HERMAN RINGS AND ARNOLD DISKS.
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ABSTRACT. For (A,a) € C* x C, let fy , be the rational map defined by

az+1

Fra(z) = 2"~

z+a
If « € R/Z is a Bruno number, we let Do, be the set of parameters (), a) such that fy , has a fixed
Herman ring with rotation number o (we consider that (€2*"® 0) € D). The results obtained in
[McS] imply that for any g € D, the connected component of Dy N (C* x (C\ {0, 1})) which contains
g is isomorphic to a punctured disk.

In this article, we show that there is an isomorphism F, : D — D4 such that
Fa(0) = (e2i1ra,0) and '7:&(0) =(0,7a),

where 7 is the conformal radius at 0 of the Siegel disk of the quadratic polynomial z - 27 z(1+2).
In particular, D, is a Riemann surface isomorphic to the unit disk.

As a consequence, we show that for a € (0,1/3), if f) o has a fixed Herman ring with rotation
number « and if m, is the modulus of the Herman ring, then, as a — 0, we have

m Ta
a = + O(a).
e ()

We finally explain how to adapt the results to the complex standard family z — Azes (2—1/2)

1. INTRODUCTION.

In this article, we are mainly concerned with the dynamics of rational maps of the form

1
Fra(z) = ,\z2&

, A€C, a€eC.
Z24+a

Note that fy, is conjugate to f_, via the conjugacy z — —z. If A € S* and a = 0, the map fx,
is the rotation z — Az. Observe that when a is real and |A| = 1, the map f , is a Blaschke fraction
2 = A2 12;%1; with b = 1/a. But as opposed to families of Blaschke fractions which only depend
R-analytically on parameters, our family depends C-analytically on the parameters A and a and is, in
some sense, the simplest one that exhibits families of Herman rings.

For all a € R/Z we denote by R, the rigid rotation of the complex plane: R4 (z) = €*™*2. When
A€ S" and a € (—1/3,1/3), the map f, restricts to a diffeomorphism of S' which has a rotation
number p(\,a) € R/Z. Given a € (—1/3,1/3), the function t — p(e?'™t,a) is continuous and weakly
increasing [P]. Moreover, for each fixed a € (—1/3,1/3) and for each irrational number «, there is a
unique angle ¢t € R/Z such that p(e?™ a) = a (see e.g. [AMvS]). By a theorem of Denjoy [D], when
a = p(), a) is irrational, fy,: S' — S is topologically conjugate to the rotation R, : S* — S*.

Figure 1 shows some of the level sets:
To ={(t;a) € R/Z x [0,1/3] | p(e*™,a) = a}.
Those sets are called Arnold tongues and they intersect the line {a = 0} at the point t = . If a is a
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FIGURE 1. Rational Arnold tongues in the parameter space of the family f» o for A = ™,
t € R/Z, up to denominator 5. Irrational tongues for vy = @ and § = /2 - 1.

rational number, the Arnold tongue 7, has interior and if « is irrational, the Arnold tongue 7, is a
Lipschitz curve [A].

If « € R/Z is a Bruno number and if (¢, a) belongs to T, with a sufficiently close to 0, the restriction
of fezine o to S is R-analytically conjugate to the rotation of angle a [Br]. This conjugacy extends
to a conjugacy in a neighborhood of S! and so, fezint o has a fixed Herman ring. Figure 2 shows the
example of such a Herman ring for a = 1/4 and ¢ = 0.61517321588.. . ..

FIGURE 2. For ¢t = 0.61517321588.. .., the rational map fe2ir: 1,4 leaves the circle St
invariant and has a Herman ring.

Even in the case where A ¢ S' and a ¢ (0,1/3), the rational map f, may have a fixed Herman
ring. However, the unit circle is no longer invariant, and it is more difficult to locate parameters for
which one can find a Herman ring.

It is known that in this particular family fy ,, there is a Herman ring if and only if the rotation
number is a Bruno number (see e.g. [Sh1] or [H]). This result is proved using a surgery construction
due to Shishikura, and the optimality of the Bruno condition for the existence of Siegel disks in the
family of quadratic polynomials proved by Bruno [Br] and Yoccoz [Y]. More precisely, it uses the fact
that the quadratic polynomial P, : z — e*"®2(1 + 2) is linearizable at 0 if and only if a is a Bruno
number. Figure 3 shows the Siegel disk of the quadratic polynomial P, for a = (v/5 —1)/2.

The goal of this article is to study the set of complex parameters (A, a) for which fj , has a fixed
Herman ring with a given rotation number a. (If A = €2 and a = 0, we consider that there is a
Herman ring which is equal to C*, and so, has infinite modulus.)
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FIGURE 3. The quadratic polynomial P, with a = (v/5—1)/2 has a Siegel disk. We
have drawn the orbits of some points in the Siegel disk. Each orbit accumulates on
an R-analytic circle.

Definition 1.1. Given a Bruno number a € R/Z, we let A, be the Siegel disk of the quadratic
polynomial P, and we let D, be the set of parameters (A\,a) € C* x C such that fy, has a fixed
Herman ring with rotation number . We shall call D, the Arnold disk of rotation number a.

In some sense, this set is the complexification of the Arnold tongue 7, and it was studied for general
families from a local point of view in [R]. The name Arnold disk is justified by the following theorem
which will be proved in section 4. We first recall the definitions of conformal radius and modulus.

Definition 1.2. If U C C is a simply connected open subset containing 0, the conformal radius of U
is rad(U) = |¢'(0)| where ¢ : (D,0) — (U,0) is any isomorphism. If « is a Bruno number, we define
ro =rad(A,), where A, is the Siegel disk of P,.

If A is a round annulus 4 = {z € C | r < |z| < R}, the modulus of A is mod(A4) = ;-1log &. If H is
any annulus conformally equivalent to A we define its modulus to be equal to mod(A).

Theorem A. For any Bruno number oo € R/Z, the set Dy is a Riemann surface isomorphic to the
unit disk and there is an isomorphism F, : D — D, such that

Fa(0) = (e*™ 0) and F.(0) = (0,r,).

1
Moreover, for any § € D, the modulus of the Herman ring of fr,(s) is equal to - log W

1
i
Let us give an intuitive idea of how the parametrization F,(8) = (A(d),a(d)) is chosen. For any
0 € D, the map fr,_(s5) possesses a Herman ring whose modulus determines by [§|; the argument of
& corresponds to the twist parameter, which roughly indicates how much one boundary of the ring is
rotated with respect to the other (see Sect. 2 and Fig. 7). Maps in the Arnold Tongue 7, correspond to
4 € (0,1). (This parametrization was given in [H] for the rational family and in [FG] for the complex
standard family.)

