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Abstract

The computation, starting from basic principles, of chemical reaction rates in realistic sys-
tems (with three or more degrees of freedom) has been a longstanding goal of the chemistry
community. Our current work, which merges tube dynamics with Monte Carlo methods pro-
vides some key theoretical and computational tools for achieving this goal. We use basic tools of
dynamical systems theory, merging the ideas of Koon et al. [Chaos 10, 427 (2000)] and De Leon
et al. [J. Chem. Phys. 94, 8310 (1991)], particularly the use of invariant manifold tubes that
mediate the reaction, into the start of a comprehensive theory of lifetime distributions and rates
of chemical reactions and scattering phenomena, even in systems that exhibit non-statistical
behavior. Previously, the main problem with the application of tube dynamics has been with
the analytical evaluation of volumes in phase spaces of arbitrary dimension. The present work
overcomes this hurdle with some new ideas and implements them numerically. Specifically, an
efficient algorithm that uses tube dynamics to provide the initial bounding box for a Monte
Carlo volume determination is used. The combination of a fine scale method for understand-
ing the phase space structure (invariant manifold theory) with statistical methods for practical
computations (Monte Carlo) is the main novel contribution of this paper. The methodology,
applied here to a three degree of freedom model problem, is not restricted by dimension, and is
useful for higher degree of freedom systems as well.
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1 Introduction

The goal of this paper is to begin a program of computation of chemical reaction rates in realistic
models of molecular systems, with three or more degrees of freedom (dof). Rates computed using
standard statistical methods, such as Rice-Ramsperger-Kassel-Marcus (RRKM) [14] theory can
be several orders of magnitude off of experimental values [5]. Despite its shortcomings, RRKM
theory has been a workhorse of the chemistry community for decades. RRKM theory, also
known as transition state theory (TST) [45], is based on the identification of a transition state
(TS) between large regions of phase space that correspond to either “reactants” or “products”
and it assumes that the phase space in each region is structureless [33]. However, it is now well
known that while this basic assumption is true in some limited circumstances, in general these
regions (often defined by potential wells) are by no means structureless [23].

De Leon et al. [6, 7] attempted to extend the local picture near the TS in two degree of
freedom systems to a more global one and developed reaction island theory using cylindrical
manifolds [38] (now known as tubes [41]). Berry and collaborators (see for instance [20]) studied
the local regular behavior near the saddle regions by means of Kolmogorov entropies. Marcus [32]
suggested that these regularities were due to the existence of some invariants near the TS.
Komatsuzaki and Berry [26, 27, 28] made further progress by using dynamical perturbative
methods to study the transition near the saddle region. Uzer et al. [46], by using a general
dynamical systems framework, studied the local geometric structures of rank-one saddles that
regulate reactions in systems with three or more dof. Recently, in Waalkens et al. [47], homoclinic
and heteroclinic orbits in a tri-atomic molecule have been computed. But a comprehensive
theory of chemical reactions and efficient computational tools for reaction rate calculations in
three or more dof systems which takes into consideration phase space structures still needs to
be developed. We are now poised to make progress toward more accurate theories due to (i)
advances in dynamical systems theory, especially tube dynamics, and (ii) increased computing
power. We initiate progress in this direction in the present paper.

The current work, which merges tube dynamics with Monte Carlo methods, provides some
enabling theoretical and computational tools needed for accurate rate calculations. In this
paper, we present a general methodology that uses basic tools of dynamical systems theory,
merging the ideas of [29, 18] and De Leon et al. (see, e.g., [6, 7]). In particular, we use invariant
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manifold tubes mediating the dynamical process of reaction as the start of a comprehensive
theory of lifetime distributions and rates of chemical reactions and scattering phenomena. The
standard RRKM assumption of an unstructured phase space fails to account for the dynamics of
systems exhibiting significant non-statistical behavior. We overcome this difficulty by taking into
consideration the homoclinic and heteroclinic intersection structure of tubes in the phase space.
Furthermore, by working in the phase space as opposed to configuration space, we overcome the
recrossing problem, i.e., the recrossing of the transition state as projected onto configuration
space, which if uncorrected leads to inaccurate rate computations.

Previously, the main problem with the application of tube dynamics has been with the
analytical evaluation of volumes in phase spaces of arbitrary dimension [7, 46]. The present
work overcomes this hurdle by using an efficient algorithm that uses tube dynamics to provide
the initial bounding box for a Monte Carlo volume determination. The main contribution of
the paper is the combination of an accurate method for computing and understanding invariant
manifolds in the problem and hence the phase space structure together with statistical Monte
Carlo methods for practical computations.

We show the practical applicability of the methodology in a model problem in which the
hypotheses of TST do not hold: namely, the full-scattering of electrons in Rydberg atoms in
the presence of external crossed electric and magnetic fields. We use a variety of methods
and software that have been developed in the last several years for tube dynamics [24, 29, 18,
41] to better understand the transport between different regions (or realms) of phase space.
The numerical results obtained are a demonstration of accurate lifetime distribution and rate
calculations which overcome the difficulties that have plagued the standard statistical methods.

The paper is organized as follows: In Section 2, we describe the global geometric structure
of the phase space for reactions between two regions connected via a rank-one saddle point.
We also introduce the general methodology for the computation of scattering rates and lifetime
distributions. The computational tool employed to produce these detailed structures is based
on normal form techniques and is reviewed in the appendix for the convenience of the reader. In
Section 3, we apply the general methodology of Section 2 to the scattering problem of Rydberg-
type atoms in crossed electric and magnetic fields. Finally, in Section 4, we make several
additional remarks and point out some possible directions for future work.

2 General Methodology

Many chemical reactions and some scattering phenomena proceed through energetic barriers. In
general, such situations are well described in phase space where the energy-fixed hyper-surface
determines different regions that are connected by the energy barriers, specifically by structures
related to rank-one saddles associated with the barriers. To make the discussion that follows
as simple as possible, we consider a two state system where one state is bound and the other
is unbound. We will refer to this problem as a scattering problem for purposes of the present
discussion.

The simplest case is shown in Figure 1 where a bound region (zone on the left of the bot-
tleneck) is next to an unbound region (unbound zone on the right of the bottleneck), and the
bottleneck takes place precisely at the rank-one saddle equilibrium point. More concretely, this
figure shows a planar projection of the Hill region for the model problem used in this paper,
namely a Rydberg atom in crossed electric and magnetic fields. Recall that the Hill region
is the projection of the energy surface onto the position space. In the figure, the white zone
corresponds to the portion of the position space where the motion is possible for the given level
of energy.
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(a) (b) (c)

Figure 1: Planar projections of the actual Hill region for the Rydberg atom in crossed electric and magnetic fields.
The three possible cases are shown: Connected (a) and unconnected (c) bound and unbound states separated by a
bottleneck related to a rank-one saddle. The connectivity depends on the energy level. Case (b) corresponds to the
critical case.

2.1 Phase Space Structure near the Saddle

Studying the linearization of the dynamics near the saddle equilibrium point is of course an
essential ingredient for understanding the more complete nonlinear dynamics [29]. In fact, it can
be shown that for a value of energy constant just above that of the saddle, the nonlinear dynamics
in the equilibrium region is qualitatively the same as the linearized picture that we will describe
below. For details, see the appendix at the end of this paper as well as other references [25, 51].
However, since this geometric insight will be used later to guide our numerical algorithms for
effectively computing non-statistical lifetime distributions for scattering problems, a brief review
of the linearized picture will be provided below for the benefit of the readers.

