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Abstract

We study the phenomenon of transition to chaos in quasiperiodically forced dissipative dynamical sys-

tems. In particular, we study the so called fractalization route, in which a smooth torus seems to fractalize.

This has been suggested by several authors as a scenario of formation of strange nonchaotic attractors.

We provide numerical evidence, supported in rigorous results, that some of these attractors are really non-

strange.

PACS numbers: 05.45.-a 05.45.Df 47.52.+j 47.53.+n
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The study of the transition from order to chaos is one of the central strands of Nonlinear Sci-

ence, and has attracted the attention of a number of scientists of different areas. In particular, in

the study of dissipative dynamical systems the notion of Strange Attractor [1] is one of the most

important.

Attractors are relevant because they are visible invariant sets of the dynamics. An attractor A
is an object that traps the motion of a set of positive measure. If A is geometrically complex,

say it is not a (piecewise) smooth manifold, we say that it is strange. If orbits on A exhibit

sensitive dependence on initial conditions [2] we say that it is chaotic. While the first examples of

strange attractors were Strange Chaotic Attractors (SCA for short), Grebogi et al. [3] suggested

the existence of Strange Nonchaotic Attractors (SNA for short) in two models. Since then SNAs

have been observed in many others [4]. Besides numerical observations, they have been proved to

exist rigorously in some cases [5–11]. But, as we will see, not everything which is believed to be

a SNA really is [12–14].

In this Letter, we consider dissipative systems in which there is a quasiperiodic (qp for short)

forcing [30]. Hence the transition from regular to chaotic dynamics is described as the bifurcation

from an attracting invariant curve (or 1D torus) to a SCA. In the literature, it has been proposed

a scenario in which a mixture of both kinds of dynamics appears in the interplay, geometrically

described as the creation of a SNA. This is the so called fractalization route [15, 16], in which “a qp

torus gets increasingly wrinkled and transform into a SNA without the apparent mediation of any

nearby unstable periodic orbit” [4]. Our aim is to give further numerical evidence, supported by

rigorous results, that in the fractalization route SNAs are NOT produced. To reach this conclusion,

we have analyzed numerically the fine scale structure of several nonchaotic attractors, suggested to

be strange in the literature, discovering that they are really nonstrange. At the end we also provide

a theoretical explanation of the phenomenon.

The models we consider are of the form

xn+1 = fa,ε(xn, θn), θn+1 = θn + ω (mod 1), (1)

where x ∈ RN are state variables and θ ∈ T = R/Z is an angular variable, a ∈ RP and ε ∈ R are

parameters (with ε leading to the qp forcing), and ω is an external frequency (ω /∈ Q). Thus, (1) is

a dynamical system in RN × T whose evolution from an initial condition (x0, θ0) is described by

the n-th powers F
(n)
a,ε (x0, θ0) = (f

(n)
a,ε (x0, θ0), θ0 + nω).

Given (x0, θ0), the dependence on small perturbations of x0, say v0, is measured by the Lya-
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punov exponent

λa,ε(x0, θ0, v0) = lim
n→+∞

1

n
log

∣

∣Dxf
(n)
a,ε (x0, θ0)v0

∣

∣, (2)

where | · | denotes a norm in RN [31]. We also define the maximal Lyapunov exponent in the

x-direction (λ for short)

λa,ε(x0, θ0) = max
v0∈RN\{0}

λa,ε(x0, θ0, v0). (3)

If the orbits on the attractor A have negative Lyapunov exponents we say it is nonchaotic (NA for

short).

We consider invariant objects for (1) that carry the qp motion given by ω. An object which

could be described as the graph of a map X = Xa,ε(θ) is invariant under (1) if the invariance

equation

fa,ε(Xa,ε(θ), θ) = Xa,ε(θ + ω) (4)

holds for all the points on the graph. If Xa,ε is continuous, the object is an invariant curve. If,

moreover, it is a NA, then it is as smooth as the system (1) [17, 18].

In this Letter, we focus on the local structure of NA. Many authors measure fractal dimensions

and other observables to study the smooth or fractal nature of these attractors. In the following

paragraphs, we describe the numerical tools we use.

