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Abstract

We validate the Poincaré—Melnikov method in the singular case of high-frequency periodic
perturbations of the Hamiltoniang(x, y) = (1/2)y2 — x3 4 x* under appropriate conditions,
which among other things, imply that we are considering the bifurcation case when the character
of the fixed point changes from parabolic in the unperturbed case to hyperbolic in the perturbed
one. The splitting is exponentially small.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given a one-degree-of-freedom Hamiltonian systejtx, y) with a homoclinic con-
nectiony, associated to some fixed poiptand a perturbation of it

ho(x, y) + ehi(x, y, 1, €), 1)

the Poincaré—Melnikov methofiMe] is a tool to detect transversal intersection of the
perturbed invariant manifolds. Moreover, in case of intersection, it provides asymptotics
for the area of the lobe generated by the invariant manifolds between two consecutive
homoclinic points and for the angle of the invariant manifolds at homoclinic points.
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The standard theory applies to hyperbolic fixed points and regular perturbations, that
is whenhny is of classC”, r>3.

The case of singular perturbatiohs(x, y, t/¢, €) is very important because it appears
when one reduces two degrees of freedom near integrable systems near a periodic orbit.
In this case, if the manifolds split, the area and the angle are exponentially small with
respect toe.

More generally, exponentially small splitting of invariant manifolds of invariant tori
appears in near integrable Hamiltonian systems and it is a very important issue in
the study of Arnold diffusion[Ar]. It is a difficult problem and satisfactory results
have only appeared recently. However, since we deal with perturbations of a one-
degree-of-freedom Hamiltonian, our result does not apply in this higher-dimensional
setting.

Exponentially small phenomena also appear in one step discretizations of autonomous
differential equationgFiS].

However this case was already encountered by Poingag He studied a model
which is a special perturbation of the pendulum and he found that the splitting of sepa-
ratrices is exponentially small in a perturbation parameter. He overcome the difficulties
introducing an extra parameter and letting it to be exponentially small with respect to
the other one.

Much later NeishtadfNe] provided exponentially small upper bounds for the splitting
in the singular case with only one parameter. Asymptotic expressions have appeared
recently, mainly for particular non-perturbed systems, such as the pendulum, the Duffing
equation, etc[An,DS1,Gel,HMS,Tr]In these examples the asymptotics are of the form
ce” exp(—a/e). However this is not always the case as it is shown by an example
presented ifSMH] (see also the discussion [GL]).

Exponentially upper bounds for general systems with sharp exponents are found in
[Fol,Fo2,FoS]

The paperdDS2,Ge2]address the problem of obtaining, under certain conditions,
the asymptotics from the formal Melnikov function although this is not always the
case[Tr].

Poincaré maps associated tf) @re near identity area preserving maps.

Lazutkin [La] gave the asymptotic formula for the splitting for the standard map and
introduced new analytic ideas to study the problem. The proof of the formula was later
completed by GelfreiciGe3].

There exists also a Poincaré—Melnikov theory for the setting of maps. For the regular
case sedDR1,Ea] For a singular case sg®R2]. A more detailed account of these
results, both for maps and one and a half degrees of freedom Hamiltonians, can be
found in [GL].

The case of a parabolic fixed point is much less studied. In this case the first problem
is to ensure the existence of invariant manifolds for the perturbed system. This strongly
depends on the higher order terms at the fixed point. For the regular parabolic case
see[CFN].

In [BF] we consider the singular parabolic case. We consider non-perturbed Hamil-
tonians ho(x, y) = %yz + V(x) with V(x) = a,x" + ---, n>3, and perturbations
which do not destroy the parabolic character of the fixed point. Under appropriate
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hypotheses we prove that the formal Melnikov function gives the right exponentially
small asymptotics.

In the present paper we consider a bifurcation case, that is, the fixed point is parabolic
for the unperturbed system but is hyperbolic for the perturbed one and hence it has
small eigenvalues. It is important to mention that the main part of this work is related
to finding suitable parameterizations of the invariant manifolds of the fixed point of
the perturbed system.

Once we have the parameterizations we can apply some of the results obtained in
[BF] which also apply in this case. Due to some technical difficulties, we restrict
ourselves to the particular non-perturbed Hamiltonianx, y) = 3 y? — x% + x4,

This paper is organized as follows. In Secti@n we introduce notation and the
hypotheses. In Sectia® we state the main results. In Sectiénwe prove the existence
of suitable parameterizations of the invariant manifolds of the perturbed system and
finally in Section5 we give the sketch of the proof of the asymptotic formulas for
the area of the lobes and the angle between the invariant manifolds at a homoclinic
point which are exponentially small in. Actually, under the stated hypotheses /on
we get that the formal Melnikov function associated to the problem gives the right
asymptotics.

2. Notation and hypotheses

We consider Hamiltonian systems of the form
H(x,y, t/e, u,€) = ho(x,y) + uePhi(x, y, t/e, u, ¢), ¢ >0, (2)
where

2
ho(x,y) = y? + V(x) and V(x) = —x3+ x*

The unperturbed system has the homoclinic opgit (xg, fg) given by

4t
2+t2’ ﬂO(t):_(2+t2)2'

Note thatag has two poles of order 1 at= +i+/2.

®)

op(t) =

2.1. Hypotheses
H1. The functionki(x, y, 0, i, €) is C9, 2n-periodic in 0, has zero average:

2n
/ hi(x,y,0,u,8)d0=0
0

and is real analytic with respect ta, y, ).
H2. The functioniy(x, y, 0, u, ¢) is a polynomial of order 2 and degreein the (x, y)

variables:
K

hi(x,y. 0, ) = Y by (0. pe)x’'y/.
i+j=2
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We introduce the functions;;, determined by the conditions:
2n
0¢Bij = bij, / Bij(0, u,e)d0=0.
0
H3. With the above-introduced notation
2n
/ b11(0, 0, 0) B2o(6, 0,0) dO > 0.
0

Consider the terms;; (0,0, 0)x'y/ of h; evaluated ony,. We define¢ to be the
greatest order of the polesiv/2 corresponding td;; (0, u, s)océ(u)ﬁé(u). That is:

¢ =maxi+2j :Yug, g0 > 03(0, u, ) € [0, 2n]
X(—ﬂo, )uO) X (Oa 80) s.t. bl] (07 K, 8) ;é 0} (4)

Also we definev = p — ¢ and we ask that:
H4. The constant is greater or equal than 0.

Remark 2.1. The previous hypotheses imply> 3. Indeed, by hypothesis HB31 # 0.
The order of the pole of the terimi1xy evaluated at the homoclinic orbit is 3, hence,
by definition of¢, £>1+2=3.

Remark 2.2. We will study in detail the associated Poincaré map and we will see H3
implies that the origin is a saddle point whenz 0 ande > 0 small.

Remark 2.3. Hypothesis H4 controls the growth of the perturbation term evaluated at
the homoclinic orbit for values of time close to the singularities.

