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The invariant manifold structure of the spatial Hill’s problem
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The paper studies the invariant manifolds of the spatial Hill’s problem associated
to the two liberation points. A combination of analytical and numerical tools
allow the normalization of the Hamiltonian and the computation of periodic
and quasi-periodic (invariant tori) orbits. With these tools, it is possible to give
a complete description of the center manifolds, association to the liberation
points, for a large set of energy values.
A systematic exploration of the homoclinic and heteroclinic connections

between the center manifolds of the liberation points is also given.

1. Introduction

This paper is devoted to the study of the centre manifolds of the two libration points
of the 3D Hill’s problem, as well as the invariant stable and unstable manifolds
associated to them.

The motivation for the study comes from some previous work related to the
invariant manifold structures of the collinear equilibrium points of the restricted
three-body problem (RTBP) [1–4]. These manifolds, and the connections between
them, not only provide the framework for understanding transport phenomena from
a geometric point of view, but can also be used to get low energy transfers to
and between the libration points, useful for some spacecraft mission designs such
as Soho and Genesis (see [5–7]). The orbits giving those connections may provide the
backbone for other useful spacecraft orbits in the future.

A complete and systematic study of the homoclinic and heteroclinic connections
between the collinear libration point orbits in the RTBP has not been done. This is
mainly due to the large number of computations that must be performed and the
huge amount of data to be analysed. The explorations done up to now show a lot
of different connections between the several kinds of orbits of the centre manifolds. To
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clarify the situation, it seems convenient to take as a starting point an approximation
of the RTBP, such as Hill’s problem, in which the symmetries allow a substantial
reduction of the total amount of computations and data to be stored and analysed.
This is the main purpose of the present paper, which is also an extension of the
numerical study done in [8, 9] for the planar Hill problem, and in which the
geometrical behaviour of the centre-stable/unstable manifolds of the libration
points was investigated.

1.1 Equations of motion

The spatial restricted problem of three bodies (RTBP) may be defined by

x00 � 2y0 ¼ �x,

y00 þ 2x0 ¼ �y,

z00 ¼ �z,

ð1Þ

with

�ðx, y, zÞ ¼
1

2
ðx2 þ y2Þ þ

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1� �Þ2 þ y2 þ z2

q þ
1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� �Þ2 þ y2 þ z2
q , ð2Þ

where the origin of the rotating coordinate system (x, y, z) is the centre of mass
of the bodies with masses m1 ¼ 1�� and m2 ¼ �, which rest at the respective
points (�, 0, 0) and (��1, 0, 0) (see [10]).

To study the motion in the vicinity of the small primary m2, the origin of the
coordinate system is transferred to the mass �, and the coordinates are scaled by a
factor �1/3, that is

x ¼ �1=3� þ �� 1,

y ¼ �1=3�,

z ¼ �1=3�:

Substituting the inverse of this transformation into the equations of motion, and
using the Taylor expansion of the last term of �, one sees that (1) is again valid if (2)
is replaced by

� ¼
1

2
ð3�2 � �2Þ þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 þ �2

p þ �1=3� �2 �
3

2
�2 þ �2
� �� �

þOð�2=3
Þ: ð3Þ

Assume that the mass � is very small, so we can neglect all the O(�1/3) terms of
�(�, �, �). In this situation, one gets the so-called Hill’s limiting case of the restricted
problem of three bodies (see [10–12])

�00 � 2�0 ¼ 3� �
�

ð�2 þ �2 þ �2Þ3=2
,

�00 þ 2�0 ¼ �
�

ð�2 þ �2 þ �2Þ3=2
,

�00 ¼ �� �
�

ð�2 þ �2 þ �2Þ3=2
:

ð4Þ

In this limiting case, the large primary may be thought of as being situated at
x ¼ þ1 of the y ¼ 0 axis, so system (4) has just one singularity at the origin,
which is where the small primary has been located.
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Hill’s problem equations can also be written in Hamiltonian form. The
Hamiltonian function is

H ¼
1

2
p2x þ p2y þ p2z

� �
þ qypx � qxpy �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y þ q2z

q � q2x þ
1

2
q2y þ q2z
� �

, ð5Þ

where qx ¼ �, qy ¼ �, qz ¼ �, px ¼ �0 � �, py ¼ �0 þ �, pz ¼ �0, is a canonical set of
variables. From (5), it is clearly seen that H corresponds to a Kepler problem under
the perturbation of the Coriolis force and the gravitational zero-order term in �1/3.

As in the RTBP, the equations of motion have a first integral, the Jacobi integral,
defined by

C ¼ 3�2 � �2 þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2 þ �2
p � ð _��2 þ _��2 þ _��2Þ, ð6Þ

whose value is related to that of the Hamiltonian by C ¼ �2H.

1.2 Symmetries and equilibrium points

From the inspection of the terms occurring in the differential equations (4), it follows
that if ð�ðtÞ, �ðtÞ, �ðtÞÞ is a particular solution, then

(i) s1ð�ðtÞ, �ðtÞ, �ðtÞÞ ¼ ð�ð�tÞ,��ð�tÞ, �ð�tÞÞ,
(ii) s2ð�ðtÞ, �ðtÞ, �ðtÞÞ ¼ ð��ð�tÞ, �ð�tÞ, �ð�tÞÞ,
(iii) s3ð�ðtÞ, �ðtÞ, �ðtÞÞ ¼ ð�ðtÞ, �ðtÞ,��ðtÞÞ,

are also solutions. Two of these symmetries hold also for the RTBP.
Because of the limit location of one of the primaries, it is clear that the third

collinear and both equilateral libration points of the RTBP disappear. Actually, it
is readily found from (4) that this system has only two equilibrium points at

L1 ¼ ð�, �, �Þ ¼ ð3�1=3, 0, 0Þ and L2 ¼ ð�, �, �Þ ¼ ð�3�1=3, 0, 0Þ,

which obviously correspond to the first two of the three collinear libration points
of the RTBP.

Due to the symmetry with respect to the � ¼ 0 plane, we can restrict the study to
just one of the two points, for instance L1. The analysis of the linear behaviour of
the flow around this point shows that the eigenvalues are

�1, 2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
7

p
q

¼: � �,

�3, 4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffi
7

p
q

¼: �oi,

�5, 6 ¼ �
ffiffiffiffiffiffiffi
�4

p
¼: ��i, ð7Þ

so that the equilibrium point L1 is saddle� centre� centre, like in the RTBP.

1.3 Regularization of the singularity at the origin

Using the Kustaanheimo–Stiefel (KS) regularization (see [13]) the singularity that
the equations of motion have at the origin can be removed. Recall that this regular-
ization, which is a generalization of the Levi–Civita transformation for the planar
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case, must necessarily be done increasing the number of degrees of freedom of the
problem from three to four, due to topological obstructions. To introduce it, we will
use the Hamiltonian formulation of the problem.

Let u 2 R
4, the KS matrix, L(u), is defined by

LðuÞ ¼

u1 �u2 �u3 u4
u2 u1 �u4 �u3
u3 u4 u1 u2
u4 �u3 u2 �u1

0
BB@

1
CCA: ð8Þ

If q ¼ (qx, qy, qz)
T
2R

3, we define q̂q ¼ ðqx, qy, qz, 0Þ
T
2R

4 and the KS transformation
for the coordinates by

q̂q ¼ LðuÞu: ð9Þ

The associated new momenta, w, are given by

p̂p ¼
2

r
LðuÞw, ð10Þ

where p̂p ¼ ðpx, py, pz, 0Þ
T and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y þ q2z

q
¼ u21 þ u22 þ u23 þ u24 ¼ kuk

2. In this
way, the canonical transformation is given by

qx ¼ u21 � u22 � u23 þ u24, px ¼ ðu1w1 � u2w2 � u3w3 þ u4w4Þ=ð2rÞ,

qy ¼ 2ðu1u2 � u3u4Þ, py ¼ ðu2w1 þ u1w2 � u4w3 � u3w4Þ=ð2rÞ,

qz ¼ 2ðu1u3 � u2u4Þ, pz ¼ ðu3w1 þ u4w2 þ u1w3 þ u2w4Þ=ð2rÞ:

