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ONE DIMENSIONAL INVARIANT MANIFOLDS OF GEVREY TYPE IN
REAL-ANALYTIC MAPS

I. BALDOMÁ AND A. HARO

Abstract. In this paper we study the basic questions of existence, uniqueness, differentiability, an-

alyticity and computability of the one dimensional center manifold of a parabolic-hyperbolic fixed
point of a real-analytic map. We use the parameterization method, reducing the dynamics on the

center manifold to a polynomial. We prove that the asymptotic expansions of the center manifold are

of Gevrey type. Moreover, under suitable hypothesis, we also prove that the asymptotic expansions
correspond to a real-analytic parameterization of an invariant curve that goes to the fixed point. The

parameterization is Gevrey at the fixed point, hence C∞.

1. Introduction. Center manifold theory is very important in the analysis of degenerate fixed points
and in bifurcation theory. The questions of existence, uniqueness, smoothness of the center manifold,
and its applications, have been studied by many authors, among them [Pli64, Kel67, HPS77, Car81,
Sij85]. These works show up the puzzling properties of center manifolds. In the study of degenerate
fixed points, it is important to know the dynamical properties of the center manifol, what is known
as reduction of the dynamics to the center manifold. In numerical applications, one can approximate
the center manifold through power series expansions whose coefficients are recursively computed (see,
for instance [Sim90, Har99, Jor99]). In order to bound the error of finite order approximations, it is
important to know the rate of growth of the coefficient of the asymptotic expansions [Sim00].

This paper consider the previous topics for real-analytic (local) diffeomorphisms with a fixed point
whose linearization has 1 as a simple eigenvalue. Thus, we look for a one dimensional invariant manifold
going to the fixed point, where is tangent to an eigenvector of 1. A particular case is when the fixed
point is parabolic-hyperbolic, that is, the rest of eigenvalues are away of the unit circle, and the invariant
manifold is a branch of the center manifold. In this setting, the goals of this paper are:

(a) To give a parameterization of the invariant manifold for which the reduced dynamics is “simple”.
In particular, we show that it can be reduced to a polynomial.

(b) To describe the asymptotic properties of the expansions of the invariant manifold. We prove that
the expansions are of the Gevrey type, i.e., the coefficients of the expansions grow as a power of
a factorial.

(c) To prove, under suitable hypotheses, that the expansions correspond to a real-analytic invariant
manifold that goes to the fixed point (a branch). This is proved under the hypothesis that the
dynamics tangent to the manifold is attracting and the dynamics transversal to the manifold is
not linearly attracting. We also prove that the manifold is of Gevrey type at the fixed point,
hence C∞.

(d) To give sufficient conditions of uniqueness of the invariant manifold. This is proved under the
assumption that the dynamics on the manifold is attracting and the transversal dynamics is
repelling.
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Notice that the map on the invariant manifold is tangent to the identity. Several authors have
considered either conjugacy or normal form problems for maps that are tangent to the identity. These
authors find that one can reduce the dynamics to a polynomial. For instance Takens [Tak73] studied
the C∞-conjugation between C∞ maps in the real line. Voronin [Vor81] dealt with the problem of
formal and conformal conjugation between analytic maps in the complex plane. See also [Éca85].
Hence, instead of considering the invariant manifold as a graph, it is natural to consider an adapted
parameterization of the manifold so that its dynamics is a polynomial. The formal construction of the
parameterization is stated in Theorem 2.3. We emphasize that the information regarding the dynamics
on the manifold is given by this polynomial, which is of the form R(t) = t− atN + bt2N−1, with N ≥ 2
and a 6= 0 (in fact, doing scalings one can obtain a = ±1). The dynamics on the center manifold can
be stable, unstable or semi-stable, depending on the sign of a and the parity of N .

The idea of the parameterization method was developed in [CFdlL03a, CFdlL03b, CFdlL05], for
invariant manifolds associated to non-resonant spectral components of the linearization at the fixed
point. With this method one finds simultaneously a parameterization of the invariant manifold and the
reduction of the dynamics on it. This methodology has already been used to prove the existence of Cr

one dimensional branches of weak stable manifolds of tangent to the identity maps, see [BFdlLM]. (See
also [McG73, Fon99, BF04, Rob84, Eas84] for different approaches and aspects of this problem, including
applications to Celestial Mechanics. See [Sim80a, Sim80b, Sim82] for studies on the stability around a
parabolic fixed point of a real-analytic area preserving map). We also note that the parameterization
method has been applied to compute invariant manifolds attached to invariant tori [HdlL06b, HdlL06a,
HdlL].

It is well known that the center manifold of an analytic map can be non analytic at the fixed
point, even it could be non C∞, see for instance [Sij85]. But one always can find a formal power
series expansion of the manifold by matching terms of the same order in the corresponding invariance
equation. Thus, we are able to compute an approximation of the center manifold. Hence, expansions
are useful in numeric calculations, so it is crucial to control the growth of these coefficients [Sim00].
In this paper we will prove that the formal expansion of the invariant manifold is Gevrey of order
α = 1

N−1 , that is the coefficients (indexed by n) do not grow more than CKn(n!)α for some constants
C,K. This result is stated in Theorem 2.3.

As Poincaré already pointed out, formal expansions, even if they are not convergent, are very useful
since they give information about the functions that they represent. See for instance [Ram93, Bal94].
We will use some of these asymptotic techniques to prove that, under suitable assumptions, the formal
expansion of the invariant manifold corresponds to a real-analytic function defined in a complex sector
whose vertex is the origin, and this function is Gevrey at the origin. See Theorem 2.4. We emphasize
that the standard techniques in the literature of center manifold theory, such as cut-off functions, are
out of question here since we work in the analytic category.

Finally, the way we consider the uniqueness problem is quite standard in the literature. See for
instance [Pli64, McG73, BF04]. Assuming that the dynamics on the manifold is attracting, and the
transversal dynamics is repelling, one constructs a cone such that the points on the center manifolds
and its iterates belong to this cone and tend to the origin. Moreover, the distance between two different
points in a fiber transversal to the center manifolds experience a growth when iterating. As a result,
such a fiber can only intersect one center manifold, that is a weak stable manifold. We present this
result in Theorem 2.5. See [Sij85] for a different approach.

As a corollary of the results of this paper, we come back to the conjugacy problem of tangent to
the identity maps on the real line mentioned above. We prove that a real-analytic map of this type
is α-Gevrey conjugated to a polynomial of the form R(t) = t − atN + bt2N−1, with α = 1

N−1 . See
Corollary 2.6.
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The paper is organized as follows. In Section 2 we introduce the problem and the notation used,
and we state the main three theorems of this paper. The first theorem corresponds to the formal
approach and the Gevrey estimates of the expansions, developed in Section 3. The second theorem
establish the analyticity and differentiability properties of the invariant manifold, proved in Section 4.
The third theorem is the uniqueness result, which is proved in Section 5. In Appendix A we provide
useful properties on Gevrey functions.

2. The problem and the results.

2.1. The parameterization method. In this paper we will consider a real-analytic map

F : U ⊂ R× Rd −→ R× Rd

z = (x, y) −→ F (x, y) = (f(x, y), g(x, y)) (2.1)

defined in an open neighborhood U of 0 = (0, 0), giving a discrete dynamical system of the form{
x̄ = x− axN + f̂N (x, y) + f≥N+1(x, y),
ȳ = Ay + g≥2(x, y),

(2.2)

where:
• the constant a is non-zero;
• 1 is not in the spectrum of A;
• N ≥ 2 is an integer number;
• f̂N (x, y) is an homogeneous polynomial of degree N such that f̂N (x, 0) = 0. We denote v =

(N − 1)!∂N−1
x ∂y f̂(0, 0) ∈ Rd, so that ∂y f̂N (x, 0) = xN−1v>. We will also write fN (x, y) =

−axN + f̂N (x, y);
• f≥N+1 has order N + 1 (all its derivatives up to order N vanish at (0, 0));
• g≥2 has order 2 (that is g≥2(0, 0) = 0 and Dg≥2(0, 0) = 0).

By “real-analytic” we mean that F can be extended to a holomorphic function defined in a complex
neighborhood UC of U , that is FC : UC ⊂ C × Cd −→ C × Cd. For the sake of simplicity, we will also
use the notation F for its complexification FC.

Remark 2.1. A natural question is to characterize the maps that are (locally) conjugated to a map of
the form (2.2). Assume that a map defines a dynamical system with a fixed point whose linearization
has 1 as a simple eigenvalue. After a translation of the fixed point to the origin of the coordinate system,
and a linear change of variables, we can write the equations as{

x̄ = x+ f̂(x, y),
ȳ = Ay + ĝ(x, y),

(2.3)

where f̂ and ĝ have order 2. Let N be the smaller integer such that the ∂N f̂
∂xN (0, 0) 6= 0, that is the

coefficient of xN in the expansion of f̂ is non-zero. We would like to eliminate all the terms of f̂ of
order lower than N using changes of variables. This can be done using standard normal form techniques,
under suitable non-resonance conditions that we now describe.

