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Received 4 March 2002 / Accepted 19 April 2002

Abstract. The purpose of this paper is to develop a methodology to generate simplified models suitable for the analysis of
the motion of a small particle, such as a spacecraft or an asteroid, in the Solar System. The procedure is based on applying
refined Fourier analysis methods to the time–dependent functions that appear in the differential equations of the problem. The
equations of the models obtained are quasi–periodic perturbations of the Restricted Three Body Problem that depend explicitly
on natural frequencies of the Solar System. Some examples of these new models are given and compared with other ones found
in the literature. For one of these new models, close to the Earth–Moon system, we have computed the dynamical substitutes of
the collinear libration points.

The methodology developed in this paper can also be used for the analytical construction of simplified models of systems
governed by differential equations which have a quasi–periodic (in time) external excitation and such that the form of the
equations is rather cumbersome.
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1. Introduction

The main goal of this paper is the construction of quasi–periodic analytic models suitable for the study of the motion of a
small particle in the Solar System. Without any simplification, the equations of the general problem form a set of 60 first order
differential equations difficult to analyze. It is well known that very simple models, such as the Two Body Problem or the
Restricted Three Body Problem (RTBP), are suitable for many purposes, since they give a good insight of dynamics in large
regions of the phase space of the problem. Some of these models are restricted, which means that the small particle does not have
any influence in the motion of the remaining bodies. The models introduced in this paper will be also restricted but not so simple
as the ones already mentioned. We will try to keep within them the behavior of the dynamics related to the resonances between
natural and excitation frequencies.

Most of the well known restricted problems take as starting point the RTBP. We recall that it models the motion of a particle
under the gravitational attraction of two primaries which are assumed to be point masses revolving in circular orbits around their
center of mass. The Hamilton function of this system is, in a coordinate system that revolves with the primaries (such a system
is called synodic, see Szebehely 1967),

H(x, y, z, px, py, pz) =
1
2

(p2
x + p2

y + p2
z ) + ypx − xpy − 1 − µ

((x − µ)2 + y2 + z2)1/2
− µ

((x − µ + 1)2 + y2 + z2)1/2
,

being µ = m2/(m1 + m2), where m1 > m2 are the masses of the primaries. In order to get closer to more realistic situations, this
model is modified in different ways. For instance

1. Assuming that the primaries move in an elliptic orbit instead of a circular one. This is what is known as the elliptic RTBP. Its
main difference with the RTBP is that it is non–autonomous and in fact is a time–periodic perturbation of it.

2. Adding a third primary and setting four body problem restricted models. The simplest one is the Bicircular Restricted
Problem. It can be also considered a periodic perturbation of the the RTBP in which one primary has been splitted in two that
move around their common center of mass. This model can be suitable to take into account the gravitational effect of the Sun
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in the Earth–Moon RTBP. In coordinate system revolving with Earth and Moon, the Hamiltonian, H(x, y, z, px, py, pz, t), of
this problem is (see Simó et al. 1995)

H =
1
2

(p2
x + p2

y + p2
z ) + ypx − xpy − 1 − µ

((x − µ)2 + y2 + z2)1/2
− µ

((x − µ + 1)2 + y2 + z2)1/2

− mS

((x − aS cos θ)2 + (y + aS sin θ)2 + z2)1/2
− mS

a2
S

(y sin θ − x cos θ),

with θ = wSt + θ0, where wS is the mean angular velocity of the Sun, mS its mass and aS the distance from the Earth–Moon
barycenter to the Sun.

3. Asking the three primaries to move along a true solution of the three body problem. This provides the so called coherent
models. These models have been introduced for the study of the motions around the geometrically defined collinear and
triangular equilibrium points of the Earth–Moon system and the Sun–Jupiter system, perturbed by Saturn (see Andreu 1999;
Gabern & Jorba 2001). The Hamiltonian of these problems can be written as

H =
1
2
α1(p2

x + p2
y + p2

z ) + α2(xpx + ypy + zpz) + α3(ypx − xpy) + α4 x + α5y

−α6

(
1 − µ

((x − µ)2 + y2 + z2)1/2
+

µ

((x − µ + 1)2 + y2 + z2)1/2
+

mS

((x − α7)2 + (y − α8)2 + z2)1/2

)
,

where the αi are time periodic functions, with the same basic frequency as the Bicircular Problem.

In our approach, instead of taking as starting equations those of the RTBP, we will consider Newton’s equation for the motion
of an infinitesimal body in the force field created by the bodies of the Solar System

R′′ = G
∑

i

mi
(Ri − R)
‖R − Ri‖3 , (1)

where G is the gravitational constant, R is the position of the infinitesimal body, Ri is the position of the Solar System body i in
some suitable inertial system and mi its mass.

Following the ideas of Gómez et al. (2001b), in Sect. 2 we introduce suitable reference systems and units such that, after
selecting two bodies of the Solar System as primaries, the above equations are set as a perturbation of the RTBP. These new
equations will be a generalization of the ones that we have already introduced for the intermediate models just discussed. In
Sect. 3, and for two particular choices of primaries, we will perform the Fourier analysis of all the time periodic functions
that appear in the new equations. In this way we are able to introduce a graded set of models with an increasing number of
frequencies, that can be considered between the RTBP and the true equations. This is done in Sect. 4. Finally, in the last section
we compute the dynamical substitutes of the collinear equilibrium points for one of the intermediate models introduced, close to
the Earth–Moon system.

2. The equations of motion in the Solar System as a perturbation of the RTBP

Through the full paper, the set of bodies of the Solar System will be denoted by

S = {P1, . . . , P11} (2)

where P1,. . . , P11 are the nine planets, the Moon and the Sun, respectively. The mass of P ∈ S will be denoted by mP.
In an inertial reference system, the Lagrangian related to Newton’s equations of motion (Eq. (1)) of an infinitesimal body Q

under the gravitational action of the bodies in S, is

L(R,R′, t∗) =
1
2
〈R′,R′〉 +

∑
i∈S

Gmi

‖R − Ri‖ ,

where R = (X, Y, Z)T is the position of Q, the prime denotes the derivative with respect to time, t∗, 〈R′,R′〉 is the dot product
between R′ and R′, G is the gravitational constant, Ri is the position of the body i ∈ S and ‖ · ‖ denotes the Euclidean norm. In
practice, it is convenient that the reference frame and units, both in space and time, are consistent with the ephemerides data files
used for the determination of Ri.

Since we are interested in writing the equations of motion for Q as a perturbation of the RTBP equations, we must select
two bodies I, J ∈ S with mI > mJ , which will play the role of primaries. In this way, the mass parameter, µ, is defined as
µ = mJ/(mI + mJ), and so 1 − µ = mI/(mI + mJ). Next, we must introduce the synodic reference frame. Recall that the origin
of this system is set at the barycenter of I, J and that the positions of the primaries are fixed at (µ, 0, 0) and (µ − 1, 0, 0) (see
Szebehely 1967).
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Following Gómez et al. (2001b), the transformation from synodical coordinates, r = (x, y, z)T , to sidereal ones, R, is defined
by

R = B + kCr, (3)

where

– The translation, B, is given by

B =
mIRI + mJRJ

mI + mJ
,

that clearly puts the barycenter of the primaries at the origin,
– The orthogonal matrix C = (e1, e2, e3), sets the primaries on the x–axis and turns the instantaneous plane of motion of the

primaries into the xy plane (by requiring that the relative velocity of one primary with respect to the other has its third
component equal to zero). The columns of C are

e1 =
RJI

‖RJI‖ , e3 =
RJI × R′JI

‖RJI × R′JI‖
, e2 = e3 × e1,

being RJI = RJ − RI .
– k = ‖RJI‖ is a scaling factor which makes the distance between the primaries to be constant and equal to 1.

