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1. Introduction

The phenomenon known as splitting of separatrices has been widely studied by several
authors. This phenomenon arises, for instance, when we consider a differential equation
in R? with a fixed point having coincident branches of stable and unstable manifolds
and we perturb it by a periodic or quasi periodic function on time.

The simplest framework — the regular case — is when the perturbation is regular
with respect to the perturbation parameter, e. In such a situation, Melnikov [1§]
(developing some ideas by Poincaré) gave a tool, which is named Poincaré-Melnikov
function, to provide asymptotic expressions of the distance (and other related quantities)
between the perturbed invariant manifolds when ¢ — 0.

If the perturbation is not regular on ¢, for instance because it depends periodically
on t/e, then the Poincaré-Melnikov function does not give, a priori, the right estimate
of the measure of the splitting of separatrices, which in the Hamiltonian case is always
exponentially small in e, (see [10] for the periodic case). These singular cases are
also known as rapidly forced systems. Exponentially small splitting of separatrices
phenomenon was already discovered by Poincaré [21] in a near integrable case.

In 1964, Arnold [2], when studying the diffusion on the action variables of the
near integrable systems ho(I) + chy(p, I, €), realized that the splitting of separatrices
associated to partially hyperbolic tori was exponentially small in €.

In the setting of planar systems with high frequency periodic perturbations, upper
bounds of the splitting of separatrices have been given in [10], [11] and [16]. If we restrict
ourselves to one and a half degrees of freedom rapidly forced Hamiltonian systems,
under suitable conditions, asymptotic expressions validating the prediction given by the
Poincaré-Melnikov function can be found in [7], [8], [13] and [3] (see also references
therein). Two of the more important techniques used in these studies are suitable flow
box coordinates around the stable invariant manifold and Extension Lemma. In [25] a
more general perturbation of the pendulum is considered. The author uses a different
method, based on a continuous averaging procedure, for proving an asymptotic formula
of the splitting of separatrices which differs from the one predicted by the Poincaré-
Melnikov function.

In the examples above the given asymptotic expressions are of the form " e~%/%,
but it is possible to find systems where the true asymptotic formula does not have this
form (see [24]).

This problem can also be studied for planar maps. Lazutkin wrote the first study of
this subject, [17], in which he gave an asymptotic formula for the splitting of separatrices
of the standard map. The complete proof of it can be found in [14]. In this context
in [12] exponentially small upper bounds for the splitting of separatrices are proved for
analytic families of diffeomorphisms close to the identity. In [6], is proved an asymptotic
expression for the splitting of separatrices for some perturbations of the McMillan map,
which is also exponentially small and, in fact, coincides with the prediction given by the
Poincaré-Melnikov function.
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In [23], the author introduces a new method to study the splitting of separatrices
in Hamiltonian systems which is illustrated in the Generalized Arnol’d Model with d+1
degrees of freedom (d > 2). In the model considered in [23] a fixed torus with stable and
unstable invariant manifolds is left invariant after perturbation. The stable and unstable
invariant manifolds are given as solutions of the Hamilton-Jacobi equation. The main
tool to study the splitting of separatrices is a characteristic vector field, which is defined
on a part of the configuration space, has constant coefficients in good variables and acts
on the difference of the stable and unstable manifold by zero. Actually upper bounds
of the splitting of separatrices are given in a general setting and also lower bounds for
special cases are proved.

Recently, resurgence theory (see [9], [5]) has also been used in the problem of the
exponentially small splitting of separatrices. In [22] the author studies the rapidly forced
pendulum by using parametric resurgence. Resurgence theory can also be used in the
study of the exponentially small splitting of separatrices for a map, see [15] where the
authors deal with the Hénon map.

The study we present in this paper is close to another strategy based on matching
complex techniques (see [4]). This method will allow us to study the splitting of
separatrices in the singular case, for instance in the case of one and a half degrees
of freedom rapidly forced Hamiltonian, H,, . of the form

H, . (z,y,t/e) = ho(x,y) + phi(x,y,t/c, p, €) (1.1)
where hy is 2m-periodic with respect to t/e. Suppose that Hp. has a homoclinic
connection and that it can be parameterized by a complex parameter u € {z € C :
|Im z| < a} for some a > 0. Assume that this parametrization has only two singularities
on {z € C: |Imz| = a} located at points u = £ia. These hypotheses are satisfied, for
instance, by the pendulum. Roughly speaking the method is the following:

1) To simplify the exposition, we consider the Hamilton-Jacobi equation associated to
(1.1). The perturbed invariant manifolds will be described by means of two special
solutions of the Hamilton-Jacobi equation, ¢*, satisfying an asymptotic condition.

2) We prove the existence of parameterizations, ¢*, of the perturbed invariant
manifolds in the so called outer domain, O. In this domain, the invariant manifolds
¢+ are well approximated by the homoclinic connection.

3) We look for good approximations of the perturbed invariant manifolds near the

singularities of the homoclinic connection. For this, we derive the inner equation,
+

which is independent of e. These approximations are merely special solutions, ¢,
of the so called inner equation and they are useful only in a small neighborhood
of the singularities: the inner domain, I. In the inner domain the homoclinic
connection is not a good approximation of the invariant manifolds. It is necessary

that INO#@and OUI ={z€C:|Imz| < a}.
We also compute the asymptotic expression of the difference between ¢} and ¢ .

4) By using matching complex techniques, the functions qbf; in the inner domain must
be connected with the invariant manifolds ¢* in the outer domain.
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5) Finally, it is necessary to prove that the dominant term of the splitting of
+

separatrices, ¢~ — ¢T, is given by the one obtained in the inner domain, ¢, — ¢;.
By using this strategy it seems possible to deal with larger perturbations. See [19] for
a good summary.

In this work we perform step 3) mentioned above by considering an inner equation
which comes from a quite general one and a half degrees of freedom rapidly forced
Hamiltonian. In [20], an inner equation derived from an example of a rapidly forced
pendulum is studied by using equational resurgence. Note that we will not use
resurgence theory: our approach is closely to the one given in [23].

Using the results of this paper, we plan, in a forthcoming work, to give an
asymptotic expression for the splitting of separatrices for one and a half degrees of
freedom rapidly forced Hamiltonian systems having more general perturbations than
the ones considered until now.

The paper is organized as follows. In Section 2 we explain the problem and the
motivation to studying it. In Section 3 we introduce notation and state the main results.
Sections 4, 5 and 6 are devoted to the proof of the results of Section 3. Finally, even
when the proofs we will present in this work deal with the analytic case, we have included
an appendix where we state and prove similar results to the ones given in Section 3 for
Hamiltonians which are only differentiable with respect to time. We distinguish between
the analytic and the non-analytic dependence on time in order to clarify the exposition.

2. Context and motivation

2.1. The problem
Consider the Hamiltonian ‘H = Hy + pH;, where 1 is a not necessarily small parameter,

1, ., 1
Ho(z,w):§w2z2 ~ o

N
Hi(z,w, T, 1) = % Z Aj(T, p)w? 227 (2.1)
§=0
r>1,0eR, Ne&N. Moreover {A;}cqo,..n} are arbitrary analytic functions in (7, ut),
2m-periodic and having zero mean with respect to 7.
Our goal is to study the existence and properties of two special solutions qbf; of the
Hamilton-Jacobi equation associated to the Hamiltonian H:

aTqb—i_H(Z? 8Z¢7 T? M) = 07 (2'2)

satisfying that ¢ are analytic in some complex domain E*, ¢ are 27-periodic with
respect to 7 and have the asymptotic property:
. -
Reiﬂoo 0.¢;. (2,7, 1) = 0. (2.3)
We are also interested in computing the asymptotic expression of the difference
0.(¢;, — ¢ ) (2,7, 1) as p — 0 and ITm 2z — —oo.
To shorten the notation, along this work we will denote qbiin simply by ¢*.
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2.2. The model: a inner equation

The Hamiltonian defined by H arises naturally from Hamiltonians of the form

1
H,.(q,p,t/e) = 5292 +V(q) + pe™hi (g, p,t/2, 1, €) (2.4)

such that the unperturbed system (given by Hy.) has a homoclinic connection. Indeed,
assume that V' is an analytic function, h; is analytic with respect to (p,q,p) and
2me-periodic with respect to t. Moreover assume that the Hamiltonian system given
by H,., when p = 0 has the origin as a saddle fixed point, that one branch of the
stable invariant manifold coincides with one branch of the unstable one, given rise to
a homoclinic connection, which can be parameterized by a complex parameter u. We
denote it by vo(u) = (go(u), po(u)) and we suppose that yo(u) is analytic in the complex
strip S, = {u € C : |Imu| < a}, that it has singularities at v = +ia, that it has no
other singularities in {u € C : [Imu| = a} and that in a neighborhood of +ia, there
exist 7 > 1, C¢ € C and functions g, h with ¢(0) = h(0) = 0 in such a way that 7y can
be written as

Ci 1 Ci

- — 1 i =——(1+h ia)). (2.5
qO(“’) (7“—1) (U:Fi(l)rfl( +g(u:F1a))’ po(u) (U,:Fl(l)r( + (u$1a)) ( )
Without loss of generality we can assume that V' (0) = 0. Hence

2 2
Do CL .
=——=——(1 2.
Viao(w) =~ =~ (L4 f(uFia) (26)
with f(0) = 0.
We now consider the symplectic change of variables given by

t v
T = -, = u s = —

= e=w), P o)

which is well defined, in a neighborhood of ia intersected with S,. We notice that the
homoclinic orbit can be expressed locally in the new variables as (u,p3(u)) and the
new Hamiltonian is merely H,.(u,v,7) = €H,.(qo(u),v/po(u), 7). With this change
of variables we have control about the definition domain of the variable w (which will
be a neighborhood of +ia intersected with the complex strip S,). Moreover, since in
these variables the homoclinic connection 7 can be written as the graph of a suitable
function, we expect that also the invariant manifolds of the new Hamiltonian will be
expressed as the graph of adequate functions.