3. Main results
3.1. Parameterizations of the stable and unstable manifolds

First we introduce some notation. Giv@n t > 0, we define the sets

D° = D¥T,7)={(t,s) eRxC:r+Res>T,|Ims|<1},
DY = DYT,©)={(t,s) eRxC:t+Res< —T,|Ims|<1}

and forp > 0, k,1 € R, (k,1>0) we define the spac&! = X/(p) of functions
h : D5 — C such that

(a) h is continuous,

(b) for t fixed, s — h(z,s) is analytic,

(C) h(t,s + 2me) = h(t + 2me, s) for all (¢, s) € DS,

(d) |Ihllx; == sup((t + Re s)keP/U+Re) | n(t 5)| : (t,5) € DS} < o0.
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We can prove thaPCkl is a Banach space with the norjm ||« ; and that
Xklz C Xkll if ko >k, and Xklz C Xk[l if Io> 1.

In an analogous way we define the spa%,é of functions defined onDY. The next
result gives the existence and some properties of a special parameterization of the stable
and the unstable invariant manifolds.

Theorem 3.1. Assuming hypothesé$l—-H4, there existT > 0 big enough and param-
eterizationsy;, . (¢, 5), 7}, (¢, s) of the local stable and unstable invariant manifolds of

the origin of (2), defined inD3(T, v/2), DY(T, v/2), respectively such that(x stands
for s or u):

Q)+~ Vet s) is a solution of the equation associated (@ and s — Vet s)
is real analytic. Moreover the may, s, i, &) — y;s(t,s) is continuous C1 with
respect to t and analytic with respect (o, u).

(2) For all (1,5) € D*(T,N/2), 7} (t £ 2, s) = 75, (1. s & 27e), + for x =sand —
for x = u.

(3) For u = 0, y;,.(t, s) coincides with the restriction of the homoclinic solution

Yo(t +5) to D*(T, V2), and for u 0 the following estimate holds
Vet 8) =70t +5)+ pe Gy (ot +9).1/6) + O(ue?),  (t.s) € DX(T.V2),

where 0gG e (x, y, 0) = (0yh1(x, y, 0, u, &), —0cha(x, y, 0, u, €)) and has zero av-
erage

4) yz,s(t, s) =~y0(t i— s) + usp+1az’5(t, s) where o-:j,s(t, s) € XZO X XZO if ¥ =sand
az’g(t,s) € XZO X XZO if x=u.

The proof of TheorenB.1 is similar to that of Theorem 3.1 ifBF], but here, for
1 # 0 the behavior ofy* is exponential in time and hence we face to a competition
between the algebraiqu(= 0) and the exponentialu(#£ 0) characters. Therefore we
have to take a different first approximation ¢f , and we have to be much more
explicit in some computations.

3.2. Asymptotic formula for the splitting of separatrices
Let M (s, u, €) be the Melnikov function defined by

oo

M(s,u, &)= / {ho, ha}(yo(t +5), t/e, u, &) dt.
—00

We denote byP’ the Poincaré map fromp to 1o + 2re of system ), by A the area

of the lobe generated by the stable and unstable manifold between two consecutive

primary homoclinic points and by the angle between the stable and unstable invari-

ant manifolds at a homoclinic point. We recall that, since the Poincaré map is area

preserving, the areA will not depend on the concrete primary homoclinic points we

consider.
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Theorem 3.2. Under hypothesesil-H4, for ¢ — 0%, u — 0, the following formulas
hold:

50
A= usp/ M, 1, &) dv+ O (26?2, (P P+ gPt2)e=2e,
50

M’ (so, 11, €)
[70(to + s0)1?
wheresg < 5o are the two zeros of the Melnikov functi¢associated to two consecutive
homoclinic point¥ closest to zero

2.2v 2 v+p-1

O(u*e?, e  uePye Ve,

sind = ue?

We define the functior/ (x, y, 0, u, &) = {ho, h1}(x, y, 0, u, &). This function is -
periodic in @ and has zero average with respecttoLet Ji(x, y, u, €) be its Fourier
coefficients. It is clear that, for alt € Z\{0}, Jx(yo(u),0,0) has a pole of order at
most ¢ + 1 atu = +i+/2, then, near the singularities = Fi~/2, Ji(yo(u), 0,0) has
the form

1
(u £ i/2)t+1 =

We introduce the further hypothesis:
H5. The Fourier coefficientdy; evaluated on(x, y) = yo(u), p = 0, ¢ = 0, that is
J+1(yo(u), 0, 0), have singularities of order exacth/+ 1 at the points: = +i/2.

Remark 3.3. Hypothesis H5 is generic because it is equivalent to assume that some
coefficient of the Laurent expansion @f.1(yq(«), 0, 0) is different from zero.

Under this additional hypothesis we can obtain an explicit asymptotic expression of
the Melnikov function which provides the asymptotics for the area and the angle.

Corollary 3.4. If H1-H5 hold, then fore — 0*, u — 0,

, 1
A ~ ﬂ8»+1875|]]:0|53_\/§/8,
. : _ 1 1
| sing| ~ ,ua‘_14n|.l1 Ol—e_‘/é/g — -
a4 [70(to + s0)|

3.3. An example

In order to illustrate the practical application of formulas given in Corollar
we provide an easy example. Consider the Hamiltonian giverHRy, y, t/¢e, u, &) =
ho(x, y) + uePha(x, y, t/e, u, &) with

hi(x, y, /e, i, €) = boo(t /e, 1, €)x% + b1(t /e, u, £)xy + boa(t /¢, i, £)y?
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and satisfying hypotheses H1 and H3. An easy computation proves that, near the
singularity u = i~/2,

{ho, h1}(yo(u), /e, 1, &) = (—2boa(t/e, 1, &) + O(u — iv/2)).

(u— lf 5
Let b02 be the k-Fourier coefficient ofbg, when u = 0, ¢ = 0. Hypothesis H5 is
equivalent to assume thaf, # 0 which is the constant-J; /2. In this casef =
Then, if p>¢ = 4, we have the following asymptotic formulas:

A ~ ueP~316m|b, | V2

1

|sind| ~ ueP~58n|b |—e_‘/§/8 -
021 l70(t0 + 502

4. Proof of Theorem 3.1

In this section we prove the existence of special parameterizations of the stable and
unstable manifolds in domains independent of the parameteasd ¢. In fact, we
prove the existence of such parameterization for the stable manifold but it is easy to
see that, with slight changes, the proof works for the unstable one.

Since the time parameterization of the homoclinic orbit of the unperturbed system
near the fixed point (that is, when— +o0) has an algebraic character, and we know
that the parameterization of the stable manifold near a hyperbolic fixed point (which
will be the case for the perturbed system) is exponential in time, it seems natural to
suspect that the homoclinic orbit of the unperturbed system is not a good approximation
of the stable curve of the perturbed one. Actually, fosmall, there is a competition
between the algebraic and the exponential character. Therefore we need a better initial
approximation for the stable manifold, which will be obtained as a parameterization of
the stable manifold of an auxiliary system. First we will have to obtain well adapted
coordinates.

4.1. Averaging and Floquet theory

As in [BF] we perform some steps of averaging in order to obtain a suitable change
of coordinates to deal with. The Floquet theory is used to reduce the linear part of the
system to a system with constant coefficients.