It is important to remark that this change of variables is non–autonomous, since B, k and C depend on time through the compo-
nents of RI and RJ.

The change of coordinates given by Eq. (3) is checked to preserve the Lagrangian form of the equations and the new
Lagrangian becomes

L(r, r′, t∗) =
1
2
〈B′,B′〉 + k′〈B′, s〉 + k〈B′, s′〉 + 1

2
k′2〈r, r〉 + kk′〈s, s′〉 + 1

2
k2〈s′, s′〉

+
GmI

k[(x − µ)2 + y2 + z2]1/2
+

GmJ

k[(x − µ + 1)2 + y2 + z2]1/2
+

∑
i∈S∗

Gmi

k‖r − ri‖ ,

where s = Cr, ri is the position of the body i in dimensionless coordinates and S∗ represents the set of Solar System bodies
without the two primaries I, J. To get the above expression of L, we use that C defines an orthogonal transformation and, hence,
it preserves the scalar product and the Euclidean norm.

Finally, we want to use the same time units as those usual for the RTBP, where 2π time units correspond to one revolution
of the primaries. If t∗ is some dynamical time and n is the mean motion of J with respect to I, then we perform the change of
independent variable through

t = n(t∗ − t∗0), (4)

where t∗0 is a fixed epoch. From now on, t will be called dimensionless time. In Table 1 we give the values of n for the Earth–Moon
and the Sun–(Earth+Moon) systems. In this second case, Earth+Moon means the Earth–Moon barycenter and, for this system,
the Earth and the Moon are substituted in S by a fictitious body of mass mE + mM behaving as their barycenter. The values in
Table 1 are averaged values through the 6000 years covered by the JPL ephemerides file DE406 (see Standish 1998), and have
been computed from this file. Using Kepler’s third law, G(mI + mJ) = n2a3, we can also define the mean semi–major axis of the
orbit of one primary around the other; these values are also given in Table 1.

If we denote with a dot the derivative with respect to t, then the new Lagrangian can be written as

L(r, ṙ, t) = n2

(
1
2
〈Ḃ, Ḃ〉 + k̇〈Ḃ, s〉 + k〈Ḃ, ṡ〉 + 1

2
k̇2〈r, r〉 + kk̇〈s, ṡ〉 + 1

2
k2〈ṡ, ṡ〉

)

+
GmI

k[(x − µ)2 + y2 + z2]1/2
+

GmJ

k[(x − µ + 1)2 + y2 + z2]1/2
+

∑
i∈S∗

Gmi

k‖r − ri‖ ·

Table 1. Values for the mean motion and mean semi–major axis used in the Earth–Moon and Sun–(Earth+Moon) cases. The units are
(Julian Days)−1 and km.

Earth–Moon Sun–(Earth+Moon)
n 0.22997154619514 0.01720209883844
a 384 601.25606767 149 598 058.09228115
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From this Lagrangian we can remove the term 〈Ḃ, Ḃ〉, since it is independent of r and ṙ, and multiply by the scaling factor
a/(G(mI + mJ)) = 1/(n2a2) without affecting the equations of motion. In this way we get

L(r, ṙ, t) =
1
a2

(
k̇〈Ḃ, s〉 + k〈Ḃ, ṡ〉 + 1

2
k̇2〈r, r〉 + kk̇〈s, ṡ〉 + 1

2
k2〈ṡ, ṡ〉

)

+
a
k

(
1 − µ

[(x − µ)2 + y2 + z2]1/2
+

µ

[(x − µ + 1)2 + y2 + z2]1/2
+

∑
i∈S∗

µi

‖r − ri‖
)
,

where µi = mi/(mI + mJ).
Since e1, e2, e3 form an orthogonal basis, we have that 〈ei, e j〉 = δi j, 〈ėi, e j〉 = −〈ei, ė j〉 and 〈ėi, ei〉 = 0 for i, j = 1, 2, 3. It can

be further shown that 〈ė1, ė2〉 = 0, 〈ė2, ė3〉 = 0 and 〈ė1, e3〉 = 0. Recalling that r = (x, y, z)T , writing s = Cr = e1x + e2y + e3z and
using the previous relations, we get

L(r, ṙ, t) = a1(ẋ2 + ẏ2 + ż2) + a2(xẋ + yẏ + zż) + a3(xẏ − ẋy) + a4(yż − ẏz) + a5x2 + a6y
2 + a7z2 + a8xz

+a9 ẋ + a10ẏ + a11ż + a12x + a13y + a14z

+a15

(
1 − µ

[(x − µ)2 + y2 + z2]1/2
+

µ

[(x − µ + 1)2 + y2 + z2]1/2
+

∑
i∈S∗

µi

[(x − xi)2 + (y − yi)2 + (z − zi)2]1/2

)
,

where the ai are time dependent functions that can be computed in terms of the positions, velocities, accelerations and over–
accelerations of the two primaries. Their explicit expressions are

a1=
k2

2a2
, a2=

kk̇
a2
, a3=

k2

a2
〈ė1, e2〉, a4=

k2

a2
〈ė2, e3〉,

a5=
1
2

(
k̇2

a2
+

k2

a2
〈ė1, ė1〉

)
, a6=

1
2

(
k̇2

a2
+

k2

a2
〈ė2, ė2〉

)
, a7=

1
2

(
k̇2

a2
+

k2

a2
〈ė3, ė3〉

)
, a8=

k2

a2
〈ė1, ė3〉,

a9=
k
a2
〈Ḃ, e1〉, a10=

k
a2
〈Ḃ, e2〉, a11=

k
a2
〈Ḃ, e3〉, a12=

k̇
a2
〈Ḃ, e1〉 + k

a2
〈Ḃ, ė1〉,

a13=
k̇
a2
〈Ḃ, e2〉 + k

a2
〈Ḃ, ė2〉, a14=

k̇
a2
〈Ḃ, e3〉 + k

a2
〈Ḃ, ė3〉, a15=

a
k
·

With the above expressions we can write the second–order differential equations of motion as


ẍ = b1 + b4 ẋ + b5ẏ + b7x + b8y + b9z + b13
∂Ω

∂x
,

ÿ = b2 − b5 ẋ + b4ẏ + b6ż − b8x + b10y + b11z + b13
∂Ω

∂y
,

z̈ = b3 − b6ẏ + b4ż + b9x − b11y + b12z + b13
∂Ω

∂z
,

(5)

being

Ω =
1 − µ√

(x − µ)2 + y2 + z2
+

µ√
(x − µ + 1)2 + y2 + z2

+
∑
i∈S∗

µi√
(x − xi)2 + (y − yi)2 + (z − zi)2

(6)

where µi = mi/(mI + mJ) and the bi time–dependent functions are defined as

b1 = −1
k
〈B̈, e1〉, b2 = −1

k
〈B̈, e2〉, b3 = −1

k
〈B̈, e3〉 b4 =−2k̇

k

b5 = 2〈ė1, e2〉, b6 = 2〈ė2, e3〉, b7 = 〈ė1, ė1〉 − k̈
k
, b8 =

2k̇
k
〈ė1, e2〉 + 〈ë1, e2〉,

b9 = 〈ė1, ė3〉, b10 = 〈ė2, ė2〉 − k̈
k
, b11 =

2k̇
k
〈ė2, e3〉 + 〈ë2, e3〉,

b12 = 〈ė3, ė3〉 − k̈
k
, b13 =

a3

k3
·

We note that setting bi = 0 for i , 5, 7, 10, 13, b5 = 2, b7 = b10 = b13 = 1 and skipping the sum over S∗ in Eq. (6), the
Eqs. (5) become the usual RTBP equations with mass parameter µ. Therefore, we can see Eqs. (5) as a perturbation of the RTBP
equations. Once the primaries have been fixed, we will get an idea of the order of magnitude of the perturbation, by looking at
the first coefficient of the Fourier expansions of the bi functions. The Fourier analysis of this functions will be done in the next
sections for two different systems.
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3. Fourier analysis of the time–dependent functions of the equations of motion