The Linear Dynamics Near the Saddle. Assume we are dealing with a Hamiltonian
system for which preliminary linear transformations have been performed (essentially, a trans-
lation to put the saddle at the origin and a linear change that uses the eigenvectors of the linear
system as the new basis) so that the Hamiltonian function for the linear system near the saddle
has the following quadratic (normal) form:

H2(q1, p1, . . . , qn, pn) = λq1p1 +
n∑

k=2

ωk

2
(q2

k + p2
k), (1)

where n is the number of degrees of freedom, λ is the real eigenvalue corresponding to the hy-
perbolic direction spanned by (q1, p1), ωk are the bath mode frequencies; that is, the frequencies
associated to the variables (q2, p2, q3, p3, . . . , qn, pn). See the appendix for details.

By fixing a positive h ∈ R and c ∈ R, we define a region R ⊂ R2n in phase space by the
condition

H2(q1, p1, . . . , qn, pn) = h, and |p1 − q1| ≤ c.

It can be seen that R is homeomorphic to the product of a (2n − 2)-sphere and an interval I,
that is, R ∼= S2n−2 × I; namely, for each fixed value of (p1 − q1) in the interval I = [−c, c], we
see that the equation H2(q1, p1, . . . , qn, pn) = h determines a (2n− 2)-sphere

λ

4
(q1 + p1)2 +

n∑
k=2

ωk

2
(q2

k + p2
k) = h +

λ

4
(p1 − q1)2.

The bounding (2n − 2)-sphere of R for which p1 − q1 = −c will be called n1, and that where
p1− q1 = c, n2 (see Figure 2). We call the set of points on each bounding (2n− 2)-sphere where
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Figure 2: The flow in the equilibrium region has the form saddle × center × · · · × center. On the left is shown

the projection onto the (p1, q1)-plane (note, axes tilted 45◦). Shown are the NHIM (black dot at the center), the

asymptotic orbits (labeled A), two transit orbits (T) and two non-transit orbits (NT).

q1 + p1 = 0 the equator, and the sets where q1 + p1 > 0 or q1 + p1 < 0 will be called the north
and south hemispheres, respectively. Notice the (2n−2)-sphere at the middle of the equilibrium
region where p1 − q1 = 0. This sphere, which is defined as follows

N 2n−2
h =

{
(q, p)

∣∣∣∣∣ λp2
1 +

n∑
k=2

ωk

2
(
q2
k + p2

k

)
= h

}
, (2)

corresponds to the transition state in the chemical literature and plays an important role in
chemical reaction dynamics, as we will see later.

To analyze the flow in R, one considers the projections on the (q1, p1)-plane and (q2, p2) ×
· · · × (qn, pn)-space, respectively. In the first case we see the standard picture of an unstable
critical point, and in the second, of a center consisting of (n−1) uncoupled harmonic oscillators.
Figure 2 schematically illustrates the flow. Notice that R itself projects to a set bounded on
two sides by the hyperbola q1p1 = h/λ (corresponding to q2

2 + p2
2 = · · · = q2

n + p2
n = 0, see (1))

and on two other sides by the line segments p1 − q1 = ±c, which correspond to the bounding
(2n− 2)-spheres.

Since q1p1 is an integral of the (linearized) equations in R, the projections of orbits in the
(q1, p1)-plane move on the branches of the corresponding hyperbolas q1p1 = constant, except
in the case q1p1 = 0, in which case q1 = 0 or p1 = 0. If q1p1 > 0, the branches connect the
bounding line segments p1 − q1 = ±c. If q1p1 < 0, they have both end points on the same
segment.

To interpret Figure 2 as a flow in R, notice that each point in the (q1, p1)-plane projection
corresponds to a (2n− 3)-sphere S2n−3 in R given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h− λq1p1.

Of course, for points on the bounding hyperbolic segments (q1p1 = h/λ), the (2n − 3)-sphere
collapses to a point. Thus, the segments of the lines p1 − q1 = ±c in the projection correspond
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to the (2n − 2)-spheres bounding R. This is because each corresponds to a (2n − 3)-sphere
crossed with an interval where the two end (2n− 3)-spheres are pinched to a point.

The following objects are relevant for understanding transport through the saddle:

1. The point q1 = p1 = 0 corresponds to an invariant (2n− 3)-sphere S2n−3
h of periodic and

quasi-periodic orbits in R. This (2n− 3)-sphere is given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h, q1 = p1 = 0. (3)

This is known in the literature [50] as a normally hyperbolic invariant manifold (NHIM).
Roughly, this means that the stretching and contraction rates under the linearized dynam-
ics transverse to the (2n− 3)-sphere dominate those tangent to the (2n− 3)-sphere. This
is clear since the dynamics normal to the (2n− 3)-sphere are described by the exponential
contraction and expansion of the saddle point dynamics. The (2n − 3)-sphere acts as a
“big saddle point”. See the black dot at the center of the (q1, p1)-plane on the left side of
Figure 2. Note that the NHIM is the equator of the transition state N 2n−2

h and divides it
into north and south hemispheres.

2. The four half open segments on the axes, q1p1 = 0, correspond to four high-dimensional
cylinders of orbits asymptotic to this invariant (2n − 3)-sphere S2n−3

h either as time in-
creases (p1 = 0) or as time decreases (q1 = 0). These are called asymptotic orbits and they
form the stable and the unstable manifolds of S2n−3

h . The stable manifolds, W s
±(S2n−3

h ),
are given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h, q1 = 0. (4)

W s
+(S2n−3

h ) (with p1 > 0) is the branch going from right to left (from the unbound state
to the saddle region) and W s

−(S2n−3
h ) (with p1 < 0) is the branch going from left to right

(from the bound state to the saddle region). The unstable manifolds, Wu
±(S2n−3

h ), are
given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h, p1 = 0. (5)

Wu
+(S2n−3

h ) (with q1 > 0) is the branch going from right to left (from the saddle region
to the bound state) and Wu

−(S2n−3
h ) (with q1 < 0) is the branch going from left to right

(from the saddle region to the unbound state). See the four orbits labeled A in Figure 2.
There are four cylinders of orbits asymptotic to the invariant (2n − 3)-sphere S2n−3

h .
They form the stable and unstable manifolds to the invariant (2n − 3)-sphere S2n−3

h .
Topologically, both invariant manifolds look like (2n−2)-dimensional “tubes” (S2n−3×R)
inside a (2n − 1)-dimensional energy manifold. See Figure 4(a) for examples of these
structures.

3. The hyperbolic segments determined by q1p1 = constant > 0 correspond to two cylinders
of orbits that cross R from one bounding (2n−2)-sphere to the other, meeting both in the
same hemisphere; the northern hemisphere if they go from p1 − q1 = +c to p1 − q1 = −c,
and the southern hemisphere in the other case. Since these orbits transit from one region
to another passing through the (2n− 2)-sphere N 2n−2

h which is the transition state in the
linearized system, we call them transit orbits. See the two orbits labeled T in Figure 2.