Theorem B. Assume « is a Bruno number. Then,

(a) the Arnold disk can be locally parameterized by a in a neighborhood of (2™ 0) (i.e., it is
locally the graph of a holomorphic map a — A(a))
(b) as |a| = 0, the modulus m, of the Herman ring of f(a),a Satisfies

Ta
e = —= 4 Ofa).
|al
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Corollary 1.3. Assume « is a Bruno number. For a € (0,1/3), let t, € R/Z be the unique parameter
such that (to,a) € To and let m, be the modulus of the Herman ring of fezirta o (Mmq = 0 if there is
no Herman ring). Then, as a — 0, we have

Ta

E + (’)(a)

w™m
e"Ma =

This improves the estimate one would get by using the techniques developped by Fagella, Seara
and Villanueva [FSV] in the case of the complex standard family. Indeed, we would obtain O(loga)
instead of O(a).

In the last section, we explain how to adapt the arguments to the case of the complex standard
family fyo(2) = Aze3(—1/2).

The following is work in progress. Theorem A describes the topology of any given Arnold disk and
hence a natural question is to ask how these disks coexist in €2 when we move the rotation number.
We think that there is a nice lamination: if (ay)n>1 is a sequence of Bruno numbers converging to
a Bruno number aq such that nlgréo T, = T, then, the sequence of maps F,, converges uniformly on

5 Fag (%5)
o

(the map § — Foo(rd/ra,) is well defined because, the conformal radius r, depends upper semi-
continuously on « and so, r < rg,).

every compact subset of D to the map

We think we can use this result to prove the existence of Bruno numbers o € R/Z such that the
boundary of D, is a C* Jordan curve and such that for all (A,a) € 9D,, the map fy , restricts to a
diffeomorphism of a C* Jordan curve and is C* (but not R-analytically) conjugate to the rotation
of angle a on this curve. These results will appear in a forthcoming paper.

2. PRELIMINARIES.

In the whole section, we assume that « is a Bruno number and that (), a) is in D,. For simplicity,
we set f = fi,o. By definition of D,, the map f has a fixed Herman ring H on which it is conjugate
to the rotation R,. More precisely, let m be the modulus of the Herman ring H and set r = e~ 2™,
Moreover, denote by A, the round annulus

A ={zeC" |r<|z| <1}

Then, there exists an isomorphism ¢ : A, — H which conjugates R, : A, — A, to f : H — H and
preserves the orientation in C of the invariant curves (i.e., morally sends S! to the outer boundary of
H). This isomorphism is unique up to precomposition with a rotation centered at 0.

2.1. Basic Properties. The rational map f» , has four critical points. One is fixed at 0, one is fixed
at oo. Therefore, there are only two free critical points. If fy , has a Herman ring, then the orbits of
those critical point are trapped: the closure of those orbits must contain the boundary components of
the Herman ring. In particular, the immediate basins of the superattracting fixed points at 0 and oo
are simply connected. We claim that the Herman ring separates those two basins.

Proposition 2.1. Suppose f = fi o has a fired Herman ring H. Then, H separates 0, one of the
critical point in C* and the pole —a on the one hand, from oo, the other critical point in C* and the
zero —1/a on the other hand.

Proof. Let v be an invariant curve in H, let V5 be the bounded connected component of P! \ v and
let Voo be the unbounded one. Set Uy, = f~'(Voo) N Vo and Up = f~1(Vo) N Vp. Since f is proper and
since f(v) =, we see that f : Ux, — Vo and f: Uy — Vp are proper mappings. Let d, and dy be
their degrees.
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We first claim that do, = 1 and dy = 2. Indeed, the image of v (which is v itself) turns exactly
once around every point in V5. So, by the argument principle, dy — d, = 1. Since oo has at most one
preimage in Vg, we see that the only possibilities for (dw,dp) are (0,1) or (1,2). The case (0, 1) is not
possible since otherwise, f : Vo — Vy would be an isomorphism, V; would be contained in the Fatou

set of f and this would contradict the fact that it contains a boundary component of the Herman ring
H.

It follows that Uy is a topological disk compactly contained in V4 and Uy is a topological annulus.
By the Riemann-Hurwitz formula, Uy contains two critical points of f. The two remaining critical
points of f are contained in an annulus W, C V, mapped with degree 2 to V. Finally, there is a
topological disk Wy C V., mapped to Vp with degree 1 (see Fig. 4).

FI1GURE 4. Sketch illustrating the proof of proposition 2.1.

We must finally show that 0 € Uy, which will complete the proof. This last result is more subtle
since we must use a dynamical characterization of 0: it is a superattracting fixed point. There are
several possible arguments. It is possible to show that each component of P!\ v must contain a critical
point whose orbit accumulates a boundary component of H. Or we can argue that every connected
component of P! \ v must contain two fixed points, one of which is repelling or has multiplier 1 (see
for example [Sh2] or [Bu]). [ |

As we mentioned previously, it is quite difficult to locate parameters in D, when a is not real.
However, the following proposition asserts that all the sets D, are contained in some common compact
subset of C* x C.

Proposition 2.2. Assume a is a Bruno number and (A\,a) € D,. Then

1
Z§|)\|§4 and |a| <1.

Proof. As mentioned previously, the immediate basins of the superattracting fixed points at 0 and
oo are simply connected and the Herman ring separates those two basins. Let Wy (respectively W)
be the immediate basin of 0 (respectively oo). Let ¢ : Wo — B(0,7¢) (respectively ¢oo : Woo —

P!\ B(0,7)) be the conformal representation which is tangent to the identity at 0 (respectively 0o).

Then, ¢o (respectively ¢o) conjugates f, to a proper mapping of B(0,ro) (respectively P! \
B(0,7)) of degree 2 and which has a superattracting fixed point at 0 (respectively oco). This proper
mapping is z — 2?/co (respectively z — 2%/cs). Since this map must have a fixed point on the
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boundary of B(0,rg) (resp. B(0,7)), it follows that |co| = ro (resp. |coo| = Teo). Now, note that

A s 2
fra(2) 0 3t and  fx.(2) e Aaz”.

Therefore, we deduce that
1
ro=-— and re = -—.
0 oo |)\(l|
Now, Wy does not contain —a which is a preimage of co and W, does not contain —1/a which is
a preimage of 0. So, by the Koebe one-quarter theorem, we have

1
ro <4la|] and 7o > o]’

This, in turn, yields
1
- <Al <4
1<

Finally, the basins Wy and W, are disjoint. It follows that ro < re (see for example [BE] section
3). As a consequence, we have

which gives |a| < 1. [ ]

2.2. Shishikura’s surgery. We explain here a surgery construction originally due to Shishikura
[Sh1] that will be used in several instances along this paper. The general idea of the construction is,
starting from a rational map with a Herman ring, to obtain a polynomial with a Siegel disk, by means
of gluing a rigid rotation to “fill in the hole” of the Herman ring. In the particular case of our family
of rational maps f) ., the polynomial that we obtain is precisely the quadratic polynomial F,. The
result is summarized in the following proposition.