This section is devoted to the results of the Fourier analysis applied to all the time–dependent functions appearing in Eqs. (5), this
is: the b j functions and the coordinates, xi, yi, zi, of the bodies of the Solar System included in S∗. The Fourier analysis follows
the methodology developed in Gómez et al. (2001c), which is a refined procedure that allows a very accurate determination of
frequencies and amplitudes for analytic quasi–periodic functions. Here we will discuss the selection of the main parameters used
in the method as well as the results obtained. Although the analysis can be done for any set of primaries, we have selected two
different couples – the Earth and the Moon and the Sun and the Earth–Moon barycenter – because of their relevance in many
spacecraft mission analysis simulations.

3.1. Fourier analysis of the bi functions

Using the algorithm described in Gómez et al. (2001c), we have performed Fourier analysis of the {bi}i=1,...,13 functions, both for
the Earth–Moon case and the Sun–(Earth+Moon) case. This means that for each bi function we have obtained a set of frequencies
and amplitudes that define its quasi–periodic approximation as a trigonometric polynomial, Qbi (t). As for any Fourier procedure,
the most relevant parameters to be specified are the size, T , of the time (sampling) interval and the number, N, of equally spaced
sampling points chosen in the interval. These parameters define, for instance, the Nyquist critical frequency, ωc = N/(2T ), that
fixes the window within we will find all the frequencies (true or aliased) of our time series. So, the first thing that we need is
some criteria to choose properly T and N.

Due to our implementation of the Fourier analysis procedure, the parameter N must range over powers of two. For consistency,
the length, T , of the time–interval has also been chosen to range over a geometric progression, and the time–interval has always
started at January 1st, 2001. The smallest time–interval length, Tmin, has been taken of 95 years (34698.75 Julian days) and the
greatest time–interval length, Tmax, has been chosen as the maximum time–interval covered by the JPL DE406 ephemerides after
Jan 1st 2001, which is 364938 Julian days (999.15 years). Therefore, we have let T range over the set {δnTmin}10

n=0 where δ =
(Tmax/Tmin)1/10. The time units used are revolutions of the secondary (J) around the primary (I) or, equivalently, dimensionless
time divided by 2π. The reason for this is that, in this way, the frequency 1.0 corresponds to one revolution of J around I, which
has a more intuitive meaning (one lunar month in the Earth–Moon case, one sidereal year in the Sun–(Earth+Moon) case) that
will help in the elaboration of the intermediate models of motion. Moreover, in order to evaluate the trigonometric approximations
of the bi functions, we only have to multiply the frequencies found by the dimensionless time, without the need of an additional
2π factor.

The maximum number of samples Nmax has been chosen to be 220, in order to allow for “comfortable” runs on machines with
64MB of memory (or, equivalently, bi–processor machines with 128MB). For each value of T , the minimum number of samples
has been chosen such that N

2T ≥ 1.5, in order to make the maximum detectable frequency to be at least 1.5.
Assume that, for certain fixed values of T and N, we have performed Fourier analysis of a given function bi(t) obtaining the

trigonometric polynomial Qbi (t). Then, we can easily compute the maximum difference between the analyzed function and its
quasi–periodic approximation at the sampling points, that is,

dmax = max
l=0,...,N−1

∣∣∣bi(tl) − Qbi (tl)
∣∣∣, (7)

where tl = l (T/N), l = 0, . . . ,N − 1 are the sampling epochs. In Figs. 1 (Earth–Moon case) and 2 (Sun–(Earth+Moon) case) we
have represented, for all the bi functions, the minimum of dmax with respect to the different values of N explored, when varying
T according to the preceding discussion.

To reduce the leakage effect, in all the computations we have multiplied our data by a Hanning function of order two

H2
T (t) =

2
3

(
1 − cos

(
2π

t
T

))2
·

The advantages of the Hanning function with respect to other well–known window functions (see Brigham 1974) are its simplicity
and its degree of differentiability. For instance, Hn

T (t) has degree 2n, whereas a general “triangle window function” T n
T (t) has

degree just n. This higher degree of regularity implies a faster decay of the Fourier coefficients (see Gómez et al. 2001c for more
details).

In order to control aliasing, two different strategies have been followed. The first one is based on time–domain, and consists
in computing the maximum difference between the initial function and its quasi–periodic approximation, over a refinement of the
initial grid of data used for the Fourier analysis. This difference will be denoted as α1. If it increases significantly when increasing
the number of points of the grid, then aliasing is very likely to occur. For this test, we have used a refinement with 16N equally
spaced points in [0, T ].

The second anti–aliasing strategy is based on frequency–domain. It consists in computing the number of rightmost consecu-
tive harmonics of the residual Discrete Fourier Transform (DFT) that have modulus less than a fraction of the maximum modulus
of the residual DFT. Then, we divide this number by N/2, the total number of harmonics, and this defines the parameter α2.
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Fig. 1. Error results of the Fourier analysis of the bi functions in the Earth–Moon case. For each value of T explored, we have represented the
minimum value of dmax with respect to N. The values of T are given in revolutions of the Moon around the Earth.

That is, if Ei(t) = bi(t) − Qbi (t) is the error of the trigonometric approximation of bi(t) and cEi ,T,N( j), sEi ,T,N( j), j = 0, . . . ,N/2,
are the cosine and sine coefficients of its DFT, we compute

pEi ,T,N( j) = ((cEi ,T,N( j))2 + (sEi ,T,N( j))2)1/2,

pmax = max
j=0,...,N/2

pEi ,T,N( j),

α2 =
min{ j : pEi ,T,N(l) ≤ pmax/25 for l = j, . . . ,N/2}

N/2
·

Then, for instance, a value of 0.2 for α2 means that there are no frequencies greater than 0.8 ·ωmax = 0.8 · (N/2T ), with amplitude
greater than 1/25 times the modulus of the residual DFT, so we do not expect aliasing in the corresponding Fourier analysis.
We are assuming here that amplitudes decrease as frequencies increase, which is ensured by the Cauchy estimates of the Fourier
coefficients for an analytic quasi–periodic function.

As an example of aliasing and how the two previously–described strategies detect it, we have represented in Fig. 3 the residual
DFT of some of the Fourier analysis of the b1 function in the Earth–Moon case. Some numerical values of these analysis are
given in Table 2. In the left plot, we see that for N = 16384 there are frequencies of high amplitude near ωmax = 4.02903. As
we increase N, the amplitude of the frequencies near ωmax decrease and the values of dmax as well as the parameter α1 of the first
anti–aliasing strategy become closer.
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Fig. 2. Same as Fig. 1 but for the Sun–(Earth+Moon) case. The values of T are given in revolutions of the Earth+Moon barycenter around the
Sun.

According to this, for the results displayed in Figs. 1 and 2 only those analyses with α1 < 1.2dmax and α2 ≥ 0.2 have been
taken into account.