4. Finally the hyperbolic segments determined by q1p1 = constant < 0 correspond to two
cylinders of orbits in R each of which runs from one hemisphere to the other hemisphere on
the same bounding 4-sphere. Thus if q1 > 0, the 4-sphere is n1 (p1 − q1 = −c) and orbits
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run from the southern hemisphere (q1 + p1 < 0) to the northern hemisphere (q1 + p1 > 0)
while the converse holds if q1 < 0, where the 4-sphere is n2. Since these orbits return to
the same region and they do not pass through the transition state N 2n−2

h , we call them
non-transit orbits. See the two orbits labeled NT of Figure 2.

5. The key observation here is that the asymptotic orbits form (2n−2)-dimensional stable and
unstable manifold tubes (S2n−3×R) to the invariant (2n− 3)-sphere S2n−3

h in a (2n− 1)-
dimensional energy surface and thus, they separate two distinct types of motion: transit
orbits and non-transit orbits. The transit orbits, passing from one region to another, are
those inside the (2n−2)-dimensional manifold tube. The non-transit orbits, which bounce
back to their region of origin, are those outside the tube.

Remark on History and Cross-Fertilization. It is interesting to note that some of
the same phase space structures and techniques described above that are useful in the chemistry
context, were first used in a celestial mechanics setting by Conley and McGehee in the 1960s
[3, 4, 34]. Conversely, techniques from chemistry have been used in celestial problems, as was
done in [23]. Due do the N -body nature and Hamiltonian underpinnings of both fields, we
expect this type of fruitful cross-fertilization to continue.

Nonlinear Dynamics and Separatrices. For a value of the energy just above that of
the saddle, the nonlinear dynamics in the equilibrium region R is qualitatively the same as the
linearized picture that we have shown above [36, 51].

For example, the NHIM for the nonlinear system which corresponds to the (2n− 3)-sphere
in equation (3) for the linearized system is given by

M2n−3
h =

{
(q, p)

∣∣∣∣∣
n∑

k=2

ωk

2
(
q2
k + p2

k

)
+ f(q2, p2, . . . , qn, pn) = h, q1 = p1 = 0

}
(6)

where f is at least of third order. Here, (q2, p2, . . . , qn, pn) are normal form coordinates and are
related to the linearized coordinates via a near-identity transformation.

In a small neighborhood of the equilibrium point, since the higher order terms in f are
much smaller than the second order terms, the (2n−3)-sphere for the linear problem becomes a
deformed sphere for the nonlinear problem. Moreover, since NHIMs persist under perturbation,
this deformed sphere M2n−3

h still has stable and unstable manifolds that are given by

W s
±(M2n−3

h ) =

{
(q, p)

∣∣∣∣∣
n∑

k=2

ωk

2
(
q2
k + p2

k

)
+ f(q2, p2, . . . , qn, pn) = h, q1 = 0

}

Wu
±(M2n−3

h ) =

{
(q, p)

∣∣∣∣∣
n∑

k=2

ωk

2
(
q2
k + p2

k

)
+ f(q2, p2, . . . , qn, pn) = h, p1 = 0

}
.

Notice the similarity between the formulas above and those for the linearized problem given by
equation (4) and (5). The same observation also holds for the transition state: in the nonlinear
system, it is a deformed (2n− 2)-sphere.

See the appendix at the end of the paper as well as other references [42, 19, 25, 51] for details
on the semi-analytical approximation of these objects. This geometric insight will be used below
to guide our numerical algorithms for computing reaction and scattering rates.

Remarks on Recrossing and Lingering Motions. From the local analysis above,
it should be clear that for a value of energy constant just above that of the saddle, transit
trajectories will not locally recross the transition state in the phase space. However, they may
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linger in the saddle region for a certain amount of time; the lingering time of a trajectory
depends inversely on its distance from the invariant manifold tube. Clearly, if the trajectory is
on the invariant manifold, it will asymptotically wind on to the NHIM and stay in the saddle
region for ever. On the other hand, if the trajectory is in the middle of the tube, it will passes
the saddle region the fastest. In Figure 3(a), we shown a schematic picture of the cross section
of the tube. Trajectories crossing this section in the center are the fastest. The time profile
shows a logarithmic growth (see Figure 3(b,c)) as the trajectories approach the boundary of the
tube. Figures 3(b,c) correspond to actual computations in the model problem, a Rydberg atom
in crossed electric and magnetic fields.
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Figure 3: (a) Schematic cross section of the tube near the Transition State. The center of the tube corresponds
to the trajectory that passes the TS the fastest. The boundary of the tube is formed by asymptotic orbits to the
NHIM. As we approach this boundary, the time needed to cross the TS approaches infinity. This is shown in (b),
where we plot the time taken by different trajectories from a particular Poincaré section to the TS. This time is
logarithmic with resepct to the distance to the border of the tube. This is shown in (c), where we plot the log version
of (b). Figures (b) and (c) correspond to actual computations for the model problem, the Rydberg atom in crossed
electric and magnetic fields. We choose a random mesh of points inside the tube on a Poincaré section in the region
corresponding to bounded orbits and compute the time they need to cross the TS depending on the distance to its
border (NHIM). See the text for more details.

The transit time T through a saddle can also be analytically estimated by the following
formula:

T =
1
λ

(
ln

λ(p1(0))2

(ρ∗ − ρ)

)
=

1
λ

(
lnλ(p1(0))2 − ln(ρ∗ − ρ)

)
(7)

where the last term determines the order of the required transit time (see [2]). Here, ρ is the
“bath” variable defined as follow

ρ :=
n∑

k=2

ωk

2
(q2

k + p2
k) = h− λq1p1.

And ρ∗ = h is the value of the bath variable corresponding to asymptotic orbits q1p1 = 0
which form the boundary of the tube. Clearly, the transit time approaches infinity as the flow
approaches the boundary (ρ → ρ∗), since orbits on the boundary of the tube are asymptotic to
the NHIM.

The proof of the formula (7) is quite straightforward. Take the case of a transit trajectory
starting from the northern hemisphere of n2 and ending at the northern hemisphere of n1. The
initial condition of this trajectory {q1(0), p1(0)} are both positive and

p1(0)− q1(0) = +c.
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Similarly, if T is the time required to go from n2 to n1, then p1(T ) = p1(0)eλT and q1(T ) =
q1(0)e−λT on n1 where

p1(T )− q1(T ) = p1(0)e−λT − q1(0)eλT = −c.

Eliminating c from the two above equations and solving for T , we obtain

T =
1
λ

ln
p1(0)
q1(0)

.

Moreover, the energy integral gives

p1(0)q1(0) =
1
λ

(
h−

n∑
k=2

ωk

2
(q2

k + p2
k)

)
=

1
λ

(ρ∗ − ρ).

After a few steps of algebraic manipulations, we obtain the formula (7).

2.2 Global Transport and Poincaré Cuts

We have just seen that the stable and unstable manifolds of the NHIM act as separatrices in
phase space. They are the geometric structures that completely control the transport between
the bound and unbound regions and, consequently, the chemical reaction rates and scattering
lifetime distributions.

In this section, we study in detail the reaction mechanism and develop a technique for the
computation of the corresponding rates. As is usual in this kind of computation, we use carefully
chosen (2n− 2)-dimensional Poincaré sections Σh in the (2n− 1)-dimensional energy surface to
simplify the problem.

