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In this paper we study the manoeuvres to be done by a spacecraft in order

to correct the error in the execution of the injection manoeuvre in the trans-
fer trajectory. We will consider the case in which the nominal trajectory is a

halo orbit around the collinear equilibrium point L1. The results can be easily

extended to the L2 point and to other kinds of libration point orbits, such as
Lissajous and quasi-halo orbits. For our study we use simple dynamical sys-

tems concepts related with the invariant manifolds of the target orbit, and
we compare our results with those obtained by Serban et al. 14 using optimal

control.

1. Introduction

This paper is devoted to the study of the so called Trajectory Correction

Manoeuvres (TCM) problem, that deals with the manoeuvres to be done

by a spacecraft in the transfer segment between the parking orbit and the

target nominal one. The main purpose of the TCMs is to correct the error

introduced by the injection manoeuvre in the transfer trajectory due to the
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inaccuracies of the launch vehicle.

In connection with the Genesis mission (see 10), the TCM problem has

been studied in 8,14. For this mission a halo type orbit, around the L1 point

of the Earth–Sun system, is used as nominal orbit. Since this orbit has

a strong hyperbolic character, following the ideas introduced in 4,6, it is

possible to use its stable manifold for the transfer, avoiding the insertion

manoeuvre into the halo orbit. This is what is know in the literature as the

dynamical systems approach to the transfer problem. Other approaches use

straightforward propagation from Earth launch conditions to find orbits

between the Earth and the halo orbits, keeping some boundary conditions

and constraints, at the same time that minimise the total fuel consumption

during the transfer (see 3,7,9,11). In any case, one of the conclusions of all

these studies is that the insertion manoeuvre, from a parking orbit around

the Earth to the transfer trajectory, is a large one, with a ∆v of the order of

3000 m/s. For the Genesis mission the error in its execution was expected

to be about a 0.2 % of ∆v (1 sigma value) and a key point to be studied is

how large is the cost of the correction of this error when the execution of

the first correction manoeuvre is delayed.

For the purpose of comparison, in the present study we will use for the

main parameters the same values used in 14. More concretely, we will take

as reference model for the simulations, the Restricted Three Body (RTBP)

Problem with the same value of the mass ratio µ = 0.3035910E − 05, so

the gravitational effect of the Moon on the transfer trajectory will not be

considered (see 4). We will also use the same launch conditions near the

Earth, which are given in table 1 (from Serban et al. 14).

Table 1. Adimensional initial conditions for the reference transfer trajectory.

xnom
0

−1.000035565608365E + 00 ẋnom
0

1.547585875645079E − 01

ynom
0

−1.298950527135473E − 05 ẏnom
0

−3.157800035860918E − 01
znom
0

−1.657172577465346E − 05 żnom
0

−1.167438053370118E − 01

Since the target halo orbit is not explicitly given in 14, we have used

one with approximately the same size as the one displayed in the Figures of

the paper, this is a halo periodic orbit with normalised z−amplitude (see
12 for the definition) β = 0.28 corresponding to initial conditions: x(0) =

−0.9922709412937017, y(0) = 0, z(0) = −0.002456251256325228, ẋ(0) = 0,

ẏ(0) = 0.01191138815471799, ż(0) = 0. It must be noted that the value of
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the Jacobi constant of the halo orbit, C = 3.000771793017166, and the one

of the above initial conditions for the transfer, C = 3.000782265790755, do

not agree. This means, in particular, that the reference transfer trajectory

with the initial conditions given in table 1, is not an orbit in the stable

manifold of the halo periodic orbit. Nevertheless, approximately 110 days

after launch, the transfer orbit is very close to the halo one and, at that

point, a manoeuvre of about 13.5 m/s inserts the spacecraft into the halo.

Of course, this insertion manoeuvre could be skipped if the reference ini-

tial conditions would belong to the stable manifold but, unfortunately, the

departure point rarely meets the constraints associated with actual launch

conditions.
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Fig. 1. Reference transfer trajectory and nominal halo orbit, as given in Serban et al.,
for the study of the TCM problem (adimensional units). The departure and arrival points

are separated, approximately 110 days of time of flight.