Let λ1, . . . λd ∈ C be the eigenvalues of the matrix A. Then, the map (2.3) is (locally) conjugated to
a map of the form (2.2) in the following cases:

• If N = 2, obviously;
• If N > 2, and λk1

1 . . . λkd

d 6= 1 for all (k1, . . . , kd) ∈ Nd such that 1 ≤ k1 + · · ·+ kd < N .

Remark 2.2. In particular, notice that having a parabolic-hyperbolic fixed point (i.e., 1 is the only
eigenvalue in the unit circle) and N = 2 is a degeneracy of codimension 1.
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Assuming that the matrix A is hyperbolic, it is then clear that the dynamics near the fixed point is
dominated by the lower order terms

L(x, y) =
(
x− axN

Ay

)
. (2.4)

We will also denote G(x, y) = F (x, y) − L(x, y). Notice that the fixed point has a center manifold
(possibly non-unique) tangent to the x-axis, whose dynamics depend on the sign of a and the parity of
N . Thus, the dynamics on the center manifold can be stable, unstable of semi-stable, see the examples
in Section 2.2. Since a center manifold is one dimensional and tangent to the x-axis, we will refer to
the left branch or to the right branch of the manifold.

Let us focus on the right branch of the center manifold, since similar arguments can be made for
the left branch. The goal is to find an adapted parameterization of the branch, K : [0, ρ) → R1+d with
K(0) = (0, 0) and DK(0) = (1, 0)>, in such a way that the invariance equation

F◦K(t) = K◦R(t) (2.5)

is satisfied for a suitable polynomial R(t). Notice that in such a case the manifold

W = {K(t) | t ∈ [0, ρ)} (2.6)

is invariant under (2.2), and that the information about its dynamics is given by the polynomial R(t).
We can deal with (2.5) at different levels. Either we can consider (2.5) as a functional equation in a

suitable Banach space of functions, or we can consider (2.5) in spaces of formal power series.
In both cases, a main ingredient will be the so called Faa-di-Bruno formula, which we now recall.

If f = f(w) and g = g(z) are two composible functions, that for the sake of simplicity we assume are
C∞, we can compute the l derivative of f◦g by

Dl(f ◦ g)(z)
l!

=
l∑

k=1

∑
l1+···+lk=l

1≤li

Dkf(g(z))
k!

[Dl1g(z), · · · , Dlkg(z)]
l1! · · · lk!

. (2.7)

If f(0) = 0 and g(0) = 0, denoting fk = 1
k!D

kf(0) and gk = 1
k!D

kg(0), formula (2.7) at z = 0 reads

(f ◦ g)l =
l∑

k=1

∑
l1+···+lk=l

1≤li

fk[gl1 , · · · , glk ]. (2.8)

Notice that fk and gk are k-multilineal symmetric maps (that can be identified with homogenous
polynomials of order k, and we will write fkw

k = fk[w, k. . ., w], etc.).
If we think now f̂(w) =

∑
l≥1 flw

l and ĝ(z) =
∑

l≥1 glz
l as formal power series, then the l order

term of the formal composition f◦g is given by (2.8). We emphasize that (f̂◦ĝ)l depends only on
f̂≤l(w) =

∑l
k=1 fkw

k and ĝ≤l(z) =
∑l

k=1 gkz
k (we will use along the paper notations such as f<l,

f≥l+1, etc. without more mention). Moreover, the only term of (f̂◦ĝ)l in which fl appears is flg
l
1, and

the only term in which gl appears is f1gl. This remark is important when doing induction arguments.
As a result, when one considers (2.5) in the sense of composition of formal power series, one looks

for a formal expansion K̂(t) =
∑

l≥1Klt
l ∈ R[[t]]1+d and a polynomial R(t) = R1t + · · · + Rmt

m of
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unknown degree (to be found) such that

l∑
k=1

∑
l1+···+lk=l

1≤li

Fk[Kl1 , · · · ,Klk ] =
l∑

k=1

∑
l1+···+lk=l

1≤li

KkRl1 · · ·Rlk (2.9)

for all l ≥ 1.
Let us finish this introductory section with several notational conventions that we use throughout the

paper. We denote the projection over the x-component by πx, and the projection over the y-components
by πy. If W ∈ C1+d (or if W is a map taking values in C1+d, or a power series with coefficients in
C1+d), we write W x = πxW and W y = πyW .

2.2. Examples. The dynamical properties of the center manifold, and the puzzling questions about
its existence, uniqueness, differentiability and analyticity can be grasped with the following simple but,
we hope, illuminating examples.

The first example is the time-1 map of the autonomous planar vector field{
ẋ = −axN ,
ẏ = λy,

(2.10)

that is {
x̄ = x

(
1 + (N − 1)axN−1

)−1/(N−1)

ȳ = eλy,
(2.11)

Map (2.11) is of the form (2.2) with A = eλ. The dynamical properties of the fixed point, and
the uniqueness and dynamical properties of both branches (left and right) of the center manifold are
summarized below:

• a > 0, λ < 0 (0 < A < 1)
– N even: saddle-node, unique left branch (weak unstable manifold), non-unique right branch;
– N odd: attracting node, non-unique left and right branches;

• a > 0, λ > 0 (1 < A)
– N even: saddle-node, non-unique left branch, unique right branch (weak stable manifold);
– N odd: saddle, unique left and right branches (weak stable manifold);

• a < 0, λ < 0 (0 < A < 1)
– N even: saddle-node, non-unique left branch, unique right branch (weak unstable manifold);
– N odd: saddle, unique left and right branches (weak unstable manifold);

• a < 0, λ > 0 (1 < A)
– N even: saddle-node, unique left branch (weak stable manifold), non unique right branch ;
– N odd: repelling node, non-unique left and right branches;

Let us consider now the analytical properties of the center manifold. Notice that if we represent it as
a graph y = ψ(x), then it is

y = c exp
(

λ

a(N − 1)
1

xN−1

)
(2.12)

where c is a constant, and the right and the left branch is defined if limx→0+ ψ(x) = 0 and limx→0− ψ(x) =
0, respectively. In particular, y = 0 is a center manifold which is analytic, but the rest of the branches
are C∞ in the origin. Moreover, the difference between two any branches is exponentially small. Notice
also that all the branches of center manifold have the same asymptotic expansion at the origin: it is a
formal power series with all the coefficients equal to zero.



6 I. BALDOMÁ AND A. HARO

The second example appears in [Car81] with N = 3. It is the autonomous planar vector field{
ẋ = −xN ,
ẏ = −y + x2,

(2.13)

that can also easily be solved by quadratures. With respect to the asymptotic expansion of the center
manifold, represented as a graph, we obtain

y = ψ(x) =
∑
l≥0

2(N + 1) . . . (2 + (N − 1)(l − 1))x2+(N−1)l. (2.14)

Using Stirling’s formula, it is easy to see that the coefficient ψk with k = 2+(N − 1)l can be compared
with k!α, with α = 1

N−1 , in such a way that

ψk

k!α
∼ (2π)

1−α
2

Γ(2α)
α2α− 1

2 k−
1
2−

1
2 α

where Γ is the Gamma function. That is, the coefficients ψk grow as the power α of k!. In this case,
one says that the power series (2.14) is α-Gevrey. We emphasize again that the Gevrey order has to
do with the order of the dominant term in the center manifold: α = 1

N−1 . We also emphasize that the
center manifold is not analytic.

Let us finish this section with one example in which our results do not apply directly. Let us consider
the 2-dimensional map {

x̄ = x− xy + x3,
ȳ = 2y + x3.

(2.15)

It is clear that, although (2.15) is not of the form (2.2), the map has a center manifold which is tangent
to the x-axis. Notice, moreover, that the lower order terms constitute a map{

x̄ = x− xy,
ȳ = 2y, (2.16)

which is too degenerate (it has a line of fixed points). We can not know from the lower order terms
what is the dynamics on the center manifold. To do so, one uses the standard reduction principle to
the center manifold. In order to apply our results, notice that one can eliminate the term xy in the
first component using a normal form analysis. See Remark (2.1).

2.3. The results. Along this paper, we denote α = 1
N−1 .

In the following theorems, we consider the dynamical system (2.2).
The first result is related to the formal solution of the invariance condition (2.5). We prove that

there exists a formal solution of (2.5) being R a polynomial of degree 2N−1. Moreover, the expansions
are α-Gevrey.

Theorem 2.3. Assume that 1 /∈ SpecA.
Then, there exist a unique polynomial R(t) = t − atN + bt2N−1 and a formal power series K̂(t) =∑
n≥0Knt

n ∈ R[[t]]1+d with K0 = (0, 0) and K1 = (1, 0)> such that

F◦K̂ = K̂◦R

(in the sense of formal composition). Moreover, the expansion is α-Gevrey, that is there exist constants
C,K > 0 such that

‖Kn‖ ≤ CKnn!α,

where ‖·‖ is a norm in R1+d.
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The following result deals with the existence of a real-analytic parameterization K of the center
manifold which it turns to be α-Gevrey at 0. We state the theorem for the case of a (weak) stable
invariant right branch, i.e. a > 0, under the assumption that the dynamics in the complementary
directions is not linearly asymptotically stable. We emphasize that those complementary directions
can contain eigenvalues of modulus 1. In such a case, the theorem constructs a weak stable invariant
manifold inside the center manifold. An analogous result is enunciated for a (weak) unstable invariant
branch. In the theorem we state both results for the right branch, but they also hold for a left branch
with minor changes.