We are looking for a new Hamiltonian H which will be a good approximation of
H, . in a neighborhood of the singularity © = ia (one can proceed in an analogous way
to study the singularity u = —ia). For this reason, we perform the change of variables
given by z = (u —ia)/e, w = e"C?v. This change has constant determinant and
therefore the new system is also hamiltonian with Hamiltonian

v 21 ~—2FF . —2r 2
Hye(z,w,7) =" C°H,(ez +ia,we”*CT,7T)
4,2
Ciw

2r =2
(G
t \etp(ez +ia)

+ Vigo(ez + ia))>

2
Ciw

+ C 2 ue™ * hy(qo(ez +ia), —————
+ # @ ia) e2py(ez +1ia)

STy, E).
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We assume another condition over hi: hj is a polynomial in the (g, p) variables,
that is, hi(q,p, 7, 1t,€) = D o<; j<ps @ij (T, 11,€)q'p’. Therefore we can define

¢ =max{(r —1)i+rj: Yug,e0 > 0,3(7, p,€) € [0,27] x [—po, o] % (0,ep)

s.t. a; (T, p,€) # 0}
In other words, ¢ is the greatest order of the singularities &+ ia among all the monomials
of hy. This quantity ¢ was also defined in [8].

Using expressions (2.5) and (2.6) of go(u),po(u) and V(go(u)) and taking into
account the definition of ¢, we conclude that

Hye(z,w,7) = Ho(2,w) + pe™ 2 Hy (2,0, 7, m) (1 + fo) + g (2.7)
where Hy and H; are of the form (2.1) and fy = go = 0.

Remark 2.1 [t is not difficult to see that we also obtain a system of the form (2.7) if
both V' and hy are trigonometric polynomials with respect to q, and hy is a polynomial
with respect to p. In this case we allow r > 1.

Taking m = ¢ — 2r, and considering system (2.7) for ¢ = 0, we get a Hamiltonian
system with Hamiltonian H. Hence, the study of the existence and properties of
solutions ¢* of the Hamilton-Jacobi equation (2.2) is strongly related to the study of the
invariant manifolds of Hamiltonian systems of the form (2.4). Obviously, if m > ¢ — 2r

m—~_+2r

we can rename {e by p and proceeding as in the case m = ¢ — 2r. The case

m < ¢ — 2r remains unknown.

Remark 2.2 Consider system (2.7) for u = ¢ = 0. In this case, the approzimation
of the piece of the stable (or unstable) invariant manifold we are dealing with can be
represented in the new variables (z,w) as (z,1/z%").

Remark 2.3 The previous procedure is a generalization of the idea given in [20] for
obtaining an inner equation for a perturbed pendulum. In our case the homoclinic
connection is not a Lagrangian manifold thus we can not deal with the Hamilton-Jacobi
equation from the beginning as in [20].

3. Main results

Before presenting the precise statement of the results, let us fix some notation.

For any b > 0 and pp > 0 we introduce the complex strip S, = {7 € C: |Im 7| < b}
and the open ball B(uo) ={p € C: |u| < po}-

Let v, p > 0. We define the complex domains

Dy,={2€C:|lmz| > —yRez+p}, D,,=-D7

V.p?
E,,=DI ND; N{zeC:Imz <0}. (3.1)
To shorten the notation we write Diﬁb = Dvi,p X Spx B(po) and €, ,p = E, ,x Spx B(po).
The first result is related to the existence of analytic solutions, ¢+, of the Hamilton-
Jacobi equation (2.2), satisfying that limge. 100 0.6 = 0 and that are 27r-periodic with
respect to 7.
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Theorem 3.1 Consider the Hamiltonian H = Ho + puHq, where

Ho(z,w) = %UJQZ% - % and  Hi(z,w,T,p) v ZA 7, p)w! 2277 (3.2)
withr > 1,/ € R, N € N.

Assume that {A;}jcqo,...ny are analytic functions on Sy, X B(fo) for some by > 0
and o > 0 and that they are 2mw-periodic, with zero mean, with respect to 7.

Then, if € > 2r, for any v >0 and 0 < b < by there exists pg = po(7,b, L, 7, o) > 0,
such that the Hamilton-Jacobi equation associated to H:

8T¢+H(2782¢7 T, M) = 0 (33)

has solutions ¢~ : D7 pop — C of the form

(2,7, 1) = — +udf(z,mp) + &5, £ €C,

(2r — 1)z2r—1
where ¢F are analytic functions in all their variables and 2 -periodic with respect to T.
Moreover the derivatives 0,¢F are uniquely determined by the condition.:

sup |00 (2, 7, )| < +oo. (3.4)

(2,7 M)ED’Y posb

Remark 3.2 We define e, = (by — |Im 7|)/2 and the complez set
D.(t,u) ={z€C:|Imz| > —yRez+ po(7, | Im7| + &, 0,7, |u])}.

It can be proved that the solutions of the Hamilton-Jacobi equation given in Theorem 3.1,
¢*, are analytic functions in (z,7, ) € D.(T, 1) X Sy, X B(po) respectively, and therefore
we do not lose the analyticity domain with respect to (T, ) provided z € D (T, j1).

The proof of Theorem 3.1 is given in Section 4.

Let ¢* be two solutions of the Hamilton-Jacobi equation (3.3) satisfying the
conclusions of Theorem 3.1. Our goal now will be to give an asymptotic expression
for the difference between 0,¢~ and 0,0 as Im z — —oo.

To state the next result properly we need to introduce some notation. We write

Qj(Ta/uL):Z<'];>Ak(Tnu)v j=0,--,N

k=j
and we define Fj such that 0,Fy = Qy and (Fp) = 0 where (-) denotes, as usual, the

mean with respect to 7.

Theorem 3.3 Under the conditions of Theorem 3.1, there exist py = p1(7,b, 4,7, o) >
po, an analytic function C(p) defined on B(po) and an analytic function g : &,y — C
such that, for any two solutions ¢* of equation (3 3) given by Theorem 3.1,

0:(¢” — ¢+)(Z’ T, ) ~ —ipC(p)e” (z=7+ug(zm1) 45 Tm 2 — —o0. (3.5)
We also have that

(=) T Qo(T +¢,0)
—iC(0) E/ 0z+t5+1 dt  as Imz — —oo, (3.6)
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where {A;}jeqo,.ny are defined by (3.2).

Moreover the function g satisfies that

sup |27 g(z, 7, 1)| < 00 if £>2r

(Z7T7l"‘)eg’y,p1,b

sup |(log \z])’lg(z,T, p)| < oo if £ =2r and either Q1 #0 or (Fy- Q) #0

(2,7 H)EES p1 b

sup  |zg(z, T, 1)] < 00 if £=2r, Q1 =0 and (Fy-Q2) =0.
(z,r,u)eempl,b
Remark 3.4 We emphasize that the function g given in Theorem 3.3 does not depend
on the choice of ¢*. In fact we will see that g only depends on 0,¢* which are determined
uniquely by the condition (3.4).

The proof of Theorem 3.3 will be left until Section 5. The main idea to prove this
theorem is to exploit the fact that the difference 0,(¢p~ — ¢™) satisfies a linear equation
with suitable properties. This idea was already introduced in [23] although the way we
deal with this linear equation is different.

Let us denote a*(u) the k-Fourier coefficient of Qo(7, ). The following corollary
gives an explicit asymptotic formula of 9,(¢~ — ¢1) as p — 0 and Im z — —oc.

Corollary 3.5 Under the same assumptions of Theorem 3.1 and the condition a*(0) #
0, the following asymptotic formulas hold:

i) If either £ > 2r, or £ =2r, Q1 =0 and (Fy - Q2) =0,
2ml
- _ UTAR
i) If € = 2r, and either Q1 # 0 or (Fy - Q2) # 0,
2ml
- _ gy il
0:(¢7 = ¢7)(z, 7y p) ~ pi T+
We will check Corollary 3.5 in Section 6.
If there is no danger of confusion, we will omit the dependence with respect to the

a'(0)e *™ ™ Imz — —o0, u — 0.

1(0) e~ iE=mHr9(=m0) - Ty 2 — —00, 1 — 0.

parameters g and po in the notation. Throughout the paper this dependence will be
analytic.

3.1. Remarks

o We stress that Theorems 3.1 and 3.3 apply for not necessarily small values of p.

e Note that our results are only valid if £ > 2r. The case ¢ < 2r must be treated
differently.

e Our results agree with those on the difference between ¢ and ¢~ given in [20] for
the particular case

1 1 :
0-¢ — §22(32¢)2 + 2;(1 — psint) = 0.

Performing the linear change ¢ = —41) we obtain equation (3.3) for r = 1, = 2
and H; = z~%(sin7)/2. In this case, N = 0 and hence Q; = 0 and (Fj - Q5) = 0.
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e We notice that the asymptotic expression given in Corollary 3.5 is closely related to
the Melnikov function M of the Hamiltonian system H,, ., defined in (2.4). In this
case we are considering p as a small parameter. In fact, assuming the hypotheses
of Subsection 2.2 if either £ > 2r or £ = 2r, )1 = 0 and (Fp-Q2) = 0, we have that

e M (u, ) ~ 2Re (C20,(¢" — ¢7)((u —ia)/e,0)). (3.7)

Indeed, let J(q,p,7) = {ho, h1}(q,p, 7) and let Ji(q,p) be its k-Fourier coefficient.

It is clear that there exist functions h; satisfying h=(0) = 0 such that
+

J,
Ji(qo(w), po(u)) = (uif#(l +hy (u£ia)),

in a neighborhood of u = Fia respectively. We note that J,'j = Ji . In [3] and [8]
(for £ € N) it is proved that, if J;; # 0, then

dr
I'(t+1)

Following the changes of variables given in Subsection 2.2, tedious but easy

"M (u,e) ~ Re (i Jge ™= )e /",

computations show that

N

1 — AlkT
ZA]'(T,ILL) = W Z Jk,Oe k .
3=0 T kez\{0}

Thus J;, = a'(0)(C%. Finally (3.7) follows from the asymptotic expression given
in 7) of Corollary 3.5.

e In the case £ = 2r and either Q1 # 0 or (Fy-Q2) # 0, the difference 9,(¢p~ —¢™) has
an extra term given by the function g which is not related (a priori) to the Melnikov
function. We expect that, in the cases where g be of order log|z|, the Melnikov
function will not measure the splitting of separatrices even when the parameter p
is small.

