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Gran Via 585, 08007 Barcelona, Spain. E-mail: angel@maia.ub.es

Abstract

We consider a diffusion equation on a domain Ω with a cubic reaction at the
boundary. It is known that there are no patterns when the domain Ω is a ball, but
the existence of such patterns is still unkown in the more general case in which Ω
is convex. The goal of this paper is to present numerical evidence of the existence
of nonconstant stable equilibria when Ω is the unit square. These patterns are
found by continuation of families of unstable equilibria that bifurcate from constant
solutions.

1 Introduction

In this paper we focus on the existence of nonconstant equilibrium solutions for the
following diffusion equations with nonlinear reactions on the boundary,

ut −∆u = 0, in Ω , t > 0,
uν = k f(u) , on ∂Ω , t > 0,

u(0, x) = ψ(x) ∈ H1(Ω).
(1)

Here Ω ⊂ R2 is a bounded domain with a C1 piecewise connected boundary, k is a real
positive parameter, and uν denotes the outer normal derivate. The boundary nonlinearity
is given by a cubic reaction f(u) = −u(u− a)(u− b), a < 0 < b.

There are many problems in chemistry (heterogeneous catalysis), biology (population
dynamics) and engineering (heat transfer) for instance, modelled by this kind of equations
(see [Gri96, MO84]). An important issue is the nonlinearity in the boundary reaction. This
nonlinear condition results in a more complex model than the usual linear approximations
but it allows for a better modelling of the boundary phenomena. The evolution of the
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solutions of (1) is determined by the different equilibria (stable and unstable) and their
connections through stable and unstable manifolds.

It is well known that for fixed k > 0, problem (1) generates a well defined nonlinear
semigroup in H1(Ω), the solutions enter W 1,p(Ω) for any 1 < p < ∞ and are classical
for t positive. Moreover, the flow has an attractor Ak which is a compact invariant set
that attracts each bounded set of H1(Ω) (see [ACRB00]). This attractor contains all
the equilibria of the problem and it must be connected, but the shape or the possible
connections between them is a very complicated question (see [Hal88]).

Following the approach of H. Amann [Ama88], this problem admits a semilinear for-
mulation, that is, it can be written in the form

ut = Au+ k F (u). (2)

Here A is the linear part and it is defined as A(u)v =
∫

Ω
(∇u∇v − uv) dx. The nonlinear

functional F (u) = u+γ′f(γu), where γ and γ′ denote the trace operator on the boundary
and the dual of the trace operator on the boundary, respectively. As it is usual the
stability of an equilibrium solution of (2), u0, can be determined by linearization, that
is, by computing the spectrum σ(L) of the linear operator L = A + k DF (u0). In this
case, the spectrum consists only of eigenvalues and all of them are real (see [Cón96]).
So, if σ(L) ⊂ {Reλ > 0} we have that u0 is asymptotically stable, if there is a negative
eigenvalue u0 is unstable and, if zero is the first eigenvalue u0 can be either stable or
unstable.

The solutions of the stationary problem{
−∆u = 0, in Ω ,
uν = k f(u) , on ∂Ω .

are equilibrium solutions for (1). The only constant equilibria correspond to the zeroes of
f , u = a, u = 0 and u = b. The Lyapunov stability of these equilibria can be stablished,
as we mentioned before, by looking at the spectrum of a suitable linear operator. In this
way the equilibria u = a and u = b are asymptotically stable while u = 0 is unstable.

The nonconstant stable equilibrium solutions, often so called patterns, are of relevant
importance. They are related with morphogenesis phenomena. We are concerned by the
existence of nonconstant stable equilibriun solutions of (1) depending on the geometry of
the domain Ω, which is going to be connected in all the paper. If the domain Ω were
disconnected we could construct trivial patterns assigning two different (stable) constants
in each component of the domain. There are some results in the literature related to the
existence and nonexistence of patterns for (1). If Ω is a ball in Rn, n ≥ 2, it is known
that there are no patterns for problem (1) for any k > 0, that is, only constant solutions
can be stable equilibria, see [Cón96]. On the other hand, the formation of patterns can
be achieved with a typical cubic nonlinearity when the domain loses its convexity. This is
the case of the so called dumbbell domains, which consist of two disjoint domains joined
by a thin and/or short channel, see [CSM99]. Patterns also appear when the boundary
of the domain Ω is disconnected, like a domain with holes, see [Cón96].