Theorem 2.4. Assume that a > 0 and SpecA ⊂ {µ ∈ C | |µ| ≥ 1} \ {1}. Then, for any β < απ there
exist ρ > 0 small enough and a real-analytic function K : (0, ρ) → R1+d which can be holomorphically
extended to a complex sector

S = S(β, ρ) = {t = reiϕ ∈ C | 0 < r < ρ, |ϕ| < β/2}
such that

F◦K = K◦R
in the sector, where R is the polynomial produced in Theorem 2.3. Moreover the parameterization K is
asymptotic α-Gevrey to the expansion K̂ produced in Theorem 2.3, which implies that

lim
S3t→0

1
n!
DnK(t) = Kn.

In particular, K can be extended to a C∞ function at 0. Moreover, the dynamics in the local manifold

Wws = {K(t) | t ∈ [0, ρ)}
is (weak) asymptotically stable at 0.

Analogously, if we assume a < 0 and SpecA ⊂ {µ ∈ C | |µ| ≤ 1} \ {1, 0}, then there exists a real-
analytic function K satisfying F◦K = K◦R, that is the parameterization of a (weak) asymptotically
unstable manifold Wwu at 0.

Notice that in the previous theorem the result about the existence of a (weak) unstable branch can
also be obtained solving the functional equation F−1◦K = K◦R̃. This is just to apply the first part of
Theorem 2.4 to F−1.

In the following result we consider the uniqueness problem of the (weak) stable manifold constructed
in the previous theorem. We prove that it is unique under the assumption that the complementary
directions are linearly unstable. Again, an analogous result is stated for the uniqueness of a (weak)
unstable manifold.

Theorem 2.5. Assume that a > 0 and SpecA ⊂ {µ ∈ C | |µ| > 1}. Then, there is a unique right
branch of center manifold, and it is (locally) Wws, the manifold produced in Theorem 2.4.

Analogously, if we assume a < 0 and SpecA ⊂ {µ ∈ C | |µ| < 1}\{0}, there is a unique right branch
of center manifold, and it is (locally) Wwu, the manifold produced in Theorem 2.4.

Finally we present a corollary about the conjugation of tangent to the identity real-analytic one
dimensional maps. We prove that the conjugacy is α-Gevrey and analytic in a complex sector which
does not include the origin. This result can be related with the C∞ results given by [Tak73]. In [Vor81]
and [Éca85] the problem is studied for the case N = 2.

Corollary 2.6. Let f(x) = x− axN + f̂(x) be a real-analytic map in a neighborhood of 0 in R, where
a 6= 0 and all the derivatives of f̂ up to order N vanish at 0. Then, f is (locally) α-Gevrey conjugated
to a polynomial map R(t) = t − atN + bt2N−1, and the conjugacy is real-analytic except possibly in 0,
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and it is analytic in a complex bisector −S(β, ρ) ∪ S(β, ρ) with β < απ . In particular, the conjugacy
is C∞ at 0.

Proof. Notice that there exist a formal power series K̂x(t) and a unique polynomial R(t) such that
f◦K̂x(t) = K̂x◦R(t).

For the conjugacy in the right branch, if a > 0 we take a constant A > 1 and if a < 0 we take
a constant 0 < A < 1. In both cases, we consider the 2D map F given by F (x, y) = (f(x), Ay).
Applying Theorem 2.5 to F , we get a parameterization of the right branch of the center manifold
K+(t) = (Kx

+(t), 0) for t ∈ S(β, ρ). In particular, we have f◦Kx
+ = Kx

+◦R, and therefore f is conjugated
to the polynomial R in a sector S(β, ρ).

For the left branch, we perform a change of variables x→ −x and we repeat the previous argument
to the function f̃(x) = −f(−x), obtaining a conjugacy K̃x

+ defined in a sector S(β, ρ). The reduced
polynomial we obtain is R̃(t) = −R(−t). Hence, f◦Kx

−(t) = Kx
−◦R(t) for t ∈ −S(β, ρ), where Kx

−(t) =
−K̃x

+(−t).
The conjugacy ϕ in then defined by ϕ(t) = Kx

+(t) if t ∈ S(β, ρ) and by ϕ(t) = Kx
−(t) if t ∈ −S(β, ρ).

Both branches of ϕ are asymptotic α-Gevrey to the expansion K̂x, and hence they are C∞ at 0.
Moreover, the left and right derivatives at all order coincide: DlKx

+(0) = DlKx
−(0) = l!Kx

l . In summary,
ϕ satisfies the properties stated in the corollary.

3. The formal solution of F ◦K−K ◦R = 0. In this section we will prove Theorem 2.3. First of all,
in subsection 3.1, we prove that there exists a formal solution of the invariance equation F ◦K = K ◦R
being R a suitable polynomial. To do that we match powers in t. We also give a recurrence formula
to compute the coefficients Kl of the formal solution K̂ =

∑
n≥1Klt

l. The main key to obtain this
recurrence formula will be the Faa-di-Bruno for formal power series formula given in (2.8). Later we
will prove that the formal expansion is actually α-Gevrey. This is done in subsection 3.2.

3.1. Construction of the formal solution. The goal of this section is to prove the following propo-
sition:

Proposition 3.1. There exist a unique b ∈ R such that for any c ∈ R there exist a unique formal power
series K̂ =

∑∞
l=1Klt

l, Kl ∈ R1+d with K1 = (1, 0)> and Kx
N = c, such that R(t) = t − atN + bt2N−1

and K̂ satisfies formally the equation F◦K̂ − K̂◦R = 0.
Moreover, the coefficients of K and R can be computed inductively. In the step l > 1,

• If l 6= N : Ky
l = −(A− Id)−1Ey

l , K
x
l =

−1
a(l −N)

(Ex
l+N−1 + v>Ky

l ), Rl+N−1 = 0;

• If l = N : Ky
N = −(A− Id)−1Ey

N , K
x
N = c, b = R2N−1 = Ex

2N−1 + v>Ky
N ;

where

Ey
l =

l∑
k=2

∑
l1+···+lk=l

1≤li≤l−1

Gy
k[Kl1 , · · · ,Klk ]−

l−N+1∑
k=2

Ky
k

∑
l1+···+lk=l

li≥1

k∏
i=1

Rli (3.1)
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and

Ex
l+N−1 =− a

∑
l1+···+lN=l+N−1

1≤li≤l−1

N∏
i=1

Kx
li +

l+N−1∑
k=N

∑
l1+···+lk=l+N−1

1≤li≤l−1

Gx
k[Kl1 , · · · ,Klk ]

−
l−1∑
k=2

Kx
k

∑
l1+···+lk=l+N−1

li≥1

k∏
i=1

Rli . (3.2)

Proof. We will prove first that the error El in the order l approximation K≤l is

El(t) = F ◦K≤l(t)−K≤l ◦R(t) =
(
O(tN+l)
O(tl+1)

)
. (3.3)

First notice that K≤1(t) = (t, 0), R≤N (t) = t− atN satisfies

E1(t) = F ◦K≤1(t)−K≤1 ◦R≤N (t) =
(
O(tN+1)
O(t2)

)
,

so (3.3) holds for l = 1.
Now we proceed by induction. Let l ≥ 2, and assume that there exist polynomials K<l of degree

l − 1 and R<l+N−1 of degree l +N − 2 such that the error in the step l − 1 is

El−1 = F ◦K<l −K<l ◦R<l+N−1 =
(
O(tN+l−1)
O(tl)

)
. (3.4)

We want to find Kl ∈ R1+d and Rl+N−1 ∈ R such that K≤l = K<l +Klt
l and R≤l+N−1 = R<l+N−1 +

Rl+N−1t
l+N−1 satisfy (3.3). For that we introduce Hl(t) = Klt

l and Sl+N−1(t) = Rl+N−1t
l+N−1 and

we compute

F ◦K≤l −K≤l ◦R≤l+N−1 = El−1 + (F◦K≤l − F◦K<l −DF (K<l)Hl) +DF (K<l)Hl

− (K≤l◦R≤l+N−1 −K≤l◦R<l+N−1)−Hl◦R<l+N−1

(3.5)

up to order l +N − 1 in the x-components and up to order l in the y-component.
Now we are going to compute the different terms in (3.5). We have that

El−1(t) =
(
Ex

l+N−1t
l+N−1

Ey
l t

l

)
+
(
O(tl+N )
O(tl+1)

)
,

F◦K≤l(t)− F◦K<l(t)−DF (K<l(t))Hl(t) =
(
O(tl+N )
O(tl+1)

)
,

DF (K<l(t))Hl(t) =
(

(1− aNtN−1)Kx
l t

l + v>Ky
l t

l+N−1

AKy
l t

l

)
+
(
O(tl+N )
O(tl+1)

)
,

K≤l ◦R≤l+N−1(t)−K≤l ◦R<l+N−1(t) =
(
Rl+N−1t

l+N−1

0

)
+
(
O(tl+N )
O(tl+N )

)
,

and
Hl ◦R<l+N−1(t) = (t− atN +O(tN+1))lKl = Klt

l − alKlt
l+N−1 +O(tl+N ).