This case is fulfilled, for instance, if we look for the inner equation for the perturbed
pendulum

1
H,.(q,p,t/e) = §p2 + (1 —cosq) + w(p? cos(t/e) + cosgsin(t/e)).

Indeed, the homoclinic orbits are given by
(qo(u), po(u)) = (£2arctan(sinh u), £2sechu).

Let us consider the + sign. The second component has poles of order 1 at
u = +im/2 + 2kw. Hence, following the notation given in Section 2, one has that
r=1a=m/2and C, = —2i. Writing hy(q, p, T, p, €) = p* cos(t/e) +cos gsin(t/e),

we obtain
2 C3 1/1
é—ihl(qo(sz +ia), Wzﬁia), T, [, €) = = (5 sin 7 4+ w?z* cos 7') (14+0(ez))

and consequently,

1
Hi(z,w, 7, p1) = = (5 sin7 + w?z* cos 7').
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Obviously, in this case, { = 2r, Qo(1) = %SiHT + cosT, and hence Fy(T

) =
—2cosT +sinT, Qi(7) = 2cosT and Qa(7) = cosT. We have that Qi() # 0
and <F0 . QQ) = —le

4. Solutions of the Hamilton-Jacobi equation

In this section we prove Theorem 3.1. To do so we look for solutions of the Hamilton-
Jacobi equation (3.3):

0, 6* + H(2,0.6*,7) = 0 (4.1)
of the form

0% (2,7) = dol2) + pei (z,7) + &5, £ eC. (4.2)
where ¢o(z) = —1/((2r — 1)2*"~!) with the condition that, given v > 0, 0 < b <
bo and p big enough, ¢i is analytic on Di op 2m-periodic with respect to 7 and

SUP(z,men? , 271097 (2, 7)| < o0.

We observe that both +¢q are solutions of (4.1) for u = 0, but since, by Remark 2.2,
the homoclinic orbit of Hy. can be approximated by (z, d,¢0) in the (z,w) variables we
choose the + sign.

We split the proof of Theorem 3.1 into five steps which are developed in Subsections
4.1,4.2, 4.3, 4.4 and 4.5 below.

Our strategy to prove Theorem 3.1 will be to apply a suitable version of the fixed
point equation. For that first we define the Banach space we will work with. Actually,
such Banach spaces are functional spaces of Fourier series having Fourier coefficients
with potential decay when |z| — oo. The precise definition and properties of these
Banach spaces are given in Subsection 4.1.

In Subsection 4.2 we deduce a partial differential equation for both ¢* := 9,¢7.
Such equation can be expressed in the form

Orp* + 0.7 = F(pT) (4.3)

with F' a known analytic function.

Clearly the operator L£(¢) = 0,1 + 0,1 is not bijective but has left-side inverse in
the Banach spaces introduced above, which are studied in Subsection 4.3. We denote
them by B*.

In Subsection 4.4, we prove that the fixed point equations ¢ = B*(F(¢)) deduced
from equation (4.3) have two solutions ¢* (one for the + case and another one for the
— case) such that SUP(; ryent | |21 (2, 7)| is bounded.

Finally it only remains to show that there exist solutions ¢* of the initial equation
(4.1) such that 9,¢* = 0.¢y + ue™*. This is done in Subsection 4.5.

We denote by (-) the mean with respect to 7.
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4.1. The Banach spaces: Definition and properties

This Subsection is devoted to introducing the Banach spaces we will deal with. We also
state some of their useful properties.

On the one hand, we observe that all the 2m-periodic with respect to 7 solutions of
the unperturbed Hamilton-Jacobi equation 0,¢ + Ho(z,0.¢) = 0 going to 0 as |z| goes
to 0o, do not depend on 7 and they satisfy that 9.¢(z) = £27%". On the other hand we
are looking for 27-periodic solutions of the Hamilton-Jacobi equation (2.2); hence we
will consider spaces of Fourier series with Fourier coefficients having potential decay to
0 as |z| — oo.

Now we give a precise definition of our Banach spaces.

For v € R and v, p > 0, we write E,j;p = D¥, x B(u), with D, defined in (3.1),
and we define the functional spaces

X! =A{h: 51; : h is analytic and  sup [2Yh(z,pu)| < 400}
(z,u)eﬁf o
It is clear that XY equipped with the norm
[hll, = sup ["h(z, p)] (4.4)
(z,u)eﬁi o
is a Banach space.

Now we define the space X . of Fourier Serles with coefficients in X¥. That is, a

function f: D, x Sy X B(pg) — C belongs to A b if and only if

i) fis analytlc on D, x Sy X B(pig).
ii) f is 2m-periodic with respect to its second variable.
iii) Let fi be the k-Fourier coefficient of f. We ask f; to satisfy:
fee Xt and | fullo e’ < +oo.
kEZ

We endow X b with the norm

1 s, = > 1l e
¥,psb

kEZ
and it becomes a Banach space The proof of this fact can be found in [23].
We will write X7, = X b when we will state common properties of both Banach
spaces. If there is no danger of confusion about the definition domain D% » % Sy x B(po),
we will denote

- lvs =1l and XY =X7 .

Remark 4.1 We emphasize that checking that a 2m-periodic function f belongs to X”
1s equivalent to proving that it is analytic with respect to u, that the k-Fourier coefficient
belongs to XY for k € Z and that || f|l,p < +00. In other words the analyticity with
respect to T is an immediate consequence of it) and 1i).
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Remark 4.2 Assume that f € XY. We denote its k-Fourier coefficient by f,.. We note
that

sup [ f (2 ) < D[ flz ) €| < f e
(ZT/L)E'D,Ypb keZ

Conversely, if f : D%p X Sy x B(pg) — C is an analytic function, satisfying that
SUP(, , yept |27 f(2, T )| < +oo, then for allb <V, f € XY, .. This fact follows
R ,Y,p’b/ W
from the estimate

Il fell, < sup 12" f(z, 7, 1) eIk for b<b' <V
(Z,T,M)ED,‘:::,p’b

which 1s obtaining by using the equality
1 [ . v 1
fule) = g [ Femme i dr = e / FloT £ 18,0 e dr,
taking the + sign if k < 0 and if kK > 0, we choose the — sign.
The next lemma provide fundamental properties of the Banach spaces X.

Lemma 4.3 Let v,p,b >0 and v,n € R.
i) If v>mn, X C X". Moreover denoting a,, = (1 + ~?)~1/2

1Pllnp < (pay)" “[Allup, — if b€ X7 (4.5)
ii) If h € X¥ and g € X", the product hg € X**" and

18 lln < [Rllvellgllns. (4.6)
i) If h € XY, then there exists a constant A, such that for I € N{O} we have that

Ohe Xy, and (|00 SUCTTAL B2y . (4.7)

Proof. We observe that, if z € DT, then |z| > p(1 + 7?)~2 and therefore, formula
(4.5) follows easily from the definition of the norms.
Now we check 7). Let h € X” and g € X". We denote by hy, gr and (hg); the

k-Fourier coefficients of h, g and hg respectively. It is clear that, for z € D;—L’ p

2 1hgh(2)] < 3 R (2)] < 3 Ihalllgiily < +oc.

i€z i€z
Therefore, since |k| < |k — i| + |7],

1rgllusns < D Mhillullgi—illy € < 1Allsllgllas
ki€l
and we obtain (4.6).

Finally we prove #ii). Let [ € N\{0}. It is clear that 9Lh satisfies conditions i)
and ii) of the definition of the Banach spaces lej;z - Lo checking condition iii), we
introduce the constant C., = v(4(1 +~2)2(1 + 492)/2)™" < 1/4. Geometric arguments
allow us to deduce that

{ueC: |u—z|<C|z|}CD7p, if z¢€ Dx (4.8)

2v,4p*
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Let hj be the k-Fourier coefficient of h. By Cauchy’s formula,

OLha(2)] < L/% a2+ |2]C @) a9 < [P 2
SREN=oner Jy v =

|2+ O max{(1 + C,)”, (1 = Cy)"}

and hence, summing the corresponding Fourier series, we deduce (4.7). m

for z € D27 1p
The following lemma deals with the composition of functions belonging to the spaces
X% and X" of the form F(z + puf(z,7),7).

Lemma 4.4 Letv,p,b>0,vER and x> —1. We fiu F € X/, and [ € X

pr
Assume that p satisfies the inequality
1 p K)+1
cr A 4.9
wC e, < 5 (s ) (49)

with C., satisfying (4.8). We define the formal expression
Zl'z (z, ) fl(z, 7). (4.10)
1>1

Then there exists a constant B, such that

Tr(f) € X0008 s 1 Te(Pllvrnsrs < poByullFllar N fllas - (4.11)

Moreover, the function F(z,7) = F(z 4+ uf(z,7),7) belongs to X5 4t

Proof. We fix v,b,p,v > 0 and k > —1. From now on we will denote X%Ap’b simply

by X" and consequently we will write || - ||, = || - ||X;7 e’
Given F' € XY ,, by #ii) of Lemma 4.3, we get that for all | € N\{0}

OLFeX™ and  ||OLF ||y < UCTTA, | Fllxr (4.12)

Let now f € &, C A" Since £ + 1 > 0, by i) Lemma 4.3 and (4.12), we have that
OF-fle X! “H)*” X147 Denoting p, = p(14++?)~2 and using again Lemma 4.3,
we have that
OLF - i < PSS F sl £l

< NA,LC (P50 l+1||F||X" £

vspyb

pib”

Then we have that 7z(f) is a series of functions belonglng to X*1+ Moreover, since
p satisfies (4.9) and || f{lxp < || fl|lx=,,, the constant p, satisfies P57 O fllep < 1/2
and therefore we have that
1
1 Te(F)lwsrsmp < Y 7l NOE - fllnsrsoy
Al

1>1
< A CoM I F e, D (05 g £l
1>1

< 24,07 ol Flles I s

P50

(4.13)

and (4.11) is proved.
Finally, we notice that since the condition (4.9) is fulfilled by f and p, by
Remark 4.2,

paf (2. 7)< 2™ poll fllow < 12103 ol fll e

Y5p5b

< C,lzl.
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Hence by (4.8), z + uf(z,7) € D,, for all (z,7) € D;Ap X Sp. Then it is clear

that, by Taylor’s theorem F' = F + Tp(f) and therefore by (4.11), F € X provided
Tr(f) e XFHIV Cc XV, m

From now on we deal only with the + case, the — case being analogous. For this
reason we will skip the + sign of our notation in the remaining part of this Section.

