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Assume that a constellation of satellites is required to flight close to a

given nominal trajectory and that there is some freedom in the selection

of the geometry of the constellation. If we are interested in avoiding large

variations of the mutual distances between the spacecraft, we can consider

the possible existence of regions of zero relative radial acceleration with

respect to the nominal trajectory. The motion along these regions will

reduce the expansion or contraction of the constellation. The goal of this

paper is the study of these regions and the controlled motions between

them.

1 INTRODUCTION

Over the last years, the use of constellations of spacecraft has gained much
attention among mission planners because of its many applications, such as
multi–spacecraft interferometry. We want to consider guidance and control
strategies for these kind of applications, but making abstraction of techno-
logical issues, so we will assume that any spacecraft is able to perform any
maneuver in any direction. In this setting, many efforts have been done up
to now, like the constellation–reorientation algorithms with fuel–balancing
of R.W. Beard, T.W. McLain and F.Y. Hadaegh (see [1, 2, 3, 4, 5]), and the
use of artificial potential functions of C.R. McInnes (see [9, 11, 10, 12]) for
collision avoidance purposes.

In the present paper, we want to study natural configurations suitable
for formation flying, as well as controlled motions between these configu-
rations. These configurations will be based on dynamical and geometrical
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considerations, in order to make them independent of the force model under
consideration. Most of the work is done in the Restricted Three–Body Prob-
lem, but all the strategies developed can be easily extended to the general
n–body problem, as is shown in the paper.

The concrete goals of the paper are:

• The study of geometries, around arbitrary nominal orbits of the n–
body problem, with good properties for formation flight.

• The study of controlled motions between the zero relative radial ac-
celeration cones (ZRRAC) obtained from the preceding analysis.

In all the simulations that follow, we will use one of the following four
reference trajectories:

• A halo orbit of moderate amplitude (150 000 km) around the L2 point
of the Sun–(Earth+Moon) RTBP (see Fig. 1). It has been computed
by a Lindstedt–Poincaré procedure [6, 8].

• A transfer trajectory to the previous halo orbit, taken in the branch
of its stable manifold that approaches the Earth (see Fig. 1).

• Refined versions of the previous two trajectories, in the solar system
model given by the JPL DE403 ephemeris, taking Jan 1, 2000 as start-
ing epoch. They have been obtained from the RTBP trajectories by a
multiple–shooting procedure [7].

Figure 1: Halo orbit of the RTBP, transfer trajectory and coordinate pro-
jections of the two previous trajectories. The points marked with a cross
show the position of the Earth and its projections on the coordinate planes.

2 THE ZERO RELATIVE RADIAL ACCELER-

ATION CONES

In order to avoid expansion or contraction in a constellation of spacecraft,
with the corresponding large variations of the mutual distances between
them, we have studied the existence of regions with zero relative radial
acceleration (ZRRA). For a simple model, such as the RTBP, it is possible
to get an analytical expression for the above regions, provided the radius
of the constellation (largest separation between the spacecraft) is small, so
that a linear approach to the problem gives the relevant information about
the local dynamics of the problem.
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We write the RTBP equations of motion as the first order system of
differential equations [13],
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ẏ = η,
ż = ζ,
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with r1 =
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(x − µ)2 + y2 + z2, r2 =
√

(x − µ + 1)2 + y2 + z2.
Denoting the above system by ẋ = f(x), the linear behavior around a

solution x(t) is given by
u̇ = Df(x(t))u, (2)
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and f4, f5, f6 are the last three component of the vector-field f , of which
we have to compute their partial derivatives with respect to x, y and z in
order to get the symmetric sub–matrix F . Writing the array u as (r, ṙ)⊤,
the linear system of Eq. (2) becomes

(

ṙ

r̈

)

=

(

0 I

F J

) (

r

ṙ

)

. (3)

The points with zero relative velocity are those such that ṙ = 0, and, in
this case, we have that the relative acceleration is given by

r̈ = v̇ = Fr.

Figure 2: Zero relative radial acceleration cones along the reference halo
orbit of the RTBP.

To get the radial component of the relative acceleration we must compute
the scalar product of r̈ with r. This radial component will be zero for the
set of points such that

r⊤F r = 0. (4)
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Eq. (4) represents, in general, a quadric which depends on the point x(t)
selected along the nominal solution of Eq. (1). For the reference halo orbit
displayed in Fig. 1, we obtain zero relative radial acceleration cones (ZR-
RAC), which are shown in Fig. 2 at different points of the orbit.