Henceforth we obtain that

El(t) =
( (

Ex
l+N−1 + a(l −N)Kx

l + v>Ky
l −Rl+N−1

)
tl+N−1

(Ey
l + (A− Id)Ky

l ) tl

)
+
(
O(tl+N )
O(tl+1)

)
.
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Then, in order to satisfy (3.3), we take

• If l 6= N : Ky
l = −(A− Id)−1Ey

l , K
x
l =

−1
a(l −N)

(Ex
l+N−1 + v>Ky

l ), Rl+N−1 = 0;

• If l = N : Ky
N = −(A− Id)−1Ey

N , K
x
N = c, R2N−1 = Ex

l+N−1 + v>Ky
l .

We denote b = R2N−1 and then R(t) = t − atN + bt2N−1. We also emphasize that in the step N the
term Kx

N is free, and we fix it equal to c.
We will prove now the formulae for Ey

l and Ex
l+N−1. First, notice that Ey

l is the term of order l of
πyE

l−1 = F y◦K<l−Ky
<l◦R<l+N−1, so that Ey

l = DlπyEl−1(0)/l!. Applying Faa-di-Bruno formula we
obtain:

Ey
l =

l∑
k=1

∑
l1+···+lk=l

1≤li≤l−1

F y
k [Kl1 , · · · ,Klk ]−

l−1∑
k=1

Ky
k

∑
l1+···+lk=l

1≤li≤l+N−2

k∏
i=1

Rli . (3.6)

In the first term, if k = 1 the summatory vanishes, and notice that for k ≥ 2 F y
k = Gy

k. In the second
term, Ky

1 = 0. Then, for k ≥ 2, if lk > l+N − 2 we would have l > l+N − 2+ (k− 1) = l+N + k− 3,
which is false. So, we have: ∑

l1+···+lk=l

1≤li≤l+N−2

k∏
i=1

Rli =
∑

l1+···+lk=l

1≤li

k∏
i=1

Rli := Rk,l

Notice that Rk,l is the coefficient of tl in

R(t)k = (t− atN + bt2N−1)k = tk − aktN+k−1 + . . . ,

and in particular, Rk,l = 0 if k < l < N + k − 1. As a result, 2 ≤ k ≤ l −N + 1 in the second term of
(3.6). So, we have proved (3.1).

It only remains to prove (3.2). We proceed in a similar way as before. Again, notice that Ex
l+N−1

is the term of order l + N − 1 of πxE
l−1 = F x◦K<l − Kx

<l◦R<l+N−1. Applying again Faa-di-Bruno
formula, we obtain

Ex
l+N−1 =

l+N−1∑
k=1

∑
l1+···+lk=l+N−1

1≤li≤l−1

F x
k [Kl1 , · · · ,Klk ]−

l−1∑
k=1

Kx
k

∑
l1+···+lk=l+N−1

1≤li≤l+N−2

k∏
i=1

Rli (3.7)

Since F x(x, y) = x− axN +Gx(x, y), then for k = 1, . . . N − 1 the summatory in the first term of (3.7)
vanishes, and the whole term can be replaced by

−a
∑

l1+···+lN=l+N−1

1≤li≤l−1

N∏
i=1

Kx
li +

l+N−1∑
k=N

∑
l1+···+lk=l+N−1

1≤li≤l−1

Gx
k[Kl1 , · · · ,Klk ].

Finally, in the second term of (3.7), notice that if k = 1, then l1 = l + N − 1 > l + N − 2, so the
corresponding summatory vanishes. We obtain then (3.2).

With these lines we finish the proof of Proposition 3.1.

3.2. Gevrey estimates. In this section we prove that the formal expansion K̂ given in Proposition
3.1 is α-Gevrey. First we perform some change of variables and scalings to get some suitable conditions.
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3.2.1. Preliminary changes of variable and scalings. The next lemma provide us a change of coordinates
in such a way that the new parameterization of the center invariant manifold is flatter than the original
one.

Lemma 3.2. We define the change of variables

(x, y) = H(u, v) := K≤N−1(u) + (0, v)

where K≤N−1(u) =
∑N−1

j=1 Kju
j. In these new variables:

1. F̄ = H−1 ◦ F ◦H has the same form (2.2) of F .
2. The formal solutions of F̄ ◦ K̄ − K̄ ◦ R̄ = 0 obtained applying Proposition 3.1 to F̄ satisfy

K̄(t) = (t, 0)T +O(tN ), and R̄(t) = t− atN + b̄t2N−1

3. b̄ = b, so R̄(t) = R(t).

The proof of this lemma is straightforward.

Remark 3.3. It is clear that, if K̄(t) =
∑∞

j=1 K̄jt
j is α-Gevrey, then K̂(t) =

∑∞
j=1Kjt

j is also
α-Gevrey.

Now we are going to perform adequate scalings in order to get the constants a and b small enough.
We also obtain a simpler Gevrey condition for the first terms of the series K̄.

From now on, for δ > 0, we denote by B(δ) the closed ball of radius δ centered at the origin of the
complex plane.

Lemma 3.4. Let δ̄ be such that B(δ̄) is contained in the complex domain ŪC of F̄ . Let Ḡ = F̄ −L and
M̄ = max(x,y)∈B(δ̄) ‖Ḡ(x, y)‖.

For all l0 ∈ N, α0 > 0, δ0 > 0 and ε > 0, there exists λ := λ(l0, α0, δ0, ε, δ̄) > 0 such that the functions
F̃ (x, y) = λF (λ−1x, λ−1y), G̃(x, y) = λG(λ−1x, λ−1y), R̃(t) = λR(λ−1t) and K̃(t) = λK(λ−1t) satisfy
the following properties:

1. F̃ has the form (2.2), and its domain contains a ball B(δ̃), with δ̃ = λδ̄ > δ0.
2. Let M̃ = max(x,y)∈B(δ̃) ‖G̃(x, y)‖. Then M̃ = λM̄ and hence ‖G̃l‖ ≤ λM̄δ̃−k for all k ≥ 0.
3. ‖K̃l‖ ≤ (l!)α0 for all N ≤ l ≤ l0. Moreover, K̃l = 0 if 2 ≤ l ≤ N − 1.
4. R̃(x) = t− ãtN + b̃t2N−1 with ã = λ−N+1a 6= 0 and b̃ = λ−2N+2b. Moreover |ã| ≤ ε.
5. Formally we have that

F̃ ◦ K̃ − K̃ ◦ R̃ = 0. (3.8)

We note that σ := b̃
ã2 is invariant under scalings like the given in Lemma 3.4

In order to prove that the formal power series K̂ is α-Gevrey at 0, we will check that K̃ satisfies
such condition. To do that we will apply Proposition 3.1 to the map F̃ to get an inductive formula for
the coefficients K̃l.

First of all we provide some technical lemma which are given in section below.

3.2.2. Preliminary bounds. We define

Rk,ν =
∑

l1+···+lk=ν

li≥1

k∏
i=1

R̃li .
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We note that in formulae of Proposition 3.1 for K̃x
l and K̃y

l are involved sums of the form K̃x
kRk,ν and

K̃y
kRk,ν , with ν = l + N − 1 and ν = l, respectively. The following lemma, give us a bound of these

sums if we assume that ‖K̃k‖ ≤ (k!)α (which will be the case when we will proceed by induction).

Lemma 3.5. Let

Rk,ν =
∑

l1+···+lk=ν

li≥1

k∏
i=1

R̃li , J
1
k,ν = (k!)αRk,ν .

We have that:

|J1
k,ν | ≤ ((ν −N + 1)!)α(ν −mN + 1)|ã|m(1 + |σ|)m/2, if m :=

ν − k

N − 1
∈ N,

where σ = b̃
ã2 . Otherwise J1

k,ν = 0.

Proof. Since Rk,ν is the coefficient of tν in (t− ãtN + b̃t2N−1)k, then

Rk,ν =
∑

m1+m2+m3=k

m1+Nm2+(2N−1)m3=ν

k!
m1!m2!m3!

(−ã)m2 b̃m3 .

The indices m2,m3 in the formula has to satisfy (N − 1)m2 + 2(N − 1)m3 = l− k, that is m2 + 2m3 =
m = (ν − k)/(N − 1) ∈ N. Henceforth Rk,ν = 0 if (ν − k)/(N − 1) /∈ N and otherwise

Rk,ν =
[m

2 ]∑
m3=0

(ν − (N − 1)m)!
(ν −mN +m3)!(m− 2m3)!m3!

(−ã)m−2m3 b̃m3 .

Then, since
(ν − (N − 1)m)!
(ν −Nm+m3)!