Proposition 2.3. Suppose f = fr, has a fired Herman ring H with rotation number a, and let
v C H denote an invariant curve. Let Uy be the bounded part of P\ and Uy, be the unbounded one.
Then, the polynomial P, has a Siegel disk A = A, and there exists a quasiconformal homeomorphism
y: P! = P! and a P, invariant curve T in A such that:

(1) ¥ maps v to T and Uss to the unbounded component, say V, of P\ Ty

(2) 4 conjugates f : Uy — P! to Py : V — PY;

(3) 9Y/0Z =0 a.e. on P\ U F™(Uo) (in particular v is conformal in the interior of this set).
n>0

Proof. Shishikura proves this using a surgery construction that is by now classical. We will give
an outline of the procedure. Let ¢ : A, — H be a conformal map that conjugates the rigid rotation
Ra:A. - A, to f: H— H.

Notice that ¢~1(v) is a circle centered at 0 with radius p, r < p < 1. Denote by é D> HUUD,
a quasiconformal mapping that agrees with ¢ on A,, maps I, onto Uy and fixes 0. Define a map
f : P! — P! by
;[ f onUs
f= { qASoRa o¢A)_1 on Uo.
The map f : P! — P! is a proper and quasiregular mapping which maps infinity to itself with local
degree 2. By proposition 2.1 f has a pole in Uy, so by counting the preimages of infinity we see that
f has degree 2. Tt fixes 0 and is conjugate to the rotation R, in a neighborhood of 0. Finally, since
it is of degree two it has a unique critical point w in C.
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The map f is not holomorphic on Uy, but there it preserves the complex structure defined by the
Beltrami form

o
v
Pulling back this Beltrami form via f, we see that there exists a Beltrami fqrm f2 which coincides with
p on Uy, which vanishes on P* \ |J,;5 f~™(Uo) and which is invariant by f:

f =

By the Measurable Riemann Mapping Theorem, there exists a quasiconformal homeomorphism
¢ : P! — P! which fixes 0 and oo, sends w to —1/2 and such that

L
Then, the map 1o fot)=! : PL — P! is proper and holomorphic of degree 2, it fixes 0 and is conjugate

to the rotation R, in a neighborhood of 0, it has a superattracting fixed point at infinity and a critical
point at —1/2. The only such map is the quadratic polynomial P, and thus

Py=tofoyp™.
The map 9 is the required conjugacy. [ ]

Remark 2.4. The modulus of the annulus bounded by v and the outer boundary of H is equal to
the modulus of the annulus bounded by T' and the boundary of the Siegel disk A, (since 1 gives a
conformal isomorphism between those two annuli).

2.3. Case where q is real.

Proposition 2.5. Suppose (\,a) € Dy for some Bruno number . If a € (0,1/3) then |A| = 1. If
also (X', a) € Dy, then X' = A\

Proof. Suppose that a € (0,1/3) and |A| < 1. Then f maps the unit circle onto the circle of radius
[A| <1 as a smooth diffeomorphism. We distinguish between two cases:

(a) DC P\ H,
(b) D intersects H.

(a) We can cut out the dynamics in the unit disk and replace it by the attracting dynamics z — Az.
Indeed, define ¢ : S' — S! by ¢(z) = f(z)/). Extend ¢ to D quasiconformally such that ¢ is the
identity on AD. Define a new map f : P! — P! by

fo f onP'\D and

" ¢toAop onD,
where A denotes multiplication by A : A(z) = Az. Note that we have constructed ¢ so that the
two definitions agree on S'. Now f is a proper quasiregular mapping of degree 2 (we removed the
pole in D). It is not holomorphic, but there exists an invariant Beltrami form p that vanishes on
P\ U f~™(D) and satisfies
n>0

_9%

09
on D. It follows that f is holomorphic with respect to the complex structure induced by u, and one
can verifX that f is quasiconformally conjugate to a quadratic polynomial. However, H is a Herman
ring for f, which is impossible.

7
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(b) Since I intersects H, we can choose an invariant curve v € H so that I intersects the unbounded
component of P! \ . Let ¢ and Uy be defined by Proposition 2.3. Set W = ¢(D U Up) and W' =
Y(AD U Up). Then, P,(W) Cc W' and W' is strictly contained in W. So P, : W — W' is a strong
contraction which contradicts that zero is an indifferent fixed point.

We have shown that we cannot have |A| < 1. The proof that we cannot have |A| > 1 is analogous.

Now suppose that (\',a) € Do. By what we have just shown, |X| = 1, so fi o is equal to the
composition Rg o fyo for some rigid rotation Rg. For an arbitrary circle homeomorphism h, the
rotation number of Rg o h is a weakly increasing function of 3, and there is only one value of 3
(modulo 1) for which the rotation number is equal to some given irrational number (see e.g. [dMvS]).
Since Rg o faalst, and fi o|st have the same irrational rotation number we have § = 0 (modulo 1)
and A = \. [ |

3. THE TWIST COORDINATE

As above let f have a fixed Herman ring H of rotation number « and let ¢ : A, — H be a conformal
isomorphism that conjugates Ry : A, - A, to f: H —» H.

Our goal in this section is to define a twist coordinate for the map fy,. To fix ideas, we will first
define it for the easiest case, that is the case when the boundaries of the Herman ring H are Jordan
curves and contain the two critical points of the map, say w; on the outer boundary and ws on the
inner boundary.

In such a situation, the linearizing map ¢ extends as a homeomorphism ¢ : A, — OH. Denote
by C(e,r) the circle centered at ¢ € C of radius r € [0,00). Let @; € C(0,1) and @2 € C(0,r) be the
preimages of wi and wy under ¢ and let Oy = 5 arg(@) and Oy = 5= arg(@.), taken in R/Z.

We define the twist coordinate of fy . as the difference between these two arguments (see Figure
5), i.e.,

0 =0,—0;.
Note that even though ¢ is uniquely defined only up to rotation (and hence so are @; and @-2), the

FIGURE 5. The definition of the twist coordinate in the simplest case, when both
critical points lie on the boundary of H.

twist coordinate is independent of this choice.
Intuitively, the twist parameter measures the rotation of the boundaries with respect to each other.

We now turn to the general case, that is, when the critical points are not on the boundary of H
or ¢ cannot be extended as a homeomorphism JA, — 0H. For this reason the definition of © in this
situation will be different. We then show that the two definitions coincide.

We first recall the definition of the equator of an annulus.
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Definition 3.1. Let H be an annulus conformally equivalent to A,, by a conformal map ¢ : A, — H.
We define the equator of H (or core geodesic) as the simple closed curve

v =¢(C(0,vr)) C H.

Remark 3.2. The curve v subdivides the Herman ring H into two annuli of equal moduli (half the
original modulus of H).

Let v be the equator of H and ¢ : P! — P!, Uy, Uy, I and V be as in Proposition 2.3. Recall
that 1) conjugates f) o on Us (the unbounded component of P! \ v), to the polynomial P, on V (the
unbounded component of P! \ I with ' = 4)(v)). Moreover, ¢ fixes 0 and co and sends the critical
point in Uy to —1/2.

We now proceed to make a parallel construction with the map f (u) i.e., the conjugate of

__1
ARERIOK N
f under the change of coordinates u = 7(z) = 1. Observe that f has a Herman ring H = 7(H) of

rotation number «. More precisely, let 4 = 7() be the equator of H and let ¢, Uy, Uso, T and V be
given by Proposition 2.3: v conjugates f in Uy, to P, on V.