For the generation of simplified models for the Solar System, among all the analysis performed we have selected the best
ones in terms of minimum dmax. The corresponding parameters of these “best” analysis are given in Tables 3 (Earth–Moon) and 4
(Sun–(Earth+Moon)).

3.2. Fourier analysis of the positions of the planets

In order to complete the quasi–periodic approximation of all the time–dependent part in the vector–field given by Eqs. (5), we
give in this section the results of the Fourier analysis of the positions of the Solar System bodies in dimensionless coordinates.
For each coordinate xi, yi, zi, we have performed Fourier analysis using the same procedure as for the analysis of the bi functions.
The minimum value of dmax with respect to N, for fixed values of T , is plotted in Fig. 4 for the Earth–Moon system. The values
of the parameters for the best analysis are given in Table 5. In the electronic version of the paper the reader can find the results
for the Sun–(Earth+Moon)system, which can be also provided by the authors.
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Fig. 3. Modulus of the residual DFT some of the Fourier analysis of the b1 function in the Earth–Moon case. The values of the parameters of
these analysis are given in Table 2.

Table 2. Parameters associated to the Fourier analysis of Fig. 3. From left to right: day0, initial Julian day since Jan 1st, 2001; dayf , final Julian
day (same units); T , time interval in J–revolutions; N, number of points used; ωmax, maximum detectable frequency; pmax, maximum modulus
of the residual DFT; dmax, maximum difference between b1 and its quasi–periodic approximation over the samples; α1, α2, values of the two
anti–aliasing parameters.

day0 dayf T N ωmax pmax dmax α1 α2

366 55 917.4 2033.24 16 384 4.02903 2.66E–05 4.90E–04 2.29E–03 0.0007
366 55 917.4 2033.24 32 768 8.05806 2.66E–05 5.30E–04 5.67E–04 0.1633
366 55 917.4 2033.24 65 536 16.1161 2.66E–05 5.63E–04 5.67E–04 0.5816

Table 3. Values of the parameters for the best Fourier analyses of the bi functions for the Earth–Moon case.

function T (days) T (J–rev.) N pmax dmax

b1 55 551.4 2033.24 65 536 2.66E–05 5.63E–04
b2 55 551.4 2033.24 65 536 2.67E–05 5.49E–04
b3 55 551.4 2033.24 32 768 3.30E–06 5.58E–05
b4 55 551.4 2033.24 65 536 2.31E–06 5.01E–05
b5 43 904.0 1606.94 32 768 4.85E–06 9.16E–05
b6 70 288.7 2572.64 32 768 3.92E–08 1.13E–06
b7 55 551.4 2033.24 65 536 3.51E–06 7.81E–05
b8 55 551.4 2033.24 524 288 1.96E–07 5.94E–06
b9 70 288.7 2572.64 65 536 1.97E–08 5.69E–07
b10 55 551.4 2033.24 65 536 3.51E–06 7.83E–05
b11 70 288.7 2572.64 65 536 1.67E–08 5.05E–07
b12 43 904.0 1606.94 32 768 1.58E–06 3.29E–05
b13 55 551.4 2033.24 65 536 3.51E–06 7.99E–05

Table 4. Values of the parameters for the best Fourier analyses of the bi functions for the Sun–(Earth+Moon) case. Note that, in this case,
J–revolutions are sidereal years.

function T (days) T (J–rev) N pmax dmax

b1 142 382.6 389.815 65 536 4.95E–08 4.40E–07
b2 142 382.6 389.815 65 536 4.95E–08 4.33E–07
b3 112 529.5 308.083 131 072 2.28E–09 2.68E–08
b4 34 698.8 94.998 4096 8.34E–06 6.74E–05
b5 34 698.8 94.998 4096 1.75E–05 1.26E–04
b6 88 935.7 243.488 262 144 1.76E–08 5.71E–07
b7 34 698.8 94.998 4096 1.36E–05 9.17E–05
b8 288 422.1 789.642 524 288 9.65E–08 1.67E–06
b9 88 935.7 243.488 131 072 9.71E–09 3.19E–07
b10 34 698.8 94.998 4096 1.36E–05 9.17E–05
b11 70 288.7 192.436 524 288 2.35E–08 2.38E–06
b12 34 698.8 94.998 4096 3.92E–06 4.06E–05
b13 34 698.8 94.998 4096 1.34E–05 9.47E–05

4. Generation of simplified Solar System models

In this section we will generate several simplified Solar System models using the Fourier approximations computed according to
the previous section. The models obtained will be compared with other ones through the computation of residual accelerations.



G. Gómez et al.: Solar system models with a selected set of frequencies 741

Table 5. Values of the parameters for the best Fourier analysis of the coordinates of the Solar System bodies in dimensionless units. Earth–Moon
system.

body coord. T (days) T (years) T (J–rev) N pmax dmax

Mercury x 70 288.7 192.440 2572.64 65 536 1.37E–02 3.41E–01
Mercury y 70 288.7 192.440 2572.64 65 536 1.08E–02 2.89E–01
Mercury z 70 288.7 192.440 2572.64 32 768 3.18E–03 9.99E–02

Venus x 55 551.4 152.091 2033.24 65 536 5.13E–03 1.53E–01
Venus y 55 551.4 152.091 2033.24 65 536 5.60E–03 1.65E–01
Venus z 88 935.7 243.493 3255.14 65 536 1.25E–03 4.10E–02
Mars x 55 551.4 152.091 2033.24 65 536 3.61E–02 8.43E–01
Mars y 180 155.5 493.239 6593.89 131 072 3.21E–02 7.53E–01
Mars z 180 155.5 493.239 6593.89 131 072 3.26E–03 1.38E–01

Jupiter x 55 551.4 152.091 2033.24 32 768 1.40E+00 1.53E+01
Jupiter y 112 529.5 308.089 4118.71 65 536 5.39E–01 1.31E+01
Jupiter z 70 288.7 192.440 2572.64 32 768 1.37E–01 1.31E+00
Saturn x 70 288.7 192.440 2572.64 32 768 6.07E+00 6.19E+01
Saturn y 142 382.6 389.822 5211.36 65 536 2.53E+00 6.46E+01
Saturn z 180 155.5 493.239 6593.89 65 536 3.87E–01 1.04E+01
Uranus x 142 382.6 389.822 5211.36 131 072 2.33E+00 3.75E+01
Uranus y 142 382.6 389.822 5211.36 131 072 2.33E+00 3.76E+01
Uranus z 364 938.0 999.146 13 357.14 131 072 2.42E–01 4.14E+00
Neptune x 288 422.1 789.657 10 556.57 262 144 3.12E+00 4.52E+01
Neptune y 364 938.0 999.146 13 357.14 262 144 2.37E+00 4.51E+01
Neptune z 364 938.0 999.146 13 357.14 131 072 1.80E+00 2.72E+01

Pluto x 364 938.0 999.146 13 357.14 262 144 4.15E+00 1.69E+02
Pluto y 364 938.0 999.146 13 357.14 262 144 2.08E+01 2.93E+02
Pluto z 364 938.0 999.146 13 357.14 131 072 2.42E+00 5.16E+01
Sun x 55 551.4 152.091 2033.24 65 536 4.41E–03 9.73E–02
Sun y 55 551.4 152.091 2033.24 65 536 4.41E–03 9.21E–02
Sun z 34 698.8 95.000 1270.01 16 384 8.49E–04 8.65E–03

4.1. Adjustment using linear combinations of basic frequencies

In order to give a more physical meaning to the results obtained from the Fourier analysis, we will write the computed frequencies
as linear combinations, with integer coefficients, of basic ones. These basic frequencies can be identified as “natural” frequencies
of the planetary and lunar theories. The introduction in the Fourier expansions of the basic frequencies will be the key point for
the construction of models of motion with increasing dynamical complexity.