≤ (ν − (N − 1)m)!
(ν −Nm)!

≤ (ν − (N − 1)m)m−1(ν −Nm+ 1)

and
[m

2 ]∑
m3=0

|ã|m−2m3 |b̃|m3

(m− 2m3)!m3!
≤ |ã|m

[m
2 ]∑

m3=0

1
([m/2]−m3)!m3!

∣∣∣∣∣ b̃ã2

∣∣∣∣∣
m3

≤ 1[
m
2

]
!
|ã|m(1 + |σ|)m/2,

therefore,

|Rk,ν | ≤
1[

m
2

]
!
(ν − (N − 1)m)m−1(ν −Nm+ 1)|ã|m(1 + |σ|)m/2. (3.9)

We are now to bound J1
k,ν . Notice that, since k = ν − (N − 1)m, then

|J1
k,ν | ≤

1[
m
2

]
!
(ν − (N − 1)m)!α(ν − (N − 1)m)m−1(ν −Nm+ 1)|ã|m(1 + |σ|)m/2

The proof of Lemma 3.5 follows from

((ν − (N − 1)m)!)α(ν − (N − 1)m))m−1

((ν −N + 1)!)α
=

(ν − (N − 1)m)m−1

[(ν −N + 1) · · · (ν − (N − 1)m+ 1)]α

≤ (ν − (N − 1)m)m−1

(ν − (N − 1)m+ 1)(m−1)(N−1)α
≤ 1,

where we use that α = 1
N−1 .
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In order to make estimates of the norms of K̃x
l and K̃y

l computed in the l step of the construction
given in Proposition 3.1, we have to estimate∑

l1+···+lk=ν

1≤li≤ν−1

‖K̃l1‖ . . . ‖K̃lk‖,

where, again, ν = l + N − 1 and ν = l. In the induction arguments, we have to estimate such a sum
assuming that ‖K̃li‖ ≤ (li!)α. Notice also that we assume that K̃2 = . . . K̃N−1 = 0, by Lemma 3.2.

Lemma 3.6. We denote
Mk,ν =

∑
l1+···+lk=ν, li≥N

(l1! · · · · · lk!)α.

We have that:
Mk,ν ≤ ((ν − k + 1)!)αNk−1 if kN ≤ ν.

Otherwise Mk,ν = 0.

Proof. Obviously, if kN > ν, Mν,k = 0. Let us assume that kN ≤ ν. It is easy to see that, if a, b, c ∈ N
with b ≤ c, then (a+ b)!c! ≤ b!(a+ c)!. We fix l1, l2, · · · , lk ≥ N such that l1 + · · ·+ lk = ν and we use
the previous property with to bound l1!l2! in such a way that, since li ≥ N ,

l1!l2! = (l1 −N +N)!l2! ≤ N !(l1 + l2 −N)!.

Analogously,

l1!l2!l3! ≤ N !(l1 + l2 −N)!l3! = N !(l1 + l2 − 2N +N)!l3! ≤ (N !)2(l1 + l2 + l3 − 2N)!

and applying this procedure recursively we get

l1!l2! · · · lk! ≤ (N !)k−1(l1 + · · ·+ lk − (k − 1)N)! = (N !)k−1(ν − (k − 1)N)!.

On the other hand it is clear that

#{l1 + · · ·+ lk = ν, li ≥ N} = #{m1 + · · ·+mk = ν − kN, mi ≥ 0} =
(
ν − kN + k − 1

k − 1

)
.

Henceforth

Mk,ν ≤ (N !)α(k−1)((ν − (k − 1)N)!)α

(
ν − kN + k − 1

k − 1

)
≤ Nk−1((ν − (k − 1)N)!)α(ν − kN + 1)k−1

≤ Nk−1((ν − k + 1)!)α (ν − kN + 1)k−1

(ν − (k − 1)N + 1)α(N−1)(k−1)

≤ Nk−1((ν − k + 1)!)α,

and the proof is complete.

Lemma 3.7.

J2
k,ν :=

∑
l1+···+lk=ν

li=1 or li≥N

(l1! · · · · · lk!)α ≤ 1
N

(1 +N)k((ν − k + 1)!)α. (3.10)
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Proof. For k = ν, J2
k,ν = 1 and the bound is obvious. Assume that 0 < k < ν. Then,

J2
k,ν =

k−1∑
i=0

(
k
i

)
Mk−i,ν−i ≤

k−1∑
i=0

(
k
i

)
(ν − k + 1)!αNk−i−1 ≤ (ν − k + 1)!α

(1 +N)k

N
,

and the proof is over.

3.2.3. The formal solution is α-Gevrey. We prove Proposition 3.8 below which finish the proof of
Theorem 2.3.

Proposition 3.8. Let δ0 = 2(1 +N),

ε = min

{
1

4
√

1 + |σ| ‖(A− Id)−1‖
,

1
4(1 + |σ|)

}
and

l0 ≥ max{
(
4M̄ δ̄−1‖(A− Id)−1‖

)N−1
, N +

2
N

(1 +N)N

(
1 +

2M̄
|a|δ̄N

)
} (3.11)

(where the constants δ̄, M̄ are defined in Lemma 3.4).
The formal solution K̃ =

∑∞
j=1 K̃jt

j of the equation F̃ ◦ K̃ − K̃ ◦R = 0 with F̃ the map of Lemma
3.4 with these constants l0, δ0, satisfy that ‖K̃j‖ ≤ (j!)α for all j ≥ 0.

Proof. By Lemma 3.4, ‖K̃l‖ ≤ (l!)α for all l ≤ l0 with l0 satisfying the condition (3.11) of Proposi-
tion 3.8. We proceed now by induction. Let l > l0 and assume that for all j ≤ l − 1 we have that
‖K̃j‖ ≤ (j!)α.

First we deal with K̃y
l . From Proposition 3.1, K̃y

l = (A− Id)−1(H1
l −H2

l ), where

H1
l =

l−N+1∑
k=N

K̃y
kRk,l , H

2
l =

l∑
k=2

∑
l1+···+lk=l

1≤li≤l−1

G̃y
k[K̃l1 , · · · , K̃lk ].

(Notice that K̃y
2 = · · · = K̃y

N−1 = 0, by Lemma 3.4.) On the one hand, by Lemma 3.5,

‖H1
l ‖ ≤

l−N+1∑
k=N

(k!)α|Rk,l| ≤ ((l −N + 1)!)α

[ l−N
N−1 ]∑
m=1

(l −mN + 1)(|ã|
√

1 + |σ|)m

≤ ((l −N + 1)!)α(l −N + 1)2|ã|
√

1 + |σ|,

where we assume that |ã| ≤ ε with
√

1 + |σ| ε ≤ 1
2 , which is implied by the hypothesis ε ≤ 1

4(1+|σ|) of
Proposition 3.8. Moreover, since α = 1/(N − 1), we have that

((l −N + 1)!)α(l −N + 1) ≤ (l!)α l −N + 1
(l −N + 2)α(N−1)

≤ (l!)α.

On the other hand, by Lemma 3.7 and Lemma 3.4

‖H2
l ‖ ≤ λM̄

l∑
k=2

δ̃−kJ2
l,k ≤ λM̄

l∑
k=2

δ̃−k((l − k + 1)!)α 1
N

(1 +N)k

≤ λM̄
1
N

2
(

1 +N

δ̃

)2

l−α(l!)α ≤ 2
M̄

δ̄
l−α
0 (l!)α
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where we assume that 1+N
δ̃

≤ 1
2 , and use that δ̃ = λδ̄. In summary,

(l!)−α‖K̃y
l ‖ ≤ 2‖(A− Id)−1‖

(√
1 + |σ| ε+

M̄

δ̄lα0

)
≤ 1,

because 2‖(A− Id)−1‖
√

1 + |σ| ε ≤ 1
2 and 2‖(A− Id)−1‖M̄ δ̄−1l−α

0 ≤ 1
2 by the hypotheses of Proposi-

tion 3.8.
Now, we deal with K̃x

l . Again from Proposition 3.1, K̃x
l = C1

l + C2
l − C3

l with

C1
l =

1
l −N

∑
l1+···+lN=l+N−1

1≤li≤l−1

N∏
i=1

K̃x
li , C

2
l =

1
ã(l −N)

l−1∑
k=N

K̃x
kRk,l+N−1

C3
l =

1
ã(l −N)

l+N−1∑
k=N

∑
l1+···+lk=l+N−1

1≤li≤l

G̃x
k[K̃l1 , · · · , K̃lk ],

where in C3
l we use that K̃x

2 = · · · = K̃x
N−1 = 0 by Lemma 3.4 and that K̃y

l is already known. We
notice that, using Lemma 3.7,

|C1
l | ≤

1
l −N

∑
l1+···+lN=l+N−1

li=1 orN≤li≤l−1

(l1! · · · lN !)α ≤ 1
l0 −N

1
N

(1 +N)N (l!)α.

