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Abstract

We consider entire transcendental functions f with an invariant (or periodic) Baker
domain U satisfying a certain condition (which is satisfied always if f restricted to U is
proper). First, we classify these domains into three types (hyperbolic, simply parabolic
and doubly parabolic) according to the properties of the map they induce in the unit
disk, and we give dynamical and geometric criteria to determine the type of a given
Baker domain. Second, we study the space of quasiconformal deformations of an entire
map with such a Baker domain by studying its Teichmiiller space. More precisely, we
show that the dimension of this set is infinite if the Baker domain is hyperbolic or simply
parabolic, and from this we deduce that the quasiconformal deformation space of f is
infinite dimensional. Finally, we prove that the function f(z) = z 4+ e~ %, which possesses
infinitely many invariant Baker domains, is rigid, i.e., any quasiconformal deformation of
f is affinely conjugate to f.

1 Introduction

Let f : § — S be a holomorphic endomorphism of a Riemann surface S. Then f partitions
S into two sets: the Fatou set €2(f), which is the maximal open set where the iterates
f",n =0,1,... form a normal sequence; and the Julia set J(f) = S\ Q(f) which is the
complement.

IfS=C=Cu {o0}, then f is a rational map, and every component of Q(f) is eventually
periodic by the non-wandering domains theorem in [Sullivan 1982]. There is a classification
of the periodic components of the Fatou set: Such a component can either be a cycle of
rotation domains or the basin of attraction of an attracting or indifferent periodic point.

If § = C and f does not extend to C then f is an entire transcendental mapping (i.e.,
infinity is an essential singularity) and there are more possibilities. For example a compo-
nent of Q(f) may be wandering, that is, it will never be iterated to a periodic component.
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Like for rational mappings there is a classification of the periodic components of Q(f) (see
[Bergweiler 1993]) and compared to rational mappings, entire ones allow for one more pos-
sibility: A period p periodic component U is called a Baker domain, if for all z € U we
have f"(z) — oo, as n — oo. The first example of an entire function with a Baker do-
main was given by Fatou in [Fatou 1920], who considered the function f(z) = z+1+e~% and
showed that the right half-plane is contained in an invariant Baker domain. Since then, many
other examples have been considered, showing various properties that are possible for this
type of Fatou components (see for example [Eremenko & Lyubich 1987], [Bergweiler 1995],
[Baker & Dominguez 1999], [Rippon & Stallard 1999(1)], [Rippon & Stallard 1999(2)],
[Konig 1999] and [Baranski & Fagella 2000]). It follows from [Baker 1975] that a Baker do-

main of an entire function is simply connected.

Taking an iterate of the map if necessary we consider only the cases of invariant Baker
domains. We remark that in a Baker domain, orbits tend to infinity at a slow rate. More
precisely, if v is an unbounded invariant curve in a Baker domain (and hence all its points
tend to infinity under iteration), then there exists a constant A > 1 such that |f(z)| < A|z|
for all z € v [Bergweiler 1993]. This is in contrast to the fact that points in C that tend
to infinity exponentially fast belong to the Julia set of f and, even more, every point in the
Julia set is the limit of such escaping points.

There is another important difference between rational and entire transcendental map-
pings which concerns the singularities of the inverse map f~! or singular values. In the
rational case, the points for which some branch of f~! fails to be well defined are precisely
the critical values, i.e., the images of the zeros of f’. In the entire case, one more possibility is
allowed, namely the asymptotic values, which are points a € C for which there exists a curve
v(t) = oo as t — oo satisfying f(y(t)) — a as t — oo. It follows from a theorem of Denjoy,
Carleman and Ahlfors that entire functions of finite order may have only a finite number of
asymptotic values (see e.g. [Nevanlinna 1970] or [Hua & Yang 1998] Theorem 4.11), but in
the other extreme there exists an entire map for which every value is an asymptotic value.