We proceed as follows. The unbound and bound regions are labeled in Figure 4(a) as RU and
RB , respectively. Any reaction trajectory going from an unbound state to a bound state must
initially be in the interior of the stable tube W s

+, and continues in the interior of the unstable Wu
+

tube. These two + branches, W s
+ ∪Wu

+, constitute the capture reaction path from the unbound
to bound state. This reaction path will first pierce the Poincaré section in the entrance or first
Poincaré cut C̄1

+ (the first forward intersection of the interior of the unstable tube Wu
+ with the

Poincaré section). Similarly, the two − branches, W s
−∪Wu

−, constitute the escape reaction path,
and any reaction trajectory from the bound state to the unbound state has to pass through the
exit or first Poincaré cut C̄1

− (the first backward intersection of the interior of the stable tube W s
−

with the Poincaré section) of this reaction path, just before reaction takes place. Figures 4(a,b)
show the actual computations of these structures for our model problem, the Rydberg atom in
crossed electric and magnetic fields. In Figure 4(a), we plot the projections onto the xy plane
of the stable and unstable manifolds of the NHIM and in Figure 4(b), examples of xpx Poincaré
cuts are shown.

After defining the Poincaré return map f on Σh, we can denote the images of the entrance
C̄1

+ as
C̄m

+ = fm−1(C̄1
+),

which is the m-th forward intersection of the capture reaction path with the Poincaré section.
Similarly, we can denote the pre-images of the exit C̄1

− as

C̄k
− = f−(k−1)(C̄1

−),

which is the k-th backward intersection of the escape reaction path with the Poincaré section.
The intersection of the images of the entrance and the pre-images of the exit under the

Poincaré return map
fm−1(C̄1

+) ∩ f−(k−1)(C̄1
−)
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Figure 4: (a) Stable (W s
±) and unstable (W u

±) tubes of the NHIM in the region RB corresponding to bounded
orbits and in the region RU corresponding to unbound orbits. Only planar projections of the tubes are shown. The +
branches correspond to incoming reactions from the unbound states to the bound states. The − branches correspond
to outgoing reactions from the bound states to the unbound states. Σh denotes the planar projection of the Poincaré
section on this energy surface with energy h. (b) On Σh, the first intersection of the exit C̄1

− with an image of the
entrance C̄1

+ is shown. In this case, the smallest l for which C̄l
+ ∩ C̄1

− 6= ∅ is 6. (c) A schematic of the exit, showing
the first intersection, now labeled A1, along with subsequent intersections, A2 and A3. The intersections of successive
images of the entrance with the exit, Al, will asymptotically cover the entire exit as l →∞.
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are what give rise to full-scattering reactions. Moreover, the corresponding intersection volume
provide the scattering lifetime distribution and reaction rates. The problem can be simplified
by looking only at the intersections of the images of the entrance with the exit itself; that is,

C̄l
+ ∩ C̄1

− = f l−1(C̄1
+) ∩ C̄1

−

where l = m + k − 1. Figure 4(b) shows the case when l = 6 for the Rydberg atom in crossed
electric and magnetic fields. Any point inside the intersection C̄6

+ ∩ C̄1
− is a trajectory that

comes from the unbound state RU , loops around the bound state region RB , and intersects the
Poincaré section 6 times before escaping to the unbound state region RU . Below, we will use
the volume of this kind of intersection to compute the lifetime distribution and reaction rates.

Moreover, the volume enclosed within intersections of successive images of the entrance with
the exit will cover the entire exit as l → ∞. An example of the first intersection is shown in
Figure 4(b). The first intersection, labeled A1, along with subsequent intersections, A2 and A3

is shown in Figure 4(c), where schematically we illustrate what occurs for the Al as l →∞. Due
to the compactness of the bound region chaotic zone in which the tubes meander, the volume
enclosed within intersections of successive images of the entrance with the exit will cover the
entire exit as l → ∞. This means that all incoming scattering reactions for which there is a
transition from unbound state to bound state will eventually re-react from the bound state to
the unbound state as time t →∞.

2.3 Numerical Computation of the Lifetime Distribution Spectrum

Implementation of the above ideas for full-scattering depends on evaluations of the intersection
volumes of the entrance and its images with the exit [6, 7, 48].

As we assumed that the dynamics of the system is Hamiltonian, the Poincaré map is volume
preserving. Let us denote by V (A) the volume of A ⊂ Σh. As we have chosen Σh to be spanned
by (2n− 2) conjugate coordinates (q2, p2, . . . , qn, pn), we may write

V (C̄m
+ ) =

∫
C̄m

+

dq2dp2 · · · dqndpn.

Assuming an initially uniform probability distribution of incoming reactants on C̄1
+, then the

fraction of products escaping after executing m loops around the bound region is

V (C̄m
+ ∩ C̄1

−)
V (C̄1

+)
.

We will see in Section 3, where we apply this theory to a particular example, that the resulting
scattering “spectrum” is structured (that is, it is not a simple exponential decay), and it is closely
related to its temporal analogue, i.e., scattering as a function of time. The non-monotonicity of
the scattering spectrum has been seen in similar problems in chemistry [7].

Computation of Intersection Volumes via Monte Carlo Methods. To compute
the intersection volumes of the Poincaré cuts of the stable and unstable manifolds of the NHIM,
we need efficient tools to compute (2n−2)-dimensional volumes, where n is the number of degrees
of freedom of the system. For 2 degree of freedom cases, the computation is quite straightforward
[35]. However, for higher degrees of freedom, direct computation of volumes with a numerical
quadrature is more difficult. The problem of choosing a “good” mesh on the boundary of the
(2n− 2)-sphere is already very tricky. Hence, a different approach to the computation of these
high dimensional volumes is used. We use Monte Carlo methods to compute numerically an
approximate value of the (2n − 2)-volume. This family of methods are based on a statistical
approach to the problem. Thus, they seem to be especially suitable for these kind of situations.

11



The basic idea is as follows. We first choose a hyper-rectangle “bounding box” in the
(2n− 2) space containing the Poincaré cuts of the stable and unstable manifolds of the NHIM.
See Figures 5(a) and 5(b). For the method to be efficient, it is important that this (high-
dimensional) box contains as tightly as possible the Poincaré cuts. Otherwise, most of the
sample points would be “lost” outside the object whose volume we want to compute.

It is then easy to obtain an oracle that distinguishes whether randomly chosen points inside
this box belong to the targeted object:

(i) Entrance: A point in Σh belongs to the first Poincaré cut of the capture reaction path
C̄1

+, if the corresponding trajectory has just undergone reaction. This can be checked by
numerically integrating the initial condition backward in time, and confirming that the
orbit hits some appropriate Poincaré section in the unbound region RU .

(ii) Exit: A point in Σh belongs to the first Poincaré cut of the escape reaction path C̄1
−, if

the corresponding trajectory will undergo reaction immediately. This can be checked by
numerically integrating the initial condition forward in time, and confirming that the orbit
hits some appropriate Poincaré section in the unbound region RU .