We introduce the following notation:

Definition 4.1. Let U be an open subset d?. Given! € Z*, we denote byP; the
set of functionsp : U x R x B(0, up) x [0, eg) — C that are continuous,m2periodic

in 0, analytic in (x, y, n), and have ordel, i.e. they can be represented in the form,
o0

Py, 0, )= Y ai (0. e)x'y/,
i+j=I

where the coefficients; ; (0, u, ¢) are continuous, 2-periodic in 0 and analytic inpu.
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To simplify the notation we will not write the dependence jarz of certain functions
unless we want to stress it.
In this subsection we will prove the following result:

Proposition 4.2. There exists a change of variabl€s defined in a neighborhood of
the origin which transforms the Hamiltonian equations associated to H into

x y
<y> = ('u282])+l(bx _ C)CZ) _ V/(x)) + ,LL8P+4F3()C, y.t/e), (5)

whereb = b(u, e) = bo(L+ O(u, €)), bo = (2/m) f02n b11(0, 0, 0)B2o(0,0,0) dO > O,
and ¢ = ¢(u, ¢) do not depend om/e and F3 € Ps.

Moreover the change is continuousC! and 2z-periodic int /e, analytic in (x, y, )
and is of the form

Clx,y,t/e, jt,8) = (x,y) + ueP Gy (x, y, t/e) + ueP2ra(x, y, t/e),  (6)

where G, satisfiesdyG . = (0yh1, —0xh1) and has zero averagend ry € P».

First we scale the time b§f = r/e. We get the Hamiltonian systeaf (x, y, 0, u, ¢).
In order to move the contribution of the perturbation to terms of higher order in the
parameters we will do some steps of averaging. For this we quote Lemma [BE]in

Lemma 4.3. Let e H = eho + us? 1hy, with ho(x, y) = y2/2+ V(x), V(x) = O(x")
and h1(x, y, 0, i, &) = O(|(x, y)[¥). Assume that V is analytidi; is C°, analytic with
respect to(x, y, u) and 2zn-periodic in 0. Then there exists a canonical change of
variables (x, y) = Co(%, 7, 0, u, ) which isC% in (%, ¥, 0, u, &), C* and 2z-periodic
in 0 and analytic in(x, y, u) that transforms the HamiltonianH into

eHo = eho + e T3 Fy_p + 12e?P 2Ry,

in a neighborhood of the originwhere F»,_»> € P,,_» and has zero average with
respect t00, Ry—_p = Oyh10y St + era—p € Pay—2, With ST such thatdySt = —hy and
has zero averageand rp;_2 € P2r—2. MoreoverHy is continuous in(x, y, 0, u, ¢) and
analytic in (x, y, ).

From the proof of Lemmal.3 we obtain that

Co(x, ¥, 0, i, ) = (x, ¥) + pe? G e (x, y, 0) + ueP 2ra(x, v, 0),

where G, . satisfiesdgG,, . = (0yh1, —0xh1) and has zero average.
Applying Lemma4.3to e H with n = 3 andk = 2 we obtain

eHo(x, y, 0, i1, &) = eho(x, y) + pe? T2 Fa(x, y, 0, 1, &) + 12" 2 Ro(x, y, 0, i, €,

where F4 € P4 and has zero average with respecttoR, = ayhlaxsl +erp € Po
with ST such thatdySi(x, y, 0) = —h1i(x, y, 0) and has zero average with respect to
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0, andry € Po. Computing in detail the expression f@&, we obtain

Ra(x, y,0) = —[2b11(0) Boo(0)x? + [b11(0) B11(0) + 4bo2(0) Bao(0)]xy
+2b02(0) B11(0)y?] + era(x, v, 0) + Ra(x, y, 0) @)

with R3 € Ps.
To make the quadratic terms ef{g independent of) we apply Floquet's theory.
We introducez = (x, y) and we let

(01 . . (')yng 5>'>*R2
N = (0 0) and A(0) = Ay (0) = <—5”R2 “ouR2 ) (8)

where the derivatives ofR, are evaluated at = 0. Then, the linear part of the
equation associated tgHo at z = 0 can be written as (prime means derivative with
respect tod)

7 = e(N + pPe’PTLA0))z. (9)

Lemma 4.4. There exists a canonical linear change of variabtgs that transforms
(9) into

w/ =¢& < 22 0 1) w,
u2e?PTp(u, e) 0
whereb(u, ) = (2/7) fOZ” b11(0) Boo(0) dO + O (i, €). MoreoverCy is continuous C*
and 2z-periodic in 0, analytic in u and C1 = Id + O (u2e?P*1).

Proof. Let ¢(0) be the fundamental solution 09)(such that¢(0) = Id. It is clear that
there existsu > 0 such that|¢(0) — Id || <ae for 0 € [0, 2r]. Moreover

0
$(0) =1d +eN0 + %+ / A dl+ 0 (u2e?t3).
0

Indeed, if we introduce)(0) = ¢(0) — Id —eNO — p2e?r+? foe A0 d¢, we have that
Y = eNy + 12 2U0),  $(0) =0,

with U(0) = A(0)¢p — A(O) + eN fé)A(i) d{ = O(¢). By the variation of constants
formula we gety(0) = ple?r+2 f09 eENO-Dy () de. Theny () = O (u2e2P+3).

By Floquet's theory there exist a constant matvixand a Z--periodic matrix P (0),
such thatg(0) = P(0)eM?, with M = M, , = 5 log(¢(2n)). Moreover, the change
of coordinates = P(f)w transforms Eq.9) into

w = Mw. (10)

Since @) is Hamiltonian, detp () = 1. Therefore trM = 0 and detP(0) = 1.

This implies that the change = P(6)w is canonical and then the transformed
system will also be Hamiltonian. Sinc®¥2 = 0, it is not difficult to see that¥ =
5 log(¢(2n)) = eN + O (u?e?"*+2), and thus

P(0) = p(0)e ™M = 1d +0 (12e20+2). (11)
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To estimate the eigenvalues @f2n), we write

2n
_ (A1 A12
/0 AQ AL = ( Au AZZ) L0, (12)

where Aj; = —Ayp = —4 fOZn bo2(0)B2o(0)dO, A1 = —4 f027r bo2(0)B11(0) d0 and
Az = 4 [ b11(0) B2o(0) d0. Note that [Z7 b11(0) B11(0) d6 = 0.

. 1+a b
If we write ¢(2n) as( ¢ 1+d

—(ad — ¢b). Therefore tr)(2n) = 2+ a +d = 2+ 2nue?Pt3Az1 + O (12e?P+%). The
characteristic equation ap(2n) is 4% — (2 + 2nu2e2Pt3 A1 + O (122’ t4))i+1=0
and hence the eigenvalues ¢t2r) are

Ji = 14 /2nA01ueP 3% 4+ O (ueP*5?)
and the eigenvalues dfl are

1
tx = o log(i) = Fue? T2,/ A51/ (21) + O (ue" /%),

), the condition det(2n) = 1 becomes:+d =

Let M = (a;;) and C = (¢;;) be defined byci1 = faiz/e, c12 = 0, c21 =
—a11//ea1z and cxp = /e/arz. C has the form Id-O(u??P+1) and the change
z = Cw transforms Eq. 10) to

p 0 1
w=£ <M282p+1b(’u’ €) O) w,
whereb(u, &) = A21/(2n) + O(u, ¢). We takeC1z = CP(0)z. O
Since(y is area preserving the transformed Hamiltonian becomes
eHa = y2/2 — 12e?PT2bx% )2 + eV (x) + ueP TOF4 + uPe®P 2R3, R3 € Pa.

Finally, we will remove all cubic terms oR3 but one. We observe that, jf # 0O,
standard normal form calculations give that all cubic termsRgfcan be eliminated,
but, in general, the corresponding change of variables is not regulae=ad. However
we have Lemmat.5.

