
A dynamical systems approach for the station keeping
of a Solar Sail

Ariadna Farrés and Àngel Jorba
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Abstract

In this paper we have considered the movement of a solar sail in the Sun - Earth
system. As a model we have used the RTBP adding the solar radiation pressure.
It can be seen that we have a 2D family of equilibria parametrised by the two
angles defining the sail orientation. Most of these equilibrium points are unstable
and require a control strategy to keep the sail close to them. We have designed a
control strategy that uses the knowledge of the position of the invariant manifolds
and how they vary when the sail orientation is changed. We have tested our strategy
with two known missions: the Polar Observer and the Geostorm Warning Mission.
Simulations up to 30 years have been done taking into account errors on the position
and velocity determination of the sail and on the sail orientation.
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1 Introduction

Solar sailing is a proposed form of spacecraft propulsion using large membrane mirrors.
The impact of the photons emitted by the Sun on the surface of the sail and their further
reflection produce momentum on it. Although the acceleration produced by this reflection
is smaller than the one achieved by a ’traditional’ spacecraft it is continuous and illimited.
This makes some long term missions more accessible.

A solar sail is an orientable surface, the orientation of the sail is defined by two angles,
the pitch (α) and yaw (δ) angle. Another important parameter is the Sail lightness number
(β) used to define the sail effectiveness [9]. In this paper we have considered that the sail
is a perfectly reflecting surface, so the force due to the solar radiation pressure is normal
to the surface of the sail.

To model the dynamics of the solar sail we have considered that Earth and Sun are
point masses moving in a circular way around their common centre of masses. The sail is
then affected by the gravitational attraction of Earth and Sun and by the solar radiation
pressure. We have taken a synodical transformation so that Sun and Earth are fixed on
the x-axis. As we will see this system is a perturbation of the Restricted Three Body
Problem (RTBP).

It is well know that the RTBP has five equilibrium points (L1,...,5). For a small β these
five equilibrium points are replaced by five continuous families of equilibria parametrised
by the sail orientation (α, δ). As β increases 4 of these families merge and the fixed points
form two connected surfaces S1 and S2. In [9] it can be seen that S1 is diffeomorfic to a
sphere and S2 is diffeomorfic to a torus.

The stability of these fixed points will also be discussed. As it is also mentioned in [9]
most of the fixed points are unstable. If we focus on the eigenvalues of the linearisation
we can classify the fixed points in three classes. One class that contains those fixed points
with three pairs of complex eigenvalues, a second class with the fixed points with one
pair of real eigenvalues and two pairs of complex eigenvalues and a third class with fixed
points with 2 pair of real eigenvalues and one pair of complex eigenvalues. From now on
we will focus on the points of the second class. Although the complex eigenvalues can
have real positive part this one will be very small compared with the instability produced
by the real eigenvalues. Hence, as a first approximation we will start assuming that the
linear dynamics around these fixed points is saddle × centre × centre. The real effect will
be taken into account later on.

If the sail orientation is changed, the equilibrium point p0 will vary and so will the
eigenvalues and eigendirections. We want to understand the linear dynamic around the
equilibrium point and how it varies with the sail orientation to be able to design a control
strategy to keep a probe close to a fixed point.

When the probe is close to the fixed point p0, the trajectory escapes along the unstable
direction. We want to change the sail orientation α = α1, δ = δ1 so that the unstable
direction of the new equilibrium point brings the trajectory close to the stable direction
of p0. Then we will restore the original sail orientation and so on. Let us notice that the
projection of the trajectory on the central behaviour are rotations around the different
equilibrium points. This process might produce an unbounded trajectory, so we have to
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take into account the central behaviour when choosing the new sail orientation.
In the literature ([9], [12], [1]) we can find two different missions that need to keep a

solar sail close to an unstable fixed point. These two missions are the Geostorm Warning
Enhanced and the Polar Observer. In sections 5.1 and 5.2 we give a small overview of
the main objectives of these two missions and we have applied our control strategy to
them. 1000 simulations with random initial conditions has been done and the results are
successful. As we will see for all of these initial conditions the control strategy manages
to keep the sail close to the equilibrium point.

We have also tested our control strategy with different fonts of errors. We have intro-
duced errors on the sail orientation and errors in the position determination. The errors
on the sail orientation will affect to the probe’s trajectory and the second type of errors
will affect to the decisions taken by the control strategy. We have made 1000 simulations
with the same initial conditions as before including these two effects. We will discus the
effect of these errors in both missions. A sumerised version of the results can be found
in [3] and [2].