4.2. The partial differential equation 0,¢; satisfies

Since ¢y is a solution of equation (3.3), for = 0, ¢ = ¢g + up; will be solutions of the
Hamilton-Jacobi equation (3.3) if and only if ¢; satisfy the equation:

87’?251 + 6z¢1 + Hl (Zv az¢0 + ,uaqula T) + gz2r(@z¢1)2 =0. (414)

In order to shorten the notation, we introduce

Nk ¢
QJ(T) = Z ( ] ) Ak(T)a Xﬁ(zﬂ—) = _ﬁQO(T)a (415)

k=j
Xg(za w, T) = %Ql (T);LZQT’LU, Xg(za w, T) = gZQTwQ + % Z Qj (T) (MZQrw)j

=2
and we recall that {Ay}reqo...ny are determined by Hy(z,w,7) = STy Ap(T)wk22+=L,
Finally, differentiating equation (4.14) with respect to z and denoting 0,¢; by ¢,

it is not difficult to check that ¢ must satisfy:

4.2.1. The case ¢ = 2r We study the particular case ¢ = 2r. Since () has zero mean,
the function determined by 0,F) = @1 and (F}) = 0 is 27-periodic. Performing the
change of variables given by

u=z—pk(r),  @(u,7) = p(u+ pki(r),7)
and denoting again ¢ by ¢ and u by z, equation (4.16) becomes

Orp + 0.0+ X1(Z(2,7),7) + 0.5 (Z(2,7), 0, 7)) = 0 (4.17)
where Z(z,7) = z + pFi (7).

4.2.2. The final equation for 0,¢, in the case ¢ > 2r To write (4.16) and (4.17) in a
unified way we introduce the functions

¢ .
—X (277-) if ¢>2r
Uil ) =1 7, . (4.18)
—x1 (Z(z,7),7) it £=2r
and
4 Y .
—Xa(z,0,7) — x3(2,0,7) if £>2r
i)z, ) =4 o T (4.19)
—X3 (Z(Z77—>7§077_) if ¢=2r

With this notation, equations (4.16) and (4.17) become
Orp+ 0.0 = Wi] + 3z(¢§(¢>) (420)
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4.8. The operator B

In this subsection we will study the operator B formally defined by
0

B(h)(z,7) / Bz 417+ 1) dt. (4.21)

+oo
Remark 4.5 We note that, differentiating formally under the integral sign, 0;B(h) +
0.B(h) = h. Hence the operator B is a (formal) left-inverse of L(¢) = 0:¢ + 0.1.

The next lemma ensures that the operator B is actually a left-inverse of £ in X .

Lemma 4.6 Let p,v,b >0 and v > 1. Then

i) The operator B : XV — X"~ is well defined. Moreover, there exists a constant
K, ~ depending only on v and vy, such that

1B l[v-1p < Kuyllbllp  if e X,
i) Let h € X¥. Then 0,B(h) € X¥ and there exists a constant C,, ., such that
10-B(M)lvp < CoyllAllup-
iii) For h € XV with (h) =0, we have that B(h) € X”, (B(h)) =0 and
1B(M)[lvp < CopllB]lus. (4.22)
Proof. First we observe that if h € X, for all (2,7) € D., , x S, |h(z,7)| < |2[77||A]lvp-

Therefore, if v > 1, using Fubbini’s theorem, we can express the k-Fourier coefficient of
B(h) as

(B(h))i(2) = / ek (2 + 1) dt (4.23)

+oo
where h;, denotes the k-Fourier coefficient of h.
We fix p,v,b >0, v > 1 and h € X”. First we deal with 7). On the one hand,

e ] 1 )
/0 m dt < KV”YW if z¢€ D%p, (424)

where K., = 2(1 + ~?)=D/2y1-v f0+°°(1 4 t2)7¥/2dt. Bound (4.24) is straightforward
by using the fact that if Rez < 0 and z € D, ,, v|2| < (1 ++%*)¥2|Imz|. The case
Rez > 0 is obvious.

On the other hand, using |hg(z +1)| < ||hg|l,|z+t|7" in (4.23) and applying bound

(4.24) we deduce
+o00 1
h <1l At < K, |lhil,——, if z€ D, ,.
BN < Il [ et < Kol if 2 €D

Hence [[(B(h))kllv—1 < Ky~ |||, and by using the definition of || - ||, , we conclude that
IBUR) o160 < Koy lIAllup-
Before checking 7i) and iii) we claim that if h € X7,

1Bkl < Co [k Hlell,  for k € Z\{0} (4.25)
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with C,, = (sin4)™*~! and 4 = (arctan+y/2). Indeed, we fix ¥ > 0 and 2z € D, ,.
Clearly, z + tel7 € D,,, for t > 0. Then, since hy is analytic in D,, and

limge, 100 2hk(z) = 0, Cauchy’s theorem implies that we can move the path of
integration z + ¢ to z + te7:
0 0 1~ .~ .~
(BT (h)r(2) = / e hy(z 4 t) dt = / eF e (2 + telY) el dt. (4.26)
+oo +o0o

On the other hand, using the fact that arg(z) € (—m + arctany, 7 — arctan+y), it is easy
to check that |z +tel7| > |z|sin¥ and therefore, bounding the last integral in (4.26),
e—ktsini 1

+00
B(h < Pl T 4t < Al Ay
[(B(h))r(2)] < [[hel] /0 |2+ teid v < [Pl |k||z] (sin4)v+1

In the same way, if k& < 0, we choose the path of integration t = se™, s > 0 in (4.23)
and we obtain the same bound as in (4.27). This proves (4.25).
Next we prove ii). We have already seen that B(h) € X*~!. Therefore, integrating

(4.27)

by parts in (4.23), we obtain an expression for the k-Fourier coefficient of 0,8(h) which
is: 0,(B(h))x = hi, —ik(B(h))g. Now bound (4.25) implies 7):

10-BI)ls < hllus+ S WHIBEDI e < (1+ Gl
keZ\{0}
To check i) is straightforward. Indeed, by (4.23), if hg = (h) = 0, then (B(h)) = 0.
Finally, bound (4.22) follows from (4.25). =

Remark 4.7 Given v > 1 and h € X", if ¥ is a solution of L(v) = h such that
lmRge 00 ¥(2,7) =0, then » = B(h).

Indeed, let ¢ be a solution of L() = h. By Lemma 4.6, B(h) is a solution
of L(Y) = h, thus there exists a function x such that v = B(h) + x(z — 7).
Moreover, since 1 and B(h) are 2m-periodic with respect to T and they both satisfy
lMRe s t00 (2, 7) = liMRes—ioo B(R)(2,7) = 0, the function x is 2w-periodic and it
also satisfies that lime_.o, x(¢) = 0. This implies that x = 0.

4.4. Existence, uniqueness and asymptotic properties of 0,¢,

We have seen in Subsection 4.2 that ¢ := 0.¢; has to be a solution of the partial
differential equation (4.16). This subsection is devoted to proving that equation (4.16)
has only one solution with the properties required for 0,¢;. Concretely we will prove:

Proposition 4.8 Let v > 0 and 0 < b < by. If ¢ > 2r, there exists py depending on
v, b, and £, such that the partial differential equation (4.16) has only one solution ¢
27-periodic with respect to T and with the asymptotic property limge, 1o @(2,7) = 0.
Moreover ¢ € Xf;g,b and ¢ — B(Yt) € X1 with ny = 0 — 2r if £ > 2r and n, = 1 if
(= 2r.

Let us consider equation (4.20):

Orp + 0.0 = Y + 0. (V4()).
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(we recall that {t¢};—; » were defined by (4.18) and (4.19)). We also stress that equation
(4.20) was deduced from equation (4.16) simply by performing a change of variables if
¢ =2r. If £ > 2r both equations are the same.

We observe that equation (4.20) can be (formally) written as a fixed point equation.
Indeed, we only need to take into account that the operator B is linear and by
Remark 4.5, B = L', Moreover Bo 0, = 9, o B (differentiating formally under the
integral sign). Hence equation (4.20) can be formally expressed as:

p = B(Y1) + 0.B(¥s(9)). (4.28)

To prove Proposition 4.8 we perform two steps. The first is devoted to proving that
equation (4.28) has a fixed point ¢ belonging to Xf;é,b with py large enough.

Later we will check that ¢ is a solution of equation (4.20) provided that (after
restrict our definition domain D. ; ; if it is necessary) the linear operators 0, and B
actually commutes. Note that this fact implies that equation (4.28) is equivalent to

p =B +0.(v'(¢)))

and hence by Remark 4.5, ¢ is a solution of equation (4.20). The uniqueness of this
solution comes from Remark 4.7.

Finally, taking into account the relation between equations (4.20) and (4.16) we will
conclude that ¢ is a solution of (4.16) if £ > 2r. If ¢ = 2r, we will need to perform the
change of coordinates given by @(z,7) = ¢(z — uFi(7),7), with F; a suitable periodic
function, to obtain the solution of equation (4.16) we are looking for.

4.4.1. The fized point equation Before dealing with the fixed point equation (4.28), we
state an auxiliary lemma which works in a more general setting.

Lemma 4.9 We fix v,b,p >0, v > 1 and hyg € X” and we define Ry = 8||hol|op + 1/2.
We denote by B(R) the open ball of XV of radius R > 0 and centered at the origin.
Let R be an analytic operator R : B(2Ry) — X° such that there exist C,n > 0
satisfying
) A , 1]
R(O) = O’ 8272(0) c XU_(]—l)l/ and ||8]JALR(O)||777(]'71)VJJ < 0(2;—)], for ] > 1.
0

Then there ezists p1 = p1(7,b,v,n, p) big enough such that the operator
F(h) :=ho+ 0.B(R(h))

has a fized point h € XY | .

Proof. To shorten the notation, along this proof we will denote X7 , and || - ||X;/7p1’b
simply by X" and || - ||,» respectively.

We take p; = max{p, (1+92)V2(16CR,'C, )"} where C,,, is the constant defined
in 77) of Lemma 4.6. This choice will be justified below.