A new independent variable, s, defined by

d

dt
¼

4

r

d

ds
,

must be used to complete the regularization. Following the homogeneous formal-
ism described in [13] time is introduced as an additional coordinate whose associated
momentum is w0 ¼ �hH (hH being the value of the Hamiltonian H). After perform-
ing the canonical transformation, we get for the new Hamiltonian

Hðu,wÞ ¼
r

4
ðHðu,wÞ þ w0Þ,

that can be written as

H ¼
w0

2

u21 þ u22 þ u23 þ u24
2

þ
w2
1 þ w2

2 þ w2
3 þ w2

4

2

þ
1

2
u21 þ u22
� �

u2w1 � u1w2ð Þ þ
1

2
u21 � u22
� �

u3w3 þ u4w4ð Þ

þ
1

2
u23 þ u24
� �

u4w3 � u3w4ð Þ þ
1

2
u23 � u24
� �

u2w2 þ u1w1ð Þ

þ u1u2ðu4w4 � w3u3Þ þ u3u4ðu2w2 � u1w1Þ

�
1

4

h
u61 þ u62 þ u63 þ u64 � 3u41 u22 þ u23 � u24

� �
� 3u42 u21 � u23 þ u24

� �
:

� 3u43 u21 � u22 þ u24
� �

� 3u44 �u21 þ u22 þ u23
� �

� 6 u21u
2
2u

2
3 þ u21u

2
2u

2
4 þ u21u

2
3u

2
4 þ u22u

2
3 þ u24

� �i
þ
1

4
:
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To remove the dependence of H on the parameter w0 we introduce, as is done in [9]
the canonical transformation

uk ¼ �Qk, wk ¼ �Pk, k ¼ 1, 2, 3, 4,

and H � gH, where � ¼ 2ðw0=2Þ
1=4, � ¼ 2ðw0=2Þ

3=4 and g ¼ ðw0=2Þ
�3=2=4. In this

way, we have

HðQ1,Q2,Q3,Q4,P1,P2,P3,P4Þ ¼ H2 þH4 þH6,

where

H2 ¼
1

2
Q2

1 þQ2
2 þQ2

3 þQ2
4 þ P2

1 þ P2
2 þ P2

3 þ P2
4

� �
,

H4 ¼ 2 Q2
1 þQ2

2

� �
Q2P1 �Q1P2ð Þ þ 2 Q2

1 �Q2
2

� �
ðQ3P3 þQ4P4Þ

þ 2 Q2
3 þQ2

4

� �
ðQ4P3 �Q3P4Þ þ 2 Q2

3 �Q2
4

� �
ðQ1P1 þQ2P2Þ

þ 4Q1Q2ðQ4P4 �Q3P3Þ þ 4Q3Q4ðQ2P2 �Q1P1Þ,

H6 ¼ �4 Q6
1 þQ6

2 þQ6
3 þQ6

4 � 3Q4
1 Q2

2 þQ2
3 �Q2

4

� �
� 3Q4

2 Q2
1 �Q2

3 þQ2
4

� ��
� 3Q4

3 Q2
1 �Q2

2 þQ2
4

� �
� 3Q2

4 �Q2
1 þQ2

2 þQ2
3

� �
�6 Q2

1Q
2
2Q

2
3 þQ2

1Q
2
2Q

2
4 þQ2

1Q
2
3Q

2
4 þQ2

2Q
2
3Q

2
4

� ��
:

IfQ3 ¼ Q4 ¼ 0, P3 ¼ P4 ¼ 0 the Hamiltonian becomes equal to the one given in [9]
for the regularized planar problem. As in this case, H2 is the Kepler term and H4 the
Coriolis one. The remaining term, H6, is the perturbation that breaks down the
integrability of the system (see [14, 15]).

The regularized Hamiltonian has now an equilibrium point (centre) at the
origin and the two libration points L1 and L2 become two circles (in configuration
space).

2. Dynamics around the L1 point

Close to the L1 libration point, the dynamics is that of an unstable equilibrium due
to the saddle component of the linear approximation of the flow. However, due to
the centre� centre part, and when all the energy levels are considered, there is a
4D centre manifold around L1, which is also called the neutrally stable manifold.
For a given energy level, it is a 3D set where the dynamics has a neutral behaviour.
On these energy levels there are the periodic orbits and 2D tori.

For values of the Hamiltonian close to that of the equilibrium point, the analysis
of the dynamics in the centre manifold can be done in a semi-analytical way. It
mainly consists in performing a reduction of the Hamiltonian that decreases the
number of degrees of freedom, removing the hyperbolic directions. The reduced
Hamiltonian allows the numerical study of the Poincaré map in the vicinity of the
equilibrium point. This approach, which will be used in this section, is limited by the
convergence of the expansions used (see [16, 17]). To overcome this difficulty we can
proceed to the direct numerical computation of the periodic orbits and 2D tori of the
unreduced Hamiltonian. With this approach we can extend the analysis of the phase
space to a wider range of energy values, that include several bifurcations. The
methodology, and the corresponding results of this numerical approach, are given
in section 6.
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2.1 Normal form around L1

For the semi-analytical approach, the non-regularized Hamiltonian given in (5) will
be used. As has been said, the regularization of the problem under consideration
requires increasing the number of degrees of freedom from three to four. In
this situation, and even after removing the saddle components, we do not have a
2-dimensional surface of section allowing a clear representation of the phase space.
The regularized equations will be used for the globalization of the stable and
unstable manifolds of the centre manifold, since they get very close to the origin.

The linear terms of the flow around the L1 point are given by the second-order
terms of (5)

H2 ¼
1

2
p2x þ p2y
� �

þ qypx � qxpy � 4q2x þ 2q2y þ
1

2
p2z þ 2q2z : ð11Þ

The canonical transformation defined by the symplectic matrix

2�=s 0 0 �2�=s 2o=t 0
ð�2 � 9Þ=s ð�o2

� 9Þ=t 0 ð�2 � 9Þ=s 0 0
0 0 1=

ffiffiffi
�

p
0 0 0

ð�2 þ 9Þ=s ð�o2
þ 9Þ=t 0 ð�2 þ 9Þ=s 0 0

ð�3�7�Þ=s 0 0 ð��3 þ 7�Þ=s ð�o3
� 7oÞ=t 0

0 0 0 0 0
ffiffiffi
�

p

0
BBBBBB@

1
CCCCCCA
,

sets the quadratic terms (11) into the real normal form

H2 ¼ �qxpx þ
o
2

q2y þ p2y
� �

þ
�

2
q2z þ p2z
� �

, ð12Þ

where �, o and � are the positive quantities defined in (7). In (12), we have kept the
same notation for the variables after the coordinate change, which is defined by the
eigenvectors of J rH2 scaled by

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð16�2 � 72Þ

q
, t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oð16o2 þ 72Þ

q
,

The complex normal form for H2 simplifies the resolution of the homological
equations required for the determination of the generating functions used in the
computation of the centre manifold. The complexification is given by

qx ¼ q1, qy ¼
q2 þ ip2ffiffiffi

2
p , qz ¼

q3 þ ip3ffiffiffi
2

p ,

px ¼ p1, py ¼
iq2 þ p2ffiffiffi

2
p , pz ¼

iq3 þ p3ffiffiffi
2

p :

ð13Þ

In this way, we get

H2 ¼ �q1p1 þ ioq2p2 þ i�q3p3: ð14Þ

Denoting by q ¼ ðq1, q2, q3Þ
T and p ¼ ðp1, p2, p3Þ

T , the Hamiltonian can be
expanded as

H ¼ H2ðq, pÞ þ
X
k�3

Hkðq, pÞ, ð15Þ

where H2 is given by (14) and Hk is a homogeneous polynomial of degree k in the
variables q1, q2, . . . , p3. If we only consider H2, the instability is associated with
the term �q1p1. For this linear approximation of the equations, the central part
can be obtained by setting q1 ¼ p1 ¼ 0. If we want the trajectory to remain tangent

120 G. Gómez et al.



to this space, we need to have _qq1 ¼ _pp1 ¼ 0 when, after adding the nonlinear terms,
we set q1 ¼ p1 ¼ 0. Due to the autonomous character of the Hamiltonian system,
we will get the required condition if, for instance, in the series expansion of
the Hamiltonian, all the monomials hkq

k1
1 pk21 q

k3
2 pk42 q

k5
3 p

k6
3 with k1 þ k2 ¼ 1 are such

that hk ¼ 0, where k ¼ ðk1, k2, k3, k4, k5, k6Þ. Another possibility is to remove from
the Hamiltonian all the monomials with k1 6¼ k2 (see [17]).