As it is the case with basins of attraction and rotation domains, there is also a relation
between Baker domains and the singularities of the inverse map. In particular, it is shown
in [Eremenko & Lyubich 1992] that Baker domains do not exist for a map such that the set
Sing(f~!) is bounded, where Sing(f ') denotes the closure in C of the set of singular values.
The actual relationship between this set and a Baker domain U is related to the distance of
the singular orbits to the boundary of U (see [Bergweiler 2001] for a precise statement). We
remark that it is not necessary, however, that any of the singular values be inside the Baker
domain. Indeed, there are examples of Baker domains with an arbitrary number of singular
values (including none) inside.

When the map f restricted to the Baker domain U is proper, we call U a proper Baker
domain. In particular the degree of f restricted to U is finite. In the special case where this
degree is one we call the domain U univalent.

In [Baranski & Fagella 2000] there is given a classification of univalent Baker domains in
terms of the map they induce in the unit disk via the Riemann map. Our first goal in this
paper is to extend this classification to accomodate a larger class of Baker domains. More
precisely let ¢ : U — D denote a Riemann map, mapping U to the unit disk. Such a map
conjugates f to a self-mapping of DD that we denote by By. The map By is called the inner
function associated to U. If U is proper then this mapping is a (finite) Blaschke product.

It follows from the Denjoy-Wolff theorem (see e.g. [Milnor 1999], Thm. 5.4), that there



exists a point zy € 0D such that Bj; converges towards the constant mapping 2o locally
uniformly in D as n tends towards infinity. If By extends analytically to a neighborhood of
zg we call U a reqular Baker domain. In particular, proper Baker domains are a subclass of the
regular Baker domains. This class of maps was studied in [Bergweiler 2001]. By invariance
we see that 0 < Bp(z9) < 1. If we assume that we have normalized the conjugacy ¢ so
that this point is 2y = 1, then By is uniquely determined up to conjugation with a Mobius
transformation that preserves the unit disk and 1. It follows that By, (1) is well defined. In
Section 3 we classify regular Baker domains into three different types (see Figure 1).

Proposition 1. Let f be entire and U a reqular Baker domain. Let By be the inner function
associated to U. Then either

(1) 0 < By (1) <1 and we call U hyperbolic, or

(2) By(z) = z+ia(z — 1)? + O((z — 1)), for some a > 0 and we call U simply parabolic,
or

(3) By(z) =z —a(z —1)2 + O((z — 1)*) for some a > 0, and we call U doubly parabolic.
In this case f : U — U has degree at least 2.

(a) hyperbolic (b) doubly parabolic

(c) simply parabolic (d) simply parabolic
By(z) = z+ia(z —1)* +--- By(z) =z—ida(z—1)>+---

Figure 1: The three (or four) possibilities for the dynamics of By. By the symmetry of the map, D
and C\ D must belong to the basin of attraction of 1 and hence the Julia set must be a subset of the
unit circle.

An equivalent classification is given independently in [Bergweiler 2001] together with es-
timates of the hyperbolic metric in each of the three cases.



Additional to the classification above we present some geometric and dynamical criteria
that allow us to determine the class which a given Baker domain belongs to. More precisely
we first have the following preliminary definition.

Definition. A domain G is called an invariant petal at infinity if
(a) G is connected, simply connected and unbounded,
(b) the boundary of G (as a subset of C) is a simple curve, and

(c) f is a conformal isomorphism of G onto itself.

In Section 3 we prove the following criteria in terms of the existence of invariant petals
at infinity.

Proposition 2. Let f be entire and U an invariant reqular Baker domain. Then,

(1) U is hyperbolic, if and only if U does not contain the closure, in C, of an invariant
petal at infinity;

(2) U is simply parabolic, if and only if U contains the closure of an invariant petal at
infinity, G, and any other such petal intersects G;

(3) U is doubly parabolic, if and only if U contains the closure of two disjoint invariant
petals at infinity.