(iii) mth overlap: A point in Σh belongs to C̄m
+ ∩ C̄1

− if it belongs to the exit C̄1
− and its

(m − 1)th backward iterate by the Poincaré map belongs to the entrance (i.e., it belongs
to C̄1

+). This can be checked by showing that the point belongs to the exit, as in (ii), on
one hand; and, on the other hand, integrating the initial condition backward in time and
confirming that the trajectory hits the Poincaré section an additional (m−2) times before
hitting the entrance (checked as in (i)).

Given the oracle, we can use any standard Monte Carlo method to compute the desired
volume. In the computations of Section 3, we use importance and stratified sampling in order
to reduce the standard deviation and accelerate the convergence of the method [30, 31, 40, 13].

Scattering Profile is Structured and Non-RRKM. In Figures 7(a,c) of Section 3,
the percentage of reactants escaping from the bound state as a function of loops in the bound
region is shown. The resulting scattering profile, which is derived from the 4D intersection vol-
umes computed via the Monte Carlo integration method, is structured; that is, it is not a simple
exponential decay. Moreover, its temporal analogue or lifetime distribution, i.e., scattering as a
function of time can also be computed (see Figures 7(b,d)). We note the similarity between the
time profile and the “loops” profile. Both results stress that the phase space is not structureless,
and that there is a need to take into consideration the tube dynamics and non-RRKM effects
when computing reaction rates.

Remarks on Homoclinic and Heteroclinic Intersection Structures. If an inter-
section on a Poincaré section is between stable and unstable Poincaré cuts related to the same
NHIM, it is called homoclinic intersection and if they are related to different NHIMs, hetero-
clinic intersection. For simplicity, only homoclinic intersection structure has been studied in this
paper. But for multi-channel chemical reactions such as isomerization of polyatomic molecules,
the study of heteroclinic intersection structures is also needed. Tube dynamics techniques devel-
oped in [29] can be very useful for this effort. In our ongoing study of isomerization of triatomic
molecules, there are three collinear rank one saddle connecting two triangular isomers.

To study the structure of these intersections, the choice of a suitable set of Poincaré sections
will be important. The computation of the volumes of all these different intersections via Monte
Carlo methods will be the key step in computing the reaction rates between the two isomers
following different reaction channels.
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3 Application to Rydberg Atom Formation and Ionization

3.1 The Hamiltonian Model

The ionization of a Rydberg atom interacting with external crossed electric and magnetic fields
has been studied by other authors (such as [22, 46]). The activation prior to the reaction is
given by the initial excitation of a single electron to a high energy level in such a way that its
dynamics can be described by classical physics. The reaction takes place when the electron is
ionized and detached. Experimentally, an atom is initially prepared in a highly excited Rydberg
state and one is interested in its behavior in the future. This is an example of a half-scattering
problem.

For the present study, we are instead interested in the full-scattering problem, in which the
system is prepared in an unbound initial state and we want to study the dynamics of formation
of an excited Rydberg atom and its subsequent ionization. We will use this model problem
to illustrate our methodology. The dynamics of the outermost electron in a Rydberg atom in
crossed electric and magnetic fields can be described by the following classical Hamiltonian:

H =
1
2
(p2

x + p2
y + p2

z)−
1
r

+
1
2
(xpy − ypx) +

1
8
(x2 + y2)− εx,

where r =
√

x2 + y2 + z2 is the distance from the electron to the center of the nuclear core and
ε is the scaled electric field strength. All the coordinates, as well as the Hamiltonian function,
have been scaled by the cyclotron frequency [22].

Using the Legendre transform, one finds that the velocities are given by

ẋ = px −
y

2
, ẏ = py +

x

2
, ż = pz.

The energy in terms of positions and velocities is

Eε(x, y, z, ẋ, ẏ, ż) =
1
2
(ẋ2 + ẏ2 + ż2) + Vε(x, y, z),

where the effective potential function is given by

Vε(x, y, z) = −1
r
− εx.

The energy integral is the only integral of motion for the system. Notice also that the manifold
z = ż = 0 is invariant under the dynamics of the full system.

Stark Saddle Point. The vector field of the Rydberg atom has a unique fixed point, which
is commonly known as the Stark saddle point:

x =
1√
ε
, y = 0, z = 0,

ẋ = 0, ẏ = 0, ż = 0.

The value of the energy for the Stark point, ES = −2
√

ε, is the threshold value for the reaction
to take place. This is easily seen by plotting the Hill region in configuration space where the
motions of electron is allowed:

H(ε, h) =
{
(x, y, z) ∈ R3 | Vε(x, y, z) ≤ h

}
.

In Figure 1, the xy planar projection of the Hill region for the three possible cases of the
Rydberg atom are shown. Reaction is possible if the energy value of the electron h is higher
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ε = 0.58 ε = 0.6
λ 0.636449792043354 0.664862088041162

ω2 0.981505729811050 0.988576549676131
ω3 0.664616310468007 0.681731619880499

Table 1: Eigenvalues for the linearized system at the Stark fixed point.

than that of the saddle. i.e., h > ES ; the critical case is given by the energy value equal to that
of the saddle, h = ES ; and there is no reaction if h < ES .

Let u̇ = Lu be the linearization of the vector field evaluated at the Stark fixed point (see
the appendix). Then, the eigenvalues of L describe the linear dynamics around the equilibrium
point. For any value of ε > 0, we obtain a pair of real eigenvalues ±λ and two pairs of purely
imaginary eigenvalues, ±iω2 and ±iω3 (because of the Hamiltonian character of the vector field,
if µ is an eigenvalue, so are −µ, µ̄ and −µ̄):

±λ = ±

√√
α2 + 8ε3 − α

2
, ±iω2 = ±i

√√
α2 + 8ε3 + α

2
, ±iω3 = ±iε3/4,

where α = 1− ε3/2. Thus, the Stark fixed point is always of the type saddle × center × center,
and we can call it, indeed, a Stark saddle point. In Table 1, we show the values of λ, ω2 and ω3

for ε = 0.58 and ε = 0.6. Note that values of ε > 0 such that√
2ε3/2

√
α2 + 8ε3 + α

∈ Q (8)

give rise to resonances of the type k2ω2 − k3ω3 = 0 in the bath modes. However it is important
to point out that, in the normal form computations performed in this paper, there are no small
divisors. Actually, the denominators appearing in the generating functions (see the appendix)
are bounded from below by |λ|.

3.2 NHIM and the Stable and Unstable Tubes

Using the methodology described in the appendix, we construct a high-order normal form of
the Hamiltonian near the Stark saddle point (up to order N = 16). This normal form allows
us (i) to obtain a very good approximation of the NHIM around the saddle, (ii) to compute
the stable and unstable manifold tubes of the NHIM far from the equilibrium point, and (iii) to
study their intersections with a well chosen Poincaré section given by

Σh,ε =
{
(x, y, z, ẋ, ẏ, ż) ∈ R6

∣∣ Eε(x, y, z, ẋ, ẏ, ż) = h and y = 0 , x < 0
}

.

Figure 5 shows the xẋ and zż projections of the intersection of the stable and unstable tubes
with the Poincaré section Σh,ε for a particular fixed value of the energy h = −1.52 and electric
field strength ε = 0.5835. In the following numerical experiments, we will fix the energy value to
h = −1.52 and vary the electric field strength ε. For this level of energy, the Stark saddle point
corresponds to an electric field of εS = 0.5776. For ε < εS , the bound and unbound regions are
disconnected (see Figure 1). For ε > εS , the bottleneck at the Stark point is open and becomes
wider with larger ε.