N. Cónsul, À. Jorba 3

A very well known problem is
ut −∆u = kf(u) , in Ω , t > 0,

uν = 0 , on ∂Ω , t > 0,
u(0, x) = ψ(x) ∈ H1(Ω),

(3)

where the reaction occurs in the interior of the domain but which has some very close
relations with (1). For this problem Casten and Holland in [CH78] and, independently,
Matano in [Mat79] show the nonexistence of patterns when Ω is a convex domain.

For nonlinear boundary reactions like (1) it is known, as said before, that there are no
patterns when the domain Ω is a ball. It is remarkable that the existence or nonexistence
of such patterns is still an open question in the more general case in which Ω is convex.

The goal of this paper is to present numerical evidence of the existence of nonconstant
stable equilibria for (1), Ω the unit square and f(u) = u(1−u2). More concretely, we show
that these patterns seem to exist for k > 2.84083164. This implies that the results about
nonexistence of patterns in convex domains for (3) does not hold for nonlinear boundary
reactions.

In [CC] X. Cabré and N. Cónsul are completing an analytical proof of an existence of
patterns in convex domains, for k large enough. These analytical results give the existence
of patterns for k sufficiently large and the location of jumps on the boundary for k →∞,
depending on the considered domain Ω. Here we give numerical evidence of the existence
of such patterns and, in add, we study their stability as k decreases.

Our search of stable equilibria proceeds in a systematic way, by following families
of nonconstant equilibrium solutions. More concretely, we first compute the families of
equilibria that bifurcate from the unstable solution u = 0, for the range 0 < k < 3, and
then we follow the branched families up to k = 10. All these families are unstable for
values of k close to the bifurcation but, when k grows, one of them undergoes a new
bifurcation and becomes stable. It seems that these stable solutions persist when k goes
to infinity (see [CC]).

The paper is organized as follows. Section 2 contains the study (analytical and numer-
ical) of the critical values of k for which there are equilibrium solutions branching off from
the origin. Section 3 discusses the results of a numerical computation of these branches,
including their stability. Finally, in Section 4, we have included a short description of the
numerical tools used in the study.

2 Linearization around u = 0

We want to study families of nonconstant equilibrium solutions of (1), depending on the
parameter k. More concretely, we will look for families branching off from the constant
equilibria. As we mentioned in the introduction, by the linear principle of stability, we
know that the constant solutions u = −1 and u = 1 are both asymptotically stable
for all k and, therefore, nothing can bifurcate from them. In [Cón96] it is proved that,
for k sufficiently small, all the equilibrium solutions are constant and, therefore, they
must coincide with the zeroes of f . In this context, it is natural to look for nonconstant
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Figure 1: Continuation of the first three eigenvalues of the linearization of (1) around
u = 0 w.r.t. k (k is shown in the horizontal axis).

equilibrium solutions as bifurcations of the unstable solution u = 0. Hence, the first step
must be to compute the spectrum of the linearization of the equation at u = 0 to detect
eigenvalues that cross 0.

We have discretized the operator L at u = 0 using linear finite elements (see Section
4). We have computed the first three eigenvalues for k ∈ [0, 3], and we have represented
them in Figure 1. Let us observe that these eigenvalues decrease as k increases. They go
from the eigenvalues of the Laplacian with Neumann condition (k = 0) to the eigenvalues
of the Steklov problem (see [Ban80]),{

∆u = 0 in Ω,
uν = k u, on ∂Ω.

(4)

The eigenvalues of (4) coincide with the values of k for which L has a zero eigenvalue and,
therefore, the spectrum of (4) gives the values of k for which we can expect a bifurcation
from u = 0. Moreover, for each eigenvalue k of (4), the eigenspace also coincides with the
kernel of L− kI.

Note that, for k = 0, (1) is an homogeneous Neumann problem and it is well known
that its spectrum consists only of the real nonnegative eigenvalues λm,n = (m2 + n2)π2,
m,n ∈ N. They are simple when n = m, and of multiplicity two otherwise. Note that,
for this homogeneous problem, any constant is a solution.

For k > 0, the first eigenvalue λ0(k) is always negative, the second and third ei-
genvalues λ1,2(k) cross zero at k = k1,2 respectively, as it is shown in Figure 1. We
have computed the values k1,2 from the finite element discretization, using three meshes
(of 8321, 33025 and 131585 nodes) and two steps of extrapolation to obtain the values
k1 ≈ 1.37650548469797 and k2 ≈ 2.00000000015288.