It is a natural question to ask wether examples of Baker domains of all three types exist.
In Section 4 we give examples of functions with Baker domains of each of the three types.
However, our examples for hyperbolic and simply parabolic domains are univalent and, to
our knowledge, no examples are known of such maps with degree larger than one.

Our second goal in this paper is to study the possible quasiconformal deformations of
entire maps with a Baker domain. We can consider the space of entire mappings with a fixed
regular Baker domain as a subset of the space of entire mappings modulo conjugacy with
affine mappings. It is natural to ask how this set looks. It is easy to see it cannot be open,
since any entire map with a regular Baker domain can be approximated by polynomials, and
no polynomial possesses a Baker domain. Lifting maps with Herman rings (see Example 1
in section 4) for different rotation numbers converging to a rational p/q, shows that the set
is not closed. Can it have components that are reduced to points? By considering the space
of quasiconformal deformations we will see that if such a point exists, the corresponding
mapping can only have regular Baker domains which are doubly parabolic.

More precisely we will consider the Teichmiiller space of an entire mapping f with a reg-
ular fixed Baker domain, using the general framework given by [McMullen & Sullivan 1998]
(see Section 5). We will see that the dimension of this set is infinite if the Baker domain
is hyperbolic or simply parabolic, and from this we will deduce that the quasiconformal
deformation space of f is infinite dimensional. The precise statement is as follows.

Main Theorem. Let U be a regular fized Baker domain of the entire function f and U
its grand orbit. Denote by S the set of singular points of f in U, and by S the closure of
the grand orbit of S taken in U. Then T (f,U) is infinite dimensional except if U is doubly
parabolic and the cardinality of g/f is finite. In that case the dimension of T(f,U) equals

#S/f—1.



Furthermore we show that the lowest dimension is possible, that is we give an example of
a rigid map with a proper Baker domain. Using the Main Theorem we can show the following
(see Section 6).

Proposition 3. The map f(z) = z + e~ * is rigid, i.e., z'ff is a holomorphic map which is
quasiconformally conjugate to f, then f is affinely conjugate to f.
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2 Preliminaries

In this section we state some of the results that we use throughout the paper, and mainly in
Section 5. We will include the proof of those statements for which we are unable to give a
standard reference. The rest can be found, for example, in [Milnor 1999] or [Steinmetz 1993].

2.1 Attracting fixed points and linearizing coordinates

Let V be a domain C which could be the whole of C or C, and f : V — £(V)) be holomorphic.
Let z9 € V be an attracting fixed point, that is with multiplier A\ = f'(zg) satisfying 0 <
IA| < 1. Let A= {2z €V | f"(2) = 2} denote the basin of attraction of zy in V.

We are interested in the changes of variables that conjugate f to a linear map (linearizing
coordinates) and, more precisely, in what kind of symmetries are induced by the symmetries
of f. The following is a classical result.

Theorem 2.1 (Kcenigs). Let V be a domain in C and f : V — f(V) be holomorphic. Let
2o € V be an attracting fized point and A be its multiplier. Let A be the the basin of attraction
of zo (in V).

(a) There ezists a conformal change of coordinate w = ¢(z), (the linearizing coordinate),
defined in a neighborhood V' of zy, with ¢(z) = 0, so that ¢po fo ¢! is the linear map
w — Aw, for all w in some neighborhood of the origin. Furthermore, ¢ is unique up to
multiplication by a non-zero constant.

(b) The change of coordinate ¢ can be extended to a holomorphic map ¢ : A — C so that
the diagram

A
P(A) —— ¢(A)
is commutative. If f : A — A is proper then ¢ maps A onto the whole complex plane.

The extension of ¢ is constructed via the functional equation ¢(f(z)) = A¢p(z) which we
require satisfied in the whole basin. For an arbitrary point z € A, there exists n € N such



that f"(z) belongs to V'. Since the original ¢ is well defined in V', the quantity ¢(f™(z)) is
well defined and therefore it makes sense to (recursively) define

#2) = 359" (2))

Since z was arbitrary, this extends ¢ to the whole A.