In [1] it was proved that if f is an analytic operator defined in a complex Banach

space, satisfying that f(B(R)) C B(0R) for some § < 1/2, then f has a unique fixed
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point belonging to B(6R). Since the operator F is analytic, we are allowed to use this
result. Specifically we will see that F(B(Ry)) C B(Ry/4).
We fix h € B(Ry). We claim that,

R(h) € X and  |R(R)|ysns < C (4.29)

with C' the constant given in Lemma 4.9. Indeed, since R is analytic and R(0) = 0, we
have that

B
j
R(h) =Y _HR(0 )],
Jj=21
Since @ R(0) € X"~U-V" using the fact that h € B(Ry) C X" and i) of Lemma 4.3,
we have that for all j > 1, I R(0)h € X7~U~D¥+i¥ = X"+ and moreover, taking into
account that ||hHl/,b S RO and ||8}JLR(0)||77_(]~_1)V75 S ||8{LR(O>||X'I}—(]'—1)I/ S C]'(QRQ)fJ,

1ORR ) [l < NRRO -1yl < CJ'—
Hence, R(h) € X*" and
IR (Al < Y 0277 =C
i>1
This proves (4.29).

On the one hand, we observe that, R(h) € X*™ C X", therefore, by (4.29) and )
of Lemma 4.3 we obtain

IR lvs < p1" (1 + )" R(B)lusns < Coy (1 + 7). (4.30)

On the other hand, since R(h) € ¥, we deduce that 0.B(R(h)) € X" using i)

of Lemma 4.6, and hence F(h) € X”. Again by ii) of Lemma 4.6, we can bound the

norm of 9,B8(R(h)) and finally using the definitions of Ry and p; and bound (4.30) of
|R(h)||vp, we obtain that

R Ry R R
I o < Wholluw + [19-BRN) o < g7+ Con Cpy (1 447" < 24 6 <

and the lemma is proved. m

Lemma 4.10 For any v > 0, 0 < b < by, there exists py = po(7y,b, ¢, 1) such that the
fixed point equation

@ =T (p) = B(}) + 9.B(W5()) (4.31)

has a solution ¢ € ngb Moreover 5(p) € XZJ;;JIZW with ng = € —2r of £ > 2r and
ne=11f 0 =2r.

Proof. The notation used along this proof was introduced in Subsection 4.2.

We fix v >0, 0 < b < by and p = (1+7°)"2 +8ueC (1 + )| Fi]lop > 0. Such
choice will be justified later. We notice that since F does not depend on z, ||Fi|lop is
independent on p.
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In order to prove this result, we are going to check that the hypotheses of Lemma 4.9
are satisfied for v = £+ 1, 5, > 0, hy = B(¢¥!) and R = 5. If the hypotheses of
Lemma 4.9 are fulfilled, checking that 15(p) € Xj;g;m is straightforward from (4.29).

We notice that since the functions @); are 2m-periodic and analytic in Sp,, they
belong to A7, for all s > 0.

First we deal with the case ¢ > 2r which is simpler. By definition (4.18) of ¢,
it is clear that { € X', Moreover, ({) = 0. Therefore, by 4ii) of Lemma 4.6,
B(y) € X1 As in Lemma 4.9, we define Ry = ||B(¥%)|¢r15 + 1/2.

On the other hand, definition (4.19) of 9§, implies that it is analytic (in fact it is a
polynomial in ¢), 1¥5(0) = 0 and moreover,

0p5(0) = — p@Q(r)z ™ e X7,

82%(0) = e 22 Qy(r) € XF C X))

OLp5(0) = — I 22770Q;(r) € AP c X PUTDIERD if 3 < j < N,

O5(0) =0,  if j >N,

provided ¢ > 2r. We also notice that, since p > (1 +~2)/2, by 4) of Lemma 4.3,
102050l e-2r—(j-nyery < po + 3| Qsllop, i 1 <j < N.

Hence, the hypotheses of Lemma 4.9 are satisfied by R = ¢4 withn, = ¢ —2r, v =(+1

and C' = maxo<j<n (ko + 11/ Q;ll0) (2Ro)’.

Now we deal with the case ¢ = 2r. First we check that B(y3) € X*+L
Looking at definition (4.18) of ¢7" one deduces that 3" = —x; + 7_,,(F}) where
x1 was defined in (4.15) and 7_,,
X1 € sz;;;/47b7 again using Lemma 4.4, we have that 7_,,(Fy) € X**2 provided that
p> 8u00;/12(1+(7/2)2)1/2||F1||0’b. Therefore, by i) of Lemma 4.6, B(7_,,(Fy)) € X* 1.
Finally, we observe that (x;) = 0. Thus 4i7) of Lemma 4.6 implies that B(—x;) € X* !
and henceforth, B(3") € X2 1.

Now we check that R = 2" satisfies the hypotheses of Lemma 4.9 with 7, = 1 and

v =2r + 1. Indeed, we note that 3" (0) = 0 and, since z + uFi (1) € X,
043" (0) =0

0237 (0) = — pu(z + pFy (7)) = 20 (2 + pFy (7)) Qo(7) € X1+
3 (0) = — i (z + pFy (7)) 071Q;(7) € X1-UDEHI 4 3 < j < N,
3 (0)=0 if j>N.

Therefore, using the definition of p, we realize that

is the operator defined in Lemma 4.4. Hence, since

o o C. o 2r(j—1) ‘ ‘
190 OVl -gviaren < o+ lQslon) (14 2) L 1<

and the proof is complete. m

4.4.2.  Proof of Proposition 4.8 We fix v > 0, 0 < b < by and we define py =
max{4(4—|—72)1/2C;/12||F1H07b, 8po(v/4,b,0,7)}, where py was given in Lemma 4.10. This
choice of pg is justified by the following computations.
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By Lemma 4.10 the fixed point equation (4.31) has a solution ¢ € X 5741,;)0 /8. Such
that ¢ — B(y!) € X7 . We claim that

Y/4.p0/8:b°
0.B(Us()) = B(O:43(9))  on Dy pysa X S (4.32)
Indeed, since ¥5(p) € Xfﬁ;}%}b, using #ii) of Lemma 4.3 we get that 0,15(p) €
Xfﬁ;}%’b. Therefore, by Remark 4.2,
10,05(p) (2, 7)| < IZI‘H_W||3z1/’§<90)’|xj/+;;;;47 forall (2,7) € Dyape/a X S,

and we obtain (4.32) by differentiating under the integral sign B(15(¢)).

Equality (4.32) implies that ¢ is a solution of equation ¢ = B(yt) + B(9.15())
and hence, since (0. + 0,) o B = Id (Remark 4.5), ¢ is a solution of equation (4.20)
belonging to Xf;;l,p/él,b. Moreover, ¢ — B(y*) € Xf;;;;ﬂv

Taking into account the relation between equations (4.20) and (4.16) given in

Subsection 4.2, clearly, if £ > 2r we deduce that ¢ is a solution of equation (4.16)

belonging to X 5721’,)0 e Xf;ﬁ,b and in this case we are done.
In the case ¢ = 2r, the function @(z,7) = ¢(z — pFi(7),7) is a solution of
equation (4.16). Moreover, since ¢ € X,YQ}”; ;O /4 aPplying Lemma 4.4 we obtain that

¢ € XZ0F provided that py > 4(4 + 72)1/20;/12HF1H071,. We also note that, since
o—p="T,(F) ¢ Xj;“g%, we have that ¢ — B(¢?") € X,irpﬁ%.
Finally, the uniqueness of the solution ¢ follows from Remark 4.7.

4.5. End of the proof of Theorem 3.1

Given 7 > 0 and 0 < b < by, let ¢ be the solution of equation (4.16) belonging to Xf;;’b,
where pg = po(7,b,£,r) is the constant given by Proposition 4.8.

We claim that the solutions of equation (4.14) such that their derivative with respect
to z belong to Xffgib are defined up to constant. Indeed, let ¢!, * be two solutions of
(4.14). Clearly 9.¢',0.¢? are solutions of equation (4.16). Assuming that they belong
to Xfﬁ;éb, by Proposition 4.8, d.¢' = 9.¢*. Hence 9,(¢* — ¢?) = 0 which implies that

(2, 7) = ¢*(2,7) + ¢(2) and thus, using that 9.¢' = 9,62, we conclude that 9,¢ = 0.
For any ¢ € C, we define

gbl(z,T):/ oz +t,7)dt +&. (4.33)

+oo
Obviously 0,¢; = ¢ and moreover the condition ¢ € X,fj;ib implies ¢p; — € € Xf’ pobe W
note that, by Remark 4.2, we have that sup(. ;yep. , xs, 126710, 01 (2, 7)| < +00.
From the fact that ¢ are solutions of equation (4.16) and ¢ € Xf;&b, it is
straightforward to check that ¢, defined by (4.33) are solutions of (4.14) for any &.

This ends the proof of Theorem 3.1.
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5. Distance between 0,¢" and 0,¢~

Let v > 0and 0 < b < by. We fix ¢F = ¢y + u¢i satisfying the conclusions of
Theorem 3.1.

In order to prove Theorem 3.3 we define A¢; = ¢; — ¢{. This function has the
following immediate properties which come from the ones of ¢7:

i) A¢, is 2m-periodic with respect to .

ii) It is analytic on E., ,, xSy X B(po). This is due to the fact that E, ,,
We recall that E, , was defined in (3.1).

iii) SUP(.,r)em, ,, xS, |2¢710,A¢y| < +o0.

+
- D’YPOOD'YPO

Since ¢f are necessarily solutions of equation (4.14), subtracting equation (4.14)
for ¢; and ¢; respectively we obtain that A¢; satisfies a partial differential equation
of the form

Orp + (1 4+ uG*(2,7))0.0 = 0 (5.1)
where G* is an analytic function on E, , x S, 27-periodic on 7, depending not on of

but on 9.¢7. Later on, in Subsection 5.2, we will write it in a more detailed way.

Next let us assume that equation (5.1) has a solution ¢ such that ¢y(z,7) =
(po(z,7),T) is injective in E, , x S, for p > py big enough. We claim that any solution
of equation (5.1) defined in E, , x S, can be written as ¢ = x(¢o) for some function
X (this is a well known property of homogeneous linear partial differential equations).
Indeed, we note that, since 1), is invertible, 9, o ¥y # 0 in E, ,; hence using that
both ¢ and ¢q are solutions of (5.1),

Or(poty’) = ﬁ( = Oxpotfy - Orpo 0 Yy + 0rp oty - Do 0y ) =0

9: 0
Therefore, poib; ' (€, 7) does not depend on 7 and this implies that there exists a function
x such that o o1y '(£,7) = x(€) and the claim is proved evaluating this equality at
£ = o(z, 7).