First of all, to know if an attractor of (1) is NA we estimate λa,ε(x0, θ0). To do this, we take

this (x0, θ0) “on” A (say, we take any point close to A and iterate a transient time) and a unitary

vector v0, and extend (1) by

wn+1 = Dxf(xn, θn)vn, vn+1 = wn+1/|wn+1|. (5)

The average slope of the Lyapunov sums [12]

Ln =

n
∑

k=1

log |wk| (6)

approaches λa,ε(x0, θ0, v0), but taking random v0 the convergence is almost surely to the maximal

Lyapunov exponent: λ = limn→∞
1
n
Ln. Notice that even if λ < 0 and so local errors go to zero,

there can be transients in which errors are highly amplified. To measure local irregularities in the

behavior of Ln we define the maximal positive oscillation of the Lyapunov sums (mpols for short)

up to step n as

Pn = max
j≤k≤n

(Lk − Lj) and P = lim
n→∞

Pn. (7)
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To compute accurately points of a NA we proceed as follows. First, we estimate λ < 0 and P

as above. While λ produces an estimate of how long takes a point to go near A , P says that local

errors in the iterates can be amplified by exp P . If they exceed the accuracy of the computation

all the digits in the iterates can be wrong. So, to do a reliable computation of a point on A , say

with dr decimal digits: (a) we take a large enough transient m with exp(mλ + P ) < 10−dr ; (b)

we use multiprecision arithmetics with dc digits (MP-dc for short), with 10−dr > 10−dc exp P .

Hence, for a given θ0, to estimate the corresponding point in A we take an arbitrary x0 and

compute X(θ0) ≈ f (m)(x0, θ0 − mω). As checks, new computations are done increasing dc and

m, changing x0, and comparing the results. Hence, points on A can be computed in a very reliable

way.

The observable we use to study A at different scales is the (local) variation of X = X(θ),

which we define for θ0 ∈ T, h > 0 and p ∈ N by

Vh,pX(θ0) =

p
∑

i=1

|X(θi) − X(θi−1)|,

where θi = θ0 + ih for i = 0, . . . , p. Heuristically, Vh,pX(θ0) measures the oscillation of X in

the equispaced grid of size p of [θ0, θp]. The averaged slope of the broken line determined by the

nodes (X(θi), θi) is Sh,pX(θ0) = 1
ph

Vh,pX(θ0). If p is fixed and X is smooth, Vh,pX(θ0) goes to

zero with h, but the convergence can be very slow if X is very wild. Moreover, in such a case

Sh,pX(θ0) goes to |X ′(θ0)|.

To study the local structure of A we make successive zooms, trying to catch up the wilder

regions of A . To do so, we fix integers q >> s > 1 and, starting from I0 = [0, 1], we construct

nested intervals Ik as follows (zooming algorithm):

Given an interval Ik, we make s subdivisions of equal length, and choose Ik+1 as the

subinterval that has the largest variation in its grid of size q.

Notice that the length of Ik is `k = s−k. We also define Vk as the variation in the grid of size

p = sq of Ik, and the corresponding averaged slope is Sk = skVk. The zooming algorithm

produces I0 ⊃ I1 ⊃ . . . ⊃ Ik ⊃ . . . with `k → 0. So the intervals go to an unique point. The limit

depends on q, s, but for an invariant graph X the properties around one point are translated to the

whole graph by the qp motion.

We emphasize that multiprecision is crucial to make a reliable study to very small scales. We

have used both PARI package and GMP C-library to compute A and apply the zooming algorithm.
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In the results shown here, the points of the attractors have been computed with more than 30 correct

digits.

Lyapunov exponents have a statistical character. So, we use standard double/quadruple preci-

sion to compute them, provided that the orbit is accurately computed, we use scaling in (5), we

perform several approximations taking different ns, interpolate, etc (see, e.g., [19] and references

therein). In all the examples of this paper we have computed λ with more than 5 correct digits,

enough to distinguish if λ < 0 or λ < 0.

Armed with the described tools, we consider several interesting and elementary qp systems like

(1) that have appeared in the literature. In all of them we select ω =
√

5−1
2

.