In Figure 1 we have displayed the solution with the initial conditions

given in table 1 as well as the nominal halo orbit. In Figure 2 we show the

different coordinate projections of both the reference transfer trajectory

and some “nearby” orbits of the stable manifold of the nominal halo orbit.

In the paper by Serban et al. 14, two different strategies are considered

to solve the TCM problem: the Halo Orbit Insertion (HOI) technique and

the Manifold Orbit Insertion (MOI) technique. For the HOI technique, an

insertion point in the halo orbit is fixed, in this way at least two manoeuvres

must be done: the first one (TCM1) a few days after the departure and
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Fig. 2. Projections and 3D representation of the transfer trajectory used by Serban et

al. and “nearby” orbits on the stable manifold of the nominal halo orbit (RTBP units).

the last one at the HOI point. It is numerically shown that, in practice,

the optimal solution can be obtained with just two TCMs, so the TCM2 is

performed at the HOI point. The time of flight is not fixed in the simulations

and, for the optimal costs obtained, it is found that the cost behaves almost

linearly with respect to both TCM1 epoch and launch velocity error. The

halo orbit insertion time is always close (with variations of the order of

20%) to that of the reference transfer trajectory (transfer trajectory with

no insertion error). For the MOI problem, the last manoeuvre is an insertion

on the stable manifold of the nominal halo orbit, so there is no manoeuvre

of insertion onto the halo orbit. The numerical results obtained with this

approach are very close to the ones corresponding to the HOI technique. The

main technical tool used through the paper is, as in the classical approach

to the transfer problem, an optimisation procedure: the software package

COOPT, developed at the University of Santa Barbara 15. This software is

used to do an optimisation of the cost function (total ∆v) subject to the

constraint of the equations of motion. In the same reference, a parametric

study of the cost of the TCM is done changing and delaying the execution

of the first impulse.
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In the present paper we perform the same kind of parametric study as

in 14 but without using any optimal control procedure. The quantitative

results, concerning the optimal cost of the transfer and its behaviour as

a function of the different free parameters, turn out the same. Addition-

ally, we provide information on the cost of the transfer when the correction

manoeuvres cannot be done at the optimal epochs. These results are qual-

itatively very close to those obtained in 13 for the cost of the transfer to

a Lissajous orbit around L2, when the time of flight between de departure

and the injection in the stable manifold is fixed, but the target state (po-

sition and velocity) on the manifold is varied. For this problem it is found

that the cost of the transfer can rise dramatically, as will be shown also

later on.

2. The TCM1 problem for halo orbits

2.1. Description of the method

We use as reference departure state, the one given in table 1. We will

always start from the fixed initial position (close to the Earth) given by

this reference point. To simulate the injection error, and following 14, we

modify the modulus of the velocity at this initial condition according to

~v(0) = ~v 0
ref

(

1 +
ε

‖~v 0
ref‖

)

. (1)

where ε is a parameter that it is allowed to vary between −6 m/s

and +6 m/s, and ~v 0
ref = (–4.612683390613825, 9.412034579485869, –

3.479627336419212)T km/s, which, in adimensional units, correspond to

the values given in table 1. As it has already been mentioned, the depar-

ture point (Xdep) constructed in this way, is not on the stable manifold of

the nominal halo orbit selected, but rather close to it.

The transfer path has three different legs, qualitatively represented in

Figure 3:

• The first leg goes from the fixed departure point to the point where the

TCM1 is performed. Usually, this correction manoeuvre takes place few

days after the departure.
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• The second leg, between the two trajectory correction manoeuvres

TCM1 and TCM2, is used to perform the injection in the stable man-

ifold of the nominal orbit.

• The last path corresponds to a piece of trajectory on the stable man-

ifold. Since both TCM1 and TCM2 are assumed to be done without

errors, the spacecraft will reach the nominal halo orbit without any

additional impulse.

Due to the autonomous character of the RTBP, the origin of time can be

arbitrarily chosen. We assume that at the departure t = 0. As it is explained

later, we will select an “arrival point” to the halo. In this way, the TCM1,

TCM2 and arrival epochs, will be denoted by t1, t2 and t3, respectively.

The values of the correction manoeuvres at t1 and t2 will be denoted by

∆v1 and ∆v2, respectively.