To bound |C2
l | we use Lemma 3.5 and we get

|C2
l | ≤

1
|ã|(l −N)

l−1∑
k=N

(k!)αRk,l−N+1 ≤
1

|ã|(l −N)

[ l−1
N−1 ]∑
m=2

(l!)α(l −N(m− 1))|ã|m(1 + |σ|)m/2

≤ 1
|ã|

2|ã|2(1 + |σ|)(l!)α = 2|ã|(1 + |σ|)(l!)α,

where we assume
√

1 + |σ|ε ≤ 1
2 . Finally,

|C3
l | ≤

λM̄

|ã|(l −N)

l+N−1∑
k=N

δ̃−kJ2
k,l+N−1 ≤

λM̄

|ã|(l −N)

l+N−1∑
k=N

((l +N − k)!)α 1
N

(
1 +N

δ̃

)k

≤ λM̄

|ã|(l −N)
(l!)α 1

N
2
(

1 +N

ρ

)N

≤ 2M̄
|a|N(l0 −N)

(
1 +N

δ̄

)N

(l!)α

where we assume that 1+N
δ̃

≤ 1
2 and we use that ã = λ1−Na and δ̃ = λδ̄. In summary, we obtain the

bound

(l!)−α‖K̃x
l ‖ ≤ 2(1 + |σ|)ε+

1
N

(1 +N)N

(
1 +

2M̄
|a|δ̄N

)
1

l0 −N
≤ 1,

because 2(1 + |σ|)ε ≤ 1
2 and 1

N (1 +N)N
(
1 + 2M̄

|a|δ̄N

)
1

l0−N ≤ 1
2 by the hypotheses of Proposition 3.8.

With these lines we are done with the proof of Proposition 3.8, and so the proof of Theorem 2.3.
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4. The solution of F ◦K −K ◦ R. In this section we will prove Theorem 2.4. In fact, we will give
all the details of the proof for the stable case in which a > 0 and the eigenvalues of A are all of them
of modulus not smaller than 1. At the end of this section, we will indicate the minor changes to prove
the Theorem in the unstable case.

We will see that the formal solution K̂ obtained in Theorem 2.3 is the α-Gevrey asymptotic expansion
of a real-analytic function K defined in a sector S, and K is a parameterization of a one dimensional
invariant manifold of F . As a result, K is C∞ in a interval [0, r), and real-analytic in (0, r).

We recall also that α = 1
N−1 . We also denote by UC the domain of the analytic extension of F to

the complex numbers.

4.1. The action of R on sectors. In this short section we are going to study how R maps sectors of
the complex plane. For the sake of completeness, we will consider a more general case.

Lemma 4.1. Let R(t) = t− atN + b(t)tN+1 be an analytic function defined in a neighborhood of 0 in
C, where a > 0, N ≥ 2 is an integer number and b(t) is analytic. Let 0 < β < απ be an opening. Then,
for all ρ small enough the function R maps the sector S = S(β, ρ) onto itself. Moreover, for all t ∈ S,

|R(t)| ≤ |t|
√

1− a cosλ|t|N−1, (4.1)

where λ = (N − 1)β
2 . In fact, R maps any closed subsector S1 ⊂ S onto itself.

Proof. Let us write R(t) = tR̂(t), with R̂(t) = 1 − atN−1 + b(t)tN . In order to obtain (4.1) we have
just to bound R̂ for points t = reiϕ with |t| = r < ρ and |(N − 1)ϕ| < λ. We write R̂(t) = r̂eiϕ̂, so that
R(t) = rr̂ei(ϕ+ϕ̂).

Hence
r̂2 = 1− 2a cos((N − 1)ϕ)rN−1 +O(r2(N−1)).

By taking ρ small enough (depending on a, b and λ), we obtain r̂2 ≤ 1 − a cosλrN−1 and the bound
(4.1).

We also obtain tan ϕ̂ = −a sin((N − 1)ϕ)rN−1(1 +O(rN−1)), so

ϕ̂ = −a(N − 1)ϕrN−1(1 +O(rN−1)).

Again, by taking ρ small enough ϕ̂ϕ ≤ 0 and |ϕ̂| ≤ |ϕ|.
In summary, for ρ small enough, the points of the sector S = S(β, ρ) are mapped onto itself. In fact,

any closed subsector S1 ⊂ S gets mapped onto itself.

4.2. A quasi solution. Let K̂ the formal solution obtained in the previous section.

Proposition 4.2. Let 0 < β < απ be an opening. For all ρ small enough, there exists an analytic
function Ke : S = S(β, ρ) → UC ⊂ C1+d such that

(a) K̂ is the α-Gevrey asymptotic expansion of Ke;
(b) The error function E = F◦Ke −Ke◦R is exponentially small in S of order α.

That is, for a given norm ‖·‖ in C1+d, for every closed subsector S1 ⊂ S there exist positive constants
C,K and c, κ such that
(a’) for any n ≥ 0 and t ∈ S1, ‖Ke(t)−K<n(t)‖ ≤ CKnn!α|t|−n;
(b’) for any t ∈ S1, ‖E(t)‖ ≤ c exp

(
−κ|t|−(N−1)

)
.

Proof. The existence of a function Ke such that Ke
∼=α K̂ in a sector S = S(β, ρ) is guaranteed by the

Borel-Ritt-Gevrey Theorem (see Theorem A.4). Notice also that, by Proposition A.2,

lim
S3t→0

K(n)
e (t) = n!Kn. (4.2)
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In particular, Ke(0) = 0 ∈ UC. So, making ρ small enough, we can also assure that the image set of Ke

is included in the (complex) domain of F , and that R maps the sector S to itself, which is the domain
of Ke.

An straightforward application of Faa-di-Bruno formula assures that the function E is α-Gevrey in
S (in fact, is a well known result that the composition of Gevrey functions is also Gevrey). By the
formal construction in Theorem 2.3 and (4.2) we obtain that

lim
S3t→0

E(n)(t) = 0.

Again by Proposition A.2 we obtain that E ∼=α 0̂, where here 0̃ means the formal series with all the
coefficients equal to 0. The exponentially small estimate of E comes from Proposition A.5.

4.3. The invariance equation. We will solve first the invariance equation in the stable case. So, let
us assume a > 0 and the spectral radius of A−1 is not greater than 1.

We will fix now a closed sector S1 ⊂ S(β, ρ), so the conclusions (a’) and (b’) of Proposition 4.2 are
satisfied, in particular that there exist positive constants c, κ so that ‖E(t)‖ ≤ c exp

(
−κ|t|−(N−1)

)
in

S1. We emphasize that κ does not depend on the norm ‖·‖.
Since Ke is a quasi-solution, we will look for a “flat” and real-analytic function H : S1 → C1+d such

that

F ◦ (Ke +H)− (Ke +H) ◦R = 0. (4.3)

Let

Â =
(

1 0
0 A

)
.

By writing N(z) = F (z)− Âz, notice that (4.3) is equivalent to the fixed-point equation

H = −Â−1(E +N ◦ (Ke +H)−N ◦Ke −H ◦R) (4.4)

The Banach space in which we will consider (4.4) is

X = {H : S1 ∪ {0} → C1+d | continuous, real-analytic in S1 and ‖H‖X <∞}, (4.5)

where

‖H‖X = sup
t∈S1

‖ exp(κ|t|−(N−1))H(t)‖. (4.6)

In order to prove that the RHS F(H) of (4.4) is contracting, we have to control all the terms. In
particular, sinceN(0) = 0 andDN(0) = 0, we can make ‖N ◦ (Ke +H)−N ◦Ke‖ very small compared
with H. The crux point in then to control H ◦R, which is provided by the following estimate.

Lemma 4.3.

‖H◦R‖X ≤ e−
1
2 aκ(N−1) cos λ‖H‖X .

Proof. From

‖H◦R‖X = sup
t∈S1

(
eκ|t|−(N−1)

‖H◦R(t)‖
)

= sup
t∈S1

(
eκ(|t|−(N−1)−|R(t)|−(N−1))‖H‖X

)
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and, using Lemma 4.1,

|R(t)|−(N−1) ≥ |t|−(N−1)
(
1− a cosλ|t|(N−1)

)−N−1
2

≥ |t|−(N−1)

(
1 +

N − 1
2

a cosλ|t|(N−1)

)
= |t|−(N−1) +

1
2
(N − 1)a cosλ

we obtain the estimate of Lemma 4.3.

Proposition 4.4. Taking the radius r of S1 small enough, there exists H ∈ X satisfying the equation
(4.4).

Proof. In a given closed sector S1 ⊂ S(β, ρ), we recall that the error E of the quasi-solution Ke is
exponentially small of Gevrey order α = 1

N−1 and constant κ (see Proposition 4.2). We emphasize that
κ does not depend on the norm chosen to make the estimates.

