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I. Introduction

S INCE the early 1970s, tethered satellite systems have been
considered and studied for space missions, providing a number

of useful applications [1]: creation of artificial gravity, generation of
thrust maneuvers and exchange of angular momentum, atmospheric
studies, etc. The key characteristic that makes the use of tethers
appealing is lightness. In space, the forces needed to keep objects
together using a tether are small, thus very thin cables can be used to
connect satellites, and small sections mean small weights, an
essential requirement for space operations.

In 2002, Misra [2] performed an analytical study of the planar
three-body tethered system, including the linear stability of their
equilibrium configurations. He concluded that the triangular
configurations of the system are unstablewhereas one of the collinear
configurations is stable. Following the analytical formulation given
in Misra’s work, Tan and Bainum [3] have considered nonrigid
tethered systems using a three-body configuration. The authors
suggested a tetrahedron tethered system for Earth’s aurora
observation missions and gave a preliminary design of a controller
for use with an orbiting tethered system in formation flying.

The present paper studies the equilibrium configurations of a four-
body tethered system. The study is based on the analytical
development done by Misra [2] for the three-body system. Once the
equilibrium solutions of this last problem are known, then the basic
idea is to continue these solutions when one of the bodies of the
system splits into two pieces. The continuation procedure introduced
can be extended to a n-body system.

II. Equations of Motion

Consider a system of four point masses m1, m2, m3, and m4,
connected by tethers of lengths l1, l2, and l3 (with li joining mi and

mi�1) and of total massm. The tethers are assumed inextensible and
massless. The four bodies are also assumed to move on a plane in
such way that the baricenter of the system moves along a circular
orbit around the Earth with angular velocity�. As shown in Fig. 1, a
reference frame is introduced that has its origin at the baricenter of the
system; the x-axis is along the Earth—baricenter line, and the y-axis
is parallel to the baricenter’s velocity vector.

To derive the equations of motion for the tethered system,
expressions for the kinetic and potential energies of the system are
generated, and then substituted into Lagrange’s equation. The
resulting equations of motion are

�1�1 � �1�l21� ��1 � 3�2 cos �1 sin �1�
� �1��3 � �4�l1l2� ��2 cos��1 � �2� � 3�2 cos �2 sin �1�
� �1�4l1l3� ��3 cos��1 � �3� � 3�2 cos �3 sin �1�
� �1��3 � �4�l1l2� _�22 � 2� _�2� sin��1 � �2�
� �1�4l1l3� _�23 � 2� _�3� sin��1 � �3� � 0 (1)

��1 � �2���3 � �4�l22� ��2 � 3�2 cos �2 sin �2�
� �1��3 � �4�l1l2� ��1 cos��1 � �2� � 3�2 cos �1 sin �2�
� �4��1 � �2�l2l3� ��3 cos��2 � �3� � 3�2 cos �3 sin �2�
� �1��3 � �4�l1l2� _�21 � 2� _�1� sin��2 � �1�
� �4��1 � �2�l2l3� _�23 � 2� _�3� sin��2 � �3� � 0 (2)

�4�1 � �4�l23� ��3 ��2 cos �3 sin �3�
� �4��1 � �2�l2l3� ��2 cos��2 � �3� � 3�2 cos �2 sin �3�
� �1�4l1l3� ��1 cos��1 � �3� � 3�2 cos �1 sin �3�
� �1�4l1l3� _�21 � 2� _�1� sin��3 � �1�
� �4��1 � �2�l2l3� _�22 � 2� _�2� sin��3 � �2� � 0 (3)

where �i �mi=m so that
P

4
i�1 �i � 1. The generalized coordinate

�i is the angle between the tether and the x-axis.

III. Analytical Continuation
of the Equilibrium Solutions

Let f1, f2, f3 be the analytical functions that remain when the
derivative terms of �i are set to zero in Eqs. (1–3)

fi��1; �2; �3� � sin �i
X3
j�1

bij cos �j; i� 1; 2; 3 (4)

where bij are the components of the matrix
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Figure 1. Reference system and angular coordinates for the planar four-body tethered system.
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The solutions of

F(θ1, θ2, θ3) = (f1, f2, f3) = 0 (5)

give the equilibrium configurations of the tethered system.