Using the construction of this extension we can prove the following proposition. Given a
map g we denote by Fix(g) its fixed points.

Proposition 2.2. Let f,V, 2y, A and ¢ be as above and suppose f has a symmetry in V, in
the sense that there exists an antiholomorphic involution 7 : V — V such that foTr =70 f
(whenever it is well defined) and 7(z9) = zy. Then, the linearizing coordinate ¢ can be chosen
to be symmetric in the following sense: there exists an antiholomorphic involution o : C — C
sending ¢(A) to itself such that

(1) poT =00¢ in A;
(2) Ao(z) =o(Az) forallz€ V;
(3) ¢ (Fix(r) N A) C Fix(o).

Proof. Since 7 is an involution 7(V) = V and it follows that 7(A) = A. Let V' be the
neighborhood of zy where ¢ is conformal and let us assume w.l.o.g. that V' is symmetric
with respect to 7 (if this is not the case we can replace V' by the connected component of
V' N7 (V") which contains zp). We then start by defining o in ¢(V') as

oc=doTog L.
Hence the following diagram commutes.

f

V! i\
v —I s p )
o ¢ o ¢

P(V') 2222 p(V7)

G(V') 2225 p(V7)

Notice that o is antiholomorphic and it is an involution since o o ¢ = Id. We also observe
that ¢ commutes with multiplication by A. Indeed,

Aa(2) = Ap(T(¢71(2)) = (S (T(¢7(2))) = ¢((F(¢7'(2)))) = d(T(¢7' (A2))) = a(A2).
Using this fact, we proceed to extend o to the whole complex plane, by letting

otw) = T



where n € N is such that A\"w € ¢(V'). Then, by construction, the extension of o satisfies
(2).

To prove (1) we need to show that the extension of o also satisfies

(j) oT =00 ¢
in the entire basin of attraction A. Indeed, if z € A,

7(9(2)) = 370 09(2)) = 5,7 G"(2)) = 37T ("(2) = 57 #("(7()) = (r(2))

Finally we conclude from (1) that if z is a fixed point of 7 then ¢(%) is a fixed point of o
and hence (3) is satisfied. O

In the following sections of the paper we will actually be interested in the particular case
where the multiplier A of the fixed is a real number and the symmetry of f is 7(z) = 1/Z i.e.,
reflection with respect to the unit circle. In this case we have the following.

Proposition 2.3. Let f,V,z and A be as above and suppose the multiplier X = f'(zp)
satisfies 0 < X\ < 1. Suppose zg € S' and f is symmetric with respect to the unit circle, i.e.,
for =rTof where 7(z) = 1/Z. Then, for any 6 € [0,2), there exists a linearizing coordinate
¢: A— C such that

(1) ¢(ANSY C Ly where Ly = {te” | t € R}.
(2) cop=d¢oT on A where o is the reflection with respect to Ly.

)

)

(3) If z0 = 1 and Ly is the imaginary azis then ¢ can be chosen to satisfy ¢'(z0) = 1. In
this case we have o(z) = —Z.

Proof. From proposition 2.2 we know that o(z) is an antiholomorphic involution of the com-
plex plane that commutes with multiplication by A and such that o o ¢ = ¢ o 7 on the basin
of attraction A. An antiholomorphic map of degree one of C must have the form

o(z)=az+b

for some a,b € C. Imposing that 0 commutes with multiplication by A one obtains that b
must be zero and hence o(z) = az. But since o is an involution, it follows easily that a
must be a constant of modulus 1. We observe that the fixed points of o satisfy z = 0 or
z/|z| = £+/a. Hence
FiX( )_ arg(a)/2

which correspond to points on the line going through the origin and /a. By Proposition 2.2,
#(ANSY) C Fix(o).