XaArrival state (     )

Xdep
Departure state (       )

W  (H)
s

.

.

.

.
TCM1

TCM2

Nominal halo orbit (    )H

Fig. 3. The three legs used for the computation of the transfer solutions

When we say that we reach the nominal halo orbit, we mean that we

are within a certain distance of a point of it, in the direction of the stable

manifold. More precisely, this means that if we select a certain (short)

distance, d, and an arrival point on the halo, Xh
a , the point that in fact we

reach is Xa = Xh
a + d · V s(Xh

a ), where V
s(Xh

a ) is the linear approximation

of the stable direction at the point Xh
a . A value of d = 200 km gives

good results as is shown in 4. We remark that the stable manifold is a

two dimensional manifold (a surface in the 6-dimensional space of positions

and velocities) which can be parametrised in the following way. Once a

displacement d has been selected, given a point Xh on the halo orbit we
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can get an initial condition on the stable manifoldXh+d·V s(Xh). Following

the flow backwards we get all the points in the manifold associated withXh.

In this way Xh can be thought as one of the parameters which generate the

manifold. In what follows, we will call it the parameter along the orbit. The

other one is the elapsed time, following the flow, from the initial condition

Xa = Xh
a + d · V s(Xh

a ) to a certain point. We call this time interval the

parameter along the flow. We remark that this parametrisation depends on

the choice of d, a small change in d produces an effect equivalent to a small

change in the parameter along the orbit. This is: with a small change in d

we can get the same orbits of the manifold as with a small change of Xh

and only a small shift in the parameter along the orbit will be observed.

This is because the stable direction is transversal to the flow.

We denote by φ(X, t) the image, under the flow of the Restricted Three

Body Problem, of the point X after t time units. Given the departure

state, Xdep, and the time t1, we define X1 = φ(Xdep, t1). Then, the transfer

condition is stated as

φ(X1 +∆v1, t2 − t1) + ∆v2 = φ(Xa, t2 − t3), (2)

where, in this relation, a term like X1 + ∆v1 has to be understood as:

to the state X1 (position and velocity) we add ∆v1 to the velocity. Note

that for a given insertion error ε (which determines Xdep) we have six

equality constraints, corresponding to the position and velocity equations

(2), and ten parameters: t1, t2, t3, ∆v1, ∆v2 andXa (given by the parameter

along the orbit) which should be chosen in an optimal way within mission

constraints.

The sketch of the exploration procedure is the following. To start with,

we consider ε and t1 fixed. Two types of explorations appear in a natural

way: the fixed time of flight transfers, for which t3 is fixed, and the free time

of flight transfers, where t3 is allowed to vary. In both cases, we start the

exploration fixing an initial value for the parameter along the orbit, Xa. In

the case of fixed time of flight, the problem then reduces to seven parameters

(t2, ∆v1, ∆v2) and the six constraints (2). Using ∆v1 and ∆v2 to match the

constraints (2), the cost of the transfer, ‖∆v‖ = ‖∆v1‖+ ‖∆v2‖, is seen as

a function of t2. In the case of free time of flight, ‖∆v‖ is seen as a function

of t2 and t3, or equivalently, as a function of t2 and the parameter along

the flow, tws = t3 − t2.

Once we have explored the dependence of the transfer cost with respect
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to t2 and t3, we study the behaviour moving the parameter along the orbit,

Xa, and finally, the dependence with respect to the parameter ε (which is

determined by the launch vehicle) and t1 (which, due to mission constraints,

is enough to vary in a narrow and coarse range). We will see that we have

some simple linear relations between them.

In order to solve equation (2) by some differential correction procedure,

we need an initial guess. This is taken from the solution obtained when

ε = 0. For most of the simulations, as well as for the parametric study,

we use a continuation procedure to get the initial approximation of the

solution. It must also be noted, that due to the strong hyperbolic behaviour

of the orbits under consideration, it can be necessary to solve equation

(2) using some multiple shooting method (see 16). We could use a slight

variation of the multiple shooting procedure to recover the MOI technique

with more than two TCM used in 14, although this possibility has not been

implemented.

As a first example, Figure 4 shows the results obtained when: ε =

−3m/s, the first manoeuvre is delayed 4 days after the departure (t1 = 4),

the total time of flight, t3, is taken equal to 173.25 days and the arrival

point is the one given in table 2. In the next section we will come back to

this Figure.