This normal form computation has been carried out computing, at each order of
the Hamiltonian Hk, the generating function Gk (which is also a homogeneous poly-
nomial of the degree k) that removes the suitable terms of the Hamiltonian according
to the first criterion mentioned above. A sample of the results obtained after the
reduction and realification, using (13), is given in table 1.

2.2 Behaviour of the Poincaré map in the centre manifold of L1

The phase space in the centre manifold is 4-dimensional. To describe the dynamics
we fix a Poincaré section, q3 ¼ 0, p3>0, and we use as a parameter the energy level h
of the reduced Hamiltonian (note that h ¼ 0 for the libration point). With these two
reductions we can get a qualitative description of the phase space, in a neighbour-
hood of the libration point, if we plot the 2-dimensional sections for several energy
levels. This numerical exploration of the Poincaré map could not be done without
skipping the instability by means of the reduction to the centre manifold. As a
drawback, the procedure does not produce explicit solutions, which should be
computed by other methods, for instance with Lindstedt–Poincaré procedures.

In figure 1, we have represented two of these sections with a different qualitative
behaviour. The first one corresponds to h ¼ 0.2 and the second to h ¼ 0.6. Both

Table 1. Coefficients of the quadratic and cubic terms of the reduced Hamiltonian.
The exponents k1, k2, k3, k4, k5, k6 correspond to the (real) variables q1, p1, q2, p2, q3,

p3, respectively

k1 k2 k3 k4 k5 k6 hk

1 1 0 0 0 0 2.508286790247315e þ 00

0 0 2 0 0 0 1.035797111181671e þ 00

0 0 0 2 0 0 1.035797111181671e þ 00

0 0 0 0 2 0 1.000000000000000e þ 00

0 0 0 0 0 2 1.000000000000000e þ 00

3 0 0 0 0 0 �1.236056596683260e� 01

2 1 0 0 0 0 7.549835794876536e� 01

1 2 0 0 0 0 �7.549835794876536e� 01

0 3 0 0 0 0 1.236056596683260e� 01

2 0 1 0 0 0 6.621611364003422e� 01

0 2 1 0 0 0 �6.621611364003422e� 01

2 0 0 1 0 0 �3.265783429459123e� 01

1 1 0 1 0 0 8.760389554987598e� 01

0 2 0 1 0 0 �3.265783429459123e� 01

0 0 2 1 0 0 6.621611364003423e� 01

0 0 0 3 0 0 �4.289371278505288e� 02

0 0 0 1 2 0 5.461014290613933e� 01
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have some common features: the outer curve in both plots is the planar Lyapunov
periodic orbit while at the middle (q2 ¼ 0) there is the fixed point of the Poincaré
map associated to the vertical Lyapunov periodic orbit. The fixed point associated
to the vertical periodic orbit is surrounded, in both cases, by invariant curves of the
so-called Lissajous orbits associated to 2D tori around the vertical periodic orbits.
The resonant zones between the invariant curves are very hard to detect, at least for
these energy values.

On continuing from h ¼ 0.2 to h ¼ 0.6, the planar Lyapunov orbit, reduced to the
centre manifold, becomes hyperbolic. At the critical value where the stability
changes, a bifurcation takes place and two new families of periodic orbits are
born, they are the 3D halo orbits. At the same time, associated to the two new
real eigenvalues of the monodromy matrix, there appear stable and unstable
manifolds. These invariant manifolds act as separatrices of two different kinds of
quasi-periodic motion: the Lissajous orbits already mentioned and the so-called
quasi-halo orbits, which are also 2D tori but around the two symmetric families
of periodic halo orbits. The computation of these manifolds must be done using the
reduced Hamiltonian, since one of the hyperbolic eigenvalues (the one that has been
removed with the reduction) is about 1000 larger than the new hyperbolic one that
has appeared after the destabilization of the Lyapunov orbit.

In figure 2, we have represented the intersections of the stable and unstable
manifolds with the surface of section q3 ¼ 0, p3>0 for h ¼ 0.6. Both manifolds,
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Figure 1. Poincaré map representations of the centre manifold of L1 for h ¼ 0.2
(left) and h ¼ 0.6 (right). For both figures, the centre manifold coordinates q2 and p2
have been represented and the surface of section is defined by q3 ¼ 0, p3>0.
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Figure 2. For h ¼ 0.6, (q2, p2)-projection of the intersections with the surface of
section of the stable and unstable manifolds of the planar Lyapunov orbit in centre
manifold coordinates.
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when far from the Lyapunov planar orbit, look like two segments joining two
couples of symmetrical points of the periodic orbit. In fact, the stable and unstable
manifolds almost coincide and it s very hard to distinguish one from the other. An
orbit of one of these invariant manifolds is shown in figure 3. These solutions can be
useful for practical applications, since they perform a transition from an almost
planar motion (close to the Lyapunov orbit) to an inclined one (close to the
quasi-halo orbits) without any �v. Unfortunately, this natural transition is slow.

For larger values of the energy, the semi-numerical approximation of the centre
manifold is no longer good enough. In the next sections we will show how the periodic
and quasi-periodic solutions can be continued by means of direct numerical methods.

3. Periodic orbits

The numerical computation of periodic orbits of Hamiltonian systems is a well-
known topic and we will not go into the details, which the reader can find, for
instance, in [18]. For the present study we have used the same predictor–corrector
procedure, based on the integration of the variational equations, that was used in
[19] for the RTBP.

Let 	t(x) be the flow associated to the Hamiltonian H of Hill’s problem. The
normal behaviour of a T-periodic orbit through x0 is studied in terms of the
time-T flow around x0, whose linear approximation is given by the monodromy
matrix M ¼ D	T ðx0Þ of the periodic orbit. Since the eigenvalues of M are
{1, 1, �1, �

�1
1 , �2, �

�1
2 g, the stability parameters of the periodic orbit can be defined

as sj ¼ �j þ �
�1
j , for j ¼ 1, 2. They can be of one of the following kinds:

. Hyperbolic: sj 2 R, jsjj> 2. It is equivalent to �j 2 Rnf�1, 1g.

. Elliptic: sj 2 R, jsjj<2. It is equivalent to �j ¼ ei
 with 
2 R (if jsjj ¼ 2, then
it is said to be ‘parabolic’).

. Complex unstable: sj 2 CnR. It is equivalent to �j 2 CnR, j�jj 6¼ 1.

Special attention will be devoted to periodic orbits with elliptic stability
parameters. If sj is elliptic, the f�j, �

�1
j g-eigenplane of M through x0 is foliated

(in the linear approximation) by invariant curves of the restriction of the lineariza-
tion of 	T (that is, the map x ! x0 þMðx� x0Þ), which have rotation number 
.
For the full system, some of these invariant curves persist and give rise to 2D tori,
as will be shown in section 6.
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Figure 3. 3D representation (left) in the (q2, p2, q3)-space and coordinate projec-
tions (right) of an orbit of the stable manifold of the planar Lyapunov orbit with
h ¼ 0.6 (centre manifold coordinates). The intersections of this orbit with the surface
of section q3 ¼ 0 are displayed in figure 2.
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According to Lyapunov’s centre theorem (see [20]) and the numerical values given
in (7), there are two families of periodic orbits emanating from the equilibrium point
L1: the vertical Lyapunov family and the planar Lyapunov family. Both families are
born at the energy level of L1: HðL1Þ ¼ �2 � 3�2=3

� 31=3 ¼ �2:40374928 . . .
In figures 4 and 5, we have represented the characteristic curves (energy vs. period)

and the stability curves (energy vs. si) for both families. Since the range of the
stability parameters is very large, we have plotted 2 arcsinh(si)/arcsinh(2) instead
of si.

