
,

or, equivalently, that

p(k) = k2 − k vi cos a +Kα(µα/2 − µα) < 0.

We observe that p(k) is a parabola with vertex in k = (1/2) vi cos a, and that
p((1/2) vi cos a) < 0 if and only if

v2
i cos2 a − 4Kα(µ

α/2 − µα)� 0.

Using (6), we can develop this expression in powers of µ to get

v2
i cos2 a − 4Kα(µ

α/2 − µα)
= (3 − CJ ) cos2 a − 8

(
1 + √

3 − CJ
)
µα/2 − 4µ1−3α/2 +O(µα),

which is strictly positive because cos a cannot be arbitrarily small. Finally, we
observe that k = (1/2) vi cos a� ε′> 0 since vi = √

3 − CJ + O(µ1−α) and we
are assuming that cos a� ε. This concludes the proof. �

3. ppp-qqq Resonant Orbits

In this section, we are going to find restrictions on the initial conditions that ensure
that an orbit is p-q resonant. Let us start with some notation. The synodic initial
conditions can be written in spherical coordinates as
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Figure 2. Fixed the initial position on the sphere B, there are different values of ṙ such that the orbit
comes back to B. The curves γ1 and γ2 are the qualitatively representation of two solutions of the
RTBP that come back to B tangently. All the orbits with initial velocity inside the cone displayed in
the figure return to the sphere B after some time.

ri =

 µ− 1 + µα cos ϕ cos θ

µα cos ϕ sin θ
µα sin ϕ


 , ṙi = vi


 cosφ cosψ

cosφ sinψ
sinφ


 . (16)

For a fixed position on B(M,µα), defined by the values of the angle ϕ and θ , there
are different velocities for which the orbit comes back to B(M,µα). See Figure 2
for a qualitative representation.

We will write the spherical coordinates of the velocity, φ and ψ , as

φ = φ0 +%φ µα +O(µ2α),

ψ = ψ0 +%ψ µα +O(µ2α). (17)

From now on, the subscript 0 will denote the zero order term of any development
in terms of µα . For instance, if a is the angle between r2i and ṙi , we will have

cos a = cos a0 +%Cµα +O(µ2α), (18)

being

cos a0 = cos ϕ cosφ0 cos(θ − ψ0)+ sin ϕ sin φ0,

%C = 90%ψ +%φ (sin ϕ cosφ0 − cos ϕ sinφ0 cos(ψ0 − θ))
and 90 = cos ϕ cosφ0 sin(θ − ψ0).

First of all, we observe that the solution of the two-body problem, R
TB

, must be
an elliptic solution with angular momentum, c, different from zero. Since R(t) and
R
TB
(t) have both the same initial conditions, we can compute h and c in terms of

ϕ, θ , φ, ψ and the Jacobi constant. Let us begin with the energy:

h = |Ṙi|2
2

− 1

|Ri| .
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On one hand,

|Ri|2 = |ri |2 = r2
2i − 2(1 − µ)(xi − µ+ 1)+ (1 − µ)2

= 1 − 2µα cos ϕ cos θ +O(µ2α).

On the other hand, |Ṙi|2 = |ṙi |2 + 2(xi ẏi − ẋiyi) + x2
i + y2

i , and using the
spherical synodic coordinates we get

|Ṙi|2 = 4 − CJ − 2
√

3 − CJ cosφ0 sinψ0 +
+ 2µα

√
3 − CJ%φ sin φ0 sinψ0 +

+ 2µα
√

3 − CJ (−%ψ cos φ0 cosψ0 +
+ cos ϕ cosφ0 sin(ψ0 − θ))−
− 2µα cos ϕ cos θ + 2

(
1 − cos φ0 sinψ0√

3 − CJ

)
µ1−α +O(µ2α).

Finally, we can write that

h = h0 +%hµα +O(µ1−α), (19)

being

h0 = 1 − CJ

2
− √

3 − CJ cos φ0 sinψ0,

%h = √
3 − CJ (%φ sinφ0 sinψ0 −%ψ cosφ0 cosψ0 +

+ cos ϕ cos φ0 sin(ψ0 − θ)) − 2 cos ϕ cos θ.