Non-linear approximation of the stable manifold

In the previous section, we have discussed how the linear approximation

of the stable direction (obtained using the linearisation of the flow) can be

used to globalise and parametrise the stable manifold of a periodic halo

orbit. In a second approach we have used a non-linear approximation of

the stable manifold. In the case of halo orbits and using the parameters

mentioned in the preceding section, the results obtained with the linear

approximation and the ones using the non-linear one are almost the same.

Since the increase in computational cost doesn’t give any extra advantage,

all the computations that we present have been done using the linear ap-

proximation of the manifolds. However this non-linear study is very useful

when dealing with the study of the TCM problem for Lissajous libration

point trajectories, specially with big amplitudes.

Following 2, in this section we summarise the procedure for the compu-
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Fig. 4. Cost of the trajectory correction manoeuvres when TCM1 is delayed 4 days
after departure and the total time of flight is fixed to 173.25 days. The arrival point on
the nominal halo orbit is given in table 2. The curves labelled with (a) correspond to
‖∆v1‖, those with (b) to ‖∆v2‖ and those with (c) to the total cost: ‖∆v1‖+ ‖∆v2‖.

tation of the non-linear approximation of the stable manifold for the Lis-

sajous and halo orbits. Consider the linearised equations of the restricted

three body problem around any collinear equilibrium point

ẍ− 2ẏ − (1 + 2c2)x = 0,

ÿ + 2ẋ+ (c2 − 1)y = 0,

z̈ + c2z = 0,

where c2 is a parameter depending on the mass ratio and the equilibrium

point considered (see 12). The solution of these equations is given by,

x = α1 e
λ0t + α2 e

−λ0t + α3 cos(ω0t+ φ1),

y = k̄2α1 e
λ0t − k̄2α1 e

−λ0t + k̄1α3 sin(ω0t+ φ1),

z = α4 cos(ν0t+ φ2),

where k̄1, k̄2, ω0, ν0 and λ0 are constants which can be written in terms of

c2. Finally, αi and φi are free amplitudes and phases.

Taking α1 = α2 = 0 we get libration solutions. In case that α1 6=

0 or α2 6= 0 we get exponentially increasing or decreasing translations

along privileged directions in the phase space. So, we can consider them as

amplitudes in the unstable and stable directions respectively. In particular,



296 G. Gómez, M. Marcote and J.J. Masdemont

setting α1 = 0, we get initial conditions for orbits in the stable manifold of

a certain linear Lissajous orbit corresponding to the linear equations.

Using a Lindsted-Poincaré procedure we can look for a formal series

solution of the nonlinear equations in terms of the four amplitudes αi and

the following three variables,

θ1 = ωt+ φ1, θ2 = νt+ φ2, θ3 = λt.

The expansions of x, y and z are given by,

∑

e(i−j)θ3













xc
yc
zc







pq

ijkm

cosΘ +







xs
ys
zs







pq

ijkm

sinΘ,






αi1 α

j
2 α

k
3 α

m
4 ,

where Θ = (pθ1 + qθ2) and the summation is taken with respect to the

integer index i, j, k, m, p and q in a suitable way. Also, according to

the Lindstedt–Poincaré procedure, in order to avoid secular terms the fre-

quencies ω, ν and λ must be expanded in formal power series of the four

amplitudes,

ω =
∑

ωijkm αi1 α
j
2 α

k
3 α

m
4 , ν =

∑

νijkm αi1 α
j
2 α

k
3 α

m
4 ,

λ =
∑

λijkm αi1 α
j
2 α

k
3 α

m
4 ,

being the independent terms, ω0000 = ω0, ν0000 = ν0 and λ0000 = λ0. So

the expansions truncated at first order reproduce the solution of the linear

equations of motion. Moreover, if we skip the terms of the expansion related

with i and j (this is i− j 6= 0) we have expansions for Lissajous orbits but

not for their invariant manifolds which turn out be the same as the ones

given in 5.