Following [21], we can detect and compute the 3D families of periodic orbits that
bifurcate from the Lyapunov planar family. The results obtained are the following:

(1) At the first bifurcation, which is a Type A bifurcation in Hénon’s terminol-
ogy, there appear two symmetrical families of periodic orbits with respect to
the qz ¼ 0 plane. The bifurcation takes place when H ¼ �2:00266, and the
families are known as north and south class halo families, respectively. Their
characteristic and stability curves are given in figure 6.

(2) The second bifurcation is of Type B, and there appear two families of per-
iodic orbits. The orbits are symmetrical with respect to the qx-axis and each
orbit in one family has a symmetrical orbit, with respect to the qz ¼ 0 plane,
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Figure 5. Characteristic curve (solid line) and stability parameters (dashed lines)
of the vertical Lyapunov family of periodic orbits. The right-hand figure is
a magnification of the region of orbits with elliptic normal behaviour.
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Figure 4. Characteristic curve (solid line) and stability parameters (dashed lines)
of the planar Lyapunov family of periodic orbits. The right-hand figure is a
magnification of the region of orbits with elliptic normal behaviour.
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in the other, as is shown in figure 7. The orbits of both families form a two
lane bridge, connecting the planar Lyapunov family with the vertical one.
Their characteristic and stability curves are given in figure 8.

Along the family of halo orbits, there appear three bifurcations that will be
relevant in the qualitative description of the phase space. For the first one, which
happens at H ¼ �0:97607, the small stability parameter is equal to 2 cosð2�=3Þ,
so it gives rise to two period-tripling families. One of the bifurcated families has
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Figure 7. Coordinate projections and 3D representation of some orbits of the
two lane bridge of periodic orbits connecting the planar Lyapunov family of periodic
orbits with the vertical one.
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125Spatial Hill’s problem



an elliptic stability parameter, whereas the other has both stability parameters hyper-
bolic. As for the second and third bifurcations, they are period doubling, since they
correspond to a value of the small stability parameter equal to 2 cosð2�=2Þ ¼ �2.
This happens at energies H ¼ �0:67004 and �0.66376. At the first bifurcation
the bifurcated family has one elliptic stability parameter, while the second bifurca-
tion has both stability parameters hyperbolic. These two bifurcations are represented
qualitatively in figure 9.

4. Stable/unstable manifolds of the centre manifold

The aim of this section is the computation of the stable and unstable manifolds of the
centre manifolds of L1 and L2. In the next section, we will study their homoclinic and
heteroclinic connections.

Assume that we have already obtained, for instance, the stable manifold of some
central trajectory around L1. Making use of the symmetries, its unstable manifold is
easily found by means of

ðqxðtÞ, qyðtÞ, qzðtÞÞ ! ðqxð�tÞ,�qyð�tÞ, qzð�tÞÞ,
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Figure 8. Characteristic curve (solid line) and stability parameters (dashed lines) of
the bridge of periodic orbits connecting the planar Lyapunov family of periodic
orbits with the vertical one.

Figure 9. Qualitative representation of the two period-doubling bifurcations of
the L1 halo family.
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and the stable/unstable manifolds of the symmetric trajectory around L2, can be also
obtained, without any further computation, using now

ðqxðtÞ, qyðtÞ, qzðtÞÞ ! ð�qxð�tÞ, qyð�tÞ, qzð�tÞÞ:

So, the determination of all the manifolds is reduced to the computation of just one
manifold for one of the equilibrium points.

In order to compute one of these manifolds, we have made use of the reduced
Hamiltonian of the problem. Recall that when we removed the monomials
q
k1
1 p

k2
1 q

k3
2 p

k4
2 q

k5
3 p

k6
3 with k1 þ k2 ¼ 1, we obtained the reduction to the centre mani-

fold. Nevertheless, in the implementation of the procedure we have computed all the
coefficients hk and then set hk ¼ 0 for those with k1 þ k2 ¼ 1. Now, if for one
central trajectory, determined by the values of q2, p2, q3, p3, we set q1 6¼ 0 or p1 6¼ 0
we get its stable or unstable manifolds. The two branches of each manifold are
determined taking positive and negative values for these two coordinates.
This representation of both manifolds is much more accurate than the one that
can be obtained using only the linear approach of the flow (which is obtained
taking only the quadratic terms H2 of the reduced Hamiltonian). This allows the
use of moderate values for q1 and p1; for our computations we have used values
between 0.1 and 0.01.

Since we are interested in the computation of heteroclinic trajectories between the
centre manifolds of L1 and L2, we have to match an orbit of the unstable manifold
of a libration orbit around one point with another orbit in the stable manifold of
a libration orbit around the other point. As these orbits go from the vicinity of L1,
which has qx>0, to the vicinity of L2, with qx<0, the section that has been used to
detect the connections is the plane qx ¼ 0, that is, the plane orthogonal to the qx-axis
at the point qx ¼ 0.

For the globalization of the invariant manifolds, in principle, we should have
to take into account the two branches (positive and negative) of each manifold.
Nevertheless, as is shown in figure 10 for the Lyapunov planar periodic orbits,
one of the branches is always in the outer region of the zero velocity curve, so
with them we cannot get any kind of heteroclinic connection. The orbits on these
branches get close to the two asymptotes qx ¼ �

ffiffiffiffiffiffiffiffiffi
C=3

p
of the zero velocity curves,

that can be obtained from (6). This behaviour is common to all the libration point
orbits.
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Figure 10. Second branch of the stable manifold of the Lyapunov planar periodic
orbits around L1 and L2. The left-hand figure is a magnification of the right-hand
one and in it we have represented the zero velocity curve of the energy level.
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In figures 11 and 12, we show the projections of the first intersections of the stable
manifold of the planar and vertical Lyapunov periodic orbits of energy h ¼ 0.2
with this surface of section. The qualitative results for other values of the energy are
similar. As the number of intersections increases, the trace of the manifold with the
section has more and more foldings, which must be computed carefully. The different
foldings tend to get close to the low-order intersections, as can be seen in figure 11 for
the third intersection, which is already rather close to the first.

The projections displayed in figure 13 correspond to the first three intersections of
the stable manifold of all the central orbits around L1 for h ¼ 0.2 and h ¼ 0.6.
Recall that for these two values of the energy, the Poincaré map has different qua-
litative behaviour (see figure 4). As has already been mentioned, for these numerical
computations, the regularized equations must be used, since many trajectories have
close approaches to the origin, in which equations (4) have a singularity.

5. Homoclinic and heteroclinic connections

With the stable and unstable manifolds, and their intersections with the plane qx ¼ 0
obtained in the preceding section, we are able to compute different kinds of
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projection and the right-hand one to the (px, py, pz)-projection.
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homoclinic and heteroclinic orbits. They will be classified according to the number of
times they cross the qx ¼ 0 plane (see figure 14). The qth intersection of Ws

L1
ðp:o:Þ

with qx ¼ 0 will be labelled �
s, q
L1
ð p:o:Þ, where p.o. denotes a certain periodic orbit.