In principle, the basic frequencies will be extracted from the list of frequencies computed in the Fourier analysis and using the
procedure explained below. Nevertheless, in some cases it can be convenient to introduce a fixed set of basic frequencies obtained
by other means, for instance from an analytical lunar theory, and then write all the computed frequencies as linear combinations
of the ones in this fixed set. Both approaches will be considered in what follows.

To set up the algorithms we need two definitions. Assume thatω1, . . . , ωn is a set of basic frequencies and that a frequency f
can be written as f = k1ω1 + . . .+ knωn with k1, . . . , kn integer numbers, then we say that f is a linear combination of ω1, . . . , ωn

of order k = |k1| + . . . + |kn|. We say that f is a linear combination of ω1, . . . , ωn of order k within tolerance ε > 0 if, for some
k1, . . . , kn such that k = |k1| + . . . + |kn|, we have

| f − (k1ω1 + k2ω2 + . . . + knωn)| < ε.
A simple approach for the determination of the basic frequencies is:

1. choose a maximum order of the linear combinations to be found;
2. choose a tolerance for the adjustment of frequencies as linear combination of basic ones;
3. for each frequency, try out all the linear combinations of the current set of basic frequencies up the chosen maximum order;
4. if any of the linear combinations fulfills the tolerance requirements, add the current frequency to the set of basic ones.

This procedure may add extra basic frequencies (and thus end up with a rationally dependent set) in some cases, for instance, if
the current frequency is an integer divisor of one of the basic frequencies. To avoid this, instead of trying to adjust the current
frequency as linear combination of the basic ones, we will try to adjust zero as linear combination of the current frequency and
the basic ones. If we succeed to do this and the current frequency gets a coefficient different from ±1, it may be necessary to
divide some basic frequencies by this coefficient.

These considerations lead to the following procedure for the determination of a basic set of frequencies:

Algorithm 4.1. Given { f1, . . . , fNf } the set of frequencies to be adjusted as linear combination of basic ones to be selected in
the set, a tolerance tol for the adjustments and a maximum order maxor for the linear combinations to be found, compute the
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Fig. 4. Error results of the Fourier analysis of the coordinates of the Solar System bodies (in dimensionless coordinates) for the Earth–Moon
case. For each value of T explored, we have represented the minimum value of dmax (in RTBP units) with respect to N. They are continued in
Fig. 5.

basis {ω1, . . . , ωnb } and the linear combinations {(ki
1, . . . , k

i
nb

)}i=1,...,Nf as

ω1 ← f1, k1
1 ← 1, nb ← 1

for i = 2, . . . ,Nf

if 0 ∈ lc({ fi, ω1, . . . , ωnb }, tol,maxor)
(k0, ki

1, . . . , k
i
nb

) = adjust(0, { fi, ω1, . . . , ωnb }, tol,maxor)
for j = 1, . . . , nb

if k0 divides ki
j

ki
j ← ki

j/k0
else

ω j ← ω j/k0

for l = 1, . . . , i − 1
kl

j ← kl
jk0

else
nb ← nb + 1
(ki

1, . . . , k
i
nb−1, k

i
nb

)← (0, . . . , 0, 1)
for l = 1, . . . , i − 1

kl
nb
← 0.
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Fig. 5. Continuation of Fig. 4.

In this formulation, we have introduced two functions lc and adjust, defined as follows:

– lc({ωi}i=1,...,nb , tol,maxor) is defined as the set of real numbers f such that there exists (k1, . . . , knb ) with ki integer, |k1| + . . . +
|knb | ≤ maxor and | f − k1ω1 − . . . − knbωnb | ≤ tol,

– for f real, adjust( f , {ωi}i=1,...,nb , tol,maxor) returns the first (k1, . . . , knb), in increasing order and increasing lexicographical
order within each order, with order ≤ maxor, such that | f − k1ω1 − . . .− knbωnb | ≤ tol. In the case that there is no (k1, . . . , knb )
of order less than maxor with | f − k1ω1 − . . . − knbωnb | ≤ tol, the one with minimum | f − k1ω1 − . . . − knbωnb | is returned. If
f = 0, then k1 is taken to be positive.

Of course, in the actual implementation, the role of these functions is accomplished by the same code.

In the second case, in which the basic frequencies {ω1, . . . , ωnb } are known, we can just take the best linear combination for
each frequency. This can be stated as

Algorithm 4.2. Given { f1, . . . , fNf } the set of frequencies to be adjusted as linear combination of the frequency basis
{ω1, . . . , ωnb }, a tolerance tol for the adjustments and a maximum order maxor for the linear combinations to be found, com-
pute the linear combinations {(ki

1, . . . , k
i
nb

)}i=1,...,Nf as

for i = 1, . . . ,Nf

(ki
1, . . . , k

i
nb

) = adjust( fi, {ωl}l, tol,maxor).

4.2. Simplified models for the Earth–Moon case

In a rather accurate theory for the lunar motion, as the simplified Brown theory given in Escobal (1968), the fundamen-
tal parameters can be expressed in terms of five basic frequencies. In terms of cycles per lunar revolution, their numerical
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values are

– the mean longitude of the Moon, which is set equal to ω1 = 1.0;
– the mean elongation of the Moon from the Sun, ω2 = 0.925195997455093. This is the frequency of the time–dependent part

of the Bicircular Problem (BCP) and the Quasi–Bicircular Problem (QBCP) mentioned in the Introduction;
– The mean longitude of the lunar perigee, ω3 = 8.45477852931292× 10−3;
– the longitude of the mean ascending node of the lunar orbit on the ecliptic, ω4 = 4.01883841204748× 10−3;
– the Sun’s mean longitude of perigee, ω5 = 3.57408131981537× 10−6,

the value of ω5 is close to the lower frequencies computed in our Fourier expansions and, at the same time, is close to the
precision we can expect in the determination of frequencies with the data used (see Gómez et al. 2001c). By these reasons and
in order to have also a set of basic frequencies with astronomical meaning, we have adopted for the Earth–Moon models these
frequencies as the basic set, instead of the ones provided by Algorithm 4.2 of the preceding section.

For the Earth–Moon models to be developed in this section, and leaving aside the two primaries – Earth and Moon – the Sun
will be the only perturbing body in S∗. As it will be shown, this provides rather accurate models and, at the same time, avoids the
introduction of additional basic frequencies. In this way, in the equations of motion (5) we will only use the Fourier expansions
of b1, . . . , b13 and xS, yS, zS and its general expression for the equations of motion will be



ẍ = b(i)
1 + b(i)

4 ẋ + b(i)
5 ẏ + b(i)

7 x + b(i)
8 y + b(i)

9 z + b(i)
13

∂Ω(i)

∂x

ÿ = b(i)
2 − b(i)

5 ẋ + b(i)
4 ẏ + b(i)

6 ż − b(i)
8 x + b(i)

10y + b(i)
11z + b(i)

13

∂Ω(i)

∂y

z̈ = b(i)
3 − b(i)

6 ẏ + b(i)
4 ż + b(i)

9 x − b(i)
11y + b(i)

12z + b(i)
13

∂Ω(i)

∂z

being

Ω(i) =
1 − µE,M√

(x − µE,M)2 + y2 + z2
+

µE,M√
(x − µE,M + 1)2 + y2 + z2

+
µE,M,S√

(x − x(i)
S )2 + (y − y(i)

S )2 + (z − z(i)
S )2
·

The super–index (i) that we have used for the b(i)
j , j = 1, . . . , 13, Ω(i) and x(i)

S , y(i)
S , z(i)

S functions will be used as a label for the
different intermediate models, according to the number of basic frequencies retained in the Fourier expansions.