2 Equations of Motion

We assume that Earth and Sun are point masses moving in circular orbits around their
common centre of mass. The units of mass, distance and time are normalised so that the
total mass of the system is 1, the Earth-Sun distance is 1 and the period of the orbits
is 2π. With these units, the gravitational constant is also 1. We focus on the motion of
a probe under the gravitational attraction of these two bodies and the effect of the solar
radiation pressure. We use a rotating reference system so that Earth and Sun are fixed
on the x axis, z is perpendicular to the ecliptic plane and y defines a orthogonal positive
oriented reference system (Figure 1, left).

The force of the solar radiation pressure depends on the position of the probe, the
orientation and the characteristic acceleration of the sail. The orientation of the sail is
defined by two angles, say α and δ: α is the angle between the Sun-line and the projection
on the ecliptic plane of the normal vector to the sail ~n; δ is the angle between the ecliptic
plane and ~n (see Figure 1, right). As the vector ~n cannot point towards the Sun then
α ∈ [−π/2, π/2] and δ ∈ [−π/2, π/2]. There are other possibilities to define these angles,
see [9], [6], [10]. The equations of motion for the probe are

ẍ = 2ẏ + x− (1− µ)
x− µ

r3
PS

− µ
x+ 1− µ

r3
PT

+ κ cos(φ(x, y) + α) cos(ψ(x, y, z) + δ),

ÿ = −2ẋ+ y −
(

1− µ

r3
PS

+
µ

r3
PT

)
y + κ sin(φ(x, y) + α) cos(ψ(x, y, z) + δ), (1)

z̈ = −
(

1− µ

r3
PS

+
µ

r3
PT

)
z + κ sin(ψ(x, y, z) + δ),

where κ = β
1− µ

r2
PS

cos2 α cos2 δ, β is the sail lightness number (it measures the effectiveness
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Figure 1: Left: Forces due to the sail and the gravitational attraction of the Earth and Sun.
Right: Relation between the sail angles (α and δ) and the the Sun-line, ~n is the normal direction
to the surface of the sail..

of the sail), and the angles φ(x, y), ψ(x, y, z) refer to the position of the probe w.r.t. the
Sun:

φ(x, y) = arctan

(
y

x− µ

)
, ψ(x, y, z) = arctan

(
z√

(x− µ)2 + y2

)
, (2)

with φ(x, y) ∈ [−π, π] and ψ(x, y, z) ∈ [−π/2, π/2]. Note that the equations of motion
depend on three parameters: β, α and δ. It is clear that if β = 0 (i.e. no sail) or α = ±π/2
or δ = ±π/2 (i.e. sail aligned with the Sun-line, so no sail effect) the equations are the
same as in the Restricted Three Body Problem (RTBP).

3 Equilibrium Points

For a good understanding of the dynamics of the system we need to know the invariant
objects. First of all we will compute the fixed points for different sail orientations.

The equations for the fixed points are obtained by setting ẋ = ẍ = ẏ = ÿ = ż = z̈ = 0
in (1). As we have already mentioned, for α = ±π/2 or δ = ±π/2 this model coincides
with the RTBP, hence, it has five well known equilibrium points L1,...,5 (see [11]). It is easy
to see that for small β, these points are replaced by five continuous families of equilibria
parametrised by α, δ.

If α = δ = 0 (i.e. the sail is normal to the Sun-line), there are three new equilibria
on the Earth-Sun line, known as Sub-L1,2,3 equilibrium points. These new points can be
obtained by solving (numerically) a suitable quintic equation. Sub-L1 and Sub-L3 are
closer to the Sun than L1 and L3 and Sub-L2 is between L2 and the Earth as can be
seen in Figure 2. These points depend on the sail lightness number (β), as β increases all
Sub-Li come closer to the Sun.

The equilibrium points are organised in 2-D families parametrised by α and δ. We
have computed these families numerically by means of a continuation method. For small
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Figure 2: Relation between the fixed points (Sub-Li) and β. On the vertical axis we have the
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Figure 3: Equilibrium points in the {x, y}- plane for β1 = 0.005, β2 = 0.01, β3 = 0.05, β4 =
0.1, β5 = 0.3. The T1 points have a pair of real eigenvalues and two pair of complex eigenvalues
and the T2 points have three complex eigenvalues.

values of β the fixed points are in five continuous families of equilibria. As β increases
4 of these families merge and the fixed points are on two disconnected surfaces, S1 and
S2. S1 contains the points L2 and Sub-L2 and S2 contains L1,3,4,5 and Sub-L1,3. It can be
seen that for a fixed β S1 is diffeomorphic to a sphere, and it is situated on the vicinity
of L2 . On the other hand, S2 is diffeomorphic to a torus and is located around the Sun.

