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Abstract The unstable and stable manifolds of the Lagrangian point orbits provide a natural
mechanism to transfer natural and artificial bodies in the Solar System. In the case of spacecrafts,
low energy transfer trajectories can be attained using the complex dynamics described by the
unstable/stable manifolds which coalesce in those orbits. However, these manifold tubes do
not approach the larger primary, so that is not possible to determine a transfer orbit from the
Earth to the Moon vicinity in the Earth-Moon system. This fact can be overcome by decoupling
the restricted four body problem into two planar restricted three body systems with a common
primary body (Sun-Earth-spacecraft+Earth-Moon-spacecraft). The spacecraft leaves the Earth
parking orbit through the stable/unstable manifold structure in the Sun-Earth problem and it is
then connected to a transit orbit related to the stable manifold of the Earth-Moon problem. A
Poincaré map located on a plane through the Earth is used to find the appropriate connections
which depend on the Jacobi’s constant of each model.

1 Introduction

The restricted three body problem (RTBP) is the simplest chaotic n-body pro-
blem which fits in first approximation several dynamical system of the Solar
System, like the Earth-Moon and the Sun-Earth systems. The linear analysis
shows that the collinear equilibrium points of the RTBP, L1, L2 and L3, are of
type saddle × center × center, leading the unstable solutions in their vicinity.
Although this unstable character, the elliptic directions provide periodic and quasi
periodic solutions in their vicinity [1, 2] such as Lyapunov and halo orbits, the
Lissajous and other quasi periodic solutions.

In the 1970s, aerospatial engineers began the exploration of these orbits. They
were proposed as good places to locate solar observatories due to two main rea-
sons: the point L1 provides uninterrupted access to the solar visual field without
occultation by the Earth; and, in these places the solar wind is beyond the in-
fluence of the Earth’s magnetosphere. The first satellite in a halo orbit was
ISEE-3, launched in 1978 by NASA. The second mission was the Soho telescope
projected by ESA-NASA, launched at 1996 for solar observations; Ace satellite
was launched at 1997 by NASA for solar wind observations. In 2001 two NASA



satellites arrived at halo orbits: the WMap satellite, to observe cosmic microwave
background radiation, and Genesis, another solar observatory whose re-entry oc-
curred in 2004.

The unstable character of the collinear Lagrangian points (and their associ-
ated orbits) allows the determination of the tangent space to the invariant unsta-
ble/stable manifold at the starting point in the periodic orbit [3]. The trajectories
on the unstable manifold move away from the vicinity of the center manifold as
opposed to the stable manifold, where the trajectories approach the center man-
ifold asymptotically. Since the trajectories of these manifolds follow dynamical
natural paths, they are very useful to provide low energy transfer orbits, specially
to send a spacecraft to the libration point orbits [4] or, in order to have a transfer
between the primaries. The first mission to the libration point orbit which was
guided by the invariant manifold tubes was the Genesis mission in 2001-2004.

By decoupling the restricted four body system into two RTBP it is possible to
have a natural transfer between the less massive primary of both models, since the
manifold tubes do not approach the biggest primaries (in fact, just the manifolds
of large amplitude periodic orbits approach the smallest primary body). In our
case, we consider the Sun-Earth-spacecraft and Earth-Moon-spacecraft systems.
The spacecraft leaves the Earth parking orbit through a stable/unstable manifolds
in the Sun-Earth system, makes a swing around L1 (or L2), then it is connected
to stable manifold of the Earth-Moon system. The connecting point between the
manifolds of these two systems is determined on a appropriate Poincare surface
of section, where the tubes determine closed regions.

The main motivation of this kind of transfer procedure has appeared during
the Japanese Hiten mission in 1991. The Hiten satellite was supposed to go
to the Moon’s orbit by a conventional method of transferring but its propellant
budget did not permit it. To save this mission a possible solution was to get
a low energy transfer with a ballistic capture at the Moon. This solution was
accomplish based on the reference [5]. The works [6] and [7] also study this
problem. Another application using the separate RTBP has been studied by
Gómez et al. [8]. The invariant manifolds were used to construct new spacecraft
trajectories to the Jupiter’s moons. Also, the manifold structures can explain the
phase space conduits transporting material between primary bodies for separate
three-body systems.

In this work we present low transfer trajectories between two primary bodies,
Earth and Moon, following the unstable/stable invariant structures. The basic
ideas are: to decouple the planar restricted four-body problem into two planar
RTBP with a common primary (Sun-Earth and Earth-Moon); to determine the
unstable/stable invariant manifolds associated to the Lyapunov orbits of L1 and
L2 of both systems; to determine the connections between these manifolds on the
Poincaré section; and, to study these intersections with respect to the Jacobi’s



constant of each system.