Since for the elliptic orbits h< 0, we will require that h0< 0 or, equivalently,
that √

3 − CJ < cos φ0 sinψ0 +
√

1 + cos2 φ0 sin2 ψ0. (20)

From this inequality we can deduce that CJ > −2
√

2.
The next condition to be required is c �= 0. As before, we can compute c at the

initial conditions to get

c = Ri × Ṙi = G(t1)(ri × ṙi + wi),

where wi = (−xizi,−yizi, x2
i + y2

i )
T . As G(t1) is a rotation, it will be enough to

require that ri × ṙi + wi �= 0. Since

wi =

 µα sin ϕ

0
1 − 2µα cos ϕ cos θ


 +O(µ2α),

ri × ṙi = √
3 − CJ


 0

sinφ0

− cosφ0 sinψ0


 +O(µα),
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it can be concluded that

|ri × ṙi + wi|2 = (3 − CJ ) sin2 φ0 +
+

(
1 − √

3 − CJ cosφ0 sinψ0

)2 +O(µα),
and the condition that c �= 0 will be equivalent to

(3 − CJ ) sin2 φ0 +
(

1 − √
3 − CJ cosφ0 sinψ0

)2 �= 0.

As this expression is the sum of two squares, it will be fulfilled if one of them is
different from zero, so the final restriction will be

φ0 �= 0, or sinψ0 �= 1√
3 − CJ , (21)

provided that CJ < 3.
Next, let us ask that at t = t2 the distance from P to M must be µα . This will

give a relation between ε, δ and the coordinates of ri and ṙi .
In order to establish the final position of P we will use the approximation of R

by the elliptic orbit R
TM

. Using (4) we have that

R(t2) = R
TB
(t2)+O(µ1−α) = R

TB
(t1 + 2πpτ + δµα)+O(µ1−α)

= R
TB
(t1 + 2πpτ)+ Ṙ

TB
(t1 + 2πpτ)µαδ +O(µ1−α)

= R(t1)+ Ṙ(t1)δµα +O(µ1−α),

where we have used that µ2α = O(µ1−α), 2πτ is the period of the Keplerian orbit
and the initial conditions for R and RT B are the same. Analogously, as 2π is the
period of the primaries, we have that

R
M
(t2) = R

M
(t1 + 2πq + εµα)+O(µ2α)

= R
M
(t1)+ Ṙ

M
(t1)εµ

α +O(µ2α).

Therefore, the condition we need is

|R(t2)− R
M
(t2)| = |R(t1)− R

M
(t1)+

+µα(Ṙ(t1)δ − Ṙ
M
(t1)ε)+O(µ1−α)| = µα.

Using (16) and the relation between the sidereal and the synodic coordinates, it
can be seen (see Barrabès, 2001 for the details) that |R(t2) − R

M
(t2)| = µα|w| +

O(µ1−α), with

|w|2 = 1 + (ε − δ)2 + (3 − CJ )δ2 + 2(ε − δ)δ√3 − CJ cosφ sinψ +
+2δ

√
3 − CJ (cos ϕ cosφ cos(ψ − θ)+ sin ϕ sinψ)+

+2(ε − δ) cos ϕ sin θ. (22)

We can use the expressions (17) for φ and ψ and the relation (18) to write (22) in
powers of µ. Thus, the distance from P to M at t2 can be written as |R(t2) −
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R
M
(t2)| = µα|w0| + O(µ1−α) and the condition we will ask is |w0| = 1, or

equivalently,

(ε − δ)2 + δ2(3 − CJ )+ 2 (ε − δ) cos ϕ sin θ + 2δ
√

3 − CJ cos a0 +
+ 2(ε − δ)δ√

3 − CJ cos φ0 sinψ0 = 0. (23)

This equation represents an ellipse in the (δ, ε− δ) plane, except if the determinant
of the quadratic terms vanishes, which happens if 1 = cos2 φ0 sin2 ψ0. This situ-
ation will not be considered in what follows because it implies that δ and ε− δ can
take any real value and then t2 could be arbitrarily large. Therefore, we will assume
that 1 �= cos2 φ0 sin2 ψ0. In Figure 3, we have represented some of these ellipses
for different values of the parameters.