As this computation does not assume any kind of special form for the eigenfunctions,
we can also use it to estimate the geometric dimension of the eigenvalues. It turns out
that this dimension is 2 for k = k1 and 1 for k = k2.

As Ω = [0, 1]× [0, 1], we can compute analytically the eigenvalues and eigenfunctions
of the Steklov problem by separating the variables and, therefore, we can use them to
test the accuracy of our finite element computation. The eigenvalues are k = 2 and
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Figure 2: Eigenfunctions of the Steklov problem for k = k1. Horizontal plane: (x, y)
coordinates. Vertical axis: value of u. The colour goes from blue for u = −1 to red for
u = 1. The intersection between the plane u = 0 and the box containing the figures is
marked with a square.

k = 2ω tanhω, where ω are the zeros of the equations tanhω = cothω or tanhω =
tanω. The eigenfuctions are u(x, y) = (1 − 2x)(1 − 2y) for the eigenvalue 2, and
u(x, y) = (e2ωx + e2ω(1−x)) (cos(2ωy)− tanhω sin(2ωy)) (and the ones obtained by chan-
ging x and y) in the other cases. Note that there are two eigenfunctions for each eigenvalue,
except for k = 0 and k = 2, that has only one. As the eigenfunctions for k > 0 have been
obtained by separating the variables, we can only ensure that the geometric multiplicity of
the eigenvalues is at least 2 for k 6= 2, and at least 1 for k = 2. The geometric multiplicity
of k = 0 is already known to be 1.

In what follows we will focus on the first three eigenvalues. For definiteness, we will
denote them as k0 = 0, k1 = 1.376505484672535 and k2 = 2.

The agreement between the analytical and numerical results is quite good. Refering
the multiplicities of the eigenvalues it seems that the only eigenfunctions are the ones
obtained analytically by separating the variables in the Steklov problem. Note that the
multiplicities coincide with those of the corresponding eigenvalues (see Figure 1) for k = 0.

3 Bifurcating branches

In this section we will make use of some properties of the equilibria of (1). Due to the
particular form of the domain and the equation, note that if u is a solution of (1), any
rotation π

2
of u also satisfies (1). Moreover, due to the parity properties of f , if u is a

solution, −u is also a solution. Finally, from the maximum principle of Hopf it follows
that all solutions are bounded by −1 ≤ u ≤ 1 (see [Cón96]).

Next, we will discuss the first two bifurcations, corresponding to the values k = k1,2.
As we will see, this is enough to find stable nonconstant equilibria, which is the main goal
of this paper.
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Figure 3: Eigenfunctions of the Steklov problem for k = k2. The axis are as in Figure 2.

3.1 First bifurcation

It corresponds to k = k1. We recall that, in this case, there exist two linearly independent
eigenfunctions (shown in Figure 2) with eigenvalue zero. A numerical study (see Section
4) shows that this bifurcation does not give rise to a bifurcating two dimensional manifold
but only to 4 curves that are defined for k > k1. In fact, we have computed these curves
for k ∈ (k1, 10]. We will see in a moment that we can use the symmetries of the problem
to reduce these 4 curves to only 2.

The first branch consists of solutions u(x1, x2) such that u(1
2
, x2) = 0 for all x2 ∈ [0, 1],

u(x1, x2) < 0 if x1 <
1
2

and u(x1, x2) > 0 if x1 >
1
2
. When k increases, the “left half part”

of the solution tends to −1 and the “right half part” tends to 1 on the boundary. The
other side of this branch corresponds to change the sign of the solutions. Apparently,
when k →∞ the solution becomes an harmonic function which is piecewise constant on
the boundary, jumping from −1 to 1 or from 1 to −1 at (x1, x2) = (1

2
, 0) or (1

2
, 1), as it is

shown in [CC]. Applying the π
2
-rotational symmetry mentioned before we obtain a new

bifurcating branch.

The second bifurcating branch consists of solutions u(x1, x2) such that u(x1, x2) = 0
for x1 = x2, u(x1, x2) < 0 if x1 > x2 and u(x1, x2) > 0 if x1 < x2. When k increases the
positive part goes to 1 and the negative part goes to −1 on the boundary. As before,
the other side of this branch corresponds to change the sign of the solutions and, the
π
2
-rotational symmetry gives a new bifurcating branch.

Near the bifurcation point k = k1, u = 0, all the equilibrium solutions are unstable
due to the instability of u = 0 and the continuity of the spectrum.