2 Equations of Motion

In the RTBP, the mass of one of the bodies is supposed to be infinitely small
when compared to the other two, which move in circular motion around their
center of mass. The reference frame is set according to the notation defined in
[9]. In the dimensionless coordinate system, the unit of length is the distance
between the primaries and the unit of time is chosen in order to have the period
of the primaries equal to 2π; consequently, the gravitational constant is set to
one. The potential function of the RTBP in this synodical system is given by

Ω(x, y) =
1
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(x2 + y2) +

(1 − µ)
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+
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+
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where r1 and r2

r2
1 = (x − µ)2 + y2 and r2

2 = (x − (µ − 1))2 + y2

are the distances from the primary bodies to the massless particle. The equations
of motion are:

ẍ − 2ẏ = Ωx ÿ + 2ẋ = Ωy (2)

One of the useful characteristic of such formulation is the presence of the first
integral known as Jacobi integral and it is related to the potential function by

CJ(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y).
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Figure 1: There are three collinear equilibrium points denoted by L1, L2 and L3, and two trian-
gular equilibrium points, L4 and L5.



3 Dynamics around Lyapunov Orbits

To analyze the dynamics near a Lyapunov orbit, or the vicinity of any orbit,
we must study the variational equations along it. The first order variational
equations are

Ȧ = Df(x(t))A (3)

where f(x(t)) is the force-field defined by the equations of motion (2) evaluated
along the solution x(t). The solution A(t) of the variational equations after one
period, beginning with A(0) = I4×4, is known as the monodromy matrix. The
linear behavior of the solutions in a vicinity of the periodic orbits is given by the
eigenvalues and the corresponding eigenvectors of the monodromy matrix.

In our case, the real eigenvalue pair, with λ1λ2 = 1, gives the linear unsta-
ble/stable character of the periodic solution and the eigenvector associated to the
dominant eigenvalue of this pair gives the expanding direction. At each point of
the periodic solution this eigenvector together with the vector tangent to the orbit
span a plane tangent to the local unstable manifold. The other two eigenvalues,
λ3 = λ̄4, are complex conjugated with modulus one. We recall that, in the planar
case, the Lyapunov orbits constitute the central manifold.

For the numerical computation of the unstable and stable manifolds of the
libration point orbit, it is enough to obtain the dominant eigenvalue and eigen-
vector of monodromy matrix. The local stable manifold direction is directly
determined from the unstable one by the symmetry (x(t), y(t), ẋ(t), ẏ(t)) →
(x(−t),−y(−t),−ẋ(−t), ẏ(−t)) of the RTBP.

Given the local approximation, the next step is to procedure the globalization
of the unstable manifold. Taking a displacement, ε, from a selected point on the
Lyapunov orbit x(ti), the initial conditions in the linear approximation of the
unstable manifold are given by:

x(ti) ± εê(ti)

where ê(ti) is the normalized unstable direction at x(ti). The points x(ti) should
be equally spaced on the periodic orbit to guarantee no gaps in the Poincaré
section. Since we are dealing with unstable periodic orbits, each point is locally
a saddle point having two unstable branches, which depend on the ε sign. Note
that, for the globalization of the stable manifold the procedure is the same, but
one should integrated backwards.

4 Transfer in/out the Hyperbolic Invariant Manifolds

As seen before, the linear stability of the libration point orbits allows to design
paths on the stable and unstable invariant manifold tubes. To easily understand



the flow inside and outside these tubes, consider a linear change of variables which
cast the second order Hamiltonian in the form

H2 = λq1p1 +
ω

2
(q2

2 + p2
2)

where λ and ω are positive real values; qi and pi are the new canonic coordinates
(see [2] for details). Considering this linear equations of motion we can easily
uncouple the saddle and the center directions. The Cartesian product of the
asymptotic hyperbolic direction with the periodic orbit form local cylinders lying
in the phase space. However, these cylinders are distorted by the non linear terms
of the Hamiltonian field resulting the stable and unstable manifolds which can
cross each other at homoclinic or heteroclinic intersections.

Since the energy surface is 3-dimensional in the planar RTBP, the 2-dimensional
manifold tubes act as separatrices of the phase space (see [5]-[8]). Therefore, the
trajectories can be classified in two types: the transit ones, which move inside the
two-dimensional manifold tubes, and the non transit trajectories, which are those
outside the tubes. Moreover, the transit trajectories travel between the exterior
and interior of the Hill’s regions, and the non transit trajectories remain just in
one side of the Hill’s region (Figures 2 and 3 illustrate both trajectories).