Fixed ϕ, θ , φ0, ψ0 and CJ , Equation (23) restricts the rang of values for ε and δ.
From the definition of t2 in Equation (4), it follows that there is a relation between
ε − δ and the period τ (modulus 2π ) of the elliptic orbit which, at the same time,
can be written in terms of the initial conditions using

τ 2/3 = 1

2|h| ,
where h is the energy of the elliptic orbit. Thus, we will have another relation to
take into account. Let us write it explicitly. On one hand, from (19), we get that

1

2|h| = 1

2|h0|
(

1 + %h

|h0|µ
α +O(µ1−α)

)
. (24)

On the other hand, from Definition 1.1, it follows that

τ = q

p
+ ε − δ

2πp
µα +O(µ2α). (25)

Therefore, equating terms of the same order in Equations (24) and (25), we get the
following results:

1.
(
q

p

)2/3 = 1
2|h0| or, using the expression for 2|h0|,

CJ − 2 + 2
√

3 − CJ cosφ0 sinψ0 =
(
p

q

)2/3

. (26)

This relation implies, in particular, (20). From it, we can get several information.
First of all, (p/q)2/3 �CJ − 2 + 2

√
3 − CJ � 2, so p and q must verify

p

q
� 2

√
2.

Next, we observe that

∣∣∣∣2 − CJ +
(
p

q

)2/3
∣∣∣∣ � 2

√
3 − CJ , from which we get that

CJ1 =
(
p

q

)2/3

− 2

√
2 −

(
p

q

)2/3

�CJ �
(
p

q

)2/3

+ 2

√
2 −

(
p

q

)2/3

= CJ2. (27)
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Figure 3. Examples of ellipses represented by Equation (23) for different values of the para-
meters CJ , ϕ, φ0, θ and ψ0. For p= 1 and q = 2, CJ can take any value on the interval
(−1.711013183, 2.970934233). The figures on the top represent the ellipses in the planar case
ϕ = φ0 = 0, for CJ = 0.6299605255, θ fixed and varying ψ0. The figures on the middle represent
the ellipses also in the planar case but with fixed values of θ and ψ0 and varying CJ . The figures on
the bottom represent the ellipses for CJ = 0.6299605255. In the figure on the left ψ0 is variable and
in the figure on the right θ is variable.

Thus, for fixed values of p and q, the range of admissible values for CJ is
[CJ1, CJ2] ⊂ (−2

√
2, 3). On another hand, using (26), the restrictions given by

(21) can be written as

φ0 �= 0 or CJ �=
(
p

q

)2/3

. (28)
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Figure 4. The area limited by the continuous curve defines the range of variation of the Jacobi
constant, (CJ1, CJ2), as a function of p/q. The dotted curve represents CJ = (p/q)2/3, and these
values must be excluded if φ0 = 0.

A summary of the restrictions on CJ are represented in Figure 4. Finally, |h0| must
not be too close to zero. For this, it will be enough that 1

2µ
2α / h0 = O(µ1−α) or,

equivalently,(
p

q

)2/3

> µ3α−1 ⇔ p > qµ(3α−1)3/2.

This relation restricts the range of values of p and q as a function of µ. For
example, if we take α = 0.4, the maxim values for q when p = 1 are

µ 10−3 10−4 10−5 10−6

qmax 7.943 15.84 31.6 63.09
.

2. Equating terms of order µα in Equations (24) and (25), we get

1

2|h0|
%h

|h0| = 1

3

(
p

q

)1/3 1

πp
(ε − δ),

and isolating ε − δ, we get that

ε − δ = 6πq

(
q

p

)2/3 (√
3 − CJ (cos ϕ cosφ0 sin(ψ0 − θ)+

+%φ sinφ0 sinψ0 −%ψ cosφ0 cosψ0)− 2 cos ϕ cos θ

)
. (29)
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Recall that ε − δ must verify Equation (23), too. Since this is an ellipse in the
(δ, ε− δ) plane, there exist k1 and k2 such that any point on the ellipse verifies that
k1 < ε − δ < k2. This is the condition that we will impose on the value of ε − δ
given by (29). The values of ki , i = 1, 2 can be obtained from Equation (23) and
are given by

k1 = cos a0 cosφ0 sinψ0 − cos ϕ sin θ − √
%k

1 − cos2 φ0 sin2 ψ0
,

k2 = cos a0 cosφ0 sinψ0 − cos ϕ sin θ + √
%k

1 − cos2 φ0 sin2 ψ0
,

being %k = (cos a0 − 2 cos ϕ cosφ0 sin θ sinψ0) cos a0 + cos2 ϕ sin2 θ . Observe
that k1< 0 and k2> 0.
So let us obtain the final condition. Denoting by