Similarly, we will denote by �
u, p
L2

ðW c
h Þ the pth intersection with qx ¼ 0 of the centre

manifold of L2 at the energy level h, W u
L2
ðW c

h Þ.
With this notation, the low-order homoclinic connections of a periodic orbit will

correspond to

�u, 1
L1

ðp:o:Þ \ �s, 2
L1
ðp:o:Þ, �u, 1

L1
ðp:o:Þ \ �s, 4

L1
ð p:o:Þ ¼ �u, 2

L1
ð p:o:Þ \ �s, 3

L1
ð p:o:Þ,

and the heteroclinic connections to

�u, 1
L1

ð p:o:Þ \ �s, 1
L2
ðp:o:Þ, �u, 1

L1
ðp:o:Þ \ �s, 3

L2
ðp:o:Þ ¼ �u, 2

L1
ðp:o:Þ \ �s, 2

L2
ðp:o:Þ,

�u, 1
L1

ðp:o:Þ \ �s, 5
L2
ðp:o:Þ ¼ �u, 2

L1
ðp:o:Þ \ �s, 4

L2
ðp:o:Þ ¼ �u, 3

L1
ðp:o:Þ \ �s, 3

L2
ðp:o:Þ:

In what follows, we will show the results for the energy level h ¼ 0.2, which
are qualitatively identical to the ones obtained for values of h up to the one

Figure 13. First three intersections with qx ¼ 0 of the stable manifold of the centre
manifold of L1 for h ¼ 0.2 (first two rows) and h ¼ 0.6 (last two rows). The three
plots of the first and third row correspond to the (qy, qz)-projections of the first,
second and third intersections. The plots of the second and last row are the corre-
sponding (px, py, pz)-projections.
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corresponding to the bifurcation of the halo-periodic orbits. The results for values of

h after the bifurcation of the halos will appear in [22].

If we consider the Lyapunov planar periodic orbit, the two sets �u, 1
L1

ð p:p:o:Þ \
�s, 2
L1
ð p:p:o:Þ and �u, 2

L1
ð p:p:o:Þ \ �s, 3

L1
ð p:p:o:Þ are shown in figures 15 and 16. From

them, it can be seen that (at this energy level) �u, 1
L1

ð p:p:o:Þ \ �s, 2
L1
ð p:p:o:Þ has two

points, while �u, 2
L1

ð p:p:o:Þ \ �s, 3
L1
ð p:p:o:Þ has five. The corresponding planar homocli-

nic orbits are also displayed in both figures. For the vertical periodic orbit we have

not been able to find any homoclinic connection for any value of the energy in the

range explored. If fact, the intersections of the �
u=s, p
L1

ðv:p:o:Þ sets are empty for all the

values of p� 6.

When moving to a Lissajous orbit close to the planar Lyapunov periodic orbit, it

seems reasonable to find homoclinic connections near to those found for the periodic

orbit, while if the Lissajous orbit is close to the vertical periodic orbit, the set of
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Figure 15. (qy, py)-projection of the intersections of the stable manifold (first cut
with the section qx ¼ 0) with the unstable manifold (second intersection) of the
planar Lyapunov orbit with h ¼ 0.2. The two homoclinic planar orbits are also
displayed in the figure, (qx, qy)-projection.
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Figure 14. According to the number of intersections with the section qx ¼ 0, there
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low-order homoclinic connections probably will be empty. Namely, the planar orbits
are periodic and so have invariant manifolds of dimension 2. But, since they are
planar, they live in the planar energy manifold, which has dimension 3, and one
may expect isolated homoclinic orbits. On the other hand, the Lissajous orbits
from 2-dimensional tori have 3-dimensional invariant manifolds but live in a
5-dimensional energy manifold where again one may expect isolated intersections.
These are, in fact, the results that have been found. In particular, if we select a
Lissajous orbit close to the planar periodic orbit, the �u, 1

L1
ðLissÞ \ �s, 2

L1
ðLissÞ set is

shown in figure 17. This set has four points that produce the homoclinic orbits
displayed in figure 17. These four orbits are closely related to the two homoclinic
1–2 connections of figure 15. To see this, we have computed the full family of 1–2
homoclinic connections of the centre manifold of L1, for the value of h under con-
sideration. Any of these connections can be determined by the values of (q1, p1) for
the stable/unstable components and (q2, p2, q3, p3) for the centre manifold coordi-
nates. Since (q1, p1) and the value of the energy are fixed, each family of homoclinic
connections can be represented by a 3-dimensional curve. Now, we can take the
points on these curves and follow them under the flow, until they reach the surface
of section q3 ¼ 0, p3>0, which was used for the representation of the centre mani-
fold. The results are shown in figure 18.

Similar results are obtained for the 2–3 homoclinic orbits. Some of them are
shown in figure 19 for the same Lissajous orbit as in figure 17.

With respect to heteroclinic connections, it is seen that the set �u, 1
L1

ðW c
Þ \ �s, 1

L2
ðW c

Þ

is empty. This is clear from figure 20 in which we see that the (qz, py)-projections of
�s, 1
L1
ðW c

Þ and �u, 1
L2

ðW c
Þ are disjoint.

We have just looked for possible heteroclinic orbits connecting the planar periodic
orbits. For h ¼ 0.2, the set �u, 2

L1
ð p:p:o:Þ \ �s, 2

L2
ð p:p:o:Þ has only two points, whose

corresponding orbits are shown in figure 21, and �u, 3
L1

ð p:p:o:Þ \ �s, 3
L2
ð p:p:o:Þ has 12,

that have been displayed in figure 22. Other heteroclinic connections between
Lissajous, halo and quasi-halo orbits can be found in [22].
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As final remark, it must be noted that once we have detected a homoclinic or a
heteroclinic orbit, using the symmetries of the problem, we can obtain many other
ones. More concretely, if ðqxðtÞ, qyðtÞ, qzðtÞÞ is a homoclinic orbit to a certain
Lissajous orbit, then

(i) s1ðqxðtÞ, qyðtÞ, qzðtÞÞ ¼ ðqxð�tÞ,�qyð�tÞ, qzð�tÞÞ,
(ii) s3ðqxðtÞ, qyðtÞ, qzðtÞÞ ¼ ðqxðtÞ, qyðtÞ,�qzðtÞÞ,
(iii) s3ðs1ðqxðtÞ, qyðtÞ, qzðtÞÞÞ ¼ ðqxð�tÞ,�qyð�tÞ,�qzð�tÞÞ,
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Figure 20. Projections on the (qz, py) plane of �s, 1
L1
ðW c

Þ and �u, 1
L2

ðW c
Þ.

Figure 19. The first line shows (qy, qz)- and ðpx, py, pzÞ-projections of the intersec-
tions of the stable manifold (second cut with qx ¼ 0) with the unstable manifold
(third intersection) of the Lissajous orbit of figure 17 around L1 for h ¼ 0.2. The five
heteroclinic connections are also displayed in the figure, (qx, qy, qz)-projection.
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are also homoclinic orbits of the same Lissajous orbit. If we are interested in the
homoclinic orbits of the symmetric Lissajous orbit around the other libration point,
we only need to apply the s2 symmetry to all the preceeding orbits.

6. Numerical computations of the centre manifold

From the normal form computation described in section 2.1, we know that, except
from homoclinic and heteroclinic phenomena, the centre manifold of the L1 libration
point is formed by families of periodic orbits and two-dimensional invariant tori
around them. The numerical computation of the relevant families of periodic orbits
has been already described in section 3. Here we will briefly introduce the method-
ology for the numerical computation of invariant tori. After that, we will describe
the numerical computation of some families of invariant tori. Finally, we will merge
these computations with the ones of periodic orbits of section 3, in order to extend
the Poincaré map representations of the flow, computed using the normal form, to
values of the energy for which the semi-analytical approximation is no longer valid.

6.1 Numerical computation of invariant tori

The procedure used for the refinement and continuation of invariant tori is based
on looking for the Fourier series of the parametrization of an invariant curve on a

-6

-4

-2

0

2

4

6

-0.5-0.45-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05 0

p y

qy

-0.5

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.5

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

Figure 21. (qy, py)-projection of the intersections of the stable manifold (second cut
with the section qx ¼ 0) around L1 with the unstable manifold (second intersection)
of the planar Lyapunov orbit around L2 for h ¼ 0.2. The two heteroclinic planar
orbits are also displayed in the figure, (qx, qy)-projection.

134 G. Gómez et al.



torus, asking numerically for quasi-periodic motion. This kind of procedure has been
introduced in [23].