We recall that linearizing coordinates are unique up to multiplication by a constant. We
may then choose the coordinate ¢(z) = e "2%)§(z) which will satisfy

$(ANSY C L.

Finally we observe that if zp = 1 and we choose a linearizing coordinate satisfying ¢'(1) =
1, then ¢ must preserve the tangent vectors at the origin. Hence the piece of unit circle that
intersects A must be mapped under ¢ to part of a straight line with a vertical tangent, i.e.,
the imaginary axis. O



To end this section we apply the propositions above to the case of Blaschke products. By
a Blaschke product we understand a finite product

z— aZ
=A
H 1—a;z
where each zero a; € D and |A\| = 1. Every Blasche product is a proper holomorphic of D

onto itself and conversely any proper holomophic self-map of ID is the restriction of a Blaschke
product.

Proposition 2.4. Let B be a Blaschke product such that zo = 1 is an attracting fized point
with multiplier 0 < A < 1. Let A be the basin of attraction of 1. Then, there exist a linearizing
coordinate ¢ that maps ANS! onto the imaginary azis and D onto the left half plane.

Proof. From the Denjoy-Wolff Theorem we know D C A. (In fact A is the whole sphere
except for a point on the unit circle or a cantor subset of the unit circle.) From Proposition
2.3 we know that we can choose ¢ so that ¢(A NS?) lies on the imaginary axes and ¢ maps
D into the left half plane. Now observe that the whole imaginary axis must be in the image
of ¢. Indeed, let I be a neighborhood of 1 in S! which is mapped under ¢ to a neighborhood
L of 0 in the imaginary axis. Then for any n € N, the set f~"(l) will be mapped by ¢ to
)\LnL and clearly, the union of these segments cover the imaginary axis. Since B maps D to
D, it maps C — D to itself and B 1(S') = S This proves that ¢ maps AN S! to the entire
imaginary axis. Then, by symmetry, either ¢ or —¢ map D to the left half plane. U

Remark 2.5. If a regular Baker domain is not proper, then the inner function has infinite
degree. In this case, Proposition 2.4 still holds if we change “onto the half plane” by “into
the half plane”, since By might have omitted values. Still, the image of a neighborhood of
z =1 covers a neighborhood of the origin.

2.2 Parabolic fixed points and Fatou coordinates

Let f be a holomorphic map on a domain V of the complex plane and let zg € V be a
parabolic fixed point of f which we assume to have multiplier equal to 1. That is, f can be
written near zg as

f(z) =z +a(z —20)"™" + O((z — 20)*?)
for some g > 1 and some a € C\ {0}.

The dynamics in a neighborhood of z; is well understood (see for example [Milnor 1999]
or [Steinmetz 1993]).

It is well known that there are 2¢ equally spaced invariant directions at z (unit vectors

in the tangent space), alternatingly attractive and repelling. Any orbit that converges to the
n+1 _fn

parabolic point must do so in one of the attracting directions, i.e., the ratio %

must converge to one of them. Likewise, backward orbits (whenever well defined) which
converge to zp, do so in one of the repelling directions.

Given such an attracting direction v; in the tangent space, the parabolic basin of attraction
Aj; is defined as the set of points z € V' that converge to 2o in the direction of v;. These
basins are disjoint open sets and we denote by .A? the unique component of 4; that maps to
itself under f. Notice that any orbit in .4; must eventually enter and remain in A?.



Let us choose a neighborhood N of zy small enough so that f maps N diffeomorphically
onto some neighborhood N’ of z;. Thus f~! is well defined and holomorphic mapping N’ to
N. Let v be an attracting direction at zp.

We now define the concept of a parabolic petal, following [Milnor 1999].

Definition 2.6. A simply connected open set P C N N N’ such that f(P) C P is called an
attracting petal for f at zg, in the direction of v if

(a) f™ restricted to P converges uniformly to the constant function z — zp, and

(b) an orbit is eventually absorved by P if and only if it converges to zy in the direction
of v.