Let us write

R3(x, y, 0) = azo(0)x® + az1(0)x%y + a12(0)xy® + aoa(0)y* + ra(x. y. 0)
with r4 € P4. We will also denote byz; the average of;.

Lemma 4.5. There exists a change of variabl€s defined in a neighborhood of the
origin which transforms the Hamiltonian systetf{1 into

-x/ _ y p-‘,—g é\yF'4('x’ Vs 0)
<V/> - <u282”+1(bx —cx?) - V’(x)) tHe (—axm(x, v, 0)

+12e?PH253(x, v, 0),
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with ¢ = c(u, &) = 3az0 + O(u2e2*1l) and s3 € P3. Moreover the change is
continuous C1 and 2z-periodic with respect taf), analytic with respect to(x, y, u)
and it satisfies’y = Id + O (u2e?r+1).
Proof. We look for a change of variables of the form

Ca(u, v, 0) = (u, v) + 26 TH(f (u, v, 0), g(u, v, 0)), (13)

wheref and g are 2t-periodic with respect t@ and have the form

Fu,v,0) = f0(0)u® + fr1(O)uv + foo(0)v?,
g(x, y, 0) = goo(0)u? + g11(O)uv + goa(0)v>.

A direct computation shows that

(j) =€ <M282p+1b1; _ V/(u)) + 12e?P L uPBao(0, £) + uv B11(0, £) + v? Boa(0, £))
61) F4(l/l, v, 0)

_au F4(M1 v, 9)

) + 12e?P 253 (u, v, 0),

where sz € P3 and

3 ( — f30+ €az1 + ego0 — buPe?P 2 f1q )
20 = ,
—gho — 3eazo + bu?e?PT2(fo0 — g11)
3 —fi1 + 2ea12 + e(g11 — 2f20) — 2bp2e?P+2 fp
11 = ,
—gh1 — 2ea21 — 26820 + bpPe®PT2(f11 — 2802)
— fo2 + 3eaoz + €802 — ef11
Boz = ’ 2.2p+2 :
—80p — €a12 — €811 + bueP T foo
We askB;; to satisfy B11 = Bg2 = 0 and By = (0, ed)T with d = d(u, €) independent
of 0 to be determined later.
First of all we observe that, by imposing the above conditionsBgn f;; and g;;

satisfy a linear system with constant coefficients and periodic non-homogeneous terms.
For the functionshy = f11 + 2go2 and hp = g11 + 2f20 we have

hy = —¢ho, hy = —bu?e?*2h,. (14)

The only periodic solution of1(4) is h1(0) = ho(0) = 0. Therefore,f11 = —2go2 and
g11 = —2f20. This permits to reduce the number of equations.
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We introducen = 12e?P*1, Z = (fo2, 802, f20, 820)7, A = (303, —a12, az1, —(3azo+
d)T and

0 3 0 0
by 0O 2 0
o 2y 0 1

0 0 Iy O
With this notation the conditions we impose g¢fy andg;; become
Z' =eCZ+cA(0). (15)

We want to prove the existence of periodic solutions of syst&B) being analytic
with respect toy. Let Z(0, Zp) be the solution of 15) such thatZ(0, Zg) = Zo. Z is
a 2n-periodic solution of {5) if and only if

2n
Zo = —¢(ld — e_zmc)_lf e*¢C A(s) ds. (16)
0

We notice that, ify = u2?P*1 £ 0, (Id —e=2™C) is invertible. Indeed, it follows from
the fact that, ifyp # 0, C is invertible, and therefore

-1
1 1
—2neC\—1 _ -1 § k=1 k=1

k=2

1
= — 7 (d + 2neCf (2neC)),
2me

where f is an analytic function. Also we can write™*¢¢ = Id — seCg(seC) with g
analytic. Then Eq. 16) takes the form

2n
Zo = —% C1d + 2reCF(2rneC)) | (Id — seCg(seC))A(s) ds
0

1 2n
——c—1/ A(s)ds + O(e).
2n 0

Now we are going to determing We observe that
0 9%y 0 -6
1 3em?2 0 0 0
T@m2| o0 0 0 3y
—6(bn)3 0 (3by)? 0

-1
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thus, by definition ofA,

1 2
= _° _ (3am+d
b a2 + 302 (3azo + d)

Zo=— O +0(e).
— - (3azm+d
31”7( 30+d)

—2bnaoz + az1

Choosingd = —3azg + (3bn/2)a1z we get thatZg = —(0, ap3, —ai12/2, az1) + O(¢).
Therefore with this choice ofl we get that the uniquen2periodic solution of 15) is
analytic in i, and the changel@) is p2c2?*1 close to the identity. [J

We defineF} = %0, Fa+ pue?~3s3 and F2 = —e%0, F4+ pueP~3s2; recall thatp > 3.
Finally, we scale back to the original time. Létbe the composition of all changes.
It is not difficult to see that has form ¢). This ends the proof of Propositich2

4.2. Estimates for the Poincaré map

In this section, we provide an expression of the Poincaré map associated t6).Eq. (
We introducep > 0 such thatp? = 2e2?t1b(u, ¢), 0 = t/e and 0 = to/e.
We write the right-hand side ob) as

Xpe (2. 0) = Ve (2) + peP ™ Fa(z, 0),
whereY, . is the auxiliary vector field defined by
Yye(x, y) = (v, 26 (bx — cx?) — V(@) (17)

with b = b(u, ) andc = ¢(u, €) and we introduce the matrix (solution of the linearized
vector field at the origin)

coshpl) p~Lsinh(pd)
A(0) = Ape(0) = ) . (18)
psinh(pf) coshph)
For any fixedrg € R, we consider the Poincaré maps
PR.(2) = ¢ (1o + 21e, 10, 2) (19)
and
Pye(2) = ¢, (21,0, 2), (20)

Where%,g(t, to, z) is the solution of equatio = X, .(z, t/¢) such that(pﬂ,g(to, 10, 2)
=z and¢>ﬂ’€(t, to, z) is the solution of equatiof = Y, . (z) such thatﬁﬂig(to, t0,2) = z.
We will denote them by(,o#)s(t) and gbw(t), respectively, if the initial conditions do
not play an important role.
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The goal of this section is to prove the following result:

Proposition 4.6. The Poincare mapsf’w and P. have the form

Pue(z) = AQ2ne)z + 210, —V' ()T + 2G3(z, &) + 12e®PT2G3(z, . )
and
P, (2) = Pue(2) + peP ™ Ts(z, 10/e),

where G3, G5 € P, and T3 € Ps. All functions are C% C! and 2r-periodic with
respect torg/e and analytic with respect tdz, p).

We will need a technical lemma which is a small variation of Lemma 3.Bif]
and it is proved exactly in the same way.

To deal with the regularity conditions it is more convenient to work with the scaled
equationsz’ = ¢X,.(z,0) and z’ = €Y, .(z), respectively, where here prime means
derivative with respect td). Let (pHS(O) = %5(0 0o, z) be the solution of;’ =

£Xpe(z, 0), with ¢, .(00) = z and ¢, () = ¢,.(0,00,2) the solution ofz’ =
Y6 (2), With %,5(00) =z.

Clearly P and P,. can also be expressed as, . (to/e + 2m 10/e,2) and
(27,0, 2), respectively.