The ZRRAC can be also computed numerically as follows. Given a
certain nominal trajectory, we selected a point on it (x(t),v(t)). Around
this point we consider a sphere, in configuration space, of radius equal to
3 × 10−9 dimensionless RTBP units (0.5 km), and we set the velocity of all
the points of the sphere equal to the velocity of the point selected, that
is, v(t) (zero relative velocity condition). Parameterizing the sphere by the
longitude λ and the latitude φ, the test points of the sphere will be of the
form

(x(t) + Rs(λ, φ),v(t)),

with R = 0.5 km and ‖s(λ, φ)‖ = 1. Now, writing the equations of motion
of the RTBP as

ẍ = g(x, ẋ),

we can evaluate the relative acceleration by

ar(t; λ, φ) = g
(

x(t) + Rs(λ, φ),v(t)
)

− g(x(t),v(t)),

whose scalar product with s(λ, φ) will give the desired relative radial accel-
eration.

arr(t; λ, φ) = 〈ar(t; λ, φ), s(λ, φ)〉 (5)

In Fig. 3 we show the behavior of this function (in red) for different points
along the reference transfer trajectory of the RTBP. (Each plot corresponds
to a different point on the orbit, i.e., to a different value of t in Eq. (5)).
In each plot of this figure, we have also displayed (in magenta) the corre-
sponding ZRRA plane. The intersection of this plane with the RRA surfaces
corresponds to the intersection of the ZRRAC of vertex x(t) with the sphere
of radius 0.5 km around x(t).

Figure 3: Relative radial velocity surfaces associated to several points along
the transfer trajectory of the RTBP.

The qualitative behavior of the function a(t; λ, φ) is almost the same for
all the values of t, either if we move along the halo orbit or along the transfer
trajectory. There appear two maxima, associated to the unstable directions,
and two minima, related to the stable ones. The function a is zero along
two cones with vertex at x(t). These cones give the most suitable directions
to set a constellation of spacecraft. If these cones were invariant by the
dynamics, a set of aligned spacecraft placed on them would keep fixed their
mutual distances. Actually, these distances will vary but this variation will
be slow. This relative behavior will be shown later.
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The cones of zero relative radial acceleration obtained with the analytical
linear approach reproduce, qualitatively and quantitatively, the behavior
detected numerically. The numerical determination can be easily extended
to more realistic models of motion, such as a model of the Solar System
based on the JPL DE403 ephemeris file, as shown in Fig. 4.

Figure 4: Relative radial velocity surfaces associated to four different points
of the refined halo orbit in the full JPL Solar System model.

3 DYNAMICAL BEHAVIOR ALONG ZRRAC

In this section we show the dynamical behavior of the different kinds of so-
lutions with initial conditions along the most relevant directions determined
in the preceding section.

For the first simulation, we have taken five points p0, . . . , p4 along the
direction of maximum radial acceleration associated to the initial condition
of the halo orbit of the RTBP. Of these points, p0 is the initial condition,
and the remaining ones are distributed symmetrically with respect to p0:
p2, p3 being at a distance of 0.25 km from p0, and p1, p4 at a distance of
0.5 km.

The results of a numerical integration of these points for a full period
of the halo orbit (approximately 180 days) are shown in Fig. 5. As it can
be seen, even starting along the most expansive direction, the orbits do not
deviate significantly from the periodic orbit during this time span. Nev-
ertheless, the behavior of the distance to the halo orbit, d(pi(t), p0(t)),
is exponential, as it should be (Fig. 5 right). Also, there is no differ-
ence between the qualitative behavior of d(pi(t), p0(t)) for the trajectories
starting at the same distance from p0: d(p2(t), p0(t)) ≈ d(p3(t), p0(t)) and
d(p1(t), p0(t)) ≈ d(p4(t), p0(t)).

Figure 5: Left: trajectories followed by the points chosen along the direction
of maximum relative radial acceleration. Right: distances, d(pi(t), p0(t)),
between the trajectories of p1, p2, p3, p4 and the base halo orbit p0(t).