In Figure 3 we can see a slice of these surfaces for z = 0 for different values of β and
Figure 4 shows the slice for y = 0 for different values of β. All these points are unstable, T1

are those fixed points with one pair of real eigenvalue and two pairs of complex eigenvalues,
T2 are those with three pair of complex eigenvalues and T3 those with two pairs of real
eigenvalues and a pair of complex eigenvalues.

It is well known ([11]) that the L1,2,3 are unstable points, with a pair of real eigenvalues
and two pairs of complex eigenvalues with zero real part and that L4,5 in the Earth-Sun
system are linearly stable with three pairs of complex eigenvalues with zero real part.
When the sail lightness number β is different from zero, the Sub-L1,2,3 points branch off
from the classical L1,2,3 points and it can be seen that they are also unstable with a pair
of real eigenvalues and two pairs of complex eigenvalues with zero real part.
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Figure 4: Equilibrium points in the {x, z} plane for β1 = 0.005, β2 = 0.01, β3 = 0.05, β4 =
0.1, β5 = 0.3. The T1 points have a pair of real eigenvalues and two pair of complex eigenvalues
and the T3 points have two pair of real eigenvalues and one pair of complex eigenvalues.

In [9] McInnes shows that the equilibrium points of this system are in general unstable.
We can see that close to L1,2,3 and Sub-L1,2,3 these points have a pair of real eigenvalues
and two pair of complex eigenvalues. In this work we will focus on these type of equilibrium
points.

3.1 Linearisation with respect to α and δ

From now on, the value of lightness of the sail, β, will be considered fixed. We are
interested in knowing the variation of the fixed points when we change α and δ.

If p0 = p(α0, δ0) are the coordinates of a fixed point of Ẋ = f(X,α, δ) then f(p0, α0, δ0) =
0. The Implicit Function Theorem implies that ∂p

∂α
(α0, δ0) and ∂p

∂δ
(α0, δ0) are found by solv-

ing,

DXf(p0, α0, δ0)
∂p

∂α
(α0, δ0) = −∂f

∂α
(p0, α0, δ0),

DXf(p0, α0, δ0)
∂p

∂δ
(α0, δ0) = −∂f

∂δ
(p0, α0, δ0).

As we do not know explicitly p(α, δ) and the angles will only be moved in a small
amount, we will deal with the linear approximation. Close to p(α0, δ0):

p(α, δ) = p(α0, δ0) +Dp · h, (3)

where h = (α− α0, δ − δ0)
T and Dp =

(
∂p
∂α

(α0, δ0),
∂p
∂δ

(α0, δ0)
)
.

4 Station Keeping

In this section we will focus on a linearly unstable equilibrium point and we will use the
information on its local dynamics to design a control strategy. The use of solar radiation
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pressure and the unstable manifolds to stabilise a satellite on a Halo orbit has been
considered before (see [4], reprinted in [5]).

Here the main idea is to change the sail orientation (i.e. the phase space) to make
the system act as we wish. When the spacecraft is close enough to a fixed point the
linearisation of the equations of motion around the equilibrium point gives an accurate
description of the dynamics. In Section 3 we have mentioned that most of the unstable
points have two real eigenvalues (±λ) and two pairs of complex eigenvalues. One of the
pairs of complex eigenvalues can have non-zero real part (ν1 ± iω1) and the other pair of
eigenvalues is purely imaginary (±ω2).

From now on we will make the assumption that ν1 = 0, supposing that the dynamics
given in this central direction is a rotation around the origin instead of spiralling inwards
or outwards, depending on the sign of ν1. If ν1 < 0 our supposition just adds more
difficulties on the central behaviour as this is naturally stable. Instead, if ν1 > 0 the
trajectories will spiral outwards and our control strategy can fail. We will see that the
control strategy can minimise the central behaviour. If this minimisation is bigger than
the expansion that the spiral experiences we will be able to control the sail. Also, as
ν1 ≈ 0 this spiralling is really small and it is not very relevant for short times. Hence,
here we assume that the linear dynamics around the fixed points is saddle × centre ×
centre.