Lemma 4.7. With the above-introduced notatipthere exist some constants & and
eo such that for allf € [0, 0 + 2n] and z belonging to a neighborhood of the origin
|1l < pp and || <eg the following bounds hold

D) 19, OI<Cllzll, |I$H,8(Q)II<CIIZII-
@) 19.0) =zl <eClizll, ¢y (0) =zl <eClizll.
(3) The solutionsp,, () and ¢, ,(0) can be expressed as

by (0) = @o(0) + p2e*F2®, (0, 00.2) and

P (0) = G (0) + e >, (0, 0o, 2)

with (|, (0, 0o, )| < Cllz>.
Furthermore &, . and ¥, . are C% C?* with respect to0 and 0o and analytic
with respect tou and the initial condition z
(4) The functions

T]_(Z, 00) = ¢lt,€(60 + va 907 Z) = @#)8(27'5, 07 Z) and
T3(z, 0p) := ¥;.¢ (00 + 21, 0o, 2)

are 2n-periodic in 0p and satisfy thatl; € P;.
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Proof of Proposition 4.6. It is a simple consequence of Lemmar. Indeed we write
~ ~1 -2 .~
be = (e, ¢y ) and we note that the solutiop, ,(0) can be expressed as

0

—i2e2P¥Le(, ()2 - V/(&i,g(s))) ds) '
(21)

~ 0
.0 (0) = Ae0) (z +a/o AN es) <

Since p? = 0(u?e2Pt1), we have that fol) e [0, 21], A(0) = Id +0N + O (ue2P+1).
Using the last equality, conclusion (2) of Lemma’ and formula 21) for 0 = 27 we
obtain

55#’5(271) = Ay (2ne)z + 2me(0, —V'NT 462Gz, &) + 122 T2G5(z, . €),

with G3, G3 € P». The conclusion forP; follows from

PR.(2) = P, (to/e + 2, 10/¢, 2)

= (}H’g(to/s +2m, t9/e, 2) + ,usp+5‘Pﬂ,€(to/£ + 2m, to/¢, 2). O

4.3. The homoclinic orbit of the auxiliary system

In this subsection we prove that the auxiliary systém Y, .(z) has a homoclinic
connection and that i (u2e27+1) close to the homoclinic connection of the unper-
turbed system. This is the contents of the following result:

Proposition 4.8. Let yq be the homoclinic orbit for the unperturbed systérhen there
exists a parameterizatiof(u), of the stable invariant manifold df = Y, . (z) and there
existT, M > 0 independent of, such that

15(u) — o) | < 1262 T1m

for all u such thatReu>T7 and | Imu|<~/2.

Proof. By direct substitution it is immediately checked thai) = (a(u), [f(u)) defined

by

__kakap® sinh(pu)
(k2 coshpu) — 1)?’

u(u) fap®
)= ——
ko coshipu) — 1

Blu) = (22)

where

_ 3 1. S 2 4 _/ 2.2

is a homoclinic solution of equatiof= Y, . (z). Sinceda(u) — ao(x) and ﬁ(u) — Bou)

go to 0 as Ra — oo, by the maximum principle, it is clear that the maximum values
of |&(u) — ap(u)| and |B(u) — fo(m)] on the setfu ¢ C: Reu>T,|Im u|<+/2} are
taken at points of its boundary. Since the functions are real analytic it is enough to
bound them in the boundary intersected withe C : Im « >0}. We consider the larger
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domain{u € C: Reu>T, |Imu|<~2+ v}, 0<v<1/2, and the following segments
of its boundary:

I ={ueC: T<Reu<p™ Imu=+v2+v},
I} ={ueC: Reu=p~t Imu=+2+v}
L={uecC: Reu=T, 0<Imu<~2+v}.
We introducec* = cod(v/2+Vv)p) ands* = sin((v/2+v)p). If u =+ (v/2+v)i, then
bu(u) — op(u)

 k1p?(t2 + 2(v2+ v)ti — 24/2v —v?) — 2koc* cosh(pt) — i 2kas* sinh(pt) + 2
; [k costipt + p(v/2+ v)i) — 1] [2+ (t + (v/2+ v)i)?] '

We decompose the numerator ashi + h% + h3) + iho, where
hi(t) = 2kpc*(coshpr) — 1 — p?12/2),
h3(t) = 2kac* — 2+ (28/2v +v?)p?,
W) = pP(kac™ — ki + (ki = D(@V20 4 V7)),
ha(t) = 2(v/2+ v)kip?t — 2kas* sinh(pr)

and we write the denominator agg> where

g1(t) = k2 coshipt + p(v2+ v)i) — 1,
2(t) = 2+ (t + (W2 +v)i)2.

We have to bound the corresponding quotients on the segmﬁnvﬁz and /5.

For that we use the inequalitiescoshx > sinhx for all x >0, |z—sinhz| <|z|? sinh|z]|
for all z € C and| coshy —1—2z2/2| <|z|* coshlz| for all z € C as well as the following
simple but tedious lemmas:

Lemma 4.9. Let y,(t) = Regi(r) = kac* coshipt) — 1. Given T > V3 there exists

po > 0 such that ifp € (0, pg) then y, is strictly increasing. Therefore
2

1@ =71(T) >0 fort €[T,00) and y;(T)> p%+ 0(p*).

Lemma 4.10. Let z5(x) = x? coshx (kac* coshy — 1)~1. Given T > 0 there existsp,
with poT < 1, such that ifp € (0, pg) then

0 < y2(x) < max(x2(pT), 12(L) <C, x €[pT. 1]
with C independent op and T.
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Lemma 4.11. Let y5(x) = sinhx(kzc* coshx — 1)~1. We have thaD < y3(x)<Cp~t
for all x>pT.

After some calculations we get th&(u) — oo(u)| < Mp?, for u € I} U I2. In an
analogous but simpler way we also obtadriu) — co(u)| < Mp?, for u € I.

To boundﬁ — fo we use thatB —Bg =& —ap GivenT, let DS = {u € C :
Reu>T —v, [Imu|<+/2+v} with 0<v<1/2. Applying Cauchy’s theorem with some
v > 0 we get that, fox € DS

1Bu) — Bo(u)| < % sup [&(v) — ap(v)| < % ettty O

veD§

The next result is proved using analogous estimates.
Proposition 4.12. We have that
WPe@drawy)<C,  WPe@IMpuy)<C,  ue DS,

with C independent ofi, ¢ and T, and

WPau)| <2+ 0 + 0(1/T?),  ue DS

4.4. The operatot3

The Banach spaces we use in this section were defined at the beginning of Section
3. For everye > 0 we define the operatds : X/ x X — X! x X! by the expression

(Bo)(t,s) = o(t + 2ne, s) — A(2ne)a(t, s),

whereo = (01, 02) and A(0) is defined in {8).
Let k1, k2, [1 and > be positive real numbers. We endow the product sp¥ce
Xklll X Xklzz with the norm

Wllx = oallyilliy + el lika. (23)

with a4, a2 > 0 to be chosen later on. We note that the product space becomes a
Banach space and that the operafois a well defined linear continuous operator.