The detailed procedure of constructing the high-dimensional tubes and their Poincaré cuts
is as follows: based on the knowledge of the linear system, we can pick initial conditions which
produce a close “shadow” of the stable and unstable manifolds (' S3 × R) associated to the

14



(a) (b)

Figure 5: (a) xẋ and (b) zż projections of the intersection of the high-dimensional tubes with the Poincaré section
Σh,ε, for h = −1.52 and ε = 0.5835. The dark sections correspond to the projections of the unstable cuts C̄1

+ and
the light ones to the stable cuts C̄1

−. The xẋ projection shows partial overlap whereas the zż projection shows the
cuts nearly completely overlapping.

NHIM. As we restrict to an energy surface with energy h, there is only one NHIM per energy
surface, denoted Mh(' S3).

The initial conditions in the normal form coordinates (q1, p1, q2, p2, q3, p3) are picked with
the qualitative picture of the linear system in mind. The coordinates (q1, p1) correspond to
the saddle projection, (q2, p2) correspond roughly to oscillations within the (x, y) plane, and
(q3, p3) correspond roughly to oscillations within the z direction. Also recall that q3 = p3 = 0
(z = ż = 0) corresponds to an invariant manifold of the system, i.e., the planar Rydberg system
is an invariant manifold of the three degree of freedom system.

The initial conditions to approximate the stable and unstable manifolds (W s
±(Mh),Wu

±(Mh))
are picked via the following procedure. Note that we can be assured that we are obtaining a
roughly complete approximation of points along a slice of W s

±(Mh) and Wu
±(Mh) since such a

slice is compact, having the structure S3. Also, we know roughly the picture from the linear
case.

1. We fix q1 = p1 = ±δ, where δ is small. This ensures that almost all of the initial con-
ditions will be for orbits which are transit orbits from one side of the equilibrium region
to the other. Specifically + corresponds to right-to-left transit orbits (unbound to bound
state reactions) and − corresponds to left-to-right transit orbits (bound to unbound state
reactions). We choose δ small so that the initial conditions are near the NHIM Mh (at
q1 = p1 = 0) and will therefore integrate forward and backward to be near the unstable
and stable manifold ofMh, respectively. We choose δ to not be too small, or the integrated
orbits will take too long to leave the vicinity of Mh.

2. Beginning with rv = 0, and increasing incrementally to some maximum rv = rmax
v , we

look for initial conditions with q2
3 + p2

3 = r2
v, i.e. along circles in the z oscillation canonical

plane. It is reasonable to look along circles centered on the origin (q3, p3) = (0, 0) on
this canonical plane since the motion is simple harmonic in the linear case and the origin
corresponds to an invariant manifold.

3. For each point along the circle, we look for the point on the energy surface in the (q2, p2)
plane, i.e., the (x, y) oscillation canonical plane. Note, our procedure can tell us if such a
point exists and clearly if no point exists, it will not be used as an initial condition.
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After picking the initial conditions in (q1, p1, q2, p2, q3, p3) coordinates, we transform to the
initial Rydberg coordinates (x, y, z, ẋ, ẏ, ż) and integrate under the full equations of motion.
The integration proceeds until the Poincaré section Σh,ε stopping condition is reached, in this
case y = 0. We can then use further analysis on the Poincaré section, described below.

Chaotic Sea in the Bounded Region. In the z = ż = 0 invariant manifold (which
corresponds to the case of planar Rydberg atom), it is possible to visualize the chaotic dynamics
of the bounded region RB by plotting the cuts of long-time integration of particular orbits with
the Poincaré section Σh,ε. For instance, in Figure 6(a), we plot the Poincaré section y = 0 of
the chaotic bounded region for a fixed energy h = −1.52 and a scaled electric field strength
ε = 0.57765, which correspond to values just above the threshold energy of the Stark saddle
point. We also show the first five intersections of the stable and unstable tubes of the NHIM
with this Poincaré section. In this case, it takes a while until the tubes intersect due to the
small aperture of the bottleneck. In Figure 6(b), we show the first 11 intersections of the stable
tube with the Poincaré section. Notice the extremely complicated and curling pattern of the
manifolds as we iterate forward.
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(a)

(b)

Figure 6: Poincaré section Σh,ε in the invariant submanifold z = ż = 0. (a) The chaotic sea is shown together
with the first five intersections of the tube boundaries and the Poincaré section, Cm

± , m = 1, . . . , 5. A close-up of the
intersection of the tubes C̄6

+ with C̄1
− is shown in Figure 4(b). (b) The first eleven intersections of the stable manifold

tube boundaries are shown, Cm
− , m = 1, . . . , 11.
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3.3 Intersection Volumes, Lifetime Distributions, and Rates

As we explained in Section 2.3, to compute the 4D intersection volumes of the stable and
unstable tubes with the Poincaré section we use a Monte Carlo method. First, we choose a
hyper-rectangle that contains (as tightly as possible) the intersection volume. This is easily
achieved by looking at the 2 projections of the 4D object on the xẋ and zż planes, for instance
the ones in Figure 5(a) and (b), respectively. Then, we apply the VEGAS algorithm (see [30, 31]
and [40, 13]) to compute the volume of the desired object. Notice, that in order to apply this
algorithm we only need a function (or oracle) that tells us whether a given point inside the high-
dimensional box is contained in the targeted object or not. In this case, this is easily achieved,
as explained in Section 2.3: First, we complete the 4-dimensional point to a 6-dimensional phase
space initial condition (by imposing the Poincaré section and energy restrictions); and, then,
we integrate this point backward in time (to see if it belongs to the entrance, i.e., the green
projection in Figure 5), and forward in time (to see if it belongs to the exit, i.e., the dark
projection in Figure 5).

Here, we show the results for two examples. First, we consider the case of a fixed energy
h = −1.52 and scaled electric field strength ε = 0.58. The intersection volumes w.r.t. the number
of loops of the tube around the nuclear core in the bounded region is shown in Figure 7(a). The
scattering spectrum for the ε = 0.6 case is shown in Figure 7(c).

In Figures 7(b) and 7(d), we show the lifetime distribution of the scattering process. That
is, given Ninc incoming electrons coming from the unbound region to form a Rydberg atom, we
count how many leave the bound region (ionization of the atom) per unit of time. The practical
implementation is as follows: We first generate a quasi-random [37] swarm of points in the box
containing the Poincaré cuts by using the Sobol algorithm [44, 1, 40, 13]. Then we choose initial
conditions such that the corresponding points belong to the entrance C̄1

+, integrate them forward
in time and count how many of them ionize from the atom per unit time. It is clear from the
numerical experiments that the resulting lifetime distribution is by no means statistical.