Likewise, P’ is a repelling petal for f in the direction ¢’ if it is an attracting petal for f~! in
this direction.

The Leau-Fatou Flower Theorem gives the existence of ¢ attracting petals Py,..., P, for
f in the ¢ attracting directions at zg, and ¢ repelling petals P71, ... ,73('1 for f in the ¢ repelling
directions at zy. These petals may be chosen so that they are bounded by real analytic curves
everywhere except at zy where they come tangent to the adjacent repelling directions. The
attracting and repelling petals alternate cyclically around zp so that P; intersects exactly
'Pj'-_l and 73;. See Figure 2. In the special case ¢ = 1 the intersection P NP’ has two distinct
connected components. Observe that, by definition, each attracting petal P; determines a
corresponding basin of attraction .A; as defined above.

/f | /P2 \ o P
/ @ " /@ D & P QQ )

\ﬂ Q 1>2\ Q@/ P OO“QQ Py

N v

Figure 2: Arrangement of the attracting and repelling petals at a parabolic point with ¢ = 1,2 and
4.

The complete understanding of the dynamics inside each of the petals is given by the
following linearization theorem.

Theorem 2.7 (Fatou coordinates). Let f be a holomorphic map in a domain V and
z9 € V a parabolic fized point with multiplier 1. Let P be one of the attracting (or repelling)
petals of f at zg and A be the attracting (or repelling) basin determined by P. Then,

(a) There exists a conformal embedding o : P — C, (unique up to composition with a
translation), which conjugates f to translation by 1, i.e., such that

a(f(z)) =1+ a(2)



for all z € PN f~1(P). Moreover, a ~ —a/(z — 2)? as z — zy in P and P may be
chosen so that the image of a contains a right half plane (or a left half plane in the
repelling case).

(b) The map « extends uniquely to a holomorphic map a : A — C defined in the entire
attracting basin. If f : A — A is proper then ¢ sends A onto the whole plane.

The map « is called the Fatou coordinate of f in P.

We remark that the extension of the Fatou coordinate in (b) is constructed as usual by
iterating z € A enough times until it falls in P, then applying the local coordinate and finally
going back by w — w + 1 the same number of times. Clearly this extension is no longer
bijective but its image covers the whole complex plane when f : A — A is proper.

Similarly to the attracting case, we are now interested in the possible symmetries of a.
More precisely we have the following proposition.

Proposition 2.8. Let f,zy,P, A and a be as above and suppose f has a symmetry, i.e.,
there exists an antiholomorphic involution 7 : V. — V such that f oT = 7o f. Then, the
Fatou coordinate o is also symmetric in the following sense: there exists an antiholomorphic
involution o : C — C such that

(1) aoTr =00 in A;
(2) o(z) +1=0(z+1) for all z € C;
(8) a(Fix(t) N A) C Fix(o).
The proof of this proposition mimics that of 2.2 substituting “multiplication by A” by

“translation by one”. Hence we shall omit it.

In the particular case where the symmetry of f is 7(z) = 1/Z i.e., reflection with respect
to the unit circle, we can see exactly what the symmetry induced by « is. In this case we
have the following.

Proposition 2.9. Let f be holomorphic in a domain V and zy be a fixed point of f with
f'(20) = 1. Let P be one of the attracting petals at zy and A the basin of attraction determined
by P. Suppose [ is symmetric with respect to the unit circle, i.e., f oT = T o f where
7(2) = 1/Z. Then, for any y € R, there exists a Fatou coordinate o : A — C such that

(1) a(ANSY C R, where Ry = {t+iy |t € R}.
(2) coa=aoT on A where o is the reflection with respect to R,,.
Proof. From proposition 2.8 we know that o(z) is an antiholomorphic involution of the com-

plex plane that commutes with translation by 1, and such that ¢ o &« = @ o 7 on the basin of
attraction \A. An antiholomorphic map of degree one of C must have the form

o(z)=az+b

for some a,b € C. Imposing that ¢ commutes with translation by 1, one obtains that ¢ must
be 1. But since o is an involution, it follows easily that b must be purely imaginary. Hence
o(z) = z + ib' for some b’ € R. We observe that the fixed points of o are

/

Fix(o) = {2z € C | Im(z) = %}

10



which is a horizontal line. By Proposition 2.8, a(ANS?!) C Fix(o).