We look for a formal right inverse oB. For that we rewrite the conditioBBo =
as

a(t,s) = —A"Y@2re(t, s) + A"X(2nre)a(r + 2ne, 5). (24)
Applying (24) iteratively we obtain
N .
o(t,s) ==Y AUV re)(t+2nej, )+ A~ NP 2ne)a(t +2me (N +1), 5). (25)
j=0

Since
cosh2nepj) —p~t sinh(2nep )

A~ (2ne) = _
—p sinh(2repj)  coshi2mep )

) = A(—2nej),
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if o€ X 1x X2 with 11, 1>1 andky, ko> 0, thenA~ (VD 2me) o (1+2ne (N+1), 5) — 0
as N — oo and thus from 25) we obtain a formal expression f@1:

a(t.s) = B )t s) ==Y A~UD@re)y(t + 2nej. ).
j=0

The following lemma establishes useful bounds for the right inverse of the operator
B. From now on we will simply writeA = A(2xne).

Lemma 4.13. Let k > 2 and [>1. The operator3 has a right inverse3—1 : Xk’ X
X! — xl, x &l with

eZnsp 1
Bt IS — | ———=
B~ W lallk—2 < 5~ [(k D7 Wl +

K
G—DGk-2 ||l//2||k,l:| + T (V4IE%

and
2nep

_ 1 e 0 K
1
B < — — —
Il Ylallk—11 < 2ne (k- 1) [lellflllk,/ + |W2||k,l] + T Wl x

for any choice ofxy, o in the definition of| - || x, where K is independent af.

Proof. We definey (1, s) = — Z;-V:OA_(H_Dlp(t +2nej, s) and henceB~YY)(, s) =
iMmy_oo Yy (t,s). First we claim that ifyy € X! x &/,  converges uniformly on
DS(T, v/2). Indeed, from

—plT

AUyt + 216, <—¢
I A I e

1
<||lﬁ1||k,1 + % ||lp2||k’,)
and X
—p
P
(T + 2mej)* (2 Walles + Wzllk,z)

the claim follows from the M-test of Weierstrass. As a conseque[liﬁielz//]l and
[B~1y1, satisfy the first three conditions which defii¢/_, and &/ ,, respectively.
For u > 0 we introduce the auxiliary functions

A=Y DY + 2ref, 5)]2] <

Sk()_i uk=1 1 i e 1
1= (u + 2nej)k  2me

j=0 j=0
sk ) i 2nejuk—2 1 i e 1 2nej
u) = _— _—
2 = (u + 2nej)k  2me - 1+ Z:%)k u

and we observe that, for > 1 we have that

Sk < 1 27‘68+/OO
< —~71F —
L 2ne 0

u

dx] Ly (26)

1+ x)k 0 2mek—1)
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and fork > 2

S’g(u)gi[zE ! +/oo a dx]
2ne | u (k—1)e o (L4 x)*

1 1
(k — Deu + 2ne(k — 1)k —2)

(27)

We write f + Res = u. Let y € X! x &/. We have that:

k=2

o0
u .
Bt —21 < su — %P cosh2nep(j + 1
1B~ Ylallk—21 ”2915_0 PR H2rep(j + D)l llk.s

0 uk—2

+ su _r
“2?]':0 (u + 2negj)k

.1 . )
e 2mepl] p sinh(2rep(j + D)W llk .-

Using that forx >0, e coshx <1 and sinkx <x coshx, and bounds26) and @7)
we obtain

1
B~ lallk—21 < €™ sup [; ST@)(Walles + 2melpalie) + Slﬁ(u)lllllelk,z]

u>T
eZnsp

e [m I alle.s +

1 K
*k—Dk—-2) ||l//2||k,1] + Wi,

where K depends omy, ap, but can be chosen independently eof Analogously we
obtain

% k-1
— u —2neplj i ;
1B W 2llk—1s < sup Yy ————— e 2™P p sinh2rep(j + D)l llk.s
”>TjZO (I/t+27rg])k 1
S Mk*l

+sup Y e 20l cosh2mep(j + 1) 1Y llk.s

u>T =0 (u + 27'58j)k
and using that forx >0, e sinhx <1/2 ande™ coshx <1 we obtain

1B~ W2l < €™ sup S§)((p/2 Wl + Wl

uz>T

1 e2nepl K
< o —_—
S 2m [k =1 (AWl + ||w2||k,,)] + = Il

whereK depends omxq, a2, but can be chosen independentlysof [
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4.5. The fixed point equation

We look for a parameterizatioqfl’g(z,s) of the stable manifold of Eq.5] such
thatz € R is the time ands € C is a complex parameter. For this we will look for
a parameterization of the stable manifold of the Poincaré mgp, which we will
denote by«}f‘h9 by means of imposing the invariance condition:

Pl e (Tpe(t,9) =75 . (1 + 21, 5). (28)

Let ¢, .(t, 70, w) be the flow of the auxiliary system = Y, .(z). The following

remarks are elementary but provide useful propertied(of = (a(u), [E(u)). Since the
auxiliary system is autonomous, we have that

PueGi(t +5)) = ¢, . (2me, 0.9t +5)) = 9t + 5 + 27e). (29)

We consider) as a first approximation oﬁ,s and therefore we look foﬁz,g of the
form,

Toe(t.8) =5t +5) + pe?* %o (t, s)

with ¢ = (a1, 02) € X4 x X5 and satisfyingj;, . (t + 27e, s) = 7, (1, s + 27e). From
condition @8) we will derive a fixed point equation fow.
In order to simplify the exposition we introduce

B(x) = (0,3 — 43T, 02(2) = G3(z, ) + 1?e?PG5(z, . 8),  (30)
thus, by Propositiort.6
Pye(z) = A2ne)z + 2me B(x) + £202(2)

and A
P,Ltt,s(z) = Pu,s(z) + ,UEP+5T3(Z, t/e).
By Taylor's theorem

Pl (5 o (6.5)) = Pue(h(t +5)) + ue? T30t + 5). t/e)

+ue? 2D Py Gt + 9))a(t, s) + p2e?PTIDT3(( + 5), t/e)a(t, )
+12e2P TR (0) (1, 8), (31)
WhereR(a)(t s) is defined by 81) and, taking into account that the second derivatives
of Pu . and T3 are bounded mdependently pfs we get thaltR (o) (t, s)| < M|a(t, )|
Using 9), the conditionP ,8(yuyg(t 5)) = yw(t + 2me, s) can be rewritten as
o(t + 2me, s) = AQCne)a(t,s) +2neDB((t + 5))a(t, s)
+62D Q20(t + $))a(t, s) + €3T3(G(t + 5), t/€)
+ueP DTG + 5), t/€)a(t, s) + ue? T2 R(0)(1, 5).
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We introduce the notation

G(o)(t,s) = DQ2(9(t +s))a(t,s) + eTz(Y(t + 5),1/e)
+ueP3DT3G (1 + 5), 1/€)a(t, s) + ue? R(0)(z, 5) (32)

and
F(o) = 2ne DB(H)o + 2G(0). (33)
We can reduce the problem to findimgsuch that

o= B"1F(0). (34)

In the remaining part of this section we endow the product sp’e}éﬂex Xk’; with
the norm

1
W”Xk’llxxk’zz = W1l + 7 1l kz.15 - (35)
We introduceX’ * = X} x X2 and B(r) C A* the closed ball of radius of X *. We
look for o € X* satisfying 84).