Figure 6: Values of the differences d(pi(t), p0(t)) − d(pi(0), p0(0))
(d(pi(0), p0(0)) = 0.25 km for i = 2, 3 and 0.50 km for points i = 1, 4)
for a 5–day time span.

In Fig. 6 we have displayed the deviations of the actual positions with
respect to the initial ones: d(pi(t), p0(t))− d(pi(0), p0(0)). As it can be seen
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from this figure, after five days they are of the order of 14 meters. This
corresponds to an acceleration of 1.5 × 10−10 m/s2, which is approximately
equal to the maximum relative radial acceleration computed along this orbit
(see Fig. 4).

Now, let us test the opposite situation and start from four points along
a ZRRAC generatrix, corresponding also to the initial condition of the halo
orbit of the RTBP, distributed in a similar fashion to the previous case.
We will denote these new points as qi(t), i = 0, . . . , 4. In Fig. 7 we show
the results for the d(qi(t), q0(t)) function, corresponding to the integration
during a full period (180 days) of the different initial conditions. Now,
although the qualitative behavior is still exponential, the final distances are
shorter (they are reduced by a factor of 3) than the ones obtained for the pi

points taken along the unstable direction.
In the left plot of Fig. 8 we display the results corresponding to an

integration analogous to the one of Fig. 6. As it can be seen, the maximum
deviation from the starting separations is now less than 50 cm while for the
pi points was of 14 m. In the right plot of the same figure, we represent the
separations for a 50–day time–interval. We can observe a change of behavior
of the relative distance, from being governed by radial accelerations around
the base orbit to being governed by the exponential escape inherent to the
libration point orbit.

In order to show that the JPL model behaves in the same way as the
RTBP does, we have performed the same two kinds of computations as
before: taking initial conditions along the “worst” and “best” directions,
using Jan 1, 2000 as initial epoch. In Figs. 9 and 10 we have represented
the deviation from the initial separation from the base orbit of the points pi

and qi of the JPL model. It is seen that the behavior is very similar to the
one displayed for the RTBP model.

4 CONTROLLED MOTIONS CONNECTING ZR-

RAC

In this section we will show some results related to the control of a formation
moving within zero relative radial acceleration cones. For simplicity, we
will assume that the formation has only three spacecraft: two of them at
the edges of a segment and the third one at the middle point. This third
spacecraft will move along the reference halo orbit without any control acting
on it. The two edge spacecraft will be controlled by a bang–bang procedure.

In the first situation considered, we fix a point on the reference halo

Figure 7: Distances, d(qi(t), q0(t)), between the trajectories of q1, q2, q3, q4

and the base halo orbit q0(t).
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Figure 8: Deviations d(qi(t), q0(t))−d(qi(0), q0(0)) from the starting separa-
tions from the nominal orbit of the paths followed by the points q1, q2, q3, q4,
for a 5–day time–interval (left) and for a 50–day one (right).

Figure 9: Deviations from the starting separations from the nominal orbit
of the pi points (left) and the qi points (right) for a 180–day interval in the
JPL model.

orbit of the RTBP, put a spacecraft in it, and symmetrically distribute two
more spacecraft on a generatrix of the associated cone. After ∆t time units,
during which the central spacecraft moves along the orbit, the other two are
controlled to be on a segment parallel to the initial one and keeping their
mutual distances fixed.

This situation is illustrated in Fig. 11. We have used different values
for the time displacement of the central spacecraft along the reference orbit:
∆t = 2, 3, 4 and 5 days. For any of these values, we have computed the
impulsive maneuvers that set the spacecraft at the corresponding edges of
the segment in the same amount of time. It must be noted that once the
formation has moved from its initial position, the segment that contains it is
not, in general, on any generatrix of any zero radial acceleration cone. That
is, the ZRRAC are not invariant by the dynamics.

If xi, xf represent the initial and final states (position and velocity) of
a spacecraft, ∆v1, ∆v2 the maneuvers to be applied and φt the time–t flow
of the RTBP, the equations that must be solved for the computation of the
impulsive translation maneuvers are

φ(1−α)∆t

[

φα∆t

(

xi +

(

0
∆v1

))

+

(

0
∆v2

)]

= xf .

Note that this is a system of six equations with seven unknowns: the com-
ponents of the two impulses and the parameter α. We have used the value
of α that minimizes ‖∆v1‖ + ‖∆v2‖, although there is not a significantly
variation of this magnitude with α.