The initial conditions of a non transit orbit are obtained through the Poincaré
map (x = −1+µSE) taking a point outside the unstable manifold cut and correct-
ing the component ẋ = ẋ(y, ẏ, CJ) to take it at same energy level of the manifold.
A backwards integration maps this point to the vicinity of the corresponding sta-
ble manifold which is close to the Earth, where the launching point is determined
(see Figure 2). Note that a trajectory started in this launching point near the
Earth returns to its neighborhood after a loop around L2.

The transit trajectory is obtained in a similar way but with initial conditions
inside the manifold cut on the Poincaré section. This procedure is shown in
Figure 3 (left), and the corresponding trajectory is presented in Figure 3 (right)
for the Earth-Moon system.

5 Superposition of Two RTBP

Recall that the mean idea is to decompose the restricted four body problem, Sun-
Earth-Moon-spacecraft into two coupled RTBP with a common primary body,
Sun-Earth-spacecraft and Earth-Moon-spacecraft. The trajectory design is di-
vided into two paths: firstly, the spacecraft leaves the Earth vicinity through a
non transit trajectory in the Sun-Earth system, then it is connected to the appro-
priate transit trajectory in the Earth-Moon system. In the transfer first part, the
transit trajectory could be associated to the L1 or L2 hyperbolic invariant mani-
fold, but in the second one, it must belong the L2 hyperbolic invariant manifold,
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Figure 2: Left: the Poincaré section of the unstable manifold and the initial conditions of a non
transit orbit associated to L2-manifold tubes of the Sun-Earth system. Right: the dark trajectory
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Figure 3: Right: the Poincaré section of the stable manifold and the initial conditions of a
transit orbit associated to L2-manifold tubes of the Earth-Moon system. Left: the related transit
trajectory.



because the lobe of the Hill’s regions opened first at L1 providing communication
only between the inner regions.

As already mentioned, the connection point is determined on the Poincaré
map through a plane passing on the Earth. In the Sun-Earth system it is located
at x = −1 + µSE and, in the Earth-Moon system, it is located at x = µEM

(µSE = 3.040357143 × 10−6 and µEM = 0.0121505816). To adjust these two
surfaces we must change the coordinates adequately, writing the coordinates of
the Earth-Moon system in terms of the Sun-Earth system.

In order to examine possible connections between the W u
SE|L2

and W s
EM |L2

,
we vary the Jacobi constant of each model. Firstly, we define a sphere of ra-
dius R = 0.00020 (Sun-Earth unit) and R = 0.013028 (Earth-Moon unit) around
the Earth and Moon, respectively. We discard the hyperbolic invariant mani-
folds which pass outside these spheres, because the associated Lyapunov orbits
do not allow strategic parking orbits. The Lyapunov family of the Sun-Earth
system which allows the desired unstable invariant manifold cut on the Poincaré
section, belonging to the Jacobi’s constant range of [3.00079083, 3.0005689]. For
the Earth-Moon system this range is [3.14962509, 3.0654849]. The correspond-
ing Lyapunov orbits are shown in Figure 4. The intersections of the associated
hyperbolic invariant manifolds on the Poincaré section are shown in Figure 5.

To propagate the non transit and the transit trajectories, we have chosen an
arbitrary point P1 in the intersection zone (Figure 6, top). From this Poincaré
map, the initial conditions of P1 must be backward integrated to generate the non
transit and the transit one, which follows the dynamics inside the stable manifold
and should be forward integrated. At this Poincaré section, the non transit and
the transit trajectories have not exactly the same coordinates, the ẋ component
is not equal due to the decoupling of the restricted four body problem. This
can be overcome by adjusting this velocity, requiring a small velocity increment.
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systems, respectively. Their hyperbolic invariant manifolds give the desired zone of intersection
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Table 1: Initial conditions, Jacobi’s constant, stability parameter and period of the L2-Lyapunov
orbits in both system.

x0 ẏ0 CJ k1 k2 T/2

SE1 -1.01149819 0.01093317 3.00079083 1560.83607 2.02573493 1.5558992
SE2 -1.020392633 0.35059982 3.0005689 886.953969 2.19676591 1.67918158
EM1 -1.18212003 0.16488212 3.14962509 1184.34113 2.00859114 1.69580095
EM2 -1.20351928 0.3476276 3.0654849 488.94977 2.28655205 1.87911492

After this procedure, the transit trajectory is integrated in the Sun-Earth system
giving the desired transfer trajectory to the Moon (see Figure 6, bottom).

6 Comments

The transfer of a spacecraft guided by the stable and unstable invariant manifolds
always provides a low transfer cost. In our case the coupled RTBP allowed a
low cost transfer path to the Moon, requiring an adjust of velocity of 0.0652245
canonical units (Sun-Earth), which is much less than a conventional maneuver.
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[2] Gómez G.; Jorba A.; Masdemont J. and Simó C. Dynamics and Mission De-
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