Lemma 4.14.1f T is big and u, ¢ are smal] there exists- > 0 such that the operator
N given by

N (o) = B 1F(0) (36)
sendsB(r) into B(r) and is a contraction

Proof. We recall that) X22/3 X X§/3 and that the norm of in this space is bounded
independently ofu, e. From Propositiord.12 we know that||i)||Xz/3XA,z/3<C with C
2 3

independent ofu, &, and [|&[l20<2 + O(1/T?) 4+ 0(p?).
Let 0 = (01, 02) € B(r) C X*. Then

IIDBG)ol2ller = Sup (1 + Res)8eP "R |64(1 4 5) — 1282(t + 5)| |01z, 5)|
(t,5)eDS

=6 sup (t+Res)?|a( +s5)||11— 24 +9)|
(t,s)eDS

x(t + Res) PR |61 (1, 5)|

< 62+ 01/ TH + 0L+ 01/ TH) o141

ThereforeDB(§)o € {0} x A3 and IDB@)0ll pry 22 < 12401/ TH+0 ()| 0|l 2+
Proceeding in the same way, using tha¢ € P> and T3 € P3, we get that

DOyt + ))a(t.5) € Xg'> x X5"°,

Ts(3(t +5).1/€) € X& x X2, DT36(t +5), 1/e)a(t, s) € Xg'® x x5
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and

R(0)(1,5) € XZ x X&.

Hence, from definition 33) of 7 we have thatF(s) € Xg’/?’ X X65/3 C A} x
Xel- Moreover, the norms of all the previous functions in the corresponding spaces
are bounded independently of . By Lemma4.13 B~1F(s) € X* and therefore
N(o) € X*.

Next we prove thaliN'(o)||x+ < r if ||o||x+<r. Indeed, letc € B(r) C X*, with r
small enough, but independent pfe. By definitions 80), (32) and @3) of B, G and
F, respectively, and the previous estimates we have that

IF@hller < Me?||ol|lx + Me3,
IIF @261 < 2re[124 01/ T?) + 0 (pd)]||ol|x+ + Me?| o 3+ + MeS.

Therefore by Lemmat.13 with k =6 and/ =1,

IB7LF(0) || x+

1
IB~YF (o) 1llar + = IB~LF(0)]2l15.1

eZm?p

2ne

1
[ﬁ I[F(a)]1lle,1 + 20 ||[-7:(U)]2||G,1i|

11 %
7om 5
33

€ 2
[3—5 +0(7)+ 0(5)} lollxs + 0.

K
[ IF@allos + 1F@N2lloa] + = 1F@lxz.caz

Therefore,

&

33
IV (@)l < [—+0(T

- )+ 0<s>} ol +0?) <~

if T is big enough and is small enough.
To check thatA\ is a contraction we have to estimateV'(c) — N(o)||x+ =
IB-YF (&) — F(o)lllx+. The more delicate term to bound istsB~1DB(?)(G — 0).
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We have

12neB-DB ()G — 0)| x+

s 2mne _ o
= 2ne||[B~DB®) (51 — o)l1lls1 + =B 'DB®) (51— 01)l2lls1

eZnep 1 eZnsp

<—— |[DBG)(G1 — -
55 IPBO)@1— onliller+ 5 —

+0(e/TIDB()(@1 = 1)l x2, 12

IIDB() (61— c1)]2lle1

<(Z10 0@/T) | o
\(§3+ () + O(e/ )>||0_0'||X*~

Studying the remaining terms we conclude th\atis a contraction. [J

4.6. End of the proof of Theoref1

By Lemma 4.14 we can apply the fixed point theorem and we obtain that there
exists a uniquer € X* such that

- 2 - 2
P, (5t +5) + ueP*a(t, s)) = 9(t + 2ne + s) + pue’ 4o (t + 2ne, s).

This provides a parameterization of the local stable manifold of sys&mwlgich, in

general, is not a solution with respect toTo have a parameterization which is a

solution with respect ta we follow the same scheme as[iBF]. Let T be big enough

such that the previous results hold anddet= T — 2ne. We define

Tne(ts8) = @ (t, 11,75 (11, 5)), t>T—2ne, Res>2me, |Ims|<+2,

where herep,, ,(z, 11, x, y) is the general solution of Eq5).
Fort > T — 2ne, Res > 2ne we have

Ype(tss +218) = @y, (¢, 11,7}, (11, 5 + 278))
= Que(t + 21, 11 + 278, Ty, . (11 + 27e, 5))

= @y (t + 21, 11 + 27e, P;&s(*}fw(tl, 5) = xz’s(t + 27e, 5).

This relation permits to extengf; , to D® and moreover the extension is a solution of
Eq. G) with respect tot and it is analytic with respect te.
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Now we will check that for(z,s) € D%, 15,.(t.s) = 7o(t + s) + ue?2r(z, 5) with
r(t,s) = O(|t + Res|~2). Indeed, letk € Z such that|t — 2nek — T| < 2re. Then

Yot 8) = @, (t — 2mek, 11 — 2mek, 75, (11, 5))
= @, (t — 2mek, 11,7, (11 + 2mek, 5))
= @0 (t = 2mek, 11,7, (11, 5 + 2mek))
= Pyt — 2mek, 11, 9}, (11 + s + 2mek))
+uePT20(la)) + ue" PO (17, o 1) + e 0 (7 1P
=t +5) + ueP 20t + Res| ™)
= 9ot + ) + e’ 20 (|t + Res|72).

Going back to the original variables we obtain the result we have stated in
Theorem3.1 [

5. Proof of Theorem 3.2 and Corollary 3.4

Once we have proved Theorednl, Theorem3.2 and Corollary3.4 follow from the
results in[BF]. For the convenience of the reader we provide with a sketch of the
proofs.

5.1. Basic results

The next theorem is proved {BF] in a more general case. It ensures the existence
of flow-box coordinates in a neighborhood of a piece of the homoclinic conneggion

Theorem 5.1 (Flow-box coordinates There exist a neighborhood U independent of
u, ¢ of a piece of the stable manifold of the unperturbed system and a canonical
change of variables

(x,y,0=1/e) eUr> (S,E,0) =(Sx,y,0),Ex,y,0),0) el

of classC?t, 2n-periodic in 0 and analytic in thex, y variables such that it transforms
the equations associated (@) into

and satisfies
S@x, y.0) = So(x, y) + O(ue”*h, E@x,y,0) = ho(x, y) + O(ue” ™.

Moreover given g € R and T >0 big enough U and (S, ) can be taken such
that for all (¢, s) such thatT <|r+Res|<2T and|Im s| < +/2, the parameterization
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yz’g(t,s) of the local stable manifold belongs to U and
SOy (ts). t/e) =t —to+s+peP X (s)  and  E(,(t.5).1/e) =0

with X (sg) = 0 for somesg, which we can choose freglgiepending on initial conditions
on the stable curve. Moreovet'(s) is analytic and2zre-periodic

In addition the changex, y, ) — (S, E, ) is continuous in(x, y, 0, u, &) and
analytic in (x, y, w).

The goal of the next theorem is to extend the domain of the parameterization of
the unstable manifold until it enters into the domain of the flow-box coordinates. It is
proved in[DS2] and applies in our case. Let

D™= {(1,5) e Rx C: |t +Res|<2T, |Im s|<~v2—¢}.