Subsection 5.4 is devoted to proving the existence and useful properties of such a
solution g of equation (5.1). Specifically we will prove that there exists a solution of the
form @o(z,7) = 2z — 7+ pg(z, 7), with g 2r-periodic with respect to 7 and satisfying all
the properties stated in Theorem 3.3. We will also prove that limpy, .-, 0,9(2,7) = 0.
Finally we will see that (¢o(z,7),7) is injective in E, , with p; > po big enough.

In Subsection 5.5, using this fact and properties i), ii) and iii) that A¢; satisfies,
we will end the proof of Theorem 3.3. We sketch the process we will follow below.

On the one hand, since A¢; is a solution of equation (5.1) analytic in E. ,
Sy X B(uo) (property ii)), there exists an analytic function y such that A¢1(z,7) =
X(z — 74 pug(z,7)). On the other hand, A¢; is 2m-periodic with respect to 7. This
implies that y have to be a 2m-periodic function in such a way that A¢; has to be of
the form

Ay (z,7) ZX eik(z=7+ng(z7))

keZ
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(We notice that, x are analytic functions in B(fy).) Finally, using that A¢; goes to 0
as Im z — —oo (property iii)), one can check that y; = 0 for £ > 0. Henceforth

0.061(2,7) =Y ikxa(p) €ETHIE (1 4 10 g(z, 7)) (5.2)
k<0
and since limy,, . o 0.9(z,7) = 0, we obtain the asymptotic expression (3.5) of

Theorem 3.3 as a consequence of (5.2).

In order to obtain (3.6) we need only to look for the independents of x terms of the
functions 9,47 and compute their difference.

The Subsection below is devoted to introduce the notation we will use throughout
this Section.

5.1. Notation

As in Section 4, we will denote by (-) the mean with respect to 7. For any 27-periodic
function, h, we also introduce {h} = h — (h).

Now we introduce the Banach spaces we deal with during this Section. These
spaces will be analogous to the ones defined in Subsection 4.1 for functions defined on
the domain E. , X S, x B(uo) (we recall that E., , was defined in (3.1)). We observe
that the function A¢y = ¢] — ¢/ is defined on such complex domain.

For any v, p,b > 0 and v € R, to shorten the notation, we will write

E,,=E,,x Blpo), &= FE,,xS,x B(u).
We define the spaces

={h:E,,— C: h isanalyticand ||k, := sup [z"h(z,p)| < +oc}
(z1)EE,p
if v # 0 and
— h
={h:E,,— C:h isanalyticand |hljo:= sup Iz, )| < 400}
(z#)EF%p | lOg |ZH
for v = 0. It is clear that the functional spaces Y equipped with the norm || - ||, are

Banach spaces.
We also introduce the spaces of Fourier series

V2o =1f €y — C: analytic, f(z,7,0) = Y fulz,u) 6, fi € Y

kEZ
pi= 3 [l e < oo} (5.3)
kEZ
The functional space )2, of Fourier series endowed with the norm | - |l» is a Banach

space.

We also define the auxiliary Banach space

?3% {f:&,p — C: analytic, f(z,7, 1) ka 2, pt) e FT

kEZ

and ||fllo, =Y sup |fu(z p)| e < +oo}.

kez (ZH)EE~p
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For notational need we introduce y,ypb Yy pand || oy = [ - [lop if v # 0.

Remark 5.1 We notice that X¥'* C ¥ and X%+ C ?O.
Let ¢ = ¢ + ¢F satisfying the conclusions of Theorem 8.1. We notice that, by
Remark 4.2, 0,07 € e xitLE respectively, forany v >0, p>pyg and 0 < b < by. Hence

V5P b
the function A¢y = ¢ — ¢ satisfies that 0,A¢y belongs to yjj}b
We will denote ¥, simply by V¥ (and ?Z ob DY V") is there is no danger of confusion
on the definition domam We will also write || - [[y» = [l,p and || - Hy = llzs,

when it is necessary to emphasme the complex domain where the functlons are defined.
The Banach spaces " (and henceforth, }” for v # 0), satisfy the same properties
as the ones given in Subsection 4.1 for X'”. Specifically we have the following lemma.

Lemma 5.2 Let v,b,p >0 and v,n € R.
i) If n > v, then Y7 C Y and 7" C 7. Moreover we have that
Ihllzs < o llhllge,  if heY".
i) IfheY and ge )", then the product hg € V' and
1hgllzme < Pllzellgllme-

iii) If h € y,’;p’b, then there exists a constant A, such that for | € N\{0} we have that
—l+v

h SN2 2p,b and Hathleb <i27'cs lA’Y uHth
where the constant C., was defined by (4.8).
iv) Assume thatn > —1. We fir F' € ?:,p’b and [ € ﬂ’p’b. Let p be such that
1 g, < o, (5.4)
We define the formal expression

)= 3 GO E G ).

>1

¥,p5b

Then there exists a constant B, such that

v+n+1
Te(f) € Vayopsr N Te(Pllzmrrs < toByullFllye 1 fllgn

Moreover, the function F(z,7) = F(z 4+ uf(z,7),7) belongs to ymp,b.
v) Letn > —1, F € yg,p,b and f € ?Zﬁp,b with F satisfying that 0,F € y;pvb. If p
satisfies (5.4), then
T eVhn  ITo(Dlysrs < roBrol&Flys IFls |
Moreover F(z,7) = F(z + uf(z,7),7) belongs to Vo opp-

Proof. The proof of ¢), i7) and iii) of Lemma 5.2 is completely analogous to the proof
of Lemma 4.3. We only have to take into account two facts: the first is that if z € E, ,,
then |z| > p; the second we need is that

{fueC:lu—=z <2C,z|} C E,,, 2 € Egy ). (5.5)
The iv) item is proved as in Lemma 4.3 by using (5.5). To check v) we apply iii)

to 0,F and we proceed in a completely analogous way to the one in iv) of Lemma 4.3.
|

Y00
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5.2. The equation for ¢7 — ¢7

Let v > 0 and 0 < b < by. According to Theorem 3.1 there exist infinitely many
solutions ¢* = ¢ + p¢t of the Hamilton-Jacobi equation (3.3) analytic on the domain
D,jf oo X Sb, 2m-periodic with respect to 7 and such that ELgbf are the unique possible
choices satisfying that

sup |2710,0% (2, 7)| < +oo.
(2,7)€D oy X Sp
We recall that py = po(7,b, ¢, r) was given in Theorem 3.1.
For any two of those solutions ¢ we denote A¢; = ¢ — ¢ which is defined on
x Sy C DY N D, xSy Since, ¢f are solutions of (4.14), subtracting equation

Ly po 7,0 gl
(4.14) for both ¢; and ¢] respectively we get

Ord1 + 0801 + Hi(2,0.67,7) = Ha(2,0.6%,7) + £ (007" — (0:01)) =
Denoting

Zuﬂ 'Q(r WZ 0.0 (001 + 2 0.6 +0.00), (50

it is stralghtforward to see that Agbl satisfies the equation:

-+ (1 + pG*(2,7))0,0 = 0. (5.7)
Lemma 5.3 The function G* — Q,2=*%" belongs to Y'=2"*! and it can be written in
the form

G'(2:7) = Q)= 4 2 (067 + 001 (142 uQ() + T () (5

with Q1 having zero mean with respect to T and G e Y3242 Moreover

. )? if £=2r,Q; =0, and (Fy-Q3) =0
(&) € { Y2+l otherwise, (59)

where Fy is such that 0, Fy = Qo and (Fy) = 0.

Proof. Formula (5.8) is straightforward from definition of Gf. Moreover, using that
0,07 € X% we easily get that G e yse=+2,

Now we deal with the statement related to (G*). We observe that G* — Q,2/7?" €
Y=+l Hence, since 1 has zero mean, in any case we have that (G¢) € Y21 It
only remains to check that if £ = 2r, Q; = 0 and (Fy - Q2) = 0, (G*) € V2. First we
claim that, in this case,

0,¢0F — 2F ey (5.10)
Indeed, we deal with the + case, being the — case analogous. By Proposition 4.8,
0,07 — B(yir) € X2 T2F. Trivially,

B = ar /0 Qr+t) 4o o) oo e

too (Z + t)2r+1 Z?T—i—l
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and therefore, B(¢#") — 2rFy(7)z=2"~1 € X* 2+ C Y*+2 because Fy has zero mean.

Looking at expression (5.8) of G¥, and using (5.10), we deduce that
G' — 4rz ' Fy(1 4 pQs) € V?
and henceforth, (5.9) is proved provided that (Fy) = (Fo- Q) =0. m

Remark 5.4 Since G* depends on 84;5%, but not on qﬁf themselves, it is independent
of the choice of the solutions ¢*.

As we pointed out at the beginning of this Section, the next step to prove
Theorem 3.3 is to find a solution of the partial differential equation (5.7) of the form
wo(z,7) = z — 7+ pg(z, 7). To obtain such a solution, we will need to solve explicitly
the linear equation d.h + 0,h = 1 with ¢ € Y* a known function. The next Subsection
is devoted to studying this equation.

5.3. An explicit solution of equation O-h + 0.h = ¢ in Y,

We fix b, p,v > 0, v > 0 and ¥ € Y”. We denote by 1, the k-Fourier coefficient of v
and we consider the operator G formally defined by

G(W) (=) =Y _(GW))(z) €™, (5.11)
kezZ
where its Fourier coefficients are given by:

(G(¥))o(z) = Zip%(t) dt if 0<v<1 (5.12)
(G(1))o(2) = Zioo%(t) dt if v>1 (5.13)
(G())i(2) = /_ Zipeik@—z) ) dt it k>0 (5.14)
(G())i(2) = /_ Ziooeik<t—z> o) dt if k< 0. (5.15)

The following lemma proves that, under suitable conditions, G(v) is well defined. This
implies that h = G(1) is a solution of equation 0,h + d.h = 1.