We could look for a 2-dimensional invariant torus in the form of a parametriza-
tion of the form

 : R
2
�!R

6

ð�1, �2Þ� ð�1, �2Þ,

-6

-4

-2

0

2

4

6

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

p y

qy

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.8 -0.6 -0.4 -0.2 0  0.2  0.4  0.6  0.8

q y

qx

Figure 22. (qy, py)-projection of the intersections of the stable manifold (third cut
with the section qx ¼ 0) around L1 with the unstable manifold (third intersection) of
the planar Lyapunov orbit around L2 for h ¼ 0.2. The 12 heteroclinic planar orbits
are also displayed in the figure, (qx, qy)-projection.
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 being a 2�-periodic function in the �1, �2 variables. We could find such a  by
solving the functional equation

 ð�1 þ to1, �2 þ to2Þ ¼ 	tð ð�1, �2ÞÞ, 8t 2 R, 8�1, �2 2 ½0, 2��, ð16Þ

where o1,o2 are the frequencies of the torus,y and 	t is the time-t flow of Hill’s
problem in Hamiltonian form, that is

d

dt
	t ðxÞ ¼ XHð	tðxÞÞ, 	0ðxÞ ¼ x:

where XH denotes the vectorfield associated to the Hamiltonian H.
In order to reduce the dimension of the problem, as well as to eliminate the

indeterminacy introduced by the t variable in (16), we will not look for a parame-
trization of the whole torus but of an invariant curve on it. For instance, we can
choose �0 2 ½0, 2��, and define ’ : R !R

6 by

’ð�Þ ¼  ð�, �0Þ, ð17Þ

so that it parametrizes the f�2 ¼ �0g invariant curve. It can be seen that ’ satisfies the
following functional equation

’ð� þ 
Þ ¼ 	
ð’ð�ÞÞ, 8� 2 ½0, 2��, ð18Þ

where 
 ¼ T2 ¼ 2�=o2 is the period associated to the o2 frequency, and

 ¼ 2�o1=o2 is the so-called rotation number of the invariant curve f’ð�Þg�2½0, 2��
with respect to the map 	
. It is also easy to see that the parametrization of the
whole torus can be recovered from the parametrization of the invariant curve using

 ð�1, �2Þ ¼ 	ðð�2��0Þ=2�Þ
 ’ �1 �
�2 � �0
2�




� �� �
: ð19Þ

Indeed, from (18) it can be seen that  , defined as in (19), satisfies

	tð ð�1, �2ÞÞ ¼  ð�1, �2Þ þ t





,
2�




� �� �
: ð20Þ

Therefore, we will look for ’ solving (18). In order to turn it into a finite system of
equations, we will discretize both the parameter space and the function space. For
the function space, we will look for ’ as a truncated Fourier series,

’ð�Þ ¼ A0 þ
XNf

k¼1

ðAk cosðk�Þ þ Bk sinðk�ÞÞ,

where Ai,Bi 2 R
6. The criterion for determining Nf will be discussed below. For the

parameter space, we will discretize ½0, 2�� into 2Nf þ 1 equally spaced values,

�i ¼ i
2�

1þ 2Nf

, i ¼ 0, . . . , 2Nf ,

and solve

’ð�i þ 
Þ ¼ 	
ð’ð�iÞÞ, i ¼ 0, . . . , 2Nf ð21Þ

for A0,A1,B1, . . . ,ANf
,BNf

.

yIf we are close to the L1 libration point, o1 and o2 will be close to the horizontal and vertical frequencies,

o and �, associated to the linear behaviour around L1 given in (7).
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System (21) still has two drawbacks. Although, under generic conditions, for sui-
table and fixed values of 
 and 
 there exists a unique torus with the corresponding
frequency vector ðo1,o2Þ, system (21) does not have unique solutions but rather a
two-dimensional manifold of solutions. This is due to the fact that:

. if ’ð�Þ is a solution of (18), then, for any �0 2 R, ’ð� � �0Þ is a different
function with a different Fourier series which is also a solution of (18), and

. through (17) we have chosen one invariant curve inside the torus, but there
are as many of them as values of the �0 parameter.

We can overcome the first source of indeterminacy, for instance, by fixing one
coordinate of A1 equal to zero (this makes sense as long as the corresponding
coordinate of B1 is different from zero). The second indetermination can be
eliminated by fixing a coordinate of A0, which has to be chosen by geometrical
considerations.

The second drawback of (21) is that, due to the instability introduced by the saddle
component of L1, several significant digits are lost through numerical integration
of a given initial condition during 
 time units. To avoid this loss of precision, we use
a multiple shooting strategy: instead of looking for a single ’ satisfying (21), we look
for ’0 ¼ ’, ’1, . . . , ’m�1 satisfying

’jþ1ð�Þ ¼ 	
=mð’jð�ÞÞ, j ¼ 0	m� 2

’0ð� þ 
Þ ¼ 	
=mð’m�1ð�ÞÞ:

Finally, due to the fact that the energy is a relevant parameter in our computa-
tions, we will introduce it in the set of unknowns, together with an additional
equation in the system to be solved. In this way, we will solve

Hð’0ð0ÞÞ � h ¼ 0,

’jþ1ð�iÞ � 	
=mð’jð�iÞÞ ¼ 0, j ¼ 0, . . . ,m� 2, i ¼ 0, . . . , 2Nf ,

’0ð�i þ 
Þ � 	
=mð’m�1ð�iÞÞ ¼ 0, i ¼ 0, . . . , 2Nf , ð22Þ

where the unknowns are

h, 
, 
,A0
0,A

0
1,B

0
1, . . . ,A

0
Nf
,B0

Nf
, . . . ,Am�1

0 ,Am�1
1 ,Bm�1

1 , . . . ,Am�1
Nf

,Bm�1
Nf

, ð23Þ

with h, 
, 
 2 R, Aj
i,B

j
i 2 R

6 and

’jð�Þ ¼ Aj
0 þ

XNf

l¼0

Aj
l cosðl�Þ þ Bj

l sinðl�Þ
� �

, j ¼ 0, . . . ,m� 1:

System (22) is solved both for the refinement of a single invariant torus and for the
continuation of a one-parameter family of invariant tori. In both cases we keep
constant one coordinate of A0

0 and one coordinate of A0
1 (or B

0
1), in order to eliminate

the two indeterminations that we have already pointed out. Moreover:

. In order to refine a single invariant torus, we keep constant two unknowns
among h, 
, 
. This is because the tori that we are looking for are embedded in
2-parameter families (see, for instance, figure 1, where, for a fixed value of the
energy (h ¼ 0.2), there is a one-parameter family of tori, starting at the
vertical Lyapunov orbit and ending at the planar one).

. In order to continue a one-parametric family of invariant tori, we keep just
one of the unknowns h, 
, 
 constant.
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For the refinement of a torus, we have used Newton’s method, and for the continua-
tion of a 1-parameter family, the standard predictor–corrector procedure used for
the continuation of families of periodic orbits. Note that, after all the possibilities
mentioned, we can end up with a linear system of equations that:

. can be square or not,

. can have unique solution or a kernel of known dimension.

To deal with all the different situations in a uniform way, what we compute is the
minimum-norm least-squares solution of a not-necessarily square linear system,
and optionally its kernel. For this goal we have used LAPACK’s routine for QR
decomposition with column pivoting [23, 24].

It must be noted that, unlike the case of periodic orbits, the families of invariant
tori are not continuous but cantorian. Nevertheless, from the computational point of
view we can treat them as if they were continuous, as long as the ‘gaps’ in the families
are small enough, and this has been the situation that we have found.

A comment must be made on the choice of Nf . Following Castellà and Jorba [22],
we estimate the discretization error as

max
i¼0,...,M

’jþ1ð
e��iÞ � 	
=mð’jðe��iÞÞ��� ���, j ¼ 0, . . . ,m� 2

’0ðe��i þ 
Þ � 	
=m ð’m�1ð
e��iÞÞ��� ���

0
B@

1
CA,

where e��i ¼ i2�=M, for M
2Nf þ 1. So we take Nf as large as needed in order to
keep the previous estimate under a given tolerance. Note that this is the relevant
error estimate if we plan to use (18) and (19) to integrate a trajectory on the torus for
an arbitrary large time interval.