In Tables 6 and 7 we give partial results relative to the Fourier analyses of xS, yS, zS and the bi functions. The full trigonometric
expansions can be found in Mondelo (2001). For these tables we have used Algorithm 4.2 of the preceding section to adjust the
frequencies, found by the Fourier method, as linear combinations of the {ωi}i=1,...,5. The values of the parameters used for the
adjustment are: tol = 10−6 and maxor = 20. Only the frequencies associated to the five largest amplitudes are given in the tables.

From the preceding tables it is clear that the largest bi functions are: b2, whose Fourier expansion has an independent term
close to 2, as could be expected from the RTBP equations and b1, b2, which are the “independent terms” of the planar (z = 0)
equations of motion (5). We will use these in what follows.

Starting from the frequency basis {ωi}i=1,...,5, we will look for a new basis {νi}i=1,...,5, in terms of which we will generate
5 models, that will be labeled as SSSMi, i = 1, . . . , 5. The index i will indicate the number of frequencies, ν j, retained in the
model. We take ν1 = ω2 as the first frequency of the new basis. The reason for that is that it is the main frequency of b1, b2, xS

and yS, and, in this way, it can be considered the main “planar frequency”. According to this, for the first model, SSSM1, we only
keep in the Fourier expansions, the independent terms and those harmonics with the ν1 frequency. This is coherent with the fact
that ω2 is also the frequency of the BCP and QBCP models.

The second model, SSSM2, will depend on two frequencies: ν1 and ν2. We observe that, except for b3, b6, b9, b11 and zS,
the main frequencies of the remaining functions can be expressed as linear combinations of ω2 and ω1 − ω3. Thus, we will take
ν2 = ω1 − ω3. Note that, in this way, bi for i = 3, 6, 9, 11 and zS will be poorly approximated in SSSM2, but this will not give a
too bad global approximation, because bi for i = 3, 6, 9, 11 are smaller than the remaining bi, and zS is also smaller than xS, yS.

The remaining νi have been taken in order to make the sequence of models SSSM3, SSSM4, SSSM5 decreasing in error in
the residual accelerations test that will be discussed below. After some trials, we have set

– ν3 = ω1 − ω2 + ω4, which is the main frequency of b3,
– ν4 = ω1 − ω5, which is the first frequency of xS which cannot be expressed in terms of ν1, ν2, and
– ν5 = ω5 −ω2, which is the first frequency of b3 that cannot be expressed in terms of ν1, ν2, ν3, ν4 (this cannot be checked here,

see the full Fourier expansions in Mondelo 2001).
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Table 6. Fourier analysis results of the xS, yS and zS functions. Only five frequencies, associated to the five largest amplitudes, are given. The
frequencies have been adjusted as linear combinations,

∑
kiωi, of the five basic frequencies. The order of the linear combination, k, and the

corresponding error are also displayed.

Func Frequency Amplitude Error k1 k2 k3 k4 k5 k
xS 0.00000000000 −6.27023E–02 0.00000E+00 0 0 0 0 0 0

0.92519578630 3.86480E+02 −2.11130E–07 0 1 0 0 0 1
1.91674083000 3.17140E+01 −3.88890E–07 1 1 −1 0 0 3
0.06634926280 1.32180E+01 3.87440E–08 1 −1 −1 0 0 3
0.99999608230 1.03360E+01 −3.43580E–07 1 0 0 0 −1 2

yS 0.00000000000 1.60785E–05 0.00000E+00 0 0 0 0 0 0
0.92519578630 3.87760E+02 −2.11130E–07 0 1 0 0 0 1
1.91674083000 3.17800E+01 −3.88890E–07 1 1 −1 0 0 3
0.99999608230 1.03360E+01 −3.43590E–07 1 0 0 0 −1 2
0.06634926280 8.30700E+00 3.87360E–08 1 −1 −1 0 0 3

zS 0.00000000000 4.24394E–04 0.00000E+00 0 0 0 0 0 0
0.07882283000 3.40520E+01 −1.09480E–08 1 −1 0 1 0 3
0.91272219540 9.30940E–01 −1.85070E–07 0 1 −1 −1 0 3
0.00402231670 9.11850E–01 −9.57650E–08 0 0 0 1 1 2
1.07036785680 9.31450E–01 −2.05600E–07 2 −1 −1 1 0 5

Table 7. First five frequencies of the Fourier analysis of bi functions. The frequencies have been adjusted as linear combinations of {ωi}i=1,...,5.
From left to right the columns are: function; frequency; in cycles per lunar revolution, amplitude; error (freq − k1ω1 − . . . − k5ω5); coefficients
of the linear combination that approximates freq, and order of the linear combination (|k1| + . . . |k5|).

Func Frequency Amplitude Error k1 k2 k3 k4 k5 k
b1 0.00000000000 3.49728E–04 0.00000E+00 0 0 0 0 0 0

0.92519578630 2.16240E+00 −2.11120E–07 0 1 0 0 0 1
1.91674083000 1.77450E–01 −3.88880E–07 1 1 −1 0 0 3
0.85039537680 7.53250E–02 −1.92240E–07 −1 2 0 0 1 4
0.06634926290 7.39730E–02 3.88600E–08 1 −1 −1 0 0 3

b2 0.00000000000 −6.70000E–09 0.00000E+00 0 0 0 0 0 0
0.92519578630 2.16960E+00 −2.11120E–07 0 1 0 0 0 1
1.91674083000 1.77820E–01 −3.88890E–07 1 1 −1 0 0 3
0.85039537680 7.58320E–02 −1.92220E–07 −1 2 0 0 1 4
0.06634926260 4.64680E–02 3.85950E–08 1 −1 −1 0 0 3

b3 0.00000000000 −1.41400E–07 0.00000E+00 0 0 0 0 0 0
0.07882283210 1.90520E–01 −8.87040E–09 1 −1 0 1 0 3
0.15362345870 6.56920E–03 1.89270E–07 2 −2 0 1 −1 6
0.91272221270 5.20890E–03 −1.67780E–07 0 1 −1 −1 0 3
1.07036787670 5.21170E–03 −1.85760E–07 2 −1 −1 1 0 5

b4 0.00000000000 0.00000E+00 0.00000E+00 0 0 0 0 0 0
0.99154505160 1.07920E–01 −1.69890E–07 1 0 −1 0 0 2
1.85039157300 2.94710E–02 −4.21940E–07 0 2 0 0 0 2
0.85884652970 1.68610E–02 −2.43690E–07 −1 2 1 0 0 4
1.98309009370 8.82140E–03 −3.49210E–07 2 0 −2 0 0 4

b5 0.00000000000 2.00003E+00 0.00000E+00 0 0 0 0 0 0
0.99154503470 2.17650E–01 −1.86770E–07 1 0 −1 0 0 2
1.85039156830 4.29420E–02 −4.26650E–07 0 2 0 0 0 2
0.85884653190 3.81670E–02 −2.41550E–07 −1 2 1 0 0 4
1.98309007300 1.48070E–02 −3.69960E–07 2 0 −2 0 0 4

b6 0.00000000000 0.00000E+00 0.00000E+00 0 0 0 0 0 0
0.84637295300 1.44550E–03 −2.03520E–07 −1 2 0 −1 0 4
1.00401861550 1.44530E–03 −2.22890E–07 1 0 0 1 0 2
0.01247357960 1.89340E–04 −3.72940E–08 0 0 1 1 0 2
0.14517208260 1.88980E–04 1.76520E–08 2 −2 −1 1 0 6

b7 0.00000000000 1.00478E+00 0.00000E+00 0 0 0 0 0 0
0.99154504270 1.65040E–01 −1.78730E–07 1 0 −1 0 0 2
0.85884652970 3.24780E–02 −2.43700E–07 −1 2 1 0 0 4
1.85039157280 1.84070E–02 −4.22070E–07 0 2 0 0 0 2
1.98309009370 1.35090E–02 –3.49200E–07 2 0 −2 0 0 4
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Table 7. continued.