We recall that Fatou coordinates are unique up to composition with a translation. We
may then choose the coordinate &(z) = a(z) +14(y — %) which will satisfy

Im(@(ANSH =y.
Hence o is reflection with respect to R. O

In the case of a globally defined Blaschke product, the results above apply as follows.

Proposition 2.10. Let B be a Blaschke product such that B(1) = B'(1) = 1. Let P be one
of the attracting petals at 1 and A the basin of attraction determined by P. Then D C A and
there exists a Fatou coordinate ¢ : A — C that maps ANS! onto the real azis and A onto
the upper or lower half plane.

The proof mimics that of Proposition 2.4 and hence we omit it.

2.3 Quasiconformal mappings

In this section we recall shortly the relevant definitions and results relative to quasicon-
formal mappings, to be used in Section 5. The standard references are [Ahlfors 1966] and
[Lehto & Virtanen 1973]. In this section, V, V' C C are open subsets of the complex plane or
more generally, one dimensional complex manifolds.

Definition 2.11. Given a measurable function p : V' — C, we say that y is a k—Beltrami
coefficient of V' if |u(z)| < k < 1 almost everywhere in V. Two Beltrami coefficients of V' are
equivalent if they coincide almost everywhere in V.

Definition 2.12. A homeomorphism ¢ : V' — V' is said to be k—quasiconformal if it has
locally square integrable weak derivatives and

52(z) _ 9¢(z)
2) = 0z _
te (%) o 3(2)

SIS

is a k—Beltrami coefficient. In this case, we say that ugs is the complex dilatation or the
Beltrami coefficient of ¢.

With the same definition, but skipping the hypothesis on ¢ to be a homeomorphism, ¢ is
called a k—quasiregular map.

Definition 2.13. Given a Beltrami coefficient u of V' and a quasiregular map f : V — V/,
we define the pull-back of p by f as the Beltrami coefficient of V' defined by:

f*'u:az z

We say that p is f-invariant if f*p = p. If 4 = p, for some quasiregular map g, then
fr= Hgof-

It follows from Weyl’s Lemma that f is holomorphic if and only if f*uy = pg, where
Mo = 0.

11



Definition 2.14. Given a Beltrami coefficient u, the partial differential equation

G- 0

is called the Beltrami equation. By integration of p we mean the construction of a quasi-
conformal map ¢ solving this equation almost everywhere, or equivalently, such that us = p
almost everywhere.

The famous Measurable Riemann Mapping Theorem by Morrey, Bojarski, Ahlfors and
Bers states that every k-Beltrami coefficient is integrable.

Theorem 2.15 (Measurable Riemann Mapping Theorem, [Ahlfors 1966]). Let y be
a Beltrami coefficient of C. Then, there exists a quasiconformal map ¢ : C — C such that
pe = . Moreover, ¢ is unique up to post-composition with affine maps.

We end this section with a lemma that will be important in Section 5. Since we are unable
to give a reference, we include its proof here.

Lemma 2.16. Let A denote the set of K-quasiconformal homeomorphims w : D — I that
extend continuously to the boundary as the identity. Then there ezists a constant C = C(K)
such that for all w € A and all z € D we have that the hyperbolic distance dp in D satisfies

dp(z,w(z)) < C.