In the halo periodic case the procedure must be slightly modified. The

solution depends only on one frequency and this fact introduces a relation

between the two central amplitudes α3 and α4. The formal series expansion

are given by,






x

y

z







=
∑

e(i−j)θ3













xc
yc
zc







pq

ijkm

cos(pθ1) +







xs
ys
zs







pq

ijkm

sin(pθ1),






αi1 α

j
2 α

k
3 α

m
4 ,

where again,

θ1 = ωt+ φ1, θ3 = λt.
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ω =
∑

ωijkm αi1 α
j
2 α

k
3 α

m
4 , λ =

∑

λijkm αi1 α
j
2 α

k
3 α

m
4 ,

but now one must take into account a relation between amplitudes which

is given by a series expansion of the type,

∑

dijkm αi1 α
j
2 α

k
3 α

m
4 = 0.

In all these expansions there are symmetries which make many of the

coefficients zero. This fact saves storage and computing time. In 1 the

Lissajous expansions have been tested. Using order 25 (i.e. terms up to

i+ j + k +m = 25), differences less than 100 km between the numerically

integrated solution and the direct evaluation of the expansion are obtained

for the orbits of the manifolds up to about a distance of 500000 km from

the Lissajous orbit.

2.2. Fixing the arrival point and the time of flight

For the first study of the cost of the TCM, we have taken t1 = 4 days and

ε = −3 m/s. For the time of flight we have used the values obtained in 14

for the optimal solution, this is t3 = 173.25 days. Since the arrival point

is not explicitly given in the above reference, we have used the following

approximation (which corresponds to integrate the reference initial state

during 173.25 days)

Table 2. Approximation used for the adimensional coordinates of the arrival point,

Xa, of the optimal solution.

xa −9.8985625832629109E − 01 ẋa 3.3913736319571984E − 03

ya 4.1836615583455538E − 03 ẏa −6.2057458211230666E − 03

za 2.1771475345925264E − 03 ża 4.1484980583161675E − 03

As it has already been said, with the values of these parameters fixed,

we get a one dimensional set of possibilities, which are the ones displayed in

Figure 4. In the Figure, we show the cost of the two Trajectory Correction

Manoeuvres, as well as the total cost, in front of the epoch of execution of

the second manoeuvre, t2. Several remarks should be done in connection

with the Figure:
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• The solutions of equation (2) are grouped along, at least, three curves.

For t2 = 99.5 days there is a double point in the cost function, corre-

sponding to two different possibilities. In Figure 5 we have represented

both as well as the orbit of the stable manifold where we perform the

injection. The qualitative behaviour of both solutions is rather different.
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Fig. 5. Coordinate projections and 3D representation of the two solutions obtained for

t2 = 99.5 days (double point of the cost function). In the Figures we have represented
also the orbit of the stable manifold of the nominal orbit where we perform the injection.

• For t2 = 113 days we get the optimum solution in terms of fuel con-

sumption: ‖∆v1‖ + ‖∆v2‖ = 49.31 m/s. This value is very close to

the one given in 14 for the MOI approach, which is 49.1817 m/s. The

discrepancies can be attributed to slight differences between the two

nominal orbits and the corresponding target points.

• When t2 is small or very close to the final time, t3, the total cost of the

TCMs increases, as it should be expected.

• Around the values t2 = 92, 97 and 102 days, the total cost increases
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Fig. 6. Using the values of the parameters to get Figure 4, here we represent the angle

(in radians) between the two velocity vectors, the ones just prior and after the TCM2
epoch.

abruptly. This sudden grow is analogous to the one described in 8 in

connection with the TCM problem for the Genesis mission. It is also

similar to the behaviour found in 13 for the cost of the transfer to a

Lissajous orbit around L2, when the time of flight between the depar-

ture and the injection in the stable manifold is fixed. To explain this

fact, we have computed the angle between the two velocity vectors at

t = t2, this is when changing from the second to the third leg of the

transfer path. This angle has been represented in Figure 6, and looking

at it we see that it also increases sharply at the corresponding epochs.

This seams to be the geometrical reason for the detected behaviour.

As a second step, we have done a first parametric study allowing vari-

ations in the epoch of the execution of TCM1, t1, and in ε. Partial results

are given in table 3. In the last column of this table we include the nu-

merical results obtained by Serban et al. (14) for the MOI strategy (those

corresponding to HOI trajectories are similar), which are very close to ours.