Theorem 5.2 (Extension theorejn Let z(z, s) = (x(¢, s), y(z,s)) be a family of solu-
tions of

X =y+uePoyhi(x,y, t/e, p1, ),
y = —=V'(x) — uePdchi(x, y, t/e, p, &)

defined forrg + Res = —2T, for someT > 0, such that

Z(to, §) — Vo(to +5) — u8p+1Gﬂ,s(V0(t0 +5), t0/8) — 0(#8’)+2),
where G, . is the function such that

a(}G,u,S(xv yv 0) = (ayhl(xv y7 9’ ,Ll, 8)1 _axhl(xa y’ 07 ,u, 8))

and has zero average with respect@pand (1o, s) € Df"t verifiesig + Res = —2T.
Let ¢ be defined by{4). We assume hypotheseld—H4. Then there existeg, 1y and
K such that the solution(z, s) can be extended to values oft[rg, 2T — Re s], with
the bound
|2(t, 8) — po(t + )| < K el ™"
for (t,s) € D, 0 < e<ep and || < pg-
Moreover if (z,s) € DN R2, then z (o, s) — yo(to + 5) = O (uePt).

5.2. Sketch of the proof of Theore3r2

We assume hypotheses H1-H5. By Theo&®) it is clear that the unstable manifold
can be extended until it enters the domain of the flow-box coordinates. Therefore for
all 1o € R, the expressions

SU(S) = S(yf(,g(tv S), I/E) - (t - tO)v gu(s) = S(V,Li,g(t» S), t/g) (37)

are well defined for € C such thatl <t +Res<27T and|Im s|<+/2—e&. Moreover,
as a consequence of Theoréni, they do not depend on time. We chodsie such a
way thatT <r+Re s <2T. The proof of the following result can be found [BF,DS2].
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Lemma 5.3. The functionsS" and £Y satisfy the following properties

(a) The functionsSY(s) — s and £Y(s) are 2rns-periodic with respect to s. Hencg"
and £Y can be analytically extended for afle C such that|Ims|<+/2 — ¢.

(b) Moreover for s € R, S = SY(s) is real analytic and invertibleand its inverse
s = sY(S) satisfies that¥(S) — S is O(us?*t) and 2ne-periodic in S

By Theorem5.], in the (S, E) coordinates the local stable manifold can be written
as

(S, E) = (SO} (t.9).1/8). EGo(t.9).1/€)) = (t —to + 5 + pe” X (5),0)  (38)
and the local unstable manifold as
(S, E) = (S(Vz,g(t, 5),t/8), E(V,Li,g(t, 5),t/€)) = (t —to + SU(s), E(s))

for (t,5) such that|Im s|<+/2—¢ and T <t + Res<2T.

We consider the Poincaré map’,ﬂ?g(x,y) = ¢,.(2ne + fo,10,x,y), where
®(t, 10, x, ) is the solution of system2f. Let CY be the restriction taJ of the
unstable curve oP,i?s. It is not difficult to see thatV is parameterizated bmg(to, s)

for s € C such thatT <7o + Re s <2T and|Im s|<+/2 — ¢. Moreover, in the(S, E)
coordinatesCY is represented by

(S, E) = (S(pe(t0,9), 10/€), E(7p s (10, 9), 10/€)) = (S"(5), E(5)).

Next we writeC" as a graph of a function which will be called the splitting function.
We note that, by property (b) of Lemm&a3, the relationS = SY(s) can be inverted
for values ofs such that|Im s| < +/2 —¢. Let s = sY(S) be its inverse. Thus the
equation

B(S) = E(s"(S) (39)

definesCY as the graph of a functiop. We note that it is 2¢-periodic and hence its
domain extends t@.

Since sY(S) — S is O(ueP*1) and 2e-periodic in S we can introduce the new
parameterization for the unstable manifo}lgyg(t, S) = yz’a(t,s“(S)) which satisfies
the same properties aﬂg’s does. After this change of parameter, the splitting function
defined in B9) can also be represented in the form

P(S) = EFet, 9),1/¢). (40)

Finally, we show that the functiop given in 39) can be used to measure some
magnitudes related to the splitting and then we will prove the formulas in Thedr2m
In the next proposition we prove the existence of primary homoclinic points and we
relate the angle between the invariant manifolds and the area of the lobes with the
splitting function.
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Proposition 5.4. The function¢ : R — R is 2rne-periodic real analytic and satisfies
the following properties

(a) There existgi" € R such thaty, . (z, 1) = 7} (¢, k%), for all t (giving a homoclinic
orbit), with 45 = SY(h"). For n € N, we definei] = h® + 2nen which give
homoclinic points. Clearlyfor all n, ¢(h5) = 0. Moreover ¢'(h3) is independent
of n, and

O'(hy) = 05Ty (1, hy) A OsThy o (t, hy) (L + O (ue? )

= 10575 (1. KN 0575 o (1. B Sin9(1, hS)(L+ O (ueP )

for all t, where A denotes the exterior product dR?, and ¥(t, h3) is the angle
betweenad)l‘j,g(t, hS) and 6552,80, hs).
(b) The area of the lobe between the invariant curves is given by

h
A= / $(S)dS
h

’

where h andh are two consecutive zeros ¢f(S).
(©) o= fy" ¥ p($)ds =o.
(d) For S € R, ¢(S) satisfies the estimate

B(S) = EY(M(S)) = peP M(S, &) + O (ue2+1, 12t | ety

Proof of Proposition 5.4 (Sketch. Let rp € R. SinceP,’fs is area preserving and it is a
perturbation ofPg ., @ map which has a homoclinic connectid?;i?s must have primary
homoclinic points inU NRR?. Let hY, S € R be such thaf <hY + 1o, hS+ 1< 2T and

=5 (10, h%) = 3 (0. Y.

By Theorem5.1, we can chooseg = 4° and thenh® = S(yz’e(t, hS),t/e) — (t —to) =
SYU(nY), for t € R such thatT <a" + ¢, h° + ¢ <2T. Consequently,

(%) = ENR") = Ny (1, h%), /) = 0.

Differentiating expressions4() and @8) with respect toS using that?zyg(t,hs) =
yﬂys(t, hY) and making some elementary computations we get the formula stated in (a).
Property (b) follows from the fact that the change given in Theofd which
transforms the initial coordinates into the flow-box coordinaies,E), is canonical
and the Poincaré map is orientation preserving.
We note that, since”[f}‘s is area preserving, the area of two consecutive lobes (one
inner and the other outer) coincide. Therefore, (c) follows from (b).
Finally we prove (d). Estimating the Fourier coefficients &f we can prove that,
for s € R,

EY(s) — EY(e) = peP M (s, &) + O U262+, pePthye=2/e,

where £(e) = 5= [2™ £%(s) ds.
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On the other hand, it is clear that the Melnikov functidvi(s, €), is 2re-periodic
with respect tos. We denote byM;(¢) its Fourier’s coefficients. Using residue theory
as in[DS2], or more generally as ifBF], we can prove that

1
e Mi(e) = pie"2mi J 2 (=) IKI* 7 e M V2E (L1 0(e)) (41)

for k € Z\{0}, thus pe? 2 (S, ¢) = O(ue""Ye=v2/¢. Then, by Taylor's theorem,

$(S) = ES(e) + ueP M(sU(S), &) + O (U2, pePthye Ve

= E3(e) + peP M(S, &) + O(2e? L, puePtL, 26"t PyeV2le (42)

Since the average df; is zero, Mo(¢) = 0 and by (c),¢o = 0. Therefore&y(e) =
O U262+ uep+1)e=v2/e and (d) follows from 42). O

The proof of Theoren8.2 is an immediate consequence of Proposiioh Corollary
3.4 can be proved usingdl) and TheorenB.2
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