Func Frequency Amplitude Error k1 k2 k3 k4 k5 k
b8 0.00000000000 −7.00000E–10 0.00000E+00 0 0 0 0 0 0

1.85039159880 8.24730E–03 −3.96070E–07 0 2 0 0 0 2
2.84193667480 9.04550E–04 −5.41620E–07 1 2 −1 0 0 4
0.85884652020 9.17510E–04 −2.53210E–07 −1 2 1 0 0 4
1.77559103310 5.07100E–04 −5.33340E–07 −1 3 0 0 1 5

b9 0.00000000000 −0.00000E+00 0.00000E+00 0 0 0 0 0 0
0.84637295300 7.24530E–04 −2.03520E–07 −1 2 0 −1 0 4
1.00401861550 7.24450E–04 −2.22890E–07 1 0 0 1 0 2
0.01247357980 4.82170E–05 −3.71330E–08 0 0 1 1 0 2
0.14517208260 4.80940E–05 1.76380E–08 2 −2 −1 1 0 6

b10 0.00000000000 1.00478E+00 0.00000E+00 0 0 0 0 0 0
0.99154504270 1.65030E–01 −1.78730E–07 1 0 −1 0 0 2
0.85884652970 3.24780E–02 −2.43700E–07 −1 2 1 0 0 4
1.85039157280 1.84070E–02 −4.22070E–07 0 2 0 0 0 2
1.98309009370 1.35090E–02 −3.49200E–07 2 0 −2 0 0 4

b11 0.00000000000 −0.00000E+00 0.00000E+00 0 0 0 0 0 0
1.00401861560 7.20820E–04 −2.22850E–07 1 0 0 1 0 2
0.84637295300 6.06950E–04 −2.03500E–07 −1 2 0 −1 0 4
0.14517208280 4.66020E–05 1.78760E–08 2 −2 −1 1 0 6
1.99556364910 3.64300E–05 −4.10800E–07 2 0 −1 1 0 4

b12 0.00000000000 −1.61183E–03 0.00000E+00 0 0 0 0 0 0
0.99154502640 5.38970E–02 −1.95110E–07 1 0 −1 0 0 2
1.85039157030 2.69200E–02 −4.24600E–07 0 2 0 0 0 2
0.85884654110 8.04870E–03 −2.32340E–07 −1 2 1 0 0 4
1.98309004860 7.32970E–03 −3.94350E–07 2 0 −2 0 0 4

b13 0.00000000000 1.00747E+00 0.00000E+00 0 0 0 0 0 0
0.99154504270 1.64840E–01 −1.78730E–07 1 0 −1 0 0 2
0.85884652970 3.15620E–02 −2.43700E–07 −1 2 1 0 0 4
1.85039157290 2.66550E–02 −4.22010E–07 0 2 0 0 0 2
1.98309009370 1.34800E–02 −3.49210E–07 2 0 −2 0 0 4

Table 8. Mean residual accelerations between several models and the real Solar System over selected halo orbits of the RTBP around L2 in the
Earth–Moon case. The first column displays the z–amplitude of the halo orbit used as test orbit. The remaining columns show the mean residual
acceleration between the corresponding model and the real Solar System over the test orbit.

z-a. RTBP BCP QBCP SSSM1 SSSM2 SSSM3 SSSM4 SSSM5

0.020 0.140126 0.146459 0.138580 0.365299 0.095769 0.010674 0.001374 0.000727
0.025 0.136603 0.142856 0.135174 0.353302 0.093293 0.010388 0.001346 0.000720
0.031 0.132882 0.139025 0.131578 0.340305 0.090590 0.010076 0.001315 0.000711
0.038 0.129087 0.135080 0.127914 0.326550 0.087699 0.009744 0.001282 0.000702
0.048 0.125352 0.131141 0.124312 0.312235 0.084643 0.009393 0.001247 0.000691
0.059 0.121813 0.127324 0.120905 0.297505 0.081429 0.009024 0.001210 0.000678
0.073 0.118614 0.123757 0.117835 0.282462 0.078045 0.008637 0.001171 0.000664
0.091 0.115905 0.120571 0.115249 0.267173 0.074461 0.008229 0.001128 0.000646
0.113 0.113823 0.117895 0.113283 0.251690 0.070634 0.007796 0.001081 0.000625
0.141 0.112471 0.115836 0.112037 0.236056 0.066510 0.007331 0.001030 0.000598
0.175 0.111872 0.114443 0.111533 0.220325 0.062042 0.006831 0.000973 0.000566
0.217 0.111928 0.113663 0.111672 0.204551 0.057196 0.006292 0.000910 0.000526
0.269 0.112400 0.113311 0.112201 0.188782 0.051978 0.005716 0.000840 0.000481
0.300 0.112678 0.113200 0.112492 0.180899 0.049240 0.005417 0.000802 0.000456

In this way, we have



ν1
ν2
ν3
ν4
ν5


=



0 1 0 0 0
1 0 −1 0 0
1 −1 0 1 0
1 0 0 0 −1
0 −1 0 0 1





ω1

ω2

ω3

ω4

ω5


·

Since the matrix in the above transformation is unimodular, {νi}i=1,...,5 is a valid basic set of frequencies.
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Once the different models have been produced, it is desirable to see if they are close or not the the “real” one, that is: the full
equations of motion in which the time periodic functions, bi and xi, yi, zi, are computed using the JPL ephemeris files. We will
also compare these intermediate models with more standard simplifications, such as the RTBP, the Bicircular Problem and the
Quasi–Bicircular Problem, with the Earth–Moon mass ratio. For these purposes we first select a set of trajectories,

γz: R −→ R
6

t −→ (r(t), ṙ(t)),

along which the position, r(t), and velocity, ṙ(t), are known. We have done two kinds of selections. In the first one we have chosen
for γz a family of periodic halo orbits with different z–amplitudes; these orbits are true solutions of the RTBP (see Gómez et al.
2001b for their computation) and cover a large set of solutions with very different sizes. Then, given two models to be compared,
with differential equations r̈ = f (r, ṙ, t) and r̈ = g(r, ṙ, t), respectively, and given a trajectory, γz, which does not need to be a true
solution of any of the two models, we compute the “mean relative residual acceleration over γ′′ as

1
L

∫ T

0

‖ f
(
γz(s), t

)
− g

(
γz(s), t

)
‖

‖g
(
γz(s), t

)
‖

‖ṙ(s)‖ds, (8)

where t is a fixed epoch (in dimensionless units) and L is the length of the trajectory γz (in configuration space).
For the second test the computations are similar except that we have taken instead of γz(t) a set of points uniformly distributed

around a large neighborhood of the equilibrium points. We have also required to their energy (Jacobi constant) to be in a certain
interval around the value associated to the equilibrium points. The results obtained are analogous to the ones obtained for the
halo orbits, and will not be given here.