The barycentric coordinates, (µ1, µ2, µ3),
∑3

i=1 µi = 1, of any point inside the triangle of mass represents

a certain mass distribution for the three bodies of the system (see Fig. 2). If the body of mass µ3 is divided

in two pieces, µ3 → (µ3, µ4) with
∑4

i=1 µi = 1, then the triangle must be replaced by the tetrahedron of

masses. All the possible values of the masses of the bodies are represented by the points on and in the

tetrahedron. If, for instance, we consider mass distributions with µ1 = µ2, then the admissible values of the

masses are those represented by the shaded triangle of Fig. (2). Since we are going to use a continuation

(µ   =1, µ   =0, µ   =0)1         2          3 (µ   =0, µ   =1, µ   =0)1         2          3

(µ   =0, µ   =0, µ   =1)1         2          3

(µ   = µ   = µ   =1/3)1      2      3
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Figure 2. The triangle and tetrahedron of masses.

procedure, starting with the equilibrium configurations of the three-body system, we will follow a certain



path in this tetrahedron, starting on its basis (µ4 = 0). To this end, we introduce a continuation parameter

ǫ, so that the Eq. (5) becomes

G(θ1, θ2, θ3; ǫ) = 0. (6)

Now, if ǫ = 0 the solutions of Eq. (6) must give the three-body equilibrium configurations and if ǫ > 0 those

of the four-body case. In order to get the final mass values (µ1, µ2, µ3, µ4) = (µ, µ, µ, 2µ) and the final length

of the tethers l1 = l2 = l3 = 1, one possible choice for the continuation procedure, is

µ3 = (1 − ǫ)µ3 and µ4 = ǫµ3,

l3 = 3
2ǫl2.

The continuation process will always start at the initial equilibrium configurations obtained for (µ1, µ2, µ3)

= (µ, µ, 3µ) with µ = 0.2.

I. Linear Stability

The linear variational equations are obtained introducing small displacements δθi in the equilibrium

configurations under consideration

θi = θ0
i + δθi, with i = 1 . . . 3. (7)

The linearisation of the differential equations for δθi, after introducing a new adimensional independent

variable τ through τ = Ω t, and denoting the derivatives with respect to τ with a prime, gives

MδΘ′′ + CδΘ′ + KδΘ = 0, (8)

where the matrices M , C and K depend on the parameter ǫ. The solutions of Eq. (8) are of type

δΘ = δΘ0 exp(λτ), (9)

so that the linear stability behaviour is given by means of the characteristic exponents λ. The equilibrium

solutions are asymptotically stable if all the exponents λ have negative real part; if there is at least one λ

with a positive real part, then the equilibrium solutions are unstable; and if the linear system has no root

with positive real part but has some imaginary or null root, then the stability analysis will depend on the full

system and not only on its linearisation (marginal stable solutions). Since the system of differential equa-

tions can be written in Hamiltonian form and Hamiltonian systems do not have asymptotic stable/unstable



solutions due to the volume preservation by the flow, the equilibrium configurations of the tethered system

do not have the asymptotic behaviour. The numerical routines available in Press et al5 were used to find

the numerical values λ.

II. Equilibrium Configurations

A. Trivial Equilibrium Configurations

The most trivial solutions of Eq. (4) are those which cancel the sin θi terms of these equations. They are

obtained setting θ0
i = 0, π. In this way, we get the following eight equilibrium configurations

S1a = {(0, 0, 0), (0, 0, π)}, S1b = {(π, 0, 0), (π, 0, π)},

S1c = {(0, π, 0), (0, π, π)}, S1d = {(π, π, 0), (π, π, π)}.

All the above eight configurations are vertically aligned and are displayed in Fig. (3). These solutions could

also be obtained using the continuation procedure already explained, taking as initial states the E1a, E1b,

E1c and E1d configurations classified by Misra.2

A second set of trivial solutions is obtained when the cos θi terms of Eq. (4) vanish. The different

possibilities that we have in this situation give the following equilibrium configurations

S2a =
{

(π/2, π/2, π/2) , (π/2, π/2,−π/2)
}

, S2b =
{

(−π/2, π/2, π/2) , (−π/2, π/2,−π/2)
}

,

S2c =
{

(−π/2,−π/2, π/2) , (−π/2,−π/2,−π/2)
}

, S2d =
{

(π/2,−π/2, π/2) , (π/2,−π/2,−π/2)
}

.

These solutions, that are shown in Fig. (4), are all horizontally aligned and can also be obtained using the

continuation procedure, taking as initial states the configurations E2a, E2b, E2c and E2d of Misra.2

All the S2 configurations are unstable, as in the case three-body tethered system, and the vertically

aligned configurations S1a and S1d are linearly stable while the S1b and S1c are unstable.