The only point that remains is to show how to get initial conditions of an invariant
torus, to start the refinement and continuation procedures from a periodic orbit with
central part. Let x0 be an initial condition of such an orbit with period T. Assume
that its monodromy matrix M :¼ D	T ðx0Þ has an eigenvalue of the form ei� with
� 2 ½0, 2��. Let v1 þ iv2 be an associated eigenvector. Denote the linear approxima-
tion of the time-t flow around x0 by

L
x0
	t
ðxÞ ¼ 	tðx0Þ þMðx� x0Þ,

and define

L’ð�Þ :¼ x0 þ gðv1 cos �0 þ v2 sin �0Þ cos � þ gðv1 sin �0 � v2 cos �0Þ sin �

¼ x0 þ ðv1,v2ÞR�� �0
g

0

� �
,

where (v1, v2) is the 6� 2 matrix with columns v1 and v2, and

R� ¼
cos � sin �
�sin � cos �

� �
:

Then, it is easy to check that

L’ð� þ �Þ � L
x0
	T
ðL’ð�ÞÞ ¼ 0,
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that is, L’ satisfies the linearization of equation (18) with 
 ¼ �, 
 ¼ T . Therefore, we
can take as initial seed for the procedure

h ¼ Hðx0Þ, A0 ¼ x0,


 ¼ T , A1¼ gðv1 cos �0 þ v2 sin �0Þ,


 ¼ �, B1 ¼ gðv1 sin �0 � v2 cos �0Þ,

Aj,Bj ¼ 0 ð j � 2Þ,

ð24Þ

where �0 can be chosen in order to make one coordinate of A1 be equal to zero, so
that one of the indeterminations pointed out above is eliminated. Note that we have
taken 
 equal to the period of the p.o. There is also the possibility of taking an initial
seed such that 
 is equal to a normal period associated to the ei� eigenvalue, that is


 ¼
2�

�
T : ð25Þ

More concretely, in analogy with equation (19), we can reconstruct from L’ a
parametrization of a whole 2-dimensional torus invariant by the linear flow as

L ð�1, �2Þ ¼ L
x0
	ð�2=2�ÞT

L’ �1 �
�2
2�
�

� �� �
:

It can be checked that, with L defined as above,

L
	ð�2=2�ÞT ðx0Þ

	t
ðL ð�1, �2ÞÞ ¼ L ð�1, �2Þ þ t

�

T
,
2�

T

� �� �
ð26Þ

The choice (25) of 
 corresponds to the frequency of the �1 variable in (26). Then,
according to the deduction of (18) from (16), the corresponding 
 must be


 ¼ 

2�

T
¼

ð2�Þ2

�
:

Due to the fact that � is determined up to an integer multiple of 2�, and also that
both ei� and e�i� are eigenvalues of the monodromy matrix, � can be substituted in all
the above equations by ��þ 2�j, for j 2 Z, so that we can take as initial seed


 ¼
2�

��þ 2�j
T , 
 ¼

ð2�Þ2

��þ 2�j
: ð27Þ

The reader is refereed to [19, 26] for additional details concerning technical aspects
of the implementation, including strategies to perform the computations in parallel
on a Beowulf-class cluster.

6.2 Continuation of families of invariant tori

In this section, we make some comments on several families of invariant tori that
have been computed with the above methodology.

6.2.1 Invariant tori around Lyapunov orbits. The full two-parameter family of invari-
ant tori generated by the central part of the planar and vertical Lyapunov families of
periodic orbits is represented schematically in figure 23. These invariant tori are the
well-known Lissajous orbits. They are represented, in the ðh, 
Þ plane, by the points
inside the region delimited by the �, � and g curves. These points have coordinates
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ðh, 
Þ, h and 
 being two of the unknowns (23) of the numerical procedure described
in the previous section.

The � curve represents the vertical Lyapunov family of periodic orbits. Its points
are ðh, �V Þ, where h is the energy level of each orbit (value of the Hamiltonian H) and
�V is the argument in ½0,�� of the eigenvalue of the monodromy matrix correspond-
ing to its central part. The B point corresponds to L1 point, where the Lyapunov
periodic families are born. The C point corresponds to the first bifurcation of the
family, in which it loses its central part. In the following, we will denote as ðh2, 
2Þ
the coordinates of the B point of figure 23.

The upper half of the region of invariant tori f
>
2g has been computed by
starting from several vertical p.o. according to (24), with � ¼ �V and T ¼ TV,
where TV is the period of the vertical orbit. The corresponding initial approxima-
tions of invariant tori have been refined and then continued by keeping 
 fixed. Each
of these uniparametric families of invariant tori (with constant 
) would be seen in
figure 23 as a horizontal line, which would end at the intersection with the � curve to
the right of the figure. This intersection represents the end of the family at a vertical
Lyapunov p.o. of a higher energy level than the starting one but the same �V.

We can also continue iso-energetic families of invariant tori (keeping h fixed
instead of 
). In figure 24 we represent some tori of one of these continuations.
We start at a vertical Lyapunov orbit according to (24). As we continue with h
fixed, 
 decreases until we end at a planar Lyapunov p.o. At this termination, the

 and 
 parameters are numerically checked to be


 ¼
2�

2�� �P
TP, 
 ¼

ð2�Þ2

2�� �P
� 2�, ð28Þ

where TP is the period of the ending planar orbit and �P is the argument in ½0,�� of
the eigenvalue of the monodromy matrix of the p.o. corresponding to its central part.
These values correspond to those given in (27) taking the minus sign for � and j ¼ 1.
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Figure 23. Region of the energy–rotation number plane covered by the two-
parametric family of tori computed starting at the vertical and planar Lyapunov
families of periodic orbits. Vertex A is at the value of the energy at which the halo
families are born. Vertex B is at the value of the energy of the libration point. Vertex
C is at the value of the energy of the first bifurcation of the vertical Lyapunov family.
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Therefore, we can represent the planar Lyapunov family in figure 23, together

with the vertical one, as ðh, ðð2�Þ2=ð2�� �PÞÞ � 2�Þ. These points correspond to the

� curve.

In order to compute the lower half (
<
2) of the region of invariant tori, it is

more convenient to do the continuations by keeping 
 constant instead of h, since in

this case we can avoid the crossing of low-order resonances (there are no such

resonances in the continuation of figure 24, but they are found for higher energy

levels). According to this, we have started from the planar Lyapunov orbits using

(27), taking � ¼ �P with the minus sign and j ¼ 1. As with the upper half of the

region, these continuations would also be seen as horizontal lines that end at the

intersection with a vertical Lyapunov orbit of a higher energy level but the same 
.
The bottom curve g of figure 23 represents the separatrix between the Lyapunov

family of invariant tori and the invariant tori around halo orbits, which starts at the

energy level in which halo orbits appear (the A point). One of the points of this curve

has been computed in section 2.2 for h ¼ 0.2.
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Figure 24. Isoenergetic family of 2D tori starting at a vertical Lyapunov orbit and
ending at a planar one. Energy level: �2.08645.
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Let us now relate the values of ðh, 
Þ in the previous figure to the natural
horizontal and vertical frequencies around the L1 point. We can characterize each
torus of the family by two frequencies, which will be denoted as vertical (oV) and
planar (oP). For a given torus, its frequency vector o ¼ ðoV ,oPÞ is determined
up to unimodular transformations U, in the sense that Uo can be used in a
Fourier expansion of any quasi-periodic trajectory on it. For every admissible
frequency vector, a natural choice is the one for which, when we continuously
move along the family up to the equilibrium point L1, the frequency
vector o ¼ ðoV ,oPÞ tends to the frequency vector corresponding to the centre �

centre part of the linearization of the flow around L1, that is, o :¼
ðoV ,oPÞ ¼ ð2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
7

p
� 1

p
¼ 2:07159 . . .Þ. This is what we mean by the ‘natural’ hor-

izontal and vertical frequencies, and these are precisely the ones physically observed
as motions in configuration space.