It must be noted that the BCP and the QBCP, as stated in the Introduction, assume that for t = 0 the Moon and the Sun are
in opposition with respect to the Earth. Therefore, we must set the origin of dimensionless time, both in the SSSMi models and
the real Solar System, such that Earth, Moon and Sun are in a configuration close to the one of the BCP and the QBCP for t = 0.
We have chosen as t = 0 the first epoch after Jan. 1st, 2001 at which this happens, this is the Julian day 2451919.3489 (Jan. 9th,
2001).

The results for the residual accelerations are given in Table 8, using as test paths several halo orbits around the collinear
equilibrium point L2. As it has already been mentioned, the results with other trajectories, or other equilibrium points, give the
same qualitative information. From this table, it becomes clear that the best one–frequency models that we can be used, according
to the residual acceleration criteria, are the BCP and the QBCP. But, when we allow two or more frequencies, the models we
get fit the JPL one much better. As it has been said, only the Sun has been taken into account in all the intermediate models.
By adding additional Solar System bodies, the residual accelerations are of the same order of magnitude than the ones obtained
just using the Sun. It is also clear that, from this point of view, there is not a significant improvement between the RTBP and the
non–autonomous Bicircular and Quasi Bicircular models.

4.3. Simplified models for the Sun–(Earth+Moon) case

In this case, we proceed as in the Earth–Moon system, except that the basic frequencies will be obtained using the results of the
Fourier analysis of Sect. 3 and Algorithm 4.1 for their determination.

From the numerical data obtained (see the electronic version of the paper), we first observe that the maximum modulus of
the highest Fourier coefficient of b1, b2, b3, b6, b8, b9, b11 is 3.521E–05, whereas the minimum modulus of the highest Fourier
coefficient of the remaining bi is 1.669E–02. Therefore, in order to detect basic frequencies, we will only take into consideration
the b4, b5, b7, b10, b12 and b13 functions. In addition to this simplification, we will not consider any Solar System body in Eq. (6),
since, just using the bi, we are already taking the Sun into account.

Applying Algorithm 4.1 to the b13 function, setting tol = 10−5, maxor = 20, we get the following four basic frequencies:

ν1 = 0.9999926164, ν2 = 0.6255242728, ν3 = 0.9147445983, ν4 = 1.8313395538.

These four frequencies allow to adjust the frequencies of the Fourier analysis of the b4, b5, b7, b10 and b12 functions. For that,
we have applied the second algorithm of Sect. 4.1 with tol = 1E–5 and maxor = 20. The numerical results can be found in the
electronic version of the paper. With these frequencies, we construct the SSSM1, . . . , SSSM4 as we did in the Earth–Moon case.

In Table 9, we compare the models RTBP, SSSM1 and SSSM4 with the real Solar System using the same residual acceleration
tests that we used in the Earth–Moon case. We note that the SSSM4 model gives worse results than SSSM1. This is not a
contradiction. In the electronic version of the paper we can see that the maximum amplitude of the frequencies of b4, b5, b7,
b10 and b12 that are not multiple of ν1 is 6.695E–05. Because of that, adding frequencies does not improve significantly the
approximation of the bi functions, and in this way the structure of Eqs. (5) takes over the fact that the bi terms of SSSM4 are
closer to the ones of the real Solar System than the corresponding terms of SSSM1.

Therefore, for the Sun–(Earth+Moon) case, we will give SSSM1 as simplified Solar System model. Note that this is a model
with very few frequencies that significantly improves the RTBP.
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Table 9. Mean relative residual accelerations between several models and the real Solar System over selected halo orbits of the RTBP around
L2 in the Sun–(Earth+Moon) case.

z-a. RTBP SSSM1 SSSM4

0.020000 3.446497E–02 9.901526E–05 8.905454E–04
0.024838 3.411184E–02 9.779360E–05 8.768670E–04
0.030846 3.366579E–02 9.616913E–05 8.589500E–04
0.038308 3.313580E–02 9.416327E–05 8.364166E–04
0.047575 3.254789E–02 9.175134E–05 8.092527E–04
0.059084 3.194355E–02 8.895610E–05 7.776813E–04
0.073376 3.137381E–02 8.582841E–05 7.420444E–04
0.091126 3.089082E–02 8.236183E–05 7.026421E–04
0.113169 3.053770E–02 7.859979E–05 6.597243E–04
0.140545 3.033772E–02 7.450252E–05 6.135638E–04
0.174543 3.028516E–02 7.020714E–05 5.643885E–04
0.216766 3.034115E–02 6.579492E–05 5.127031E–04
0.300000 3.047577E–02 5.898080E–05 4.323859E–04

5. Dynamical substitutes of the collinear equilibrium points

As it is well known, the RTBP has five equilibrium points: three of them (L1, L2, L3) are collinear with the primaries and the
other two (L4 and L5) form an equilateral triangle with them. Although the intermediate models introduced in the preceding
section are close to the RTBP, they are non autonomous, so they do not have any critical point. If we consider the SSSM1 model,
since it depends on only one frequency, it can be seen as a periodic perturbation of the RTBP so, under very general non–
resonance conditions between the natural modes around the equilibrium points and the perturbing frequency, the libration points
can be continued to periodic orbits of the model. These periodic orbits, which have the same period as the perturbation, are the
dynamical substitutes of the equilibrium points. In this section we will show these substitutes for the three collinear equilibrium
points for SSSM1, in the Earth–Moon system. For the other models, SSSM2,. . . , SSSM5, as the perturbation is quasi–periodic,
the corresponding substitutes will be also quasi–periodic solutions. The methodology for their efficient computation, as well as
the results obtained, will appear elsewhere. The dynamical substitutes of the triangular points in the Earth–Moon system, for
models close to the ones of this paper, have been studied in Gómez et al. (2001a), Simó et al. (1995) and Jorba (2000) and will
not be considered here.

The numerical computation of the periodic orbits of SSSM1 that substitute L1 and L3 has no problem and the results obtained
are shown in Fig. 6. We can see that L1 is replaced by a very small size periodic orbit and that the substitute of L3 is also almost
planar but rather large in the (x, y)–plane. The computation of the substitute of L2, also displayed in Fig. 6, requires more care.
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Fig. 6. Dynamical substitutes for the SSSM1 model of the three collinear equilibrium points.
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Mainly, we need to introduce a continuation parameter between the RTBP and SSSM1, so we consider the 1–parameter family
of vector–fields which can be formally written as

(1 − ε) × (RTBP) + ε × (SSSM1).

If ε = 0 we get the RTBP and when ε = 1 we get the desired final model SSSM1.
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 0.4
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y

x

(b)

Fig. 7. a) Evolution with the continuation parameter ε of the family of periodic orbits starting at the libration point L2. See explanations in the
text. b) Planar Lyapunov orbit labeled as A and C in a).

The evolution with the continuation parameter ε of the family of isoperiodic orbits that start at the libration point L2 is shown
in Fig. 7a. In this figure, the point O represents the equilibrium point for ε = 0. When the continuation is done starting at O with
increasing positive values of ε, we never reach ε = 1. The continuation of this branch has been stopped, for the representation, at
the point A, where the value ε = 0 has been reached again. This point corresponds to a planar Lyapunov orbit of the RTBP with
frequency equal to the double of the frequency of the model and displayed in Fig. 7b. The other branch, starting for decreasing
values of ε, reaches the value ε = 1 at the point C. In fact, this curve goes through ε = 0 at the point B, which again corresponds to
the previously mentioned planar Lyapunov orbit. In the diagram, both points, A and B have y = 0 and the different x coordinates
correspond to the two orthogonal crossings with y = 0 of the planar periodic orbit.
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