The first example is a qp forced logistic map,

xn+1 = axn(1 − xn) + ε sin(2πθn),

θn+1 = θn + ω (mod 1),
(8)

which we refer to as the NK map, for which Nishikawa and Kaneko [15] proposed the fractal-

ization route. These authors analyzed the attractor for a = 3.0, using ε as control parameter,

computing λ (see Figure 1) and the fractal dimension. Even if they reach the conclusion that the

torus is fractal (a SNA) for 0.1553 < ε < 0.1573, they do not exclude the possibility that the frac-

tal nature disappears at much finer scales. This is the computation that we have done, for several ε

in this region. The reported results correspond to ε = 0.157, close to the breakdown. We observe

in Figure 2 that the torus reveals its smoothness at the scale 10−13, and Figure 3 shows that the

maximal slope is ≥ 2.2 × 1013.

The second example is a qp forced Hénon map,

xn+1 = 1 + yn − ax2
n + ε cos(2πθn), yn+1 = bxn,

θn+1 = θn + ω (mod 1),
(9)

where a, b are the parameters of the Hénon map and ε leads to a qp forcing. This model, which

we refer to as the RH map (from rotating Hénon map), is also expected to be the scenario of

creation of SNAs through the fractalization route since the work of Sosnovtseva et al. [16] (see

also [20, 21]). For instance, in [16] it is claimed that a SNA exists for a = 0.7, b = 0.1 and

ε = 0.7, but Figure 4 shows that it is nonstrange at the scale 10−26 [32]. The maximal slope is

≥ 2.2 × 1028.
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The third example is a qp driven logistic map

xn+1 = a(1 + ε cos(2πθn))xn(1 − xn),

θn+1 = θn + ω (mod 1).
(10)

This model, which we refer to as the HH map, was introduced by Heagy and Hammel [22] to

explain a collision mechanism of formation of SNAs, in which two 1D tori collide [33]. Prasad

et al. [4, 23] proposed also the fractalization route, that is what we analyze here. We select

ε = 0.1 and keep a as a control parameter. Figure 5 shows λ as a function of a and A for

a = 3.271, 3.272, 3.275. Before a = 3.271 and shortly after it, the attractor is clearly an invariant

curve, despite the oscillations are not so small. For a = 3.272 and a = 3.275 it does not look an

invariant curve. But we obtain λ ≈ −0.00946 and λ ≈ 0.00089, respectively. It is clear that one

must understand the difference between these two cases.

To analyze the fine structure of A for a = 3.252, we have applied zooms with s = 2, q = 2000

(p = 4000), transient m = 10000 and MP-77 to compute the points on A [12]. In particular we

see that the oscillation is small for k = 73. The shape of A after these 73 halvings is displayed in

Figure 6. The width of the current interval is 2−73 ≈ 10−22. The computation has been checked

for this interval using also MP-96 without observing differences. It also follows that the maximal

slope of the curve is ≥ 6.3 × 1021 (see Figure 6).

In these three examples in which fractalization was proposed as a mechanism of formation

of SNAs, the attractors are really nonstrange. The phenomenon deserves an explanation, that

we propose in next lines, based on the properties of the linearization of the dynamics around an

invariant torus.

For T , an invariant torus X = Xa,ε(θ) of (1), we consider the linear qp system

vn+1 = Ma,ε(θn)vn, θn+1 = θn + ω (mod 1), (11)

where M(θ) = Dxf(X(θ), θ). The variational equations (11) give the growth of perturbations v0

transversal to T . It is an attractor if the spectrum Spec M of the transfer operator M acting on

continuous vector fields v : T → Rn by

(M v )(θ) = M(θ − ω)v (θ − ω) (12)

is inside the unit circle (the “eigenvalues” have modulus smaller than 1).

Spec M is a set of annuli centred in the origin [24, 25]. For non-invertible examples 1 and 3, it

is either a circle (if M(θ) 6= 0 for all θ) or a disk (if M(θ0) = 0 for some θ0). For invertible example
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2 it is either two circles or a full annulus (it could be also one circle, but not in the present case).

In any case, the spectral radius is given by the exponential of the maximal Lyapunov exponent λ.