A computation of the eigenvalues of the solutions along the branches shows that the
first branch ((1a) in Figure 6) is unstable and changes its stability at k = ks

1 ≈ 2.84083164
becoming stable (the critical equilibrium for k = ks

1 is shown in Figure 5, left) but that
the second branch ((1b) in Figure 6) is always unstable. In Figure 4 we display the first
eigenvalue of the branch (1a) from k = k1 to k = 4. As far as we know, this computation
is the first evidence of the existence of nonconstant stable equilibria for a convex domain.
We have followed this stable branch up to k = 10 and it looks persistent when k increases.
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Figure 4: Continuation of the first eigenvalue along the branch (1a). The value of k,
k1 ≤ k ≤ 4, is shown in the horizontal axis.

Figure 5: Change of stability on the branch (1a). Left: Critical equilibrium at k = ks
1.

Right: Kernel of the linearization around this equilibrium; u = 0 corresponds to the lower
side of the box. The colour goes from blue for u = −1 to red for u = 1. The mesh used
in the drawings is not the mesh used for the computations.

The persistence for k →∞ agrees with some recent analytical results (see [CC]).

Let us focus on the change of stability of the branch (1a). The computation of the
spectrum shows that the kernel of the linearized operator has dimension 1 (see Figure 5,
right) so that we expect a one-dimensional bifurcating manifold. Our computations give
a curve of equilibria that bifurcates from this point, k = ks

1, u = uks
1
, and is defined for

k > ks
1. When k increases, the transition curve u(x1, x2) = 0 of the bifurcated branch

moves (from x1 = 1
2
) to the left. As before, the opposite branch can be obtained changing

the sign of the equilibrium solutions of the previous branch.

In Figure 6 we show schematically these bifurcating branches. In Figure 7 we display
the equilibrium solutions corresponding to k = 4 for each one of the first three branches
that appear in the bifurcation scheme. The maximum and the minimum values for each
solution are the following: u = −0.912 and u = 0.912 for (1a), u = −0.934 and u = 0.934
for (1b), and u = −0.961 and u = 0.669 for (1c).
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 1  1.5  2  2.5  3  3.5  4

(1a)

(1b)

(1c)

(2)

Figure 6: Schematic representation of the branches that bifurcate from the origin. The
value of k is shown in the horizontal axis.

3.2 Second bifurcation

This bifurcation corresponds to k = k2. We recall that, in this case, the eigenspace has
dimension one (see Figure 3) so that we only expect a single bifurcating curve.

One of the branches consists of solutions u(x1, x2) such that u(x1,
1
2
) = u(1

2
, x2) = 0,

u(x1, x2) < 0 if (x1, x2) ∈ [0, 1
2
]2 ∪ [1

2
, 1]2 and positive otherwise. The other side of the

bifurcating curve is obtained by simply changing the sign of the solutions. Note that, for
these kind of equilibria, changing the sign is equivalent to a π

2
-rotation. The computation

of the dominant eigenvalues of the linearization of the equation at these equilibria shows
that they are unstable in the computed range k2 < k ≤ 10.

This branch is also shown, schematically, in Figure 6 labelled as (2). In Figure 7 we
show the equilibrium solution corresponding to k = 4 for the fourth branch (2) in Figure 6.
In this case the maximum and the minimum values are u = −0.847 and u = 0.847.

4 Numerical methods

The variational formulation of (1) is

〈ut, v〉+ a(u, v) = k 〈f(u), v〉∂Ω ,

for any v in the space of test functions V . Here, 〈·, ·〉 and 〈·, ·〉∂Ω denote the scalar products
in L2(Ω) and L2(∂Ω), respectively and

a(u, v) =

∫
Ω

∇u · ∇v dx.

We will use the standard finite element formulation, based on linear triangular ele-
ments. Therefore, we have a linear space of piecewise linear polynomials, of dimension
N and using the usual approximation in this space and the Galerkin method, we obtain
a set of nonlinear ordinary differential equations for the N coefficients ui, 1 ≤ i ≤ N , of
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Figure 7: Equilibria, for k = 4, of branch (1a) (upper left), (1b) (upper right), (1c)
(bottom left) and (2) (bottom right). The axis are as in Figure 2.

the approximations of u. The system can be expressed in the matrix form,

Au̇+Bu = k F (u), (5)

with u = (u1, . . . , uN)T and

A = (〈ϕi, ϕj〉)i,j ,

B = (a(ϕi, ϕj))i,j ,

F (u) =

(〈
f

(
N∑

i=1

uiϕi

)
, ϕj

〉
∂Ω

)
j

,

where 1 ≤ i, j ≤ N , and {ϕi}1≤i≤N is the usual basis in the space of N -piecewise linear
polynomials.