Let TP, TV, �P and �V be defined as above, and denote by TP,TV , �P and �V the
corresponding limiting values when we move along the Lyapunov families of p.o.
towards the equilibrium point L1. Using the linear behaviour of the flow around L1

we obtain

�V ¼ 2�
oP

oV

� 1

� �
, ð29Þ

�P ¼ 2� 1�
oV

oP

� �
: ð30Þ

From these two equations, we get

�V ¼
ð2�Þ2

2�� �P
� 2�: ð31Þ

Also, isolating 2�=oV from (30) (which equals TV ), we get

TV ¼
2�

2�� �P
TP: ð32Þ

Note that (31) and (32) correspond to the choice (28) of 
 and 
 when we start from
the planar Lyapunov family. From this fact, equation (29) and the continuity argu-
ment that defines ðoV ,oPÞ, we have that for every torus in figure 23,


 ¼
2�

oV

, 
 ¼ 2�
oP

oV

� 1

� �
: ð33Þ

More concretely, from (20) and (26), the frequencies oV, oH defined by (33) can be
considered as frequencies of the torus being computed. By the above argument, they
tend to oV and oH when we continuously move towards L1 along the Lyapunov
family of tori.

6.2.2 Invariant tori around halo and halo-type orbits. We have also computed the
families of invariant tori that originate, in a suitable energy range, from the following
families of periodic orbits:

. The halo family of p.o., from its bifurcation from the planar Lyapunov
family to the turning point of the small stability parameter (see figure 6).

. The hyperbolic–elliptic bifurcation of the halo family by period tripling, in the
first energy range for which the small stability parameter goes from 2 to �2.
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. The hyperbolic–elliptic bifurcation of the halo family by period doubling,
in the first energy range for which the small stability parameter goes from
2 to �2.

. The Lyapunov planar family, from the energy level of the bifurcation of the
two lane bridge to the energy in which the small stability parameter crosses
�2 (see figure 4).

The corresponding ðh, 
Þ diagrams for all these families of invariant tori are given
in figure 25. In all cases the families of invariant tori have been continued with
fixed 
, starting from the backbone family of p.o. according to (24). Unlike the
case of the previous section, these diagrams are not closed, and the continuation
has been stopped when a given maximum number of harmonics (usually 100) has
been reached.

The right-hand side of the region for the tori around halo orbits, which corre-
sponds to reaching the maximum number of harmonics, detects the crossing of the
rotation number 
 through low-order resonances, at which the tori collapse to
periodic orbits. The three main ‘gulfs’ detected correspond to the values of the
rotation number equal to 2�/2, 4�/5, 2�/3 (from top to bottom). The first and
third peaks correspond to the 1 : 2 and 1 : 3 resonances related to the bifurcating
families of halo-type orbits already mentioned.

6.3 Poincaré sections of the centre manifold

In order to compare the results obtained here with the ones computed using the
reduction to the centre manifold, we will show in this section the evolution with
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Figure 25. Regions in the energy–rotation number plane covered by the two-
parameter families of invariant tori around halo orbits (top left), the elliptic families
bifurcated from halo orbits by period tripling (top right), by period doubling (bot-
tom left) and around planar orbits after the bifurcation of the bridge (bottom right).
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respect to the energy of the behaviour of the Poincaré sections through z ¼ 0, pz>0,
of all the different sorts of orbits computed. These Poincaré sections are displayed
in figure 26.

All the plots in figure 26 have a similar structure. The exterior curve is the Lyapunov
planar orbit of the corresponding energy level. As this orbit is planar, it is completely
included in the surface of section, and is the only orbit for which this happens. The
motion inside the region bounded by the Lyapunov planar orbit is quasi-periodic,
except at some gaps which cannot be distinguished in the picture. In all plots there
is a fixed point on the x-axis, associated to the vertical Lyapunov orbit.

For small energy values, the entire picture is formed by invariant curves sur-
rounding the fixed point associated to the vertical orbit. They are associated to
the intersections of the Lissajous type trajectories around the vertical periodic
orbit, whose evolution from the planar Lyapunov orbit to the vertical one was
displayed in figure 24. At the energy level associated to the first bifurcation of the
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Figure 26. Energy slices of the section z ¼ 0, pz>0 of the invariant tori around L1

computed in the previous section.
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Lyapunov planar family, the halo orbits appear. This can be seen clearly in the
Poincaré map representations, since there appear two additional fixed points
surrounded by invariant curves. Increasing the values of the energy, the family of
halo orbits has two relevant bifurcations, by period tripling and period doubling.
Both bifurcations can be detected in the Poincaré representations. As has already
been mentioned, within the bifurcated families there are some with central part,
which are surrounded by invariant tori. These tori give rise to the ‘island chain’
structure typical of two-dimensional area-preserving maps. To display this behav-
iour more clearly, we show in figure 27 a magnification of the bifurcated periodic
orbits and its surrounding invariant tori.

The region between the tori around the vertical Lyapunov orbit and the tori
around the halo orbits is not empty, as it appears to be the case in the above figures,
and should contain the traces, on the Poincaré map representation, of the invariant
manifold of the Lyapunov planar orbit. These manifolds act as separatrices between
the two types of motion. The same thing happens between the islands of the bifur-
cated halo-type orbits and the tori around the halo orbits. In this case, the region
between the two types of tori is filled with the traces of the invariant manifolds of the
bifurcated hyperbolic halo-type orbits. In all these boundary regions, the motion
should have a chaotic behaviour.

For the last two energy values, the two lane bridge joining the planar and vertical
Lyapunov families has already bifurcated, so the planar family has gained a central
part and, therefore, its periodic orbits are surrounded by invariant tori. The fz ¼ 0g
sections of these tori are the most outer curves that appear in the last two plots of
figure 26. The invariant manifolds of these bifurcated p.o. are the ones that must act
as separatrices between the different kinds of tori for these values of the energy.

In figures 28 and 29, we represent a sample torus of each of the families computed.

7. Conclusions

In this paper, we have shown how semi-analytical and numerical techniques
can be combined to get non-local information of the flow of the 3-dimensional
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Figure 27. Magnification of the Poincaré sections of figure 26 of energy
values �0.778814 (left) and �0.586514 (right). The s points represent the hyper-
bolic–elliptic families of p.o. bifurcated from the halo family by period tripling (left)
and period doubling (right). The� points represent the hyperbolic–hyperbolic ones.
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Hill’s problem. They are applied to get a complete description of the libration orbits
around an extended neighbourhood of the collinear libration points, as well as their
invariant manifolds. The two approaches have their own limitations, convergence
problems and large CPU time computations, but with the use of both a relatively
large interval of energy values can be explored.
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Figure 28. Sample torus, for the energy value �0.586514, around each of the
following families of p.o.: planar Lyapunov family after the bifurcation of the bridge,
halo family and vertical Lyapunov family.

Figure 29. For the energy value �0.586514, a sample torus around the hyperbolic–
elliptic family of p.o. bifurcated from the halo one by period tripling (left) and period
doubling (right).
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[9] Simó, C. and Stuchi, T., 2000, Central stable/unstable manifolds and the destruction of KAM tori
in the planar Hill problem. Physica D, 140, 1–32.

[10] Szebehely, V., 1967, Theory of Orbits (New York: Academic Press).
[11] Hill, G.W., 1878, Researches in the lunar theory. American Journal of Mathematics, 1, 5–26, 129–147,

245–260.
[12] Wintner, A., 1941, Analytical Foundations of Celestial Mechanics (Princeton, NJ: Princeton

University Press).
[13] Stiefel, E.L. and Scheifele, G., 1971, Linear and Regular Celestial Mechanics (Berlin: Springer-Verlag).
[14] Meletlidou, E., Ichtiaroglou, S. and Winterberg, J., 2001, Non-integrability of Hill’s lunar problem.

Celestial Mechanics and Dynamical Astronomy, 80, 145–156.
[15] Winterberg, J. and Meletlidou, E., 2004, Non-continuation of integrals of the rotating two-body

problem in Hill’s lunar problem. Celestial Mechanics and Dynamical Astronomy, 88, 37–49.
[16] Jorba, A. and Masdemont, J.J., 1999, Dynamics in the center manifold of the restricted three-body

problem. Physica D, 132, 189–213.
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