Lemma 5.5 Let vy,b,v >0 and p > max{2v,1}. For any € VY, we have that

i) G(v) € y;;}b and 0,G(¢) € VY - Moreover, there exists a constant C,. only
depending on v and 7y such that,

1GW)lv—16 < Conl$llvs and [10.G()]lvp < Conl[¢ ]l (5.16)
it) If ¢ has zero mean with respect to 7, then G(¥) € Y ,, (G(¥)) =0 and

1GW)lvs < Conllllup-

Proof. We write h = G(¢) and we denote by hy its k-Fourier coefficient. To prove )
and i) we have to bound hy. We claim that for all z € E. ,,
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(a) If either k <0 and v >0, or k=0 and v > 1,
okt

0

(b) Otherwise, denoting ¢, =y~ 1(1 + 72)1/2,
| Im z+p e
|hi(2)] < 07||¢k||l//0 mdt
Indeed, in case (a) hy is defined by (5.15) and (5.13) respectively. The condition
Y € Yy, , implies that et*s 1Py (s) is analytic on E, , and limp,s—.—o €% sthx(s) = 0
(either if £ =0 and v € Yy ,p withv > 1, or k <0 and ¢y € Y7 ,, with v > 0). Thus,
by Cauchy’s theorem we can change the path of integration to z + it and therefore

0 0 okt
Finally, since |z + it|*> > |z]? + t? if t < 0, we get (5.17). In case (b), bounding (5.12)

and (5.14),
]z—|—1p| /|Imz+p| ekt
h v —dt

and, since |z +ip|| Im z + p| ' <e¢,, (5.18) holds.

Now we claim that

1nlly < 2¢7HET el for k #0. (5.19)

—kt

(5.18)

| (2)] <

Indeed, let z € E, ,. First we deal with & < 0. Obviously, bound (5.17) implies that

0
2" (2)] < ||1/)k||u/ ™™ dt = k|7 [¥xll, < 2¢57H K] [0l

provided that ¢, > 1. If £ > 0 we define [, = f0| fmz+pl okt |t + Im z| =¥ dt. Integrating
by parts I, it is easily checked that I, < k~'(]Im z|™ + vp~'1,). Thus, since p > 2v,
we obtain bound (5.19) from (5.18) by using the fact that |z| < ¢,|Im z|.

We prove ). Let v > 0. We define the constants B,, = (1 —v) e, if v < 1,
By, =c,and B,, = [["°(1+ s®)7*/2ds if v > 1. With this notation

| holly—1 < BV,*/”Q/}OHV- (5.20)

Proving (5.20) is straightforward by computing the integrals in formulae (5.17) and
(5.18) in the corresponding cases. We take C,,, = max{1l +2¢/™, B, ,} and we notice
that bounds (5.20), (5.19) and 4) of Lemma 4.3 imply

Wlloso = Nholloos + 3 il e
keZ\{0}

< Byallvolls +2¢ 70 > (el P < Coy €10
kEZ\ {0}

provided that p > 1. In this way we get the first bound of (5.16).
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Next we prove the second bound of (5.16). Taking derivatives in (5.12)—(5.15),

O.hy, = —ikhy + Yy, for all k € Z. (5.21)
Hence we have that 0.hg = ¢ and, from (5.19), |0k, < (1 + 2¢57) ||l for
k # 0. From the Fourier series of 0,h and the definition of the norm | - ||,5, we

get |00l < Copllt]lue-
Finally, we prove 7). Let v > 0. We observe that, (¢) = 0 implies hy = 0. Thus
i1) follows from (5.19). m

Remark 5.6 By using equality (5.21) one checks that G(v) is a solution of equation
O-h + 0,h = 1.

5.4. A solution @o of equation (5.7) of the form po(z,7) =z — 7 + pg(z, 1)
Our goal in this subsection is to prove the following result:

Proposition 5.7 Let v > 0 and 0 < b < by. There exists p1 = p1(7,b,¢,1) such that
the equation (5.7):

drp + 0.0(1 + uGH =0 (5.22)

—2r

has a solution g of the form po(z,7) = z— 7+ ug(z, 7) with g satisfying that g € yfvmjb

and 0,g € yj—,jzj L
In the special case that { = 2r, Q1 = 0 and (Fy - Q2) = 0, then g € ywl,phb and
0.9 € y37p17b.

Moreover, ¥o(z,7) = (wo(2,7),T) defines an injective map on E. ,, .

A function gy is a solution of equation (5.22) of the form ¢o(z,7) = z — 7+ pug(z,7)
if and only if ¢ is a solution of the equation

0rg + 0.9(1 + uG*) = —G*. (5.23)

To check that equation (5.23) has solutions satisfying the conclusions of Proposition 5.7
we state a technical lemma which will be proved later.

Lemma 5.8 We fix v,b,p > 0. Let H € yg/zp’b be such that G(H) € V2 s pp Jor some
n>0andv > 0.

If either v > 0, or v =0 and n > 1, there exists ps = pa(7y,b,v,m, p) such that the
equation

Och + 0,h(1+ pH) = —H (5.24)

has a solution h € V¥

Y o Satisfying that 9.h € YU

v,p2:b"

To prove Proposition 5.7 from Lemma 5.8 we have to check that in each case G*
satisfies the hypotheses of this Lemma.
Proof of Proposition 5.7. We fix v > 0 and 0 < b < by. We are forced to distinguish
three cases:
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o Case ¢ > 2r. By Lemma 5.3, G' = Q122 + G' with G* € yj pz”lfl. Therefore

yf 2’" Moreover, since (J; has zero mean with respect to 7, by Lemma 5.5,

Q(GE) € y,ﬁ pi , and Lemma 5.8 can be applied in this case with H = G* and
v=n=4{0—2r>0.

e Case ¢ =2r, 1 = 0 and (Fp - @Q2) = 0. Again using Lemma 5.3 one deduce that
G' = (G") + {G"} with (G*) € V2, and {G'} € V!, having zero mean with
respect to 7. Using similar arguments as in the previous case, we conclude that we
can apply Lemma 5.8 with H = G and v =7 = 1.

e Case ¢ = 2r but either Q1 # 0 or (Fy - Q2) # 0. The change of coordinates
z=u+ pki (1), g(u, 1) = g(u+ pFi(7),7)
transforms equation (5.23) into
0.9+ 0:9(1 + nG') = =Q1 -

With G'u,7) = G'(u + pFy(7),7) — Qi(7). We note that, by Lemma 5.3,

- @ € y;/gp Jspr With po = max{8po, 810C. /8HF1HOb} Therefore, by iv) of
Lemma 5.2, G¢ € y1/4 Fo/4.b" We take g = —F} + g and we notice that g has to
satisfy the equation

9, + 9.g(1 + uG*) = -G~ (5.25)

This equation is under the hypotheses of Lemma 5.8. Indeed, we have already
seen that G¢ ¢ y1/4p0/4b Moreover by Lemma 5.5, Q(GK) e W MTERIES Hence
Lemma 5.8 works in this case with H = G*, p =1 and v = 0.

Let g be the solution of equation (5.25) given by Lemma 5.8. We have that
g € yg/zm and 0,5 € V! japp Going back to the original variables (z,7), it
is clear that

9(z,7) = —Fi(7) + g(z — pFi(7),7)

is a solution of equation (5.23). Moreover, since by Lemma 5.8 g € )Y 1 /2,p2.b
and 0,9 € Y5 ,,, applying v) from Lemma 5.2, we have that g € )7 ; , with
p1 = max{2py, 2/1007_/12\|F1|\07b}. We also have that 0,9 € y;,ﬁhb. This is due to the
fact that 0,9(z,7) = 0,g(u — pFi(7),7) and hence we are allowed to apply iv) of
Lemma 5.2 to 0,5 € V! /2 C % )25 /b

We have proved that equation (5.22) has a solution ¢y of the form ¢y(z,7) =
z— 7T+ pg(z,7) with g satisfying at least that g € 30, , and d.g € V. 5 ;.
check that 1y(2,7) = (¢o(2,7),7) is injective in E, ,, x S, if p; is big enough. Indeed,
let (21,71), (22,72) € E,, x S, be such that ¢o(z1,7) = (22, 72). Clearly 7 = 7.
Assume that z; # z3. Then by the mean’s value theorem,

Now we

z1 — Zo| < |p|]|0:9|[1p]21 — 22|p1 21— 22
| | < [ull|0:gll1s| ot <] |

if p1 > max{p1, 210]/0.9||1,5}, which is a contradiction. =
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5.4.1. Proof of Lemma 5.8 To prove Lemma 5.8 we will find an explicit solution of
equation (5.24) by means of a suitable linear operator.

We fix v, b, p > 0 and v, n, H satisfying the hypotheses of Lemma 5.8 and we define
the linear operator

F(f) = —0.G(uH - ). (5.26)

Lemma 5.9 There exists py = pa(7y,b,v,m, p) > 2p such that the operator (Id — F) is

. . . V+1
invertible in y%p%b.

Proof. Let ps = max{2p, (2uoCy11,| H|

in Lemma 5.5. We denote y,lwg’

Since F is a linear map we only need to check that || F|[, 41, < 1. Let f € Y**h
We have that H € yzp’b C V", hence by ii) of Lemma 5.2, we deduce that H - f €
yrtntt  Yyv+t provided n > 0. Moreover, || H - fllu41.6 < p3 | H|lnoll fllv+1,6- Therefore,
by Lemma 5.5 and using definition (5.26) of F, we have that

y;’,p,b)l/ "} where C, 41, is the constant defined

pand ||+ [lyr ~ simply by V' and || - || respectively.
VP2

_ 1
IFA s < moCuorrnlH - fllorrs < 10Corrznoy " [H el fllorrs < 511l
o, and p = 2p0Cy 4[| Hl[yn . m

provided that ||H ||, < || H| >
We claim that if either v > 0 or, v =0and n > 1,

0.G(H) € Yr+! (5.27)

77p27b

with py defined in Lemma 5.9. Indeed, first we deal with the case v > 0. By hypothesis
G(H) € YY)y, therefore using iii) of Lemma 5.2, 0.G(H) € Y, C YUt provided
that v > 0. In the case v = 0 and 7 > 1, we recall that H € )" Thus, using

v/2,p,b°
Lemma 5.5 we conclude that 0,G(H) € The claim is proved in this case taking
into account that n > 1.