From this table, it is clearly seen that the behaviour of the optimal cost with

respect to ε is linear. In Figure 7 we represent the results corresponding to

a larger set of explorations, where we allow variations in the magnitude of

the error, ε, and in the epoch t1. From it, it is also clear a linear behaviour

of the optimal cost with respect to t1.

In the next step of our study we allow variations in the parameter along

the orbit. Assuming the periodic halo orbit parametrised by time (the pe-
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Table 3. Numerical results of the parametric study of the TCM cost. The

simulations have been done fixing the arrival point as in table 2 and the

total time of flight t3 = 173.25 days in order to compare the results with

the ones obtained by Serban et al. which are displayed in the last column.

t1 ε ‖∆v1‖ ‖∆v2‖ ‖∆v1‖+ ‖∆v2‖ ∆vopt (14)

3 5 51.4551 15.2748 66.7299

3 4 41.2822 14.7060 55.9882

3 3 31.0891 14.1944 45.2835
3 2 20.8642 13.7963 34.6605

3 1 10.5610 13.6390 24.2000

3 0 0.0974 14.0324 14.1298

3 -1 10.8051 13.4634 24.2685
3 -2 21.7421 12.8390 34.5811

3 -3 32.7661 12.2004 44.9665 45.1427

3 -4 43.8878 11.5459 55.4337 55.6387

3 -5 55.1127 10.8796 65.9923 65.9416

4 5 59.0547 15.2508 74.3055

4 4 47.4145 14.5247 61.9392

4 3 35.7505 13.8649 49.6154
4 2 24.0530 13.3523 37.4053

4 1 12.2530 13.1986 25.4516
4 0 0.0987 14.0261 14.1248

4 -1 12.7285 12.9531 25.6816

4 -2 25.5010 11.9398 37.4408
4 -3 38.3502 10.9663 49.3165 49.1817

4 -4 51.3480 9.8576 61.2056 61.5221
4 -5 64.5745 8.9561 73.5306 73.4862

5 5 66.1938 15.2117 81.4055

5 4 53.1763 14.3203 67.4966
5 3 40.1315 13.4972 53.6287

5 2 27.0602 12.8413 39.9015
5 1 13.8820 12.6547 26.5367
5 0 0.1172 14.0080 14.1252

5 -1 14.6289 12.3175 26.9464

5 -2 29.1862 10.8579 40.0441

5 -3 43.8275 9.5245 53.3520 53.9072

5 -4 58.8400 8.1134 66.9534 66.8668

5 -5 74.2527 6.6145 80.8672 81.1679

riod of the orbit is approximately equal to 180 days) we have taken a total

number of “arrival points” equal to 36, evenly spaced in time. In Figure

8 we show the behaviour of the total cost of the trajectory correction ma-

noeuvres when the parameter along the orbit is changed around the value

corresponding to the optimal solution (which is also displayed in the Fig-

ure). In the left plot the displayed curves correspond to adding 5, 10 and 15

days respectively, to the parameter along the orbit and the one in the right

hand side to decrease this parameter in 5 and 10 days. We represent only
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Fig. 7. Behaviour of the optimal cost vs ε for different values of t1

TCM with a total ‖∆v‖ = ‖∆v1‖+‖∆v2‖ smaller than 300 m/s. Increasing

o decreasing the values of the parameter along the orbit out of the range of

the ones represented in the figures, the total cost increases, and the results

obtained are always over the threshold fixed for the representation. This is

also the reason because one of the three pieces of the optimal solution has

disappeared from the plots. In Figure 9 we plot the surface representing

the cost when changing the parameter along the orbit (the value 0 of this

parameter corresponds to the point Xa given in table 2). Since the total

time of flight has been fixed, we get only total TCM costs below 300 m/s

within the ranges displayed in the figures.

Fig. 8. Total cost of the trajectory correction manoeuvres when the “arrival” point at

the halo orbit is changed. Numerical results correspond to changing the arrival point by

adding (left figure) or subtracting (right figure) 5, 10 and 15 days to the parameter along
the orbit corresponding to the optimal solution which is represented by the lowest curve.
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Fig. 9. Total cost of the trajectory correction manoeuvres when the ”arrival” point,

represented by the parameter along the orbit, is moved around the point Xa given in

table 2, the total time of flight is fixed to 173.25 days and the first manoeuvre is delayed
4 days after the departure. We display the results for negative and positive variations of
the parameter along the orbit on the left and right-hand side figures, respectively.