B. The Non-Trivial Solutions

The non-trivial solutions of system formed by Eq. (4) are found by the simple Gaussian elimination. There

are two main equilibrium groups: in the first group, only one of the three equilibrium angle is fixed, and in

the second one, the values of two angles are fixed. In the first group we have not taken into account the

symmetric cases, by fixing θi = π. These equilibrium solutions are obtained from the continuation procedure

through the parameter ǫ and they are shown in the Tables (1) and (2).
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Figure 3. From top to bottom, first set of trivial equilibrium configurations: S1a, S1b, S1c and S1d. The

configurations S1a and S1d are stable while S1b and S1c are unstable.
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Figure 4. The S2a, S2b, S2c and S2d trivial configurations. They are all unstable.

The equilibrium configuratios S3 can be seen as natural extensions of E3a and E3b, since the cosine

argument does not change for all ǫ. For the S4 case, it is clear that if ǫ = 0 the angle θ3 is not defined and



Table 1. Equilibrium Solutions of the Non-Trivial Cases

Group θ1 θ2 θ3 Range of ǫ

S3 0 ±cos−1
(

− µ1l1
(µ1+µ2)l2

)

±π
2 (0.0,0.666667)

S4 ± cos−1
(

(1−ǫ)µ3l2
(ǫµ3+µ1−1)l1

)

0 ± cos−1
(

2
3

µ2l2
ǫ(ǫµ3+µ1−1)l1

)

(0.195263, 0.666667)

S5 ±π
2 ± cos−1

(

− 3
2

ǫ2l1
l2

)

0 (0.0,0.666667)

the denominator is smaller than the numerator for ǫ ≤ 0.195263. For this reason, the idea of continuation of

the solutions does not make sense (at least for values of ǫ smaller than 0.195263). The equilibrium solutions

of S5 group have been continued from the of the three-body configurations E2. All these configurations are

unstable.

The equilibrium configurations of S6 has been continued from the three-body configurations E4a and E4b.

The S7 subset were born from E3a of the three-body tethered system, when the angle θ2 = 1200 increases
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Figure 5. From top to bottom, each pair of equilibrium configurations corresponds to S3,S4 and S5, respectively.

The symmetric cases are not displayed.



Table 2. Equilibrium Solutions of the Non-Trivial Cases

Group Range of ǫ

S6 θ1 = ± cos−1
(

2µ3l2+3ǫ2µ3l1
2(1−µ1)l1

)

(θ2, θ3) = (0, 0) or (π, π) (0.0,0.471404)

θ1 = ± cos−1
(

2µ3l2−3ǫ2µ3l1
2(1−µ1)l1

)

(θ2, θ3) = (0, π) or (π, 0) (0.0,0.666667)

S7 (θ1, θ3) = (0, 0) or (π, π) θ2 = ± cos−1
(

− 3ǫ2(µ1+µ2)l1+2µ1l1
2(µ1+µ2)l2

)

(0.0,0.57735)

(θ1, θ3) = (0, π) or (π, 0) θ2 = ± cos−1
(

− 3ǫ2(µ1+µ2)l1−2µ1l1
2(µ1+µ2)l2

)

(0.0,0.666667)

S8 (θ1, θ2) = (0, 0) or (π, π) θ3 = ± cos−1
(

− 2(µ1+µ2)l2+2µ1l1
3ǫ(1−ǫµ3)l1

)

only for ǫ = 0,0.666667

(θ1, θ2) = (0, π) or (π, 0) θ3 = ± cos−1
(

− 2(µ1µ2)l2−2µ1l1
3ǫ(1−ǫµ3)l1

)

(0.14615,0.666667)

towards 1800 the solution does not exist because the cosine argument is greater than one, this happens if

ǫ ≥ 0.57735. These configurations are unstable. For the S8 group, the unique solution of θ3 occurs only for

ǫ = 0.666667, meaning that no continuation procedure could be applied, these configurations are equal to

the ones in S1 which are stable. The others two solutions of S8 are unstable.

III. Conclusions

Equilibrium configurations of the four-body tethered systems have been found. A parametrisation which

takes the three-body tethered configuration to the four-body one has been used. The equilibrium solutions

are given in terms of the trigonometric functions and it has been shown that some solutions do not exist

for any point in the tetrahedron of masses △(µ1 = µ2, µ3, µ4) during the continuation procedure. When the

third body splits into two bodies, two possibilities for the four-body equilibrium solutions arise, thus there

are 16 trivial equilibrium solutions and 24 non trivial equilibrium solutions. However the stability properties

of the three-body solutions can vary along the continuation up to the four-body problem.
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Figure 6. From top to bottom, each pair of equilibrium configurations corresponds to S6,S7 and S8, respectively.

The symmetric cases are not displayed.
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