Proof. This is a standard compactness argument. Let B denote the set of K-quasiconformal
homeomorphisms of the sphere that fix —1,1 and co. We endow A and B with the topologies
corresponding to uniform convergence. A map w € A can be extended to the spere, by letting
it coincide with the identity outside D). This defines an injection A — B which can be seen
to be a homeomorhism onto its image. It is easy to see that the image of A in B is closed.
Now, it is well-known that B is sequentially compact (cf. [McMullen 1994]), and it follows
that A is sequentially compact. Then, take a sequence of maps w, € A and points z, € D
and suppose that dp(zp,wn(2,)) = 0. Let @, be the map we obtain by conjugating w, with
a Mobius transformation that sends D to itself and z, to 0. Now, @, is a sequence of maps in
A with |wp,(0)| — 1. This is in contradiction with the fact that A is sequentially compact. O

3 Classification of Baker Domains. Proof of Propositions 1
and 2

Let f be an entire transcendental map and U an invariant regular Baker domain of f. Let
By be the inner function associated to U as defined in the introduction. Then 0 < By (1) <1
is well defined. We recall the statement of Proposition 1.

Proposition 1. Either

(1) 0 < By;(1) < 1 and we call U hyperbolic, or

(2) By(z) = z+ia(z — 1) + O((z — 1)), for some a > 0 and we call U simply parabolic,
or
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(3) By(z) =z —a(z —1)2 + O((z — 1)*) for some a > 0, and we call U doubly parabolic.
In this case f : U — U is of degree at least 2.

Proof. We need to study the cases when By;(1) = 1. Then By can be written as
By(z) —1=(z—1) +a(z — 1) + O((z — 1)7?)

for some ¢ > 1 and a # 0. By the Fatou Flower Theorem, there exist ¢ immediate attracting
basins AJ, ... ,.Ag attached to the point 1 which are disjoint open sets each contained in a
sector of angle 27/q. We claim that the only possible values for ¢ are 1 or 2. Indeed, observe
that the whole unit disc is contained in some immediate basin of attraction , say A%, since
D is connected, invariant, and all its points have orbits converging to 1. By symmetry, C \D
is also contained in one immediate attracting basin. This implies that there are at most two
basins of attraction, and hence ¢ is at most two. In either case, the basins are completely
invariant. See Figure 1.

Let us look at the two possibilities separately. For ¢ = 1, the change of variable ( =
1/(z — 1), conjugates By on D to the map

By(¢) =¢ —a+0(1/¢)

on the left half plane {Rez < —1/2}. Observe that the vertical line {Rez = —1/2} is invariant.
Taking points on this line close to infinity, we see that a must be purely imaginary. This is
equivalent to saying that the repelling direction emanating from z = 1 is along the imaginary
axis, maybe pointing upwards or maybe downwards.

In the case ¢ = 2 there are two repelling directions and since none of them can point into
D (for zp = 1 attracts all points of the disc) we must have them along the imaginary axis.
We can write
Bu(2) = 1= (2 —1)(1 + a(z —1)2 + O((z - 1)*))

and observe that for z on the imaginary axis close to z = 1, the quantity a(z — 1)? must
be real and positive. Since z — 1 is purely imaginary, this can only be acomplished if ¢ is a
negative real number. O

Now we would like to find some geometric or dynamical criteria to identify the type of a
given Baker domain. Recall that we defined an invariant petal at infinity to be a connected,
simply connected and unbounded set G whose boundary (in C) is an invariant simple curve
and such that f is a conformal isomorphism of G onto itself. We recall the statement of
Proposition 2.

Proposition 2. An invariant reqular Baker domain U is

(a) hyperbolic, if and only if U does not contain the closure, in C, of an invariant petal
at infinity;

(b) simply parabolic, if and only if U contains the closure of an invariant petal at infinity
G and any other such petal intersects G;

(c) doubly parabolic, if and only if U contains the closure of two disjoint invariant petals
at infinity.
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Proof. Let By be the inner 