2.3. Free time of flight

To start with, we take t1 = 4 days, ε = −3 m/s and the arrival point of the

preceding sections. With all these parameters fixed, the transfer condition

(2) has a two dimensional set of solutions, which can be parametrised by

t2 and the parameter along the flow, tws = t3 − t2, which give the insertion

point into the stable manifold. In Figure 10 we show some sections of this

surface, for different values of the parameter along the flow, tws ranging

from 40 days (right curve) to 125 days (left curve) as well as the solution

that we have obtained in the preceding section for t3 = 173.25 days. Several

remarks should be done with respect to this figure:

• There are values of t2 and tws (for instance t2 = 108.125, tws = 65

days) for which the total cost is less than the values we have obtain for

t3 = 173.25 days.

• If we take into consideration that the curves that we have plotted in

Figure 10 correspond to evenly spaced values of tws, it seems that the

value of t2 that makes the cost optimal is a linear function of tws, at

least in the right hand side of the figure where we are close to the

optimum values (t2 > 100; the curves in this region correspond to

values of tws equal to 70, 65, 60, 55, 50, 45 and 40 days). Assuming

t2 = m(tws − t0ws) + t02 the value of m is close to minus one, since the

couple (t2, tws) that makes minimum the cost verifies tws + t2 ' 173.3

days. This fact justifies why the cost function we obtain for t3 = 173.25

days is very close to the optimal solution for t3 free.
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Fig. 10. The curves appearing in the figure are slices of the surface representing the
minimum total cost of the TCM, for different values of tws. In the computations, the
first manoeuvre has been delayed 4 days after the departure, the total time of flight is
free and the arrival point is fixed. The lowest curve, which almost envelopes the different
slices, is the cost function when the total time of flight is fixed to 173.25 days.

To study the influence of the variations in the parameter along the orbit,

which is equivalent to change the arrival point, we have taken 12 arrival

points evenly spaced in time, displayed in Figure 11. In Figure 12(a) we

show the behaviour of the optimal cost for the first six values of the pa-

rameter along the orbit. After point number six, the cost function increases

sharply and we have not represented the results associated to them. We

see that in the region between the 4th and 5th point there is an optimal

solution. Taking values of the parameter along the orbit between these two

ones, in Figure 12(b) we show the curves of minimum cost as a function of

tws. Each curve corresponds to a different value of the parameter along the

orbit varying between 0.8 and 1.6 (with step 0.1).

As before, it is interesting to observe that the values of t2 and tws
that minimise the total cost behave linearly, with respect to the parameter

along the orbit, when we are near to the optimal solution. This is shown in

Figures 12(c) and 12(d). Using this fact we have obtained that the optimal

solution corresponds to th = 61.34 days with a total cost of 49.1861 m/s.

The insertion manoeuvre takes place 111.14 days after the departure with

a total time of flight of 172.27 days. This optimal solution is displayed in

Figure 13.
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Fig. 11. 3D representation of the nominal halo orbit and the 12 “arrival points”, evenly
spaced in time, that have been used in our simulation.

As a final exploration we allow variations in the size of the target halo

orbit. We have done the computations using halo orbits with values of the

z-amplitude β equal to 0.08 and 0.18 in addition to the value 0.28 used

in the preceding simulations. In table 4 we give the results obtained using

the same nominal departure point for all of them. We remark that when

the amplitude of the nominal orbit decreases, the total cost of the optimal

TCM increases as well as the value of the parameter along the flow (tws)

which corresponds to the optimal solution.

Table 4. Optimal solution for different normalised
z–amplitude (β) halo orbits. The departure point has

been taken as in table 1.