Let p0 be the fixed point for α = α0 and δ = δ0. If the sail is close to p0 its trajectory
will escape along the unstable direction. We want to change the orientation of the sail
(α = α1, δ = δ1) so that the unstable direction of this new fixed point sends the probe
back to the neighbourhood of p0. Then, we restore the initial orientation of the sail,
α = α0 and δ = δ0, and so on. This is graphically shown in Figure 5. It is important
to note that, during this process, the projection of the dynamics into the central part of
the equilibria can grow: as the central behaviour are rotations around each of the fixed
points, the composition of central motions with different centre of rotation can result in
an unbounded growth of the central component of the motion. For this reason we have
to be careful when we chose the sail orientation. We have to control the instability given
by the unstable direction and to make sure that the central behaviour does not grow.

4.1 Dynamics Near a Fixed Point

As it has been said previously we are supposing that the linear behaviour close to the
fixed points is saddle × centre × centre. Let p0 ∈ R6 be the fixed point and ±λ, ±iω1

and ±iω2 the eigenvalues. If the sail orientation is slightly changed then p0 is also slightly
changed as well as the eigenvalues and eigenvectors.

From now on we will describe the trajectory of the probe by its projection on the
three different planes centred on p0. The first one is generated by the two eigenvector
with real eigenvalues (~v1, ~v2), where the saddle behaviour is described. The other two are
generated by the real and imaginary part of the two pairs of complex eigenvectors (~vi,
~vi+1 for i = 3, 5). The projection of the orbit on these two planes describes the central
behaviour of the motion. In this reference system the trajectory of the probe is given by
(x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) (see Figure 6).
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α = α0, δ = δ0

α = α0, δ = δ0

α = α1, δ = δ1

α = α2, δ = δ2

(1) (2)

(3) (4)

Figure 5: Idea of how to control the saddle behaviour.

(x1, y1)

(x2, y2)

(x3, y3)

Figure 6: Schematic representation of the trajectory of the sail in the {p0;~v1, . . . , ~v6} reference
system
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We want to obtain a sail orientation so that the unstable direction of the new fixed
point brings the probe back to a neighbourhood close to the initial fixed point p0. As we
know the fixed points live in a 2D surface and we have a 6D phase space, so we have some
limitations in the positions of the new fixed point.

In sections 4.1.1 and 4.1.2 we will describe the saddle and centre behaviour of the
trajectory and will show where the fixed point should be placed to deal with the instability.
We will first suppose that we have free choice in the fixed points position, and then in
Section 4.2 we will see how to chose the sail orientation, taking into account the limitations
on the fixed points position.

4.1.1 Saddle Behaviour

Suppose that for α = α0 and δ = δ0 the fixed point is at the origin so the motion of the
saddle part is,

x1(t) = x10e
λ(t−t0)

y1(t) = y10e
−λ(t−t0)

}
, (4)

where (x10, y10) is the initial condition.

When the sail orientation is changed α = α0 + εα and δ = δ0 + εδ the fixed point and
the eigenvalues and eigenvectors change slightly. From now on we will just consider that
the eigenvectors are the same as the ones at the origin. If (x̄1, ȳ1) is the new fixed point
and ±λ̄ are the real eigenvalues for (x̄1, ȳ1), then the movement of the probe is,

x̄1(t) = x̄1 + (x̄10 − x̄1)e
λ̄(t−t0)

ȳ1(t) = ȳ1 + (ȳ10 − ȳ1)e
−λ̄(t−t0)

}
, (5)

where (x̄10, ȳ10) is the initial condition.

To control the saddle behaviour we will define two bounds B1 = {x1 = εmin} (the
minimal distance to the stable direction) and B2 = {x1 = εmax} (the maximal distance
to the stable direction), that define the region of movement (between B1 and B2). When
the trajectory reaches one of these two bounds the sail orientation is changed. We will
determine εmin and εmax depending on the mission interest and the phase space properties.

If the sail orientation is fixed to α = α0 and δ = δ0 the trajectory followed is given by
(4) and goes from B1 to B2. When the sail orientation is changed to α = α1 and δ = δ1
the trajectory is given by (5). The initial condition for one movement is the end condition
of the other movement. From now on we will refer to the points where we change the sail
orientation as change points.

In order to control the instability the new fixed point (x̄1, ȳ1) must be chosen so that
x̄1 > εmax. As we are supposing that all the eigenvectors are the same then the new fixed
points unstable direction will bring the probe back to B1 (see Figure 7).