A(ϕ, θ, φ0, ψ0,%φ,%ψ)

= λ
√

3 − CJ (cos ϕ cosφ0 sin(ψ0 − θ)+%φ sin φ0 sinψ0 −
−%ψ cosφ0 cosψ0)− 2λ cos ϕ cos θ,

B(ϕ, θ, φ0, ψ0)

= cos a0 cosφ0 sinψ0 − cos ϕ sin θ

1 − cos2 φ0 sin2 ψ0
,

C(ϕ, θ, φ0, ψ0)

=
√
(cos a0 − 2 cos ϕ cos φ0 sin θ sinψ0) cos a0 + cos2 ϕ sin2 θ

1 − cos2 φ0 sin2 ψ0
,

where λ = 6πq
(
q

p

)2/3
, the condition k1 < ε − δ < k2 becomes

|A(ϕ, θ, φ0, ψ0,%φ,%ψ) − B(ϕ, θ, φ0, ψ0)|�C(ϕ, θ, φ0, ψ0), (30)

where the variables are restricted by (26) and (28).
As a conclusion we can establish the following result:

THEOREM 3.1. Let r(t) be a solution of (2) with initial conditions (ri , ṙi ) on
the sphere B(M,µα). If it is a p-q resonant orbit, then the Jacobi constant CJ ∈
(Cj1, CJ2) and the variables ϕ, θ , φ and ψ , defined by (16) and (17), must verify

CJ − 2 + 2
√

3 − CJ cos φ0 sinψ0 =
(
p

q

)2/3

,

φ0 �= 0 or CJ �=
(
p

q

)2/3

,

|A(ϕ, θ, φ0, ψ0,%φ,%ψ) − B(ϕ, θ, φ0, ψ0)|�C(ϕ, θ, φ0, ψ0).
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4. The Outer Map

In this section, we will compute the position and the velocity (re, ṙe) at the return
time t2 on the sphere B(M,µα). As we have seen in the previous section, we can
write R(t2) in terms of the initial coordinates as

R(t2) = Ri + Ṙi δ µα +O(µ1−α).

To derive an expression for the velocity at t2, we will use again that R
TB

approaches
the solution of the RTBP and the definition of t2:

Ṙ(t2) = Ṙ
TB
(t1 + 2πpτ + δµα)+O(µ1−α)

= Ṙ
TB
(t1)+ R̈

TB
(t1)δ µ

α +O(µ1−α)

= Ṙ(t1)− R(t1)
R(t1)3

δ µα +O(µ1−α).

Using the fact that |R| = |r| and the Jacobi integral (3), it can be seen that
Ri = 1 +O(µα). Therefore, the out-map in sidereal coordinates is

R(t2) = Ri + Ṙiδ µα +O(µ1−α),
Ṙ(t2) = Ṙi − Riδ µα +O(µ1−α). (31)

Now, we will write the outer map in synodic coordinates (the relation between
sidereal and synodic coordinates has been given in the first section). From the first
equation in (31), it can be obtained that

r(t2) = GT (t2)(G(t1)ri + (G(t1)ṙi + Ġ(t1)ri )δ µα)+O(µ1−α)

=

 1 (ε − δ)µα 0

−(ε − δ)µα 1 0
0 0 1


 ri + δ µα ṙi +O(µ1−α).

From the second equation in (31) it follows that

ṙ(t2)+GT (t2)Ġ(t2)r(t2) = GT (t2)(G(t1)ṙi + Ġ(t1)ri − δ µα G(t1)ri )+
+O(µ1−α),

and, simplifying, we get

ṙ(t2) =

 1 (ε + δ)µα 0

−(ε + δ)µα 1 0
0 0 1


 ṙi +O(µ1−α).