Let us observe that this variational formulation coincides with de semilinear formula-
tion (2) of the continuous problem.
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4.1 Equilibria

The equilibrium solutions of (5) satisfy

Bu− k F (u) = 0. (6)

Our numerical method is based on solving this equation by means of the Newton method.
The advantage of this approach is that the equilibria are found regardless of their stability.

The continuation procedure is very standard; it is based on including the parameter
k as an ordinary unknown. To summarize how it works, assume that p

(0)
∗ = (u

(0)
∗ , k

(0)
∗ ) is

an approximation to an equilibrium. Then, the Newton method requires to solve a linear
system with an extra unknown (k). This implies that, generically, we have a 1-D affine
space of solutions. Among them, we select the one of minimum L2−norm; this implies that
we are looking for the point on the manifold (in the (u, k) space) of solutions closest to the
initial condition. Once the Newton method has converged to a point p(0) = (u(0), k(0)),
the kernel of the linearization at p(0) of the operator (u, k) 7→ Bu − k F (u) gives the
unitary tangent vector τ (0) to the curve of solutions at this point. Then, we can predict
an approximation p

(1)
∗ = p(0) + hτ (0) to a new point of the curve. If the value of h is too

large, the Newton method starting at p
(1)
∗ will not converge to a point on the curve, and if

it is too small we will need to compute a lot of points to advance a fixed distance on the
curve. The adjustement of the value of h is done automatically: if the Newton method
needs more than 3 iterates to converge, h is halved; if it needs only 1, it is doubled.

4.2 Stability

The stability is found by rewritting (5) as

u̇ = A−1 (−Bu+ k F (u)) .

If u0 is a solution of (6), the linearization around u0 is given by the operator L : H1 → H1,

Lv = A−1 (−B + k DF (u0)) v.

Note that this coincides with the discretization of the linearization of (2). As the spectrum
of L only consists of real eigenvalues (see [Cón96]), we look for couples (λ, v) ∈ R ×H1

such that
(−B + k DF (u0)) v = λAv.

The equilibrium u0 is asymptotically stable iff the first eigenvalue is strictly positive. The
dominant part of the spectra (including the eigenvalues) has been obtained by means of
an inverse power method with a suitable shift.

4.3 Bifurcation analysis

The bifurcation of u = 0 for k = k1 corresponds to a double eigenvalue, for which the
corresponding eigenspace is also of dimension 2. To study the neigbourhood of this
singular point, we have computed two linearly independent eigenfunctions v1 and v2, and
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we have considered the “circle” of values v1 cos θ + v2 sin θ for θ ∈ S1 as initial conditions
for a Newton method (we recall that k is also an unknown, see Section 4.1). We have
used these initial conditions for a mesh of 1000 equispaced values of θ, and we have only
found 8 branches going out from the singular point (in other words, we have only found
4 curves going through the bifurcation point). If we take into account the symmetries of
the problem, the 8 branches can be reduced to 2. The eigenfunctions tangent to these
branches are the ones shown in Figure 2.

The bifurcation of u = 0 for k = 2 and the bifurcation on the branch (1c), in Figure
6, for k = 2.84083164 correspond to a single null eigenvalue, whose eigenspace is also of
dimension 1. Therefore, in both cases we have obtained the corresponding eigenfunction
v and we have used the values u±hv, for h small, as initial values for the Newton method.
As before, the initial value for k is the value at the bifurcation point, but the Newton
method handles k as a variable.

4.4 Error estimation

The error estimation is based on comparing the solutions with the results corresponding
to a finer mesh, obtained by halving all the triangles of the initial triangulation. The
comparison is used as an error estimate on each node, and it is used to refine the mesh
around the nodes with a too large error estimate. For the computation of Delaunay
triangulations we have used the library Triangle [She], which has proven to be excellent.
The remaining programs have been coded in C by the authors, taking advantage of the
particularities of the problem.

During the continuation process (see Figure 6), we have always used the same mesh.
The error estimation shows that the error grows when k becomes larger. This is expected
since the transition in these equilibria is faster when k increases. The mesh we have used
for the continuation produces an error estimate around 10−4 for k = 4.
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