β 0.28 0.18 0.08
t2 (days) 111.14 146.61 69.70

tws(days) 61.13 111.55 156.80
Cost (m/s) 49.1861 97.0549 170.9650

3. Departing from the stable manifold

In this section we show the results corresponding to take the departure

point on the stable manifold of the target orbit. Now, instead of using the
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Fig. 12. (a) Minimum total cost of the trajectory correction manoeuvres when the first
manoeuvre is delayed 4 days, ε = −3 m/s, the total time of flight is free and the arrival
point is varied. (b) Section of the cost surface for different values of the parameter along
the orbit between the 4th and 5th arrival point. (c) Optimal time between the insertion

into the stable manifold and the arrival when the arrival point is varied. (d) Optimal
time of flight when the arrival point is varied.

departure conditions given in table 1, we take as initial position and velocity

a point on the stable manifold, with the velocity components affected by

some error. If the error is set equal to zero, then no TCM is needed to reach

the target orbit.

We use the same nominal halo orbit of the preceding sections, this is: a

halo orbit around the L1 point of the Earth-Sun system, with normalised

z-amplitude β=0.28. Taking the parameter along the orbit between [0, 2π],

in Figure 14 we represent the minimum distance to the Earth of the stable

manifold of the nominal orbit at its first close passage following the param-

eter along the flow. As it can be seen, there are orbits which collide with

the Earth (their minimum distance is below its equatorial radius). We have

selected for the departure point one on the orbit associated to a value of

the parameter along the orbit equal to th = 3.66000 and at a distance from

the centre of the Earth equal to 6578 km; the adimensional coordinates of

this point are given in table 5 and, as it can be seen, are not too far from

those given in table 1.
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Fig. 13. Projections and 3D representation of the optimal transfer trajectory with t2
= 111.14 days, tws = 61.13 days and total δv = 49.1861 m/s.
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Fig. 14. Minimum distance to the Earth of the orbits of the stable manifold of the
nominal halo orbit with β = 0.28. The distance is below 6578 km for the values of the

parameter along the orbit (with values in [0, 2π]) th between 3.648511 and 4.207157 as

can be seen in the magnification.

Now, adding ε = 7 m/s to the three velocity components of the nominal

point given in table 5, we compute the departure point which will be used for

the explorations (the parametric study varying the value of ε gives results

qualitatively analogous to the ones already described). As time of flight we
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Table 5. Adimensional coordinates of the nominal departure point on the stable man-

ifold.

xnom
0

−1.000036453220198E + 00 ẋnom
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Fig. 15. Total cost of the TCM, as a function of t2, for different values of t1. The points
with a cross on each curve correspond to the optimum cost

take the value t3 = 217.28, which is the total time required by the orbit

with the initial conditions given in table 5 to reach the arrival point, Xa,

at the halo orbit (always at a distance of 200 km, in the direction of the

stable manifold). In Figure 15 we show the total cost (in m/s) of the TCM

as a function of t2, for different values of t1 between 1 and 7 days. On

each curve we have marked with a cross the points corresponding to the

minimum cost. From this figure one clearly sees that:

(1) As t1 increases, the cost of TCMs also does, and it behaves almost

linearly with respect to t1 in the selected range.

(2) The cost of the TCMs is about a 20% less than the values given in table

3, when the departure point is not taken on the stable manifold.

(3) The optimal values of t2 move around t2 = 58 days, and approximately

after 82 days (t2=140 days) one finds also values for TCM1 very close

to the optimal ones.

As a final exploration we allow variations of the insertion point along

the stable manifold. In particular if we fix t1 = 1 day and t2 = 57 days,

we get a target insertion point on the stable manifold, which corresponds
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Fig. 16. Total cost of the TCM for different values of the parameter along the orbit.

to a parameter along the orbit approximately equal to 3.66. Now, we have

allowed values of the parameter along the orbit between 3.64 and 3.68 and

we have studied the total cost of the TCM, keeping fixed the values of t1
and t2, and taking as insertion point the one at minimum distance to the

target point of insertion already described. The results are given in Figure

16, from which we see that the cost increases when we move away from the

most “natural” trajectory.

4. Conclusions

(1) The TCM problem can be studied just by using simple Dynamical

Systems concepts.

(2) For the optimal TCM, the results obtained with this approach agree,

qualitatively and quantitatively, with those obtained with the help of

optimal control software.

(3) For periodic halo orbits, the use of the linear approximation of the

stable manifold gives the same results as the non linear one.

(4) The developed procedure can be used for any kind of libration point

orbit.
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