Computation Times. We note that some of the computations done here are parallelizable
and future work could take advantage of this to speed up the calculations. All experiments for
this work were performed on a PC workstation with an Intel Pentium III 1 Ghz processor. The
normal form computations, including the reduction to the center manifold and the construction
of the transformation from normal form coordinates to the original coordinates (up to order 16),
takes only a number of seconds. The next step, using the normal form to compute 650,000 points
on the manifold tube of the NHIM and to numerically integrate them until the first crossing
of Σh,ε (using Runge-Kutta-Fehlberg 7-8) takes about 7 hours. The Monte Carlo computation
using 106 points takes about two days. Furthermore, we found that using only half as many
points for the Monte Carlo portion gave very similar answers.
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Figure 7: The electron scattering lifetime distribution for the Rydberg atom in crossed electric and
magnetic fields for an energy level h = −1.52. (a) The percentage of electrons escaping from the interior region
(i.e., scattering away from the bounded region) as a function of loops around the central core is shown in the case
ε = 0.58. The resulting scattering profile is structured (i.e., not a simple exponential decay), and it is closely related
to its temporal analogue, i.e., scattering as a function of time: (b). The non-monotonicity of the scattering spectrum
has been seen in similar problems in chemistry and is a hallmark of non-RRKM behavior [5]. (c) and (d): the same
for a strength of ε = 0.6. For these computations, 106 random initial conditions were used.
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4 Discussion

This paper has introduced a new method for computing scattering and reaction rates in n
degree of freedom systems using tube dynamics in a synergistic way with Monte Carlo volume
determination methods. The method was applied to the three degree of freedom model problem
of a Rydberg atom. The technique is not restricted by dimension and is useful for systems
of more degrees of freedom such as various isomerization problems. This overcomes a major
hurdle encountered by De Leon et al. [6, 7]. The method can be used in any system with
rank-one saddles which separate phase space regions corresponding to different states of the
chemical system, such as the isomerization of polyatomic clusters (3 to 7 atoms) [21, 52, 53] and
bimolecular reactions [49].

Our primary concern in this paper is to present and computationally implement a method
that is extendable to multidimensional systems. As such, we compute a large number of sample
points on the manifolds of the NHIM. However, this is computationally time-consuming, and we
expect further refinements will make this part of the process more efficient. This is an area we are
currently pursuing. For instance, we might not need to compute a sampling of the entire NHIM
manifolds. Since all we need is a bounding box for the Monte Carlo volume computation, we
could pick only those points on the NHIM which lead to the largest projections on the Poincaré
section. For example, consider Figure 5. The x and ẋ directions of the bounding box could be
obtained by looking only at the set on the tube for which z = ż = 0.

One could also perhaps obtain the bounding box from the linear dynamics, which will be a
good approximation for energies just above the saddle point. Once a bounding box is obtained
for small excess energies, numerical continuation could be used to provide a tight bounding box
for larger excess energies. This is still work in progress.

Set Oriented Methods. In [8], a completely different approach is taken to compute trans-
port rates in the same Rydberg atom problem. It is based on the Dellnitz-Junge set oriented
methods for computing almost invariant sets and transport rates; see [9] and references therein
for background. The set oriented approach is also able to deal with both the 2 dimensional and
the 3 dimensional problem and gives rates that agree with those given here. Two of the main
differences in how the computation is done are as follows. First of all, the tube cross sections are
computed not by using normal form methods, but by means of time of return maps and adaptive
subdivision techniques; the tubes are then flowed out as in the present paper. Second, the set
oriented method, being based on a tree-structured adaptive box subdivision method is able to
compute volumes by directly counting the relevant boxes involved, as opposed to using Monte
Carlo methods. The fact that the two methods give the same specific results is confirmation
that each technique has a solid mathematical and computational foundation.
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A Effective Computation of NHIM and its Stable and Un-
stable Manifolds

For the convenience of reader, we have included in this appendix a brief description of the
theoretical basis and the practical steps for developing the software used in the numerical ex-
plorations of Section 3 (for more details, see [24]).

The Hamiltonian. Recall that the dynamics of the Rydberg atom can be described by the
following Hamiltonian function written in normalized coordinates as:

H =
1
2
(p2

x + p2
y + p2

z)−
1
r

+
1
2
(xpy − ypx) +

1
8
(x2 + y2)− εx,

where r =
√

x2 + y2 + z2 is the distance from the electron to the nucleus of the atom and ε is
the scaled electric field.

Linear Behavior and Expansion. First, we compute the linear normal form around the
equilibrium point. This is achieved by translating the origin to the fixed point and by using the
linearization of the vector field at the origin.

The translation that puts the Stark saddle point at the origin of the phase space is given by

x = x1 +
1√
ε
, y = x2, z = x3,

px = p1, py = p2 −
1

2
√

ε
, pz = p3.

By computing the expansion of the term
1
r

in Taylor series (a good way of implementing this
expansion on a computer is to take advantage of the recurrence of the Legendre polynomials;
see for instance, [24, 17]):

1
r

=
√

ε− εx1 + ε3/2x2
1 −

1
2
ε3/2(x2

2 + x2
3) + · · · ,

and substituting into the translated Hamiltonian, one obtains that its second degree terms (the
ones that correspond to the linear dynamics) are

H2 =
1
2
(p2

1 + p2
2 + p2

3) +
1
2
(x1p2 − x2p1)

+
(

1
8
− ε3/2

)
x2

1 +
(

1
8

+
1
2
ε3/2

)
x2

2 +
1
2
ε3/2x2

3.

This homogeneous polynomial can be put into real normal form by performing a first change of
variables consisting in computing the eigenvectors of the linearized vector field at the equilibrium
point and using them as the basis of the new reference frame. Then, the quadratic real normal
form is

H2 = λxpx +
ω2

2
(y2 + p2

y) +
ω3

2
(z2 + p2

z). (9)

Here, λ, ω2 and ω3 are positive real numbers given by the linearization of the vector field at the
Stark saddle point (see Section 3.1). Note that for simplicity, we have renamed the variables in
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equation (9) as the initial ones (x, y, z, px, py, pz), although they are different after the coordinate
change.

For the following normal form computations it is convenient to “diagonalize” the second
order terms. This is done by introducing the complex change of coordinates(

y
py

)
=

1√
2

(
1 i
i 1

)(
q2

p2

)
,

(
z
pz

)
=

1√
2

(
1 i
i 1

)(
q3

p3

)
, (10)

where i =
√
−1, and renaming x = q1 and px = p1, the second order part of the Hamiltonian

becomes
H2 = λq1p1 + iω2q2p2 + iω3q3p3 (11)

From now on we will use the following notation. If x = (x1, . . . , xn) is a vector of complex
numbers and k = (k1, . . . , kn) is an integer vector, we denote by xk the term xk1

1 · · ·xkn
n (in this

context we define 00 as 1). Moreover, we define |k| as
∑

j |kj |.
In order to have all possible orbits in the center manifold, let us expand the initial Hamilto-

nian H using the coordinates that give us H2 as in (11). Then the expanded Hamiltonian takes
the form

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p) = H2(q, p) +
∑
n≥3

hijq
i1
1 pj1

1 qi2
2 pj2

2 qi3
3 pj3

3 (12)

where H2 is given in (11) and Hn denotes an homogeneous polynomial of degree n.

Review of Normal Form Computation. The process of reduction to the center man-
ifold is similar to a normal form computation. The objective is to remove some monomials in
the expansion of the Hamiltonian, in order to have an invariant manifold tangent to the center
directions of H2. For this purpose, let us recall that, if F (q, p) and G(q, p) are two functions of
positions, q, and momenta, p, their Poisson bracket is defined as

{F,G} =
3∑

i=0

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
.