We claim that T =T and V = V. Indeed, the modulus of H is the same as the modulus of g.
Since v and 4 are equators of those annuli, the moduli of the annuli bounded by v and 4 on the one
hand and by the outer boundaries of H and H on the other hand, are equal. Therefore, the moduli
of the annuli bounded by the curves I' and T on the one hand, and by the boundary of the Siegel disk
on the other hand, are equal. So, I" = Tand vV =V.

We now denote by ¢ : D — A, a linearizing map of the Siegel disk. The map ¢ conjugates the

rigid rotation R, : D — D to P, : A, — A, and is unique up to pre-composition with other rigid
rotations. See Figure 6.

We define a map C : o~ 1(T') = ¢~ 1(T) by

C :¢710¢070¢710¢,
Observe that, by construction, C is a conjugacy between the rotation R, and itself on the Euclidean
circle o~ 1(I"). But any such map can only be a rigid rotation itself, that is, C(z) = e?>™*®2 for some
© € R/Z. We then define © to be the twist coordinate of f ,.

It only remains to prove the following.

Proposition 3.3. When the two boundary components of the Herman ring H are Jordan curves each
containing a critical point, the two preceding definitions coincide.

Proof. We first observe that if ¢ : A, — H conjugates R, to f, then the map <£ A — H defined
by ¢(u) := T o ¢(r /@) conjugates R, to f. Hence, observing the commutative diagram in Figure 6,
we see that the maps

R=¢ ' ogog
and R

By todod
are conformal maps from the annulus A s to the Euclidean annulus bounded by ¢~'(T') and S*, and
they conjugate the rigid rotation R, to itself (this in fact implies that ¢ 1(T') is the Euclidean circle
of radius 1/r). Such maps can only be rigid rotations themselves, whose angles we will determine now.

Let @&y € C(0,1) and &2 € C(0,7) be, as before, the preimages of the two critical points w; and we
under ¢. If we follow the outer one, @1, along the diagram, we see that it is first mapped to w1 by ¢,
then to w = —1/2 by ¢ and finally to some unit vector by ¢!, say e>™®. Hence

R= R5—91

where we recall that ©; = 3 arg(@).
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Qo o "

=)

FIGURE 6. Commutative diagram illustrating the general definition of the twist co-
ordinate of fy ,. The conclusion is that C(z) = e?™®z for some © € R/Z which we
define as the twist coordinate.
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We now do the same for R. First observe that the map 77 sends all points of modulus r to points of
modulus 1 and viceversa, but preserves their arguments. Therefore the critical points are interchanged,
i.e., the point @, is sent to a point of modulus 1 and argument ©,. This point is in turn mapped to
the critical point on the outer boundary of H which is later sent to w = —1 /2 by 1& Finally, its image
is, as before, €>™#. We deduce then that

R=TRs o,

Now, the outmost diagram says that
C=RorroR™",

or equivalently that
©=(8-01)—(8-02)=0,—-0;.
|

We now want to illustrate the twist coordinate with a picture. If A € S* and a € (0,1/3), the twist
coordinate is always equal to 0, because of the symmetry z — 1/Z with respect to S'. Now, if A € S?
and a € iR there is a symmetry z — —1/Z, and if f) , has a Herman ring, the twist parameter is
equal to 1/2. Even if S! is not invariant, it is still possible to locate parameters (), a) such that fy ,
has a Herman ring. For example, for @ = i/4 and ¢t = 0.624098187 .., the rational map fe2ir: , has
a fixed Herman ring with rotation number (v/5 — 1)/2. Now, the twist coordinate is better seen by
working in the universal covering of C* given by Z + z = e?™Z_ Figure 7 shows the Julia set of two
rational maps having Herman rings with rotation numbers (/5 — 1)/2 and with twist coordinates 0
on the top and 1/2 on the bottom. In both cases, we marked the critical points with arrows. The real
part of Z ranges from —1 to 1.

FIGURE 7. The universal covering of two Herman rings with rotation number (v/5 —
1)/2 and with twist coordinate 0 on the top and 1/2 on the bottom.
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4. PARAMETRIZATION OF ARNOLD DISKS. PROOF OF THEOREM A.

We will work with a slightly different family of rational maps. The purpose of introducing a new
family of rational map is to get rid of the conjugacy between fy , and fx _q.

Definition 4.1. For A € C* and b € C, we define

1+w
s w?—— .
xb b+w

The map fy,, is conjugate to the map gy 42 via z = w = az; i.e.,

fra(2) = égx,fﬁ (az).

Now, if gy, 5, is conjugate to gx,,p, by a scaling map, then (A1, b1) = (A2, b2). Moreover, the maps gy 5
are exactly the cubic rational maps which have superattracting fixed points at 0 and co and which
map —1 to 0. Observe that gy 0(z) = Az(1+2), a quadratic polynomial, and finally note that if A € S*
and b > 0, the invariant circle now has radius v/b.

Definition 4.2. Given a Bruno number a € R/Z, let D!, be the set of parameters (), b) such that
gx,» has a fixed Herman ring with rotation number .

By convention, we consider that for A = %" and b = 0, the quadratic polynomial gy, = P, has
a Herman ring A, \ {0} of infinite modulus. We will now state a weak version of Theorem A for the
family gX,b-

Proposition 4.3. For any Bruno number o € R/Z, there is an isomorphism G, : D — D!, with

Go(0) = (e%™2 0). Moreover, for any 6 € D, the modulus of the Herman ring of 9G..(5) s equal to
1 1

— log —.
or 8 ||

4.1. Proof of Proposition 4.3. We will prove this result in several steps and later see how it implies
Theorem A.

In the previous section, we defined a twist coordinate from D, to R/Z. Similarly, we can define
a twist coordinate © : D!, - R/Z. Let us also consider the modulus coordinate m : D., — (0, +0o0]
which maps (A, b) € D, to the modulus of the Herman ring of g ;. We can define a map I : D), - D
by
II(\, b) = exp ( — 2am(A, b) + 2imO(A,b)).
We will show that this map provides an isomorphism between D'(a) and D. See Figure 8.

For this purpose, given (A1,b1) € D!, we will construct an analytic map G : D — C* x C whose

a?
image is contained in D!, and such that

Go H(Alabl) = (’\17b1)7 g(O) = (e%ﬂ-a70) and oG = Id7

which shows that II is injective. We will then show that the map G does not depend on the choice of
(A1, b1), which proves that G is an isomorphism between D and D!, and II is its inverse.