Fig. 12 shows the total cost (cm/s) of the parallel translation maneuvers
for the two spacecraft, for ∆t = 2, 3, 4 and 5 days, when the vertex of the
departure cone moves along the halo orbit and the distance between the
spacecraft at the edges of the segment is of 1 km. Only one generatrix
has been taken on each cone. The ∆v required for the maneuvers of each
spacecraft is, approximately, one half of the total cost. For any value of
∆t there is a point on the halo orbit at which the cost of the translation
is maximum. This point corresponds to the lower point of the halo orbit,
which is the point at which the gravitational influence of the Earth is larger
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Figure 10: Deviations from the starting separations from the nominal orbit
of the pi points (left) and the qi points (right) for a 5–day interval in the
JPL model.

Figure 11: After some ∆t, the spacecraft are controlled to be on a line
parallel to the initial configuration, which is on a generatrix of a zero radial
acceleration cone.

and the cost of the transfer at this (or any other) point behaves almost
linearly with ∆t.

Next we have fixed a departure cone and we have looked for the minimum
and maximum cost generatrices of this cone. We have parameterized the
ZRRAC generatrices by an angle in radians (its zero value does not have
any special meaning). The results corresponding to take as departure cone
the ZRRAC of the initial condition of the reference halo orbit are given in
Fig. 13. As it is clearly seen, for any value of the ∆t displacement, there are
two angles on the cone for which the cost of the transfer is minimum and
two other values for which is maximum. The angles, along the departure
cone, corresponding to these four situations are, approximately, equal to 0,
π/2, π, 3π/2 and 2π. These four directions will be used later.

For the second kind of explorations, both the initial and final configura-
tions of the formation are on a generatrix of a zero radial acceleration cone,
so the transfer is non-parallel.

In the first exploration, the departure generatrix is fixed and the arrival
one moves along the arrival cone, at a distance ∆t from the first. The
results corresponding to these transfers are given in Fig. 14. When the initial
configuration is almost parallel to the final one (both with angle along the
cone equal to zero) the cost of the transfer is minimum, independently of
the value of ∆t. This pattern of behavior of the cost function is independent
of the position of the initial configuration along the halo orbit, as is shown
in Fig. 14 (right). From this figure one can see that the cost decreases as
∆t increases. This is true for almost all the values of angle of the arrival
generatrix except for those close to zero, for which the situation is reversed,
according to Fig. 12.

Next, we have taken as departure generatrices those which correspond
to the minimum and maximum values of the cost function from the parallel
transfers. The results are given in Fig. 15 for ∆t = 2 and 5 days.

Finally, we have studied the transfers from an arbitrary generatrix to an
arbitrary generatrix of two fixed cones. The results are shown in Fig. 16.
From this figure is clear that the cost surfaces reach their minima on the
diagonal of the x–y plane. This means that the transfer costs are minimum
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Figure 12: From bottom to top, the different curves represent the total cost
(cm/s) of the parallel translation maneuvers for ∆t = 2, 3, 4 and 5 days,
when the vertex of the departure cone moves along the halo orbit. The
distance between spacecraft at the edges of the segment is of 1 km. Only
one generatrix has been taken on each cone.

Figure 13: Behavior of the parallel translation cost (cm/s) as a function of
the angle of the generatrix on the departure cone. The curves correspond
to different values of ∆t = 2, 3, 4, 5 (from bottom to top, respectively). The
vertex of the cone has been kept fixed.

when both the initial and final generatrix are almost parallel.

5 FORMATION FLYING USING ZRRAC

From the simulations of the previous section, we can conclude that, for
the three–spacecraft formation described there, the minimum–cost transfers
from a ZRRAC generatrix to a ZRRAC generatrix are obtained when the
departure and arrival generatrices are parameterized by the same angle.

In this section, we will show the results of several simulations of a three–
spacecraft formation like the one of the previous section. These three space-
craft will be controlled so that, at prescribed epochs, the center s/c is on the
reference transfer trajectory of the RTBP, and the edge ones are on a gen-
eratrix of the corresponding ZRRAC, at distances d1 and d2 of the central
s/c. All the generatrices will be taken as parameterized by the same angle
α0. For the control, we will use the procedure that is described next.