Since the spectral radius of Â−1 is 1, we can find a norm ‖·‖ in C1+d so that

L := ‖Â−1‖e− 1
2 aκ(N−1) cos λ < 1, (4.7)

which makes contracting the term Â−1H◦R of (4.4).
Since N(0) = 0 and DN(0) = 0, there exists δ > 0 small enough so that for all z ∈ C1+d with

‖z‖ ≤ δ, z ∈ UC and

‖Â−1‖ ‖DN(z)‖ ≤ 1− L

2
. (4.8)

Let us also define

η = ‖Â−1‖ ‖E‖X , s =
2η

1− L
. (4.9)

Finally, let us take also the radius r of the S1 so small that:
• for all t ∈ S1, ‖Ke(t)‖ ≤ δ

2 ;
• s exp(−κr−(N−1)) ≤ δ

2 .
With this election of the radius r, we claim that the operator

F : BX (s) −→ BX (s)
H −→ −Â−1(E +N ◦ (Ke +H)−N ◦Ke −H ◦R)

(4.10)

is well-defined and contracting in the closed ball of radius s and centered in the origin of X , BX (s).
First, notice that for H ∈ BX (s), and for all t ∈ S1,

‖H(t)‖ ≤ exp(−κ|t|−(N−1))‖H‖X ≤ exp(−κ|r|−(N−1))s ≤ δ

2
.

So, we can make the compositions involved in the definition of F(H).
Moreover, for all H1,H2 ∈ BX (s),

‖F(H2)−F(H1)‖X ≤ ‖Â−1‖ (‖N◦(Ke +H2)−N◦(Ke +H1)‖X + ‖(H2 −H1)◦R‖X )

≤

(
‖Â−1‖ sup

‖z‖≤δ

‖DN(z)‖+ ‖Â−1‖e− 1
2 aκ(N−1) cos λ

)
‖H2 −H1‖X

≤ 1
2
(1 + L)‖H2 −H1‖X .
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In particular, for all H ∈ BX (s),

‖F(H)‖X ≤ ‖F(0)‖X + ‖F(H)−F(0)‖X ≤ η +
1
2
(1 + L)‖H‖X ≤ 1− L

2
s+

1 + L

2
s = s,

so F(H) ∈ BX (s).
Hence, we have proved the claim that F maps the closed ball BX (s) onto itself, and that it is a

contraction there, with Lipschitz constant 1
2 (1 + L). The fixed point H satisfies (4.4).

With the proof of Proposition 4.4 we are done with the proof of Theorem 2.4 in the stable case.
Let us consider briefly now the unstable case, that is a < 0 and the spectral radius of A is not greater

than one. It is clear that the formal power series K̂ satisfies (formally) F−1◦K̂ = K̂◦R−1. By Lemma
4.1 the function R−1 maps a sector S(β, ρ) onto itself. Hence, following previous arguments, one can
deduce that there exists an analytic function Ke in a sector S(β, ρ), such that K̂ is its asymptotic
α-Gevrey expansion and the error E = F−1◦Ke − Ke◦R−1 is exponentially small (Proposition 4.2).
From now, all the arguments in the stable case apply now in the unstable case, changing F by F−1

and R by R−1.

5. The uniqueness of the invariant manifold. In this section we will prove Theorem 2.5. We only
deal with the stable case, being the unstable case analogous. In particular, we will prove that the right
branch of center manifold is uniquely determined by the parameterization K founded in the previous
section. The main assumption is that the dynamics in the y-direction is strongly repelling, that is
specA ⊂ {µ ∈ C : |µ| > 1}. Hence we fix a norm in Rd such that ‖A‖ > 1 and ‖A−1‖ < 1. We define
the norm in R1+d by ‖(x, y)‖ = max{|x|, ‖y‖}.

We will follow the scheme presented in [McG73, BF04] to prove that the (weak) stable invariant
manifold is actually the graph of a suitable function.

For h, p > 0, we define the cone

C(h, p) = {z = (x, y) ∈ R1+d : 0 < x < h, ‖y‖ ≤ px},
which is a convex subset of R1+d. We also define the sector

S = {ζ = (ξ, η) ∈ R1+d : |ξ| ≤ ‖η‖}.
From now on we will take p ≤ 1 so that ‖(x, y)‖ = |x| if (x, y) ∈ C(h, p). Now we are going to prove

a technical lemma, which will be used as an induction step.

Lemma 5.1. For all h, p are small enough, the cone C(h, p) satisfies the following properties:
1. There exists a constant M > 0 such that for all z = (x, y) ∈ C(h, p)

0 < πxF (x, y) ≤ x(1−MxN−1).

2. Let z1, z2 ∈ C(h, p) such that z2 − z1 ∈ S. Then

F (z2)− F (z1) ∈ S and ‖πy(F (z2)− F (z1))‖ ≥ ‖πy(z2 − z1)‖.

Proof. We recall that the map F can be expressed as

F (x, y) =
(
x+ fN (x, y) + f≥N+1(x, y)

Ay + g≥2(x, y)

)
with

fN (x, y) = −axN + f̂N (x, y), a > 0, f̂N (x, 0) = 0.

Since f̂N is an homogeneous polynomial of degreeN and f̂N (x, 0) = 0, there exists a positive constant
C such that f̂N (x, y) ≤ C‖y‖ ‖(x, y)‖N−1. Moreover, since all the derivatives up to order N of f≥N+1
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vanish at zero, for any ε > 0 there exists h > 0 small enough so that |f≥N+1(x, y)| ≤ ε‖(x, y)‖N for
‖(x, y)‖ < h. Hence, for all points (x, y) in the cone C(h, p), with p ≤ 1, we have

πxF (x, y) = x− axN + f̂N (x, y) + f≥N+1(x, y)

with
|f̂N (x, y)| ≤ Cp|x|N and |f≥N+1(x, y)| ≤ ε|x|N

The first item is proved taking p and ε small enough.
Now we deal with the second item. Let z1, z2 ∈ C(h, p) such that ζ = z2 − z1 ∈ S. By the mean’s

value theorem, we have that

F (z2)− F (z1) =
∫ 1

0

DF (z(t))(z2 − z1) dt,

where z(t) = z1 + t(z2 − z1) ∈ C(h, p) for all t ∈ [0, 1]. Notice that,

DF (z) =
(

1 0
0 A

)
+
(
O(‖z‖N−1) O(‖z‖N−1)
O(‖z‖) O(‖z‖)

)
.

Moreover, since ζ = (ξ, η) satisfies |ξ| ≤ ‖η‖, ‖ζ‖ = ‖η‖. Then, using that ‖z(t)‖ = |πxz(t)| < h, there
exists a constant C satisfying∣∣∣∣∫ 1

0

πxDF (z(t))ζ dt
∣∣∣∣ ≤ ∫ 1

0

(
|ξ|+ C‖z(t)‖N−1‖ζ‖

)
dt ≤

(
1 + ChN−1

)
‖η‖.∥∥∥∥∫ 1

0

πyDF (z(t))ζ dt
∥∥∥∥ ≥ ‖Aη‖ −

∫ 1

0

‖πyDF (z(t))ζ −Aη‖ dt ≥
(
‖A−1‖−1 − Ch

)
‖η‖.

Henceforth, taking h small enough F (z1)− F (z2) ∈ S provided that ‖A−1‖ < 1. Moreover,

‖πy(F (z2)− F (z1))‖ ≥
(
‖A−1‖−1 − Ch

)
‖η‖ ≥ ‖πy(z2 − z1)‖.

The next result follows from induction arguments.

Lemma 5.2. Let C(h, p) be the cone of Lemma 5.1. We have that:
1. If z belongs to the center manifold then Fn(z) ∈ C(r, β) for all n ≥ 0.
2. If z ∈ C(h, p) and for all n ≥ 0 Fn(z) ∈ C(h, p), then limFn(z) = 0.
3. If z1, z2 ∈ C(h, p) such that z2−z1 ∈ S, and for all n ≥ 0 Fn(z1), Fn(z2) ∈ C(h, p), then z1 = z2.

Proof. We prove that if (x, y) belongs to the center manifold, then (x, y) ∈ C(r, β). Since

DF (0, 0) =
(

1 0
0 A

)
,

the origin has an unstable manifold which is tangent at the origin to the vector (0, 1)> and the center
manifold which is tangent at the origin to the vector (1, 0)> (of course the center manifold could not be
unique). It is clear that the center manifold has to be (one of) the center manifold, hence it is tangent
at the origin to the vector (1, 0)> and the claim follows trivially. Finally we note that, if z belongs to
the center manifold, then Fn(x, y) also satisfies this condition, for all n ≥ 0 and henceforth, by the
previous claim, Fn(x, y) ∈ C(r, β) for all n ≥ 0.

For 2., let us consider the sequence zn = (xn, yn) = Fn(z) ∈ C(h, p). For 1. of Lemma 5.1, the
sequence of positive numbers xn is strictly decreasing and then it has a non-negative limit, say x∞.
Moreover, from the fact that xn+1 ≤ xn(1−MxN−1

n ) it follows than the limit is x∞ = 0. Since for all n
we have ‖yn‖ ≤ pxn, then the sequence yn goes to zero when n goes to ∞. In summary, limFn(z) = 0.
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For 3., notice that both sequences Fn(z1) and Fn(z2) go to the origin of R1+d. Notice also that
from 2. of Lemma 5.1 we obtain that for all n ≥ 0 Fn(z2) − Fn(z1) ∈ S and that the sequence
‖πy(Fn(z2)− Fn(z1))‖ is increasing (and converges to 0!). So πyz2 = πyz1. Finally, since z2 − z1 ∈ S,
then |πx(z2 − z1)| ≤ ‖πy(z2 − z1)‖ = 0, so z1 = z2.