U]
v/2,p,b°

Now we define the functions
h=(1d—F)"(-0.G(H))
and
h=—G(H)—G(uH -h). (5.28)
We notice that, by (5.27) and Lemma 5.9, h € Y* !

¥,p2,b°
It only remains to check that h so constructed is a solution of equation (5.24). First

we note that, since F(h) = h + 0.G(H), we have that
0.h =—0.G(H) — 0.G(uH - h) = —0.G(H) + F(h) = h.

Therefore 0,h € ygjpg;b. Moreover, substituting h by 0.h in (5.28) we obtain that
h=—-G(H)—G(uH -0.h).

Consequently h is a solution of equation (5.24). Finally, using that H € yj/%’b, that

G(H) e V5,5 and Lemma 5.5, we conclude that h € ;)/W”/Zp’b N y:;;gb C )y, and the

lemma is proved.
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5.5. End of the proof of Theorem 3.3

We fixy > 0,0 < b < by. We write pg(z,7) = z—7+ug(z, 7) where g is the function that
satisfies the conclusions of Proposition 5.7. As we claimed in the previous subsection
this implies that ¢ is a solution of equation (5.7). Moreover ¢y(z,7) = (po(z,T),T) is
injective on E, ,, where p; is given by Proposition 5.7.

Therefore as we pointed out at the beginning of this Section, any solution of
equation (5.7) can be expressed as a function of pg. In particular, there exists an
analytic function y such that

A¢r = X (o).

5.5.1. Proof of the asymptotic expression (3.5) of Theorem 3.3 We claim that 0 x(()
goes to 0 as Im ( — —oo. Indeed, we notice that, if z € E, ,, with |Im 2| big enough,

|Rez| < =y 'Imz and [Im7| < b < —Im2/3. Then, since g € yfﬁfb, we have that

| Im pg(z,7)| < —Imz/3, if | Im 2| is big enough, and thus
5Imz/3 <Im(z —74 pg(z,7)) <Imz/3.
Moreover, from the fact that 0,A¢;(z,7) goes to 0 as Imz — —oo:

lim Ox(¢)=  Um Ox(z—7+pg(z,1))

Im{——o0 Im z——00
= lim 09.A¢(z,7)(1+ 1d.g(z, 7))t =0. (5.29)
In the last equality we have used that 0,9 € yf;jqf ! and that A¢; = x(¢o).

On the other hand, since A¢, and g are 2w-periodic with respect to T,

X(z =7+ pg(z,7) =x(z =7 =2 + pg(z,7 4+ 2m)) = x(2 = 7 — 27 + pg(z, 7))
which implies that x is 27-periodic. Hence, O;x can be expressed as a Fourier series of
the form
Ocx(Q) =) ikxu(p) e (5.30)
keEZ
where {x\}rez are analytic functions in B(py).

Finally the property 9:x(¢) — 0 as Im{ — —oo implies that yx(u)e'*¢ goes to 0
as Im ¢ — —oo and hence xx(u) = 0 for k > 0. Then, since d.g € Y, , , at least, we
have that

0.80n(2,7) = 3 k() T (14 10 gz, 7))

k<0
~ —ix_y(p) e iGETTHReET) as Imz — —o0. (5.31)

This gives (3.5) taking C'(u) = x—1(p).
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5.5.2. The asymptotic expression (3.6) for C(0) Since 0,47 satisfy equation (4.16) we
have that

(07 (0.7 — 0.(9:07)](2,7) = £Qo(7)2™" + O(n)
and therefore, from the fact that 0,47 are the unique solutions of (4.16) belonging to

1
XZ—I— ,E

o1 respectively, we obtain that

+oo T
007 —on)m) = [ U e+ o)

Finally (3.6) follows from the asymptotic expression (5.31) and the fact that 0,(¢~
¢*) = n0(dy — 7).
6. Proof of Corollary 3.5

First we state a technical lemma.

Lemma 6.1 Let k € ZT\{0}. For any v >0, p big enough and z € E, ,,
+o00 elkt T ]
—  dt= @Jrl f— —ikz 1 O(l1 -1 6.1
| e (O ). (6)

where I is the Gamma function.
Moreover, if k <0,

—+o0 ei kt
.Km Crom

where K1, 15 the constant defined in Lemma 4.6.

1
—2|k|| Im z|
<2Kpp14€ 2 for z€ E,,

Now we prove Corollary 3.5. Substituting the definitions of a”* in expression (3.6)
and using the asymptotic expressions of the integrals in Lemma 6.1 we get

2
—IC() e i(z— T)Nﬁlf—i-l <£+1 § :ak‘k‘ﬁ —ik(z— ‘r( —|—O(]Imz\ l)) as Im 2z — —oo.
Therefore, since a® # 0,
27l
G
= 2
CO) =i gy 0 (62)

Finally 7) from Corollary 3.5 follows from the asymptotic expression (3.5), (6.2) and the
fact that g goes to 0 as Im z — —oo and i) is proved from (3.5) and (6.2).

Proof of Lemma 6.1. Let z € E, ,. First we deal with £ < 0. By Cauchy’s
theorem we can move the path of integration obtaining

+oo el kt okl +oo el kt
—— dt = e A dt. 6.3
[ | erimma (6:3)

Let Z = z+2ilm 2. We note that 2, =2 € D7 N D  and |Z| > |2|. Using bound (4.24)
in (6.3) we get the result.
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Now we deal with & > 0. Performing trivial changes of variables we have that
+o0 eikt e~ ikRez +o0 eikt\Imz|
dt = —dt. 6.4
L. et =T [ oo (64)

In [3] (pp 80, formula (6.28)) the following expression is given:

oo ikt/e Lk ¢ 9 Cte)e

with e > 0, ¢ > 0 and k > 0. Putting ¢ = |[Im2|™! and ¢ = 1 in (6.5) we get (6.1) from
(6.4).

We point out that, if £ € N, the asymptotic expressions of this lemma can be easily
obtained by using residues theory m

Appendix

In this study, we have restricted ourselves to the case in which our initial Hamiltonian
‘H = Ho+ pH; is analytic with respect to 7, but this hypothesis is, in fact, not necessary.
The purpose of this appendix is to justify that our proofs are also valid in a more general
setting: the differentiable case with respect to 7.

First we present the precise statement of the results which ensures that, with the
obvious changes, Theorems 3.1, 3.3 and Corollary 3.5 are also valid in the differentiable
case.

Theorem 6.2 Consider the Hamiltonian system 'H = Hy + pHy with

1, ., 1
Ho(z,w) = §w2z2 ~ o

N
Hi(z,w,7) = ; Z Aj(r, p) 2> w?
=0
where v > 1, £ € R, N € N and {A;};cqo,..ny are arbitrary 2m-periodic functions with
respect to T, analytic with respect to p in B(ug), for some po > 0, C9 with respect to T
and such that the Fourier series of A; is uniformly convergent for all j € {0,---, N}.
Then, if ¢ > 2r, for all v > 0 there exists po = po(7y,q,¢,r) > 0 such that the
Hamilton-Jacobi equation associated to H has solutions ¢* : D’:Yt,po,b — C of the form
¢ = ¢ + poi, CIoand 2m-periodic with respect to T, and analytic with respect to
(z,1). Moreover 9,¢5 is determined by the condition
sup |20, 0% (2,7, )| < +oo0.
(z,r,u)eDWiypoyb
Theorem 3.3 and Corollary 3.5 are also true in this new setting taking into account
the new reqularity of g with respect to T, that is: g is CY, analytic with respect to
(z,1) € E,, % B(o) and such that the Fourier series of g is uniformly convergent.

To justify this result we take advantage from the fact that our results are valid for spaces
of Fourier series satisfying the properties given in Subsection 4.1 (and consequently in
Subsection 5.1).
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The appropriate Banach spaces in this case are defined as follows. Let v, p > 0 and
v € R. We define the space 2= of Fourier series f(z,7, 1) = >,.c; fa(2, ) €7, with
fr € XY analytic with respect to (z,7) € D, x B(uo), C° and such that the Fourier
series of f is uniformly convergent. We endow ZV”:;E with the norm

1o =D 1 fills

keZ
and it becomes a Banach space. This fact can be proved as in [23].

It is straightforward to check that the Banach spaces Z}y’;pi satisfy the properties
given in Lemma 4.3 and Lemma 4.4. (We only need to take b = 0 and replace analyticity
with respect to 7 by continuity).

Without any change in the procedure given in Section 4 we can check that there
exists a solution, ¢t € ZLT1T of the fixed point equation ¢ = B(¢] + d.¢5(p")) and
hence ¢* is O with respect to 7 since ,¢" = ¥{ + 9,95(p ™) — 0. (B(Y{ + 0.05(pT)).
If either £ > 2r, or £ = 2r with Q; = 0 and (F}, - Q) = 0, we have that d.¢7 = T
and therefore 0,¢] is differentiable with respect to 7. Moreover, using definition (4.33)
of ¢f we conclude that ¢ is differentiable with respect to 7, differentiating under the
integral sign. In the especial case ¢ = 2r and either @y # 0 or (F - Q) # 0, we have
that 0,67 (2,7) = (2 — uFi(7),7). Hence ©* is C! with respect to 7 and henceforth,
we have the same property for d.¢; and ¢]. We deal with the — case in an analogous
way.

Therefore we conclude that there exist solutions ¢* = ¢y + p¢i of the Hamilton-
Jacobi equation 9,¢* + H(z,d.¢*, 7) of the form stated in Theorem 6.2 and satisfying
that they are C°, that their Fourier series is uniformly convergent.

Finally we observe that, since ¢* = ¢o+¢7 with 0,67 € Z/E1%, then 0,¢* € 22+
In particular we have that 0.¢% is C° and the Fourier series of ¢* are uniformly
convergent. On the one hand, we notice that since ¢* are analytic with respect to
z, 0.¢F and consequently H(z,d.¢*%, 7) are C° (here we have used that H is C). On
the other hand, since ¢+ is a solution of the Hamilton-Jacobi equation associated to H,
0;¢F = —H(z,0.¢%,7) and thus ¢* is C*. An inductive argument allows us to conclude
that ¢F is C9+L.

For the second part of Theorem 6.2, we follow the same steps as in Section 5. We
omit the details of the proof because they are quite analogous. Section 6 works without
any change.
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