Step 1. Model homeomorphisms. Given a complex number 7 in the right half-plane H; = {Z €
C | Re(Z) > 0}, let us first consider the R-linear map L, : C — C which is the identity on iR and
maps 1 to n:

Ly(Z)=5(n+1Z+(n-1)Z),

N | =

or, equivalently,
L,(x +iy) = zn + iy = z(Re(n)) + i(y + 2Im(n)).
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I1

T

e °
(—27m, 270)

—2™m

k

FIGURE 8. The map II and its inverse G.

g

This map is a K-quasiconformal homeomorphism of C with
- |1

n+1
Now, let 71 be a complex number in the left half-plane H. = {Z € C | Re(Z) < 0} and set

ry = |e‘l’1|,

Ty = Ly(m), and r,=|e™|
Note that L, is a homeomorphism between the vertical strips
{Z € C| Re(r1) <Re(Z) <0} and {Z € C|Re(r,) <Re(Z) <0},
which commutes with the vertical translation by 2mi. See Figure 9. Thus, it projects to a K-
quasiconformal homeomorphism h,, : A, — A, . Moreover,
hy(e™) =e™ and h, =1Id on S*.

Finally, for any angle o € R/Z, the homeomorphism h, : A,, — A, conjugates the rotation R, :
Ay, — Ay, to the rotation R, : A, — A;,. As a consequence, the rotation R, : A, — A;, preserves
the complex structure defined by the Beltrami form Oh,,/0h,,.

Step 2. A map Sg, : H; — D, . For simplicity, we will identify (A,b) € D), with the rational
map gx,p- Let us consider a rational map g1 := gx, 5, € D). Let Hy be the Herman ring of ¢g; and
(m1,©1) be the modulus and twist coordinate of H;. Set 71 = 2n(—m; +i©;) and 7; = e~2™™1 and
let ¢1 : A, — H; be an isomorphism which conjugates Ry : A,, = A,, to g1 : H — H;i.

Now, let n € H be an arbitrary complex number and let r, and hy : Ay, = A, be as in Step
1. Since Ry : Ay, = A,, preserves the complex structure defined by the Beltrami form 0h, /dh, and
since ¢, : A, = H; conjugates Ry : A, — A, to g1 : Hi — H;, we see that g1 : Hy — H; preserves
the complex structure defined by the Beltrami from
_9(hmodr")

9 (hyo¢r")

Remark 4.4. Note that u, does not depend on the choice of isomorphism ¢; : A,, — H;.

Hn

There exists a unique extension of p, to C which is g;—invariant and is 0 outside the preimages of
H,. This Beltrami form p, depends holomorphically on n € H, .
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27l 270
1 ? Ln
—2mm E —2mm ;
E Tne

e e®
A, Ra
" [)
h
n 1

FIGURE 9. The quasiconformal homeomorphism L.

Next, let x, : C = C be the unique quasiconformal homeomorphism which fixes 0 and —1 and
integrates p,:

_ O
Oxn

Since g; preserves the complex structure defined by p,, the map

M

gn=XnOgLoX,"

is holomorphic. Observe that g, must be a rational map of degree 3 which has superattracting fixed
points at 0 and oo and maps —1 to 0. Moreover, by construction, H, := x,(H1) is a Herman ring for
gy with rotation number a. Thus, g, € D,, and the above construction defines a map Sy, : Hy — D),
which maps 7 to gy.

The construction above is summarized in the following commutative diagram.

(Ar, o) —22 (Ar,, o)

| [

Bh Ra Sh
(AT17 ﬁ) — (AT17 ﬁ)

ol Jo

(Hu, piy) — (Hi, pn)

)| |

(Hp, o) s (Hp, po)
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Finally, p, depends holomorphically on 7: we have

] 99y Oxa| . 99y %‘ _
(91’7 Xn(z) 0z Xn(2) 61’7 z oz Xn(2) 677 z 677 91(z)’
and since Ox, /07 = 0, 0g9,/0Z = 0, we get
Ogn
on Ixn(2)

As a consequence, the map S,, : Hy — D), is analytic.

Step 3. Modulus and twist of H,. Our goal is to compute the modulus and the twist coordinate
of the Herman ring H,, of the new map g, = Sy, (1), in terms of 1, m; and ©;. We will prove the
following.

Proposition 4.5. Let H, be the Herman ring of g1 and let m1 and ©1 be its modulus and twist
coordinate. Given n € H let H, be the fired Herman ring of g, = Sy, (n). Denote its modulus by m,,
and its twist coordinate by ©,. Then,

(1) my = miRe(n), and
(2) ©, =01 —myIm(n).

Proof. For the proof we shall use the notation in Step 2.

We start with the modulus. Observe that the map ¢, := x 0 ¢1 0 hy; L. Ay, — Hy is holomorphic
by construction and it conjugates Rq : Ay, — A;, to g, : H; — H,. Hence it is a linearizing map for
the Herman ring, and the modulus of H, will be that of A, . That is,

1 1 1
m, = — log —.

nT 9p 08 Ty
Now, recall that

Tn = Ly(—2mmq +1i01) = —2nmiRe(n) + 27i(01 — m1Im(n)).

Hence r, = e~2™™1Re(n) and we conclude m,, = m;Re(n).

We proceed now to compute ©,. To this end, we need to make the general construction of Section
3 with the map g, and its Herman ring H,. Using the notation in that section, observe that we have
the following diagram (compare to Figure 6).

by

Ar,, rn/Z Ar,, hy A, ri/z A,
3 6 b1 b1

fI,, 1/z Hn Xn H, 1/z ffl
dn ¥n ¥ b
A, Ao~ A, A,
@ i i i

D—" -p<t p<E p




16 X. BUFF, N. FAGELLA, L. GEYER, AND C. HENRIKSEN

In this diagram we introduce three new composition maps: ¥,C and C. , which are defined as to make
the diagram commute.

We first comment on the bottom row which is the most important for our argument. Observe that
C1 and C, are the maps that define the twist coordinates for g; and g,. Indeed, let vy;,v,,I'1,T; be
as in Section 3. Then C; (resp. C,) restricted to the circle ¢ =1 (T'1) (resp. ¢~ (T',)) is a rigid rotation
of angle ©; (resp. ©).

Next observe that both maps C,C : ¢ HT) = ¢~1(T',)) are also analytic maps that conjugate the
rigid rotation R, to itself. Hence, they must be rigid rotations composed with scaling maps. That is
C|¢—1(p1)(z) = sezm'ez

and

~

lp-1(ry)(2) = 562710,

)

where s € R and O, e R/Z. Our goal is then to compute the angles © and O since we have

(1) 0,=-0+06,+0.

A key observation that we shall use later is the following.

Claim 4.6. The map C and C extend as the identity to the unit circle.

Proof. Observe that the map x := ¢, o xn 0 Y1 !is a globally defined quasiconformal map which
conjugates the polynomial P, to itself. It follows that x can be extended as the identity to the
boundary of the Siegel disk (for example, one can argue that y must fix the orbit of the critical point
which accumulates on the boundary of the Siegel disk).

Moreover, the restriction of x to the annulus bounded by I" and the boundary of the Siegel disk
is quasiconformal. It follows that x can be extended as the identity to the ideal boundary of the
Siegel disk and hence C extends as the identiiy to the unit circle. The same argument applied to
X:zzﬁnoroxnormﬁfl shows the same for C. [ |

We proceed by computing some rotation angles of the maps in the topmost row. It is easy to check
from the expressions of L,, and h,, that

e2mif ifr=1
hy(re?™) = § | iy e2rib—mimalm(n) if ¢ = fry
T e27ri9—27rim11m(71) ifr=r
and
e27ri9—2ﬂ'im11m(77) ifr=1
hn(,re%rw) — \/,r.—neZwiB—m'mﬂm(ﬂ) ifr=4r1
7-17 e27”‘0 if r=ri.