In conclusion, the out-map in synodic coordinates is

re =
(
I − (ε − δ)

2
µαA3

)
ri + δ µα ṙi , (32a)

ṙe =
(
I − (ε + δ)

2
µαA3

)
ṙi , (32b)
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being I the 3 × 3 identity matrix. Next, let us specify each coordinate of the out-
map. We define ϕe, θe, φe, ψe and ve such that

re =

 µ− 1 + r2e cos ϕe cos θe

r2e cos ϕe sin θe
r2e sin ϕe


 , ṙe = ve


 cosφe cosψe

cos φe sinψe
sinφe


 ,

where r2e is the distance from P to M. It can be computed in terms of µα from
(32a). In fact,

r2
2e = µ2α − (ε − δ)µα〈r2i , A3ri〉 + 2δµα〈r2i , ṙi〉 +

+(ε − δ)2
4

µ2α〈A3ri , A3ri〉 − δ(ε − δ)µ2α〈A3ri , ṙi〉 + δ2µ2αv2
i .

Using (16), (18) and (6), the following identities can be obtained

〈A3ri , A3ri〉 = 4(1 − 2µα cos ϕ cos θ +O(µ2α)),

〈r2i , A3ri〉 = −2µα cos ϕ sin θ +O(µ1+α),
〈r2i , ṙi〉 = µα

√
3 − CJ (cos a0 + µα%C +O(µ1−α)),

〈A3ri , ṙi〉 = −2
√

3 − CJ [cosφ0 sinψ0 +
+µα(%ψ cos φ0 cosψ0 −%φ sinφ0 sinψ0 +90)] +
+O(µ1−α).

From them, it follows that

r2
2e = µ2α[1 − 2µα(ε − δ)2 cos ϕ cos θ + 2µαδ

√
3 − CJ (%C +

+(ε − δ)(%ψ cosφ0 cosψ0 −
−%φ sinφ0 sinψ0 +90))+O(µ1−α)].

Thus we get that r2e = µα[1 + µα%re +O(µ1−α)] where

%re = δ
√

3 − CJ [90(ε − δ)+%ψ (90 + (ε − δ) cosφ0 cosψ0)+
+%φ (sin ϕ cosφ0 − cos ϕ sinφ0 cos(ψ0 − θ)−
− (ε − δ) sinφ0 sinψ0)] − (ε − δ)2 cos ϕ cos θ, (33)

where 90 = cos ϕ cos φ0 sin(θ − ψ0).
Therefore, from (32a) and the expression for r2e, it can be shown (see Barrabés,

2001) that

cos ϕe cos θe = cos ϕ cos θ + δ√3 − CJ cosφ0 cosψ0 −
−µα

[
δ
√

3 − CJ (%φ sin φ0 cosψ0 +%ψ sinψ0 cosφ0)−

− (ε − δ) cos ϕ sin θ +%re
(

cos ϕ cos θ +

+ δ√3 − CJ cosφ0 cosψ0

)]
+O(µ1−α), (34a)
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cos ϕe sin θe = cos ϕ sin θ + δ√3 − CJ cosφ0 sinψ0 + (ε − δ)+
+µα

[
δ
√

3 − CJ (%ψ cosφ0 cosψ0 −%φ sinψ0 sin φ0)−

− (ε − δ) cos ϕ cos θ −%re
(

cos ϕ sin θ + (ε − δ)+

+ δ√3 − CJ cosφ0 sinψ0

)]
+O(µ1−α), (34b)

sin ϕe = sin ϕ + δ√3 − CJ sinφ0 + µα
[
δ
√

3 − CJ%φ cosφ0 −

−%re
(

sin ϕ + δ√3 − CJ sinφ0

)]
+O(µ1−α). (34c)

Now, from (32b), it is easy to see that ve = vi +O(µ2α) and, then, if cos ϕ �= 0,
it follows that

φe = φ +O(µ2α), (35a)

ψe = ψ0 + (%ψ − (ε + δ))µα +O(µ2α). (35b)

5. Conclusions

In this paper, we have studied the behaviour of the p-q resonant orbits in the
spatial case. Both the analytical restrictions on the initial conditions and the ex-
plicit expressions of the outer map have been given up to terms of order µα . In a
forthcoming paper this study will be used to get solutions of the RTBP close to
periodic second species solutions.
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