5.1 The minimum ∆v control strategy

This control procedure solves the following basic problem: consider a nom-
inal path, defined by a certain initial state

(t0, x0, v0),

and a true state of the spacecraft at t = t0, given by (see Fig. 17)

(t0, x0 + ∆x, v0 + ∆v) = (t0, xt, vt).

The goal is to recover the nominal path at a certain epoch tN > t0, this is,
we want to reach the state

φtN−t0(x0, v0),
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Figure 14: Total cost (cm/s) of the non-parallel translation maneuvers be-
tween two ZRRAC separated ∆t = 2, 3, 4 and 5 days (top to bottom curves
and surfaces). In the left figure, the departure configuration is fixed on a
generatrix with angle equal to zero and the final one moves along the arrival
cone, that has been parameterized by an angle varying between 0 and 2π
represented on the x axis of the figure. In the right hand side figure the
initial point moves along the halo orbit (x–axis measured in dimensionless
time).

Figure 15: Total cost (cm/s) of the non-parallel transfers from the minimum
(m1 and m2 curves) and maximum (M1 and M2 curves) transfer cost direc-
tions of the departure cone. The left figure corresponds to ∆t = 2 and the
figure on the right to ∆t = 5 days.

where φ is the flow associated to the problem. The solution to this basic
problem can be easily adapted to the case in which the final state of the
spacecraft, at t = tN , is not φtN−t0(x0, v0) but some well defined state:
φtN−t0(x0, v0) + (∆xN , ∆vN ).

This control problem has been solved as follows: we introduce a sequence
of maneuvers

∆v0, ∆v1, ...,∆vN ,

to be done at some chosen epochs

t0, t1, ..., tN .

The maneuvers should then verify the following constraint:

φtN−tN−1
(. . . φt2−t1 (φt1−t0(xt, vt + ∆v0) + ∆v1) + · · · + ∆vN−1)+∆vN = φtN−t0(x0, v0).

Of course, there are infinitely many different values of ∆v0, ∆v1, ...,∆vN

verifying the above equation. The ones selected minimize

N
∑

j=0

qj‖∆vj‖
2,

where q0,...,qN are weights which must be fixed in advance. For the simula-
tions we have used

qj = 2−j ,

so the magnitude of two consecutive maneuvers decays approximately by a
factor of 2. For the solution of this problem, the flow φ can be replaced by
its linear approximation, given by the variational equations, provided we are
not far from the nominal path.
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Figure 16: Total cost (cm/s) of the cone to cone transfers for ∆t = 2 (lower
surface) and 5 days (upper surface) as a function of the departure and arrival
angles of the generatrices on their respective cones.

Figure 17: Illustration of the control procedure.

5.2 Simulation parameters and summary of results

The basic parameters of the simulations are:

The tracking time interval: Tt. After Tt time units of uncontrolled flight,
the formation is tracked and a control maneuver is started.

The time interval of a control maneuver: Tm(= tN − t0). Each control ma-
neuver is composed by several correction maneuvers, and lasts Tm

time units. At the end of this time interval the formation is recov-
ered, so that the three s/c are on a ZRRAC generatrix every Tt + Tm

time units (see Fig. 18). The length of the control maneuver interval
must be such that Tm ≤ Tt. In the simulation program, during this
time interval all the correction maneuvers are executed at uniformly
distributed instants (ti+1 − ti = constant). This choice can be easily
modified.

The number of correction maneuvers of each control: N . In order that each
spacecraft can recover its position in the formation, at least two cor-
rection maneuvers must be done (assuming that they are performed
without errors). We have foreseen the execution of N ≥ 2 correc-
tion maneuvers with decreasing magnitude (the decay will be approx-
imately as 1/2n). A typical plot displaying this kind of behavior, for
the magnitude of the correction maneuvers as a function of time, is
shown in Fig. 19.

Figure 18: Illustration of the meaning of the parameters of the simulations.

We have done several simulations in order to see the behavior of the
formation, using different sets of values of the parameters marked as “free”
in the following table.