To transfer this information to the bottom maps we need to consider the vertical compositions. Let
us then consider all the maps of the diagram restricted to the annuli bounded by the equator curves
and the outer boundaries. Then, all the “vertical” compositions are conformal. It follows that the
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circle = (T'1) (resp. ¢~'(T'y)) has radius \/r1 (resp. ,/7;) and hence we have

by
/Z h r1/z
Ay <= Ay <= A T A
ﬁqu Rnl lm lle
C
Ayry —= Ay =S Ay <2 Ay

\6/

where Ry, R, Ry and ﬁ,, are rigid rotations

We first analize the innermost diagram to observe that, given that h, commutes with rigid rotations,
the map C is equal to h, up to rotation. But then, we observed in Claim 4.6 that C extends as the
identity to the unit circle as h, does. It follows that C = h, on A 47 and hence,

0=- %mllm(n).

Studying the outermost diagram and arguing as above, we have that Cis equal to iLn up to composition
with a rigid rotation. But again, C is the identity on S!. It then follows that on A ST

7 _  2mimiIm(n) |7
C=e hy

and hence, by knowing iL,, on the equator, we conclude
1

0= EmlIm(n).

Finally, from equation (1) we obtain

1 1
977 = —EmlIm(W) + @]_ - §m11m(77) = G)]. - mlIm(T’)

Step 4. A group property. Let S : D/, x H — D, be the map S : (g,n) — Sy(n). Assume 7, and
72 are two complex numbers in H, , and g; € D.,. Our goal is to prove the following.

Lemma 4.7.
S(S(g1,m),m2) = S(g1, Ly, (m))-

Proof. Set
g2 = S(g1,m) and gz = S(g2,72)-
Then we want to show that
g3 = S(91,m3) with 73 = Ly, o L, (1).

Indeed, for ¢ = 1, 2 or 3, let H; be the Herman ring of g; and m; be the modulus of H; and set
r; = e 2™i_ Qbserve that L,, = L,, o L,,. Those homeomorphisms project to homeomorphisms
hy: An — Arz; hso : 147.2 — Ars and hs : A,«l — Ars such that hz = hs o hy.

Now, let p; be the Beltrami form which coincides with 0 outside U 97 "(Hy), with
n>0
d(hio¢;")
d(hio¢y")
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on H; and satisfies g7 (u1) = p1 everywhere. Let x; : C — C be the integrating map that fixes 0 and
—1. Observe that the map

¢2:X10¢10hf1 1A, = H
is a homeomorphism that preserves the standard complex structure, thus, an isomorphism (and a
linearizing map). So, we can define pus on Hy and x2 : C — C and as above,

¢3 =x20¢20hy" 1 Ay, — Hs
is a linearizing map. Now, we have the following commutative diagram:

A, > A, y A,

1 l ld’z lqﬁa
H1 X1 > H2 X2 > H3
Let us define x3 = x2 o x1. On the other hand, let X3, fi3 be the map and complex structure used in
the construction of g3 := S(g1,73). We will show that the complex structure 3 induced by ¢3 equals

f13. Since x3 and Y3 are normalized in the same way, these two integrating maps must be the same.
Hence we can conclude that g3 = gs.

h1 ho

To this end, observe that the maps ¢; are holomorphic and hg = hy o h;. Therefore on H;, we have
_Oxs _ 0(hso i)

6X3 6(}13 [¢] ¢1_1)
Moreover, x3 conjugates g; to the holomorphic map g3 and so, the Beltrami form u3 is g;-invariant.

So it follows that pg and i3 coincide on the set U g1 "(Hy). Finally, since x1 is holomorphic outside
n>0

J78 = fi3.

U 97 "(Hy) and x2 is holomorphic outside U 95 "(H2) = x1 U 97 “(Hy) |, we see that xs is

n>0 n>0 n>0

holomorphic outside U g7 “(Hy). Therefore, pug = fi3 = 0 outside U 971 "(H;) and we conclude that
n>0 n>0

13 = ji3 everywhere. |

Step 5. Sg,(n+1i/m) = Sg,(n). Again, assume g; € D), let H; be the Herman ring, m; be the
modulus of H; and set ry = e 2™™1, Let ¢; : A,, — H; be an isomorphism, and let the map
Sy, : Hy — D)., be as in Step 2. We will show that

(VneHy) Sg(n+i/m)=S,n).
Thanks to the previous step, we can assume, without loss of generality, that 7 = 1. Indeed, if we
know that Si(1+ .-) = Sp(1) for all h € D}, then, taking h = S, (n) the general equality follows.
We will construct a quasiconformal homeomorphism ¥ that satisfies
gi=xXogiox .
We will then show that x integrates y;;/m and fixes 0,00 and —1. Therefore x = x and

1

Se(1)=g1=%XogioX "=xogiox ' =85, (L+i/m).

The quasiconformal homeomorphism L;_ ;/,,, preserves vertical strips and, in particular, it preserves
B={ZeC| logr; <Re(Z) <0}

It coincides with the identity on iR and with the translation by —2im on logr, + ¢R. Therefore, the
quasiconformal homeomorphism hy;/m : Ay, — Ay, extends by the identity to the two boundary
components of A,, (it is a Dehn twist).



HERMAN RINGS AND ARNOLD DISKS. 19

Let us define ¥ = ¢1 © hyyi/m © #; ' on the Herman ring. Note that %/9% = Mi4i/m Oon Hy (since
it preserves the standard complex structure) and ¥ is equal to the identity on the two ideal boundary
components of H;. In particular, ¥ extends by the identity to the two boundary components of H;
in C (see [EMc]). Next, given a connected component U of U 97 "(Hy), let n > 0 be the smallest

n>0
integer such that ¢7"(U) = H;. The map ¢7" : U — H; is an isomorphism and we set

~ —1 ~
Xlo = (91"|v)" o xog-
Note that x|v extends by the identity to OU. We can extend X to a homeomorphism y : C — C such

that the restriction of x to C\ U g7 "(H.) is the identity. By a lemma of Rickman, x : C — C is
n>0
quasiconformal. By construction,

- - ox
Xog1=gioXx and ax = Hatism:
Finally observe that —1, 0 and oo are not eventually mapped to H;. Hence X fixes these 3 points.

Step 6. Definition of the map Gg, : D — D,,.

Let us still denote by m; the modulus of the Herman ring H; and let us now denote by 6; the twist
coordinate of g;. As above set 1y = e=2™™1_ We can define p : H, — D* as the universal covering

p:n e 6 = exp(—2mmun + 2ind;) = exp(L,(11)).

Since Sy, (n+1i/m) = Sy, (1), there exists a holomorphic map G, : D* — D, such that S;, = G, op.
That is, the following diagram commutes:

Sgl 12
H, —2> D,
pl %
g1
ID)*

Claim 4.8. Gy, (II(91)) = g1 and [T o Gy, =1d.