When varying the parameters, if the spectral radius crosses 1 (λ crosses 0), a bifurcation is

expected. In “regular” bifurcations of tori (like saddle-node, transcritical, period doubling, etc.),

the spectral component that crosses 1 is a circle. In the “strange” bifurcations encountered here,

Spec M is either a disk (examples 1 and 3 – see [13]) or a full annulus (example 2 – see [26]).

Having 1 in the interior of Spec M is not compatible with the persistence of T under perturba-

tions [27]: we cannot apply Implicit Function Theorem to the invariance equation (4) or, in other

words, we can not apply Newton method to solve (4). This would explain why T is destroyed.

The analytical discussion above can be translated into more geometrical terms. Notice that

while in “regular” bifurcations the torus, even if it can be destroyed, does not wrinkles, in the

“strange” bifurcations the slopes of the torus go to infinity. So, from a geometrical point of view

“regular” and “strange” bifurcations are different. The geometrical mechanism suggested by our

experiments is that tangential directions to T merge with transversal ones (in the x-direction)

[34]. At this point T loses normal hyperbolicity [35] and it is destroyed, leaving behind possibly

a SCA. This transition deserves further study.
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[27] R. Mañ é, Trans. Amer. Math. Soc. 246, 261 (1978).

[28] A. Haro and R. de la Llave, mp arc # 05-246 (2005).

[29] M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds (Springer-Verlag, Berlin, 1977), lecture Notes

in Mathematics, Vol. 583.

[30] In the literature, most of the models in which SNAs appear (or seem to appear), are qp forced dynam-

ical systems. Notice, however, that the mechanism of formation of SNAs in [11, 26] works in a more

general setting, not just for qp systems

[31] Since the limit (2) does not always exist, one can replace lim by lim sup in (2).

[32] Other studies [26, 28] suggest that SNAs do not appear in the nonlinear dynamics, but in the linear

dynamics around invariant tori (see also [21]). This linear behavior is the prelude of the destruction of

the regular motion in the nonlinear dynamics.

[33] Notably, the collision mechanism has been proved rigorously in [5, 6, 10] in several cases. It is also

the mechanism of formation on SNA in Harper maps [11], projectivizations of 2D qp linear maps [26].

8



[34] For mechanisms in which two different invariant transversal directions merge, see [26].

[35] There are two conditions for normal hyperbolicity [29]. A geometrical one: for the tangential di-

rections to T one can construct complementary invariant transversal –normal– directions. And a

dynamical one: the dynamics on the transversal directions is “hyperbolic” and “dominates” the tan-

gential dynamics. If λ comes to zero in the transversal directions, a bifurcation is produced because

the dynamical condition fails. Notice, however, that in “regular” bifurcations the geometrical condition

holds, while in “strange” ones it fails.

9



0.15 0.151 0.152 0.153 0.154 0.155 0.156 0.157 0.158
ε

-0.08

-0.06

-0.04

-0.02

0

0.02

λ

Figure 1: The Lyapunov exponent of the attractor as a function of ε, for the NK map with a = 3.0.
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Figure 2: The attractor of the NK map with a = 3.0,ε = 0.157, and several zooms using s = 10, q = 103

(p = 104). We found λ ≈ −0.01173, and mpols P ≈ 32. The plots show the corresponding “broken lines”

for k = 0, 5, 10, 13. To compute A , we have used m = 20000 and MP-57. The estimated precision is

dr ≈ 37. 10
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Figure 3: Averaged slope Sk, in log10 scale, as a function of k with s, q as before. The variation at step k is

Vk = 10−kSk.
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of points” for k = 0, 10, 20, 26. To compute A , we have used m = 50000 and MP-77. Estimated precision
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Figure 5: Top left: The Lyapunov exponent of the attractor as a function of a, for the HH map with ε = 0.1.

Top right and bottom: The attractor of the HH map with ε = 0.1, for a = 3.271, 3.272, 3.275.
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Figure 6: HH map for ε = 0.1 and a = 3.252. Left: the attractor after 73 halvings. The interval is

0.391619055959714067756 + 10−21 × [0.6728242712, 0.7787033896]. Right: The local variation Vk, in

log10 scale, at each step k of the zooms, with s = 2, q = 2000 (p = 4000). The averaged slope at the step

k is Sk = 2kVk.
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