The changes of variables are carried out by means of the Lie series method implemented as in [24]
to avoid the Lie triangle with some similarity to [10] (see also [15]). If G(q, p) is a Hamiltonian
system, then the function Ĥ defined by

Ĥ ≡ H + {H,G}+
1
2!
{{H,G}, G}+

1
3!
{{{H,G}, G}, G}+ · · · , (13)

is the result of applying a canonical change to H. This change is the time one flow corresponding
to the Hamiltonian G. G is usually called the generating function of the transformation (13).
See [16] and references therein for more theoretical details. See [11, 12] for applications to the
non-autonomous case. Here we will review only the basics of the procedure.

Note that if P and Q are two homogeneous polynomials of degree r and s respectively,
then {P,Q} is an homogeneous polynomial of degree r + s − 2. This means that if G3 is
an homogeneous polynomial of degree 3 used as a generating function, then the homogeneous
polynomials of degree n, Ĥn, such that Ĥ =

∑
n≥2 Ĥn are given by,

Ĥ2 = H2,

Ĥ3 = H3 + {H2, G3},

Ĥ4 = H4 + {H3, G3}+
1
2!
{{H2, G3}, G3}.

. . . . . . . . .
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If we are interested in removing all the terms of order three in the new Hamiltonian, i.e. to have
Ĥ3 = 0, we must choose G3 such that it solves the homological equation {H2, G3} = −H3.

This procedure can be used recurrently trying to find an homogeneous polynomial of degree
four, G4, to remove all the terms of order four of the new Hamiltonian, Ĥ, and so on. Neverthe-
less, we must point out that this is not always possible and some resonant terms, even of order
four, cannot be canceled. It is well known that this sequence of Hamiltonians and canonical
transformations produced by the Birkhoff normalization does not converge on any open neigh-
borhood of the equilibrium point [39]. Anyway, this process is used to compute what is known
as the Birkhoff normal form of the Hamiltonian, having the minimum number of monomials up
to some degree.

Reduction to the Center Manifold. Although the reduction to the center manifold
is based on this scheme, we only need to remove the instability associated with hyperbolic
character of the Hamiltonian H. We note that the second order part of the Hamiltonian H2

gives us the linear part of the Hamiltonian equations, and so, the instability is associated with
the term λq1p1. For this linear approximation of the Hamiltonian equations, the center part
can be obtained by setting q1 = p1 = 0. If we want the trajectory remains tangent to this space
(i.e., having q1(t) = p1(t) = 0 for all t > 0) when adding the nonlinear terms, we need to have
q̇1(0) = ṗ1(0) = 0. Then, because of the autonomous character of the Hamiltonian system, we
will obtain q1(t) = p1(t) = 0 for all t ≥ 0.

Recalling that the Hamiltonian equations associated with a Hamiltonian H(q, p) are,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

In particular,

q̇1 =
∂H

∂p1
= λq1 +

∑
n≥3

hijq
i1
1 pj1−1

1 qi2
2 pj2

2 qi3
3 pj3

3

ṗ1 = −∂H

∂q1
= −λp1 −

∑
n≥3

hijq
i1−1
1 pj1

1 qi2
2 pj2

2 qi3
3 pj3

3 .

One can get the required condition, q̇1(0) = ṗ1(0) = 0 when q1(0) = p1(0) = 0, if for instance
in the series expansion of the Hamiltonian H, all the monomials, hijq

ipj , with i1 6= j1 have
hij = 0. This happens, for instance, if there are no monomials with i1 6= j1.

More concretely, the actual nonlinear changes of variables are given by the solution of the
homological equations. For instance, at order r > 2, it is not difficult to see that the change
given by the following generating function kills the prescribed monomials:

Gr(q, p) =
∑

i1 6=j1
|i|+|j|=r

−hij

(j1 − i1)λ + i(j2 − i2)ω2 + i(j3 − i3)ω3
qipj ,

where qipj = qi1
1 pj1

1 qi2
2 pj2

2 qi3
3 pj3

3 . See [43, 25, 18] for other killing criteria.
All the computations discussed above have been implemented by adapting to our case the

software in [24], which uses specific symbolic manipulators in C++ that can do all the pro-
cedure up to an arbitrary order. For practical purposes, and in order to have an acceptable
equilibrium between precision and time computing requirements, the normal form scheme has
been implemented up to order N = 16.

After all these changes of variables, the initial complexified Hamiltonian around the collinear
libration points has been expanded in the following form

H(q, p) = H̄N (q, p) + RN (q, p),
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where H̄N (q, p) is a polynomial of degree N without terms of i1 6= j1. RN (q, p) is a remainder
of order N + 1 which is very small near the Stark saddle point and will be skipped in further
computations.

Finally, using the inverse change of variables of (10), the truncated Hamiltonian H̄N can be
expanded in real form and we obtain

H̄N (q, p) = H2(q, p) +
N∑

n=3

Hn(q, p), (14)

where explicitly,

H2(q, p) = H2(q1, p1, q2, p2, q3, p3) = λq1p1 +
ω2

2
(
q2
2 + p2

2

)
+

ω3

2
(
q2
3 + p2

3

)
.

For convenience, the variables are called again q, p.

NHIM and its Stable and Unstable Manifolds. As all the monomials of Hn in (14)
with i1 6= j1 have been eliminated, the truncated Hamiltonian H̄N has a first integral, I = q1p1.
This is clear since H̄N is given by

H̄N = H2(I, q2, p2, q3, p3) +
N∑

n=3

Hn(I, q2, p2, q3, p3).

Let f be a function of the center manifold variables (q2, p2, q3, p3) defined as follow

f(q2, p2, q3, p3) =
N∑

n=3

Hn(0, q2, p2, q3, p3).

Then, f is at least of third order. Notice that the invariant manifold M3
h defined by

M3
h =

{
(q, p)

∣∣∣ ω2

2
(
q2
2 + p2

2

)
+

ω3

2
(
q2
3 + p2

3

)
+ f(q2, p2, q3, p3) = h, q1 = p1 = 0

}
is the normally hyperbolic invariant manifold (NHIM) for the nonlinear system which corre-
sponds to the 3-sphere (3) for the linearized system. In a small neighborhood of the equilibrium
point, since the higher order terms in f are much smaller than the second order terms, the
3-sphere for the linear problem becomes a deformed sphere for the nonlinear problem. More-
over, since NHIMs persist under perturbation [50], this deformed sphere M3

h still has stable and
unstable manifolds which are given by

W s
±(M3

h) =
{

(q, p)
∣∣∣ ω2

2
(
q2
2 + p2

2

)
+

ω3

2
(
q2
3 + p2

3

)
+ f(q2, p2, q3, p3) = h, q1 = 0

}
,

Wu
±(M3

h) =
{

(q, p)
∣∣∣ ω2

2
(
q2
2 + p2

2

)
+

ω3

2
(
q2
3 + p2

3

)
+ f(q2, p2, q3, p3) = h, p1 = 0

}
.

Notice the similarity between the formulas above and those for the linearized problem given in
equations (4) and (5), especially given the fact that these two coordinate systems are linked by
a near-identity transformation.
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