Proof. Just from the diagram we see that
Gy (r1€*) = Gy, 0 p(1) = g, (1) = g1

Recall that II(g;) = r1e®™ and therefore we have shown that G,, (II(g1)) = g;. We now want to
show that Il o G,, = Id.

In order to do so, let us first determine the “inverse” of p. It is easy to check that, fore 27 = < 1

and 6 € R/Z we have
p (ﬂ + iel — 0) = re2mif,
my my

Then,
0, —0

mi

Mo Gy, (re#) =110 S,, (2412 =2) ~Ti(),

where g € D, has a Herman ring H of modulus m; ;- = m and twist 6; —m, 0;,;19 = 0 (see Proposition

4.5). It then follows that II(g) = re*™* and hence I1 o Gy, = Id. [ |

Claim 4.9. G,, extends to 0 by G, (0) = (€*™®,0).

Proof. By proposition 2.2, we know that
D, C{(\Ab) eC* xC|1/4< |\ <4and b <1}.
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Thus, by the removable singularity theorem, G4, : D* — D, extends holomorphically at 0.
i. When § € D*,
19]

the modulus of the Herman ring tends to +oc. This Herman ring Hs separates —1 which is mapped
to 0 and —b which is mapped to co. So, we have b — 0 as § — 0.

1
We know that the modulus of the Herman ring H; of the map Gy, (d) is o log
Iy

The map 6 — b(d) is holomorphic, non constant and vanishes at 6 = 0. Therefore, there exists
€ > 0 such that by (D) contains the interval [0,£]. When b € (0,1/9), there is at most one parameter
X such that (X, b) € D, (see Prop. 2.5). In addition, A\ = e*™* € S§' and (t,v/) belongs to the Arnold
tongue To. When b € T, tends to 0, ¢ tends to @, A tends to €*™® and so, G, (0) = (e*"®,0). [

Step 7. The map Gy, is surjective. In order to complete the proof of proposition 4.3, it is now
enough to show that Gy, is surjective. Thus, we must prove that for all g1,g> € D!, there exists
d € I* such that g» = G, (6). Thanks to step 3, it is enough to prove that there exist d; and d2 such
that Ggl ((51) = ng ((52)

Again, if Gy, (6) = (A1(6),b1(9)), the map § — b1(d) is holomorphic (see Step 2), and vanishes at
0 = 0. Therefore, there exists € € (0,1/9) such that b; (D) contains the interval [0,¢]. Similarly, if € €
(0,1/9) is small enough and Gy, (6) = (A2(d), b2()), then by(ID) contains the interval [0,e]. Therefore,
if we pick b € (0,¢], there exist d1,d2 € D* such that b;(d1) = b2(d2) = b. Now, since b € (0,1/9),
there is at most one parameter A such that (A, b) € D!, (see Proposition 2.5). Moreover A = e?™t ¢ S!
and (t,v/) belongs to the Arnold tongue T,. So A1(61) = Aa(62). Thus Gy, (61) = Gy,(d2) and the
proof is completed. |

We can then take G, = G4, and this concludes the proof of Proposition 4.3.

Corollary 4.10. The map G, induces a continuous injection from [0,1) to To. In particular, the only
maps in DL, with twist parameter 0 are those corresponding to the Arnold tongue Ty .

4.2. Conclusion of the proof of Theorem A. Observe that the map (), a) — (), a?) provides a
ramified covering of degree 2 from D, to D!, ramified at ("% 0) and above (e?"* 0). Thus, the

map G, : D — DI, lifts to a map F, : D — D, such that the following diagram commutes:
D —Z=3 p,

2) rsd? | |@amona

D —— D,

a

The map F, is an isomorphism between ID and D, it maps 0 to (e2i’”", 0) and the modulus of the
Herman ring of fr, () is

Liog 4 = Ligg L

o Bl T @ CBlel’

Let us set F,(8) = (A(d),a(d)). Since A(d) = A\(—4), we have

oA

%(0) =0.
Moreover, we claim that

Oa

a5\ ="

This is a consequence of the following proposition. The analogue for the complex standard family has
been proved by Fagella, Seara and Villanueva in [FSV].
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Proposition 4.11. Let us fix a Bruno number a, and for a € (0,1/3) small enough, let t, € R/Z be
the unique angle such that (t,,a) belongs to the Arnold tongue T,. Then, as a — 0, the modulus m,
of the Herman ring of fezirta o satisfies

1
me = — log fa | o(1).
7r a

Proof. Let us again work with the family g»;, with b = a®. In the whole proof, we consider that
(A, b) varies in the Arnold disk D.,. More precisely, we assume that

(A, b) = (M8),b(3)) = Ga(6), with JeD.

Observe that when § — 0, the maps gy converge to P, uniformly on every compact subset of C*. In
particular, one of the critical points of gy 3, let’s say w(d) converges to the critical point w(0) = —1/2
of P,.

The maps
8 = gx(5),605)(w(9))
are all well defined and holomorphic for § € D. Moreover, they define a holomorphic motion of the
orbit of the critical point w(d), parametrized by § € D. By the Mafle-Sad-Sullivan A-lemma [MSS],
this holomorphic motion extends to a holomorphic motion of the closure of this critical orbit.

Let B(J) be the outer boundary component of the Herman ring of gy ; for 6 # 0 and the boundary
of the Siegel disk for 6 = 0. Moreover, let A(J) be the bounded component of C\ B(J). Since B(J)
is contained in the closure of the orbit of w(d), we see that B(J) moves holomorphically with respect
to d € D. As a consequence, (A(d),0) depends continuously on § € D for the Carathéodory topology.
Thus, its conformal radius at 0 varies continuously with respect to § € I.

Let us now assume that § € (0, 1), and thus, that b(§) > 0 (see Corollary 4.10). Then, the Herman
ring is symmetric with respect to the circle centered at 0 with radius v/b. It follows that the modulus
m(d) of the Herman ring is equal to twice the modulus of the annulus bounded by this circle and
B(6). As § — 0, we have b — 0 and the conformal radius of A(§) tends to r,. It follows from lemma
4.12 below that 1
o
Using the relation b = a? and m, = m(6), we get

m(d) =2 -

log (1).

r—a—i-o
Vb

1 T
=Zlog—2 1).
My, 7roga+o()
[ |

Lemma 4.12. There ezist a function h : [0,1/4) — R with h(z) = O(z), such that for any topological
disk D C C containing 0 and any € € (0,rad(D)/4), the set U. = D\ D, is an annulus of modulus m.

with a(D)
€ 1 ra
— ) <m.—-— ===/} <o.
h (rad(D)) =M= o0 log ( € ) <0

Proof. Rescaling if necessary, we may suppose that rad(D) = 1. Note that when ¢ < 1/4, it follows
from Koebe’s 1/4-theorem that U, is an annulus. Let ¢ : (D,0) — (D, 0) be a conformal representation.
By Koebe’s distorsion theorem, for all z € D,
|| ||

=z SR £ -

(1 +12) (1 —12])?
Therefore, 7. = ¢~1(C(0,¢)) is contained in the annulus {r. < |z| < R.} with r., R. € (0,1) defined
by

Te R.