Angle Distance Distance Tracking Number of Execution
α0 d1 d2 interval maneuvers time interval

Simulation 1 Fixed Fixed Fixed Free Fixed Fixed
Simulation 2 Fixed Fixed Fixed Fixed Fixed Free

Simulation 3 Fixed Fixed Fixed Fixed Free Fixed
Simulation 4 Fixed Free Free Fixed Fixed Fixed
Simulation 5 Free Fixed Fixed Fixed Fixed Fixed
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Figure 19: Magnitude of the correction maneuvers as a function of time.
Each control maneuver is composed by 4 correction maneuvers with de-
creasing magnitude.

For every set of values of the parameters considered, we have analyzed
the behavior of several variables:

1. For each spacecraft of the formation, the x, y and z components of
the differences between the actual position of the spacecraft and its
nominal one. These differences are shown as a function of time. A
typical result, for the x component, is displayed in the following figure.

Each column corresponds to a different spacecraft. Since, for this
simulation, the two edge spacecraft of the formation are at the same
distance from the central one, their corresponding figures are almost
symmetrical. The deviation of the central spacecraft with respect to
its nominal position is almost negligible, since we require this s/c to
follow a true trajectory of the model problem (the RTBP). Each time a
correction maneuver is applied, the deviation decreases and it is almost
zero after the last correction maneuver of a given control maneuver.

2. For each spacecraft of the formation, the magnitude of the control
maneuvers applied. An example is shown in the next figure. Of course,
the magnitude of the controls are closely related to the deviations, so
the pattern of these figures is close to the previous ones.

3. For each spacecraft of the formation, the total magnitude of the con-
trols applied (which is the sum of the magnitudes of all the control
maneuvers. The following figure is an example.

The following items summarize the basic results obtained:

1. The best results are obtained for a spacecraft at d = 0.5 km, with
a tracking time interval equal to the execution of maneuvers time
interval: Tt = TM = 5 hours. During this interval N = 5 maneuvers
are executed. The total ∆v required for the transfer of this spacecraft,
keeping its formation configuration, is approximately equal to 14.2
cm/s.
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2. In the above case, if the distance d is doubled, the total ∆v is also
multiplied by 2.

3. For the simulations done varying the tracking time interval and keeping
fixed the remaining parameters, it has been found that:

(a) The maximum deviation increases almost linearly with the track-
ing interval.

(b) The maximum ∆v increases also almost linearly with the tracking
interval.

(c) For a large set of values of the tracking interval, the total ∆v is
almost constant. When the tracking interval is less than 4 hours,
the ∆v decreases abruptly and can be reduced even to a 70% of
its almost constant value.

4. For the simulations done varying the execution of maneuvers time
interval and keeping fixed the remaining parameters, it has been found
that:

(a) The maximum deviations seem to be independent of the free pa-
rameter and remain almost constant.

(b) There is an almost exponential decrease of both the maximum
and the total ∆v when the time interval for the execution of
maneuvers increases and gets close to the length of the tracking
interval.

5. For the simulations done varying the number of maneuvers, it has been
found that:

(a) The maximum deviations seem to be independent of the free pa-
rameter and remain almost constant.

(b) Both the maximum and the total ∆v increase almost linearly
with the number of maneuvers. The best values are obtained
when only two maneuvers are executed.

6. For the simulations done varying the separation between the space-
craft, it has been found that:

(a) When the separation increases, the maximum deviations also do
in an almost linear way. This is true up to separations of the
order of 3 km, which are probably at the boundary of the linear
approximations used.

(b) Both the maximum and the total ∆v increase almost linearly
with the separation between the spacecraft. The best values are
obtained when this separation is very small.
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7. For the simulations done varying the angle α0 in the cone of zero
relative radial acceleration, it has been found that:

(a) The smallest deviations are found for values of the angle between
60 and 120 degrees.

(b) Close to α0 = 60◦ and α0 = 300◦ there are two local minima of
the total ∆v.

6 CONCLUSION

In this paper we have introduced some new manifolds associated to any
natural trajectory suitable for formation flight. These manifolds are not
invariant under the dynamics. Nevertheless, the natural motion using initial
conditions for the spacecraft of the formation on these manifolds avoids large
variations of the mutual distances between the spacecraft. Different kinds
of controlled motions between these manifolds have been analyzed.
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sion Design Near Libration Point Orbits – Volume 3: Advanced Meth-

ods for Collinear Points. World Scientific, 2001. Reprinted from ESA
Technical Report Study Refinement of Semi–Analytical Halo Orbit The-

ory, 1991.
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