We are now ready to prove the following uniqueness result, which is a corollary of the previous
lemma.

Proposition 5.3. There is only one right branch of center manifold. Moreover, this branch is a (weak)
stable manifold of the origin.

Proof. We observe that applying Theorem 2.4, we already know that for any x ∈ (0, r) there exists at
least one y1 ∈ Rn such that (x, y1) belongs to the center manifold. Indeed, this is due to the fact that
πxK is invertible, hence there exists t such that x = πxK(t) and therefore y1 = πyK(t) satisfies that
(x, y1) belongs to the center manifold.

Let us assume that there exists x ∈ (0, h) such that there are y1 6= y2 satisfying that (x, y1), (x, y2)
belong to the center manifold. Let z1 = (x, y1) and z2 = (x, y2).

We notice that by 1. of Lemma 5.2, Fn(z1), Fn(z2) ∈ C(h, p) for all n ≥ 0. Moreover, by 2. of
Lemma 5.2 limFn(z1) = 0. Obviously, we also have limFn(z2) = 0.

Since z2− z1 = (0, y2−y1) ∈ S and for all n ≥ 0 Fn(z1), Fn(z2) ∈ C(h, p) then, by 3. of Lemma 5.2,
z1 = z2. So y1 = y2 for all 0 < x < h, and both branches coincide.

Remark 5.4. We emphasize that the uniqueness result stated in Proposition 5.3 holds under the as-
sumption that F is Cr+1, with r ≥ N .

Appendix A. Some elementary facts on Gevrey asymptotics. In this paper, we deal with
asymptotic expansions of real-analytic functions which can be extended to analytic functions in sectorial
regions of complex numbers. In this appendix we review some definitions and results on Gevrey
asymptotics, adapted to the purposes of this paper. See, for instance, [Bal94].

A sector of radius ρ > 0 and opening γ ∈ [0, 2π), given by

S(γ, ρ) = {z = reiϕ ∈ C | 0 < r < ρ, |ϕ| < γ/2}.
A closed sector is given by

S(γ, ρ) = {z = reiϕ ∈ C | 0 < r ≤ ρ, |ϕ| ≤ γ/2}.
In the following, α ∈ (0, 1].
We say that a formal power series f̂ =

∑∞
n=0 fnz

n ∈ C[[z]] is α-Gevrey iff there exist positive
constants C,K such that for every non-negative integer n

|fn| ≤ CKnn!α.

The set of α-Gevrey power series is denoted by C[[z]]α.
We say that an analytic function f in a sector S is α-Gevrey iff for every closed subsector S1 ⊂ S

there exist positive constants C,K such that for every non-negative integer n and every z ∈ S1,
1
n!
|f (n)(z)| ≤ CKnn!α .

The set of α-Gevrey functions in a sector S is denoted by Gα(S).
We say that an analytic function f in a sector S is asymptotic α-Gevrey to a formal power series

f̂ , or that f̂ is the α-Gevrey asymptotic expansion of f , in short f ∼=α f̂ , iff for every closed subsector
S1 ⊂ S there exist positive constants C,K such that for every non-negative integer n and every z ∈ S1,

|rf (z, n)| ≤ CKnn!α ,
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where rf is the residue

rf (z, n) = z−n

(
f(z)−

n−1∑
k=0

fkz
k

)
.

The set of asymptotic α-Gevrey functions in a sector S is denoted by Aα(S).
The following propositions relate the notions introduced above.

Proposition A.1. Let f be an analytic function in a sector S, asymptotic α-Gevrey to a formal power
series f̂ . Then, f̂ is α-Gevrey.

Proof. Let z be any point in S. Take S1 a closed subsector of S containing z. Then,

|rf (z, n)− fn| = |z||rf (z, n+ 1)| ≤ |z|CKn+1(n+ 1)!α.

Therefore
lim

S3z→0
rf (z, n) = fn.

Since, in any closed subsector S1 we have |rf (z, n)| ≤ CKnn!α for suitable constants C,K, we obtain
the same bound when z goes to zero. So, |fn| ≤ CKnn!α.

Proposition A.2. Let f be an analytic function in a sector S and f̂(z) =
∑

n≥0 fnz
n be a formal power

series. Then, f is asymptotic α-Gevrey to f̂ if and only if f is α-Gevrey and for every non-negative
integer n

lim
S3z→0

f (n)(z) = n!fn. (A.1)

Proof. Let us assume first that f ∼=α f̂ . Notice that we can consider the termwise l-derivative formal
series of f̂ ,

f̂ (l)(z) =
∑
n≥0

f (l)
n zn =

∑
n≥0

(n+ 1) . . . (n+ l)fn+lz
n,

and the corresponding residues of f (l), rf(l)(z, n).
Let S1 ⊂ S be a closed subsector, and take S2 ⊂ S another closed subsector such that S1 $ S2. Let

δ > 0 be small enough so that for every z ∈ S1 we have B(z, |z|δ) ⊂ S2. Let C2,K2 be the α-Gevrey
constants of f in the sector S2.

Let z ∈ S1, and n, l non-negative integers. From Cauchy’s theorem

znrf(l)(z, n) =
dl

dzl
(zn+lrf (z, n+ l)) =

l!
2πi

∫
|w−z|=δ|z|

wn+lrf (w, n+ l)
(w − z)l+1

dw,

and (n+ l)! ≤ 2n+ln!l!, we obtain

|rf(l)(z, n)| ≤ C2

(
2α(1 + δ)δ−1K2

)l
l!1+α (2α(1 + δ)K2)

n
n!α,

incidentally proving that f (l) ∼=α f̂
(l) [Bal94]. Moreover, we have

|f (l)(z)| = |rf(l)(z, 0)| ≤ C2

(
2α(1 + δ)δ−1K2

)l
l!1+α,

proving that f is α-Gevrey. Finally,

lim
S3z→0

f (l)(z) = lim
S3z→0

rf(l)(z, 0) = f
(l)
0 = l!fl.
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Conversely, assume that f is α-Gevrey at the sector S and that the limit (A.1) exists. We consider
the Taylor residues

Rf (z, u, n) = z−n
(
f(z)−

n−1∑
k=0

f (k)(u)
k!

(z − u)k
)

=
z−n(z − u)n

(n− 1)!

∫ 1

0

f (n)(u+ λ(z − u)) (1− λ)n−1 dλ,

for every z, u ∈ S and n ≥ 0. We observe that

rf (z, n) = lim
S3u→0

Rf (z, u, n). (A.2)

We fix now a closed subsector S̄1 ⊂ S, and let C,K be the corresponding α-Gevrey constants. For
z, u ∈ S̄1, |f (n)(u+ λ(z − u))| ≤ CKn(n!)1+α, so

|Rf (z, u, n)| ≤ |z|−n|z − u|nCKnn!α.

Therefore, using (A.2) we have that

|rf (z,N)| ≤ lim
S̄3u→0

|z|−N |z − u|NCKn(n!)α = CKnn!α,

and the proof is complete.

Notice that Proposition A.2 incidentally proves that the asymptotic α-Gevrey expansion f̂ of an
asymptotic α-Gevrey function f in a sector S is unique, by (A.1). We can then define a map J :
Aα(S) → C[[z]]α mapping each f to its asymptotic expansion f̂ .

The following proposition is straightforward.

Proposition A.3. Let S be a sector. The sets C[[z]]α, Gα(S) and Aα(S), under natural operations,
are differential algebras.

Moreover, J : Aα(S) → C[[z]]α is a morphism of differential algebras.

So, for an asymptotic α-Gevrey function in a sector S, there is a unique α-Gevrey asymptotic
expansion f̂ = Jf . The following is a Borel-Ritt-Gevrey theorem, which states that J is surjective if
the opening of S is “small”.

Theorem A.4. Let f̂ ∈ C[[z]]α and a sector S of opening β < απ. Then, there exists a function f ,
analytic in S, so that f ∼=α f̂ .

A natural question is then how much do two asymptotic α-Gevrey functions with the same asymptotic
expansion differ. The answer is in the following proposition.

Proposition A.5. Let S be a sector of opening β < απ, and let f be analytic in S with f ∼=α 0̂, where
0̂ denotes the zero power series. Then, for every closed subsector S̄1 ⊂ S there exist c, κ > 0 so that

|f(z)| ≤ c exp
(
−κ|z|− 1

α

)
for all z ∈ S̄1. That is, f is exponentially small in S of Gevrey order α and constant κ.
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[CFdlL05] Xavier Cabré, Ernest Fontich, and Rafael de la Llave. The parameterization method for invariant manifolds.

III. Overview and applications. J. Differential Equations, 218(2):444–515, 2005.

[Eas84] Robert W. Easton. Parabolic orbits in the planar three-body problem. J. Differential Equations, 52(1):116–
134, 1984.
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