Ta-r? OU+R
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The annulus bounded by 7. and S! is isomorphic to U,, and so,

1 ! <m< lo L
— log — — —.
2 g R, T & Te
So, we can take
1 €
i 1 —
h(e) = 3= log 7= = (&)

We also see that
1 1
< —log = + O(e).
m_27r ogE-i- ()

This last inequality can be improved as follows. Choose €’ < & small. The circle of radius ¢ subdivides
the annulus U, into the two annuli U, and {z | ¢’ < |2| < €}. By the Grétzsch inequality, we have

1 € 1 1
%logg +me <mer = %logg +O(e).
We get the required inequality by letting &’ tend towards 0. [
0
We now want to conclude from Prop. 4.11 the fact that a—Z(O) = ro. Remember that for § € D

and (A, a) = F,(d), we have

11
Mo = — g|6|.
Thus, when ¢ € (0,1), we have
1 _ a 1 To
~log 5 = —log = +o(1) = —log (“X(1+0(1))) -

So, as § — 0, we get

In particular, we see that a = drq + do(1) = 074 + 0(d), which proves that

da

%(0) =Ta

and completes the proof of Theorem A.

5. PROOF OF THEOREM B

Part (a) follows from da/04(0) = r, # 0.
Part (b) is obtained as follows. Since § — a(6) is holomorphic at 0, we know that
a(0) = rod + O(5?).

Moreover, by following the commutative diagram (2) we have that F,(—4d) = (A(d), —a(d)) and there-
fore a(d) is an odd function and

a(0) = rod + O(8%).

By the inverse function theorem it follows that

5(a) = = + 0(a®)
Ta
In particular, as a — 0, we have
1 T
TMa _ _ > 1)
e 5@ " a + O(a)
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6. THE COMPLEX STANDARD FAMILY.

We will now explain how to adapt the results to the complex standard family
fA,a(Z) = Aze%(z_l/z)‘

In this section, we will no longer consider cubic rational maps and quadratic polynomials. We will
therefore feel free to use the same notations as in the rest of the article to denote similar but different
maps and objects.

The complex standard family has been extensively studied in the case A = e?"* € S! and a € R:
it lifts via Z — z = €%"Z to the Arnold family

Foo(Z)=Z+a+ 21 sin(212).
T

For @ € R and a € (—1,1), these maps restrict to analytic diffeomorphisms of R/Z.

Let us now assume that A and a are complex parameters, and that fy , has a fixed Herman ring
H C C* with rotation number «. By the maximum modulus principle, H separates the essential
singularities 0 and co. Following [G], we can perform Shishikura’s surgery in order to obtain an entire
mapping fixing 0 and having a Siegel disk with rotation number « around 0. By construction, this
map does not vanish, except at 0 and may be normalized to have a critical point at —1. In fact, Geyer
shows that the resulting map is given by

E,(2) = *™ze7,

and moreover, that E, has a Siegel disk around 0 if and only if « is a Bruno number. Therefore a
map fy,, may have a fixed Herman ring only when « is a Bruno number.

Definition 6.1. Given a Bruno number a € R/Z, we let A, be the Siegel disk of the entire mapping
E, and we let D, be the set of parameters (A,a) € C* x C such that fy, has a fixed Herman ring
with rotation number a. We shall call D, the Arnold disk of rotation number c.

As in the case of cubic rational maps, to any map f € D, we can associate two coordinates: the
modulus of the Herman ring and a twist coordinate defined via the surgery construction (see Section
3.

Also, the change of coordinates z — —z conjugates fx o to fa,—, and it is thus useful to introduce
a new family

Iap i W Awe ~b/(4w)

The map fy,, is conjagate to the map gy .2 via z = w = az/2, i.e.,
2 a
Fra@) = Zgra2 (52)
Note that gy is the entire mapping w — Awe™.

Definition 6.2. Given a Bruno number a € R/Z, let D/, be the set of parameters (A, b) such that
gx,p has a fixed Herman ring with rotation number a.

By convention, we consider that for A = €™ and b = 0, the entire mapping g, = E, has a
Herman ring A, \ {0} of infinite modulus. As in the case of the cubic rational maps studied in this
article, one can show the following proposition.

Proposition 6.3. For any Bruno number o € R/Z, there is an isomorphism G, : D — D!, with

Ga(0) = (e*7™*,0). Moreover, for any 6 € D, the modulus of the Herman ring of gg.(s) is equal to
1 1

— log —.
o1 83
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The only difference in the proof appears when one shows that a certain map G : D* — D! has
a removable singularity at 0 (this corresponds to Claim 4.9). Indeed, we do not know whether the
Arnold disks D!, are compactly contained in C* x C.

Remark 6.4. This raises the following questions: are the Siegel disks A, bounded in C? Are the
Arnold disks D, and D!, bounded in C* x C?

In order to overcome this difficulty, we set G(§) = (A(d),b(d)) for 6 € D* and argue as follows:
First, as in the case of the cubic rational maps, the modulus of the Herman ring tends to co as  — 0..
The Herman ring separates the critical points which are the roots of the equation 422 + 4z + b(§) = 0.
It follows that as § — 0, we have b(§) — 0 (one of the critical points tends to 0 and the other tends to
—1). To show that G has a removable singularity at § = 0, it is sufficient to show that when § — 0,
A(6) remains uniformly bounded away from 0 and oo. This is a consequence of the following lemma
and the fact that b(d) . 0.

Lemma 6.5. Suppose |a| <1 and (\,a) € D,, then
e~ <A < el

Proof. Suppose (\,a) € D,, |a| <1 and |A| < e~ll. Then the image T' = fy ,(S") of the unit circle
is an R-analytic Jordan curve in D, and fy, : S' — T is a diffeomorphism (this is easily seen by
working in the lifted F,,o(Z) = Z + w + 4+ sin(2rZ) with Im(w) > 0 and A = €*™?). We then get a
contradiction as in the proof of Prop. 2.5. Similarly, we cannot have |\| > e'?l. [ |

With the help of proposition 6.3, we can now proceed exactly as in the case of cubic rational maps,
and we obtain the following results.

Theorem A’. For any Bruno number a € R/Z, the set D, is a Riemann surface isomorphic to the
unit disk and there is an isomorphism F, : D — D, such that

Fol(0) = (€*™,0) and F.(0) = (0,2r,),
where 1o, is the conformal radius of the entire mapping E,(2) = e?™®ze*. Moreover, for any § € D,

the modulus of the Herman ring of fr_(s) is equal to —log —
T

o]
Theorem B’. Assume « is a Bruno number. Then,
(a) the Arnold disk can be locally parameterized by a in a neighborhood of (€*™®,0) (i.e., it is

locally the graph of a holomorphic map a — A(a))
(b) as |a| = 0, the modulus m, of the Herman ring of fx(a),a satisfies

_ 2rq

lal
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