Going from B1 to B2, the trajectories follow (4), with x10 = εmin and x1(tf ) = εmax so
εmax = εmine

λ∆t1 and

∆t1 =
1

λ
log

(
εmax

εmin

)
. (6)
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sail trajectory

region of

fixed points

return directions
B1

B2

x̄1

Figure 7: Representation of the important parameters in the control of the saddle part. The
bounce region is the location of the future fixed points, we will chose one of them, and the bounce
direction are the eigendirections for those fixed points.

Going from B2 to B1, the trajectories follow (5), with x̄10 = εmax and x̄1(tf ) = εmin so
εmin = x̄1 + (εmax − x̄1)e

λ̄∆t2 and

∆t2 =
1

λ̄
log

(
x̄1 − εmin

x̄1 − εmax

)
. (7)

Notice that ∆t2 varies with the fixed point as it also depends on λ̄.
Let ti for i ∈ N be the instant of time when the probe is at one of the bounds B1,2.

We will suppose that t0 = 0 and that the probe is initially placed in B1. Then,

t2i+1 = t2i + ∆t1,
t2i+2 = t2i+1 + ∆t2,

for i ∈ N, where t2i i.e. the time when the probe is placed at B1 and t2i+1 when it is
placed at B2.

Let (ζ
(i)
1 , η

(i)
1 ) be the sequence of change points, where for i even the change points

are in B1 (ζ
(i)
1 = εmin) and for i odd they are in B2 (ζ

(i)
1 = εmax). The following lemma

shows how the sequence of new fixed points (x̄
(i)
1 , ȳ

(i)
1 ) has to be taken to control the saddle

instability.

Lemma 4.1 Let (x̄
(i)
1 , ȳ

(i)
1 ) be the sequence of new fixed points for the control strategy and

(ζ
(i)
1 , η

(i)
1 ) the sequence of change points. If we choose ȳ

(i)
1 = η

(2i+1)
1 and x̄

(i)
1 = ξ with

ξ > εmax, then
lim
i→∞

ȳ
(i)
1 = 0,

so the control strategy new fixed points tend to (ξ, 0) and the saddle behaviour is stabilised.

Proof
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Figure 8: Sequence of fixed points and the projection of the probe’s trajectory in the saddle
plane.

We will see by induction that η
(2n+1)
1 = η

(0)
1

(
εmin

εmax

)n

.

For n = 1,

η
(1)
1 = y1(t0 + ∆t1) = η

(0)
1 e−λ∆t1 = η

(0)
1

(
εmin

εmax

)
.

We suppose it is true for n = i, and we will show it holds for n = i+ 1.

η
(2i+3)
1 = y1(t2i+2 + ∆t1) = η

(2i+2)
1 e−λ∆t1 = η

(2i+2)
1

(
εmin

εmax

)
, (8)

where
η

(2i+2)
1 = ȳ1(t2i+1 + ∆t2) = ȳ

(i)
1 + (η

(2i+1)
1 − ȳ

(i)
1 )e−λ∆t2 ,

as we are considering ȳ
(i)
1 = η

(2i+1)
1 ⇒ η

(2i+2)
1 = η

(2i+1)
1 . Then by the induction hypothesis

equation (8) becomes,

η
(2i+3)
1 = η

(0)
1

(
εmin

εmax

)i+1

. (9)

As εmax > εmin,

lim
n→∞

ȳ
(n)
1 = lim

n→∞
η

(0)
1

(
εmin

εmax

)n

= 0.

�

Choosing this sequence of new fixed points ((x̄
(i)
1 , ȳ

(i)
1 ) = (ξ, η

(2i+1)
1 ) with ξ > εmax) we

can stabilise the saddle part of the movement (see Figure 8).

Notice that if the new fixed points satisfy the condition in lemma 4.1 but taking ȳ
(i)
1

close to η(2i+1) the saddle behaviour will also be controlled, although the sequence of fixed
points may not converge.



A. Farrés and À. Jorba 13

4.1.2 Centre Behaviour

Suppose that for α = α0, δ = δ0 the fixed point is at the origin and let (x20, y20) be the

initial condition. Then if r0 =
√
x2

20 + y2
20 and τ0 = arctan

(
y20

x20

)
,

x2(t) = r0 cos(ω1(t− t0) + τ0)
y2(t) = r0 sin(ω1(t− t0) + τ0)

}
. (10)

When the sail orientation is changed to α = α0 + εα and δ = δ0 + εδ, the fixed point
changes as well as the eigenvalues and eigenvectors. As before we will just consider that
the eigenvectors are the same as the ones at the origin. If (x̄2, ȳ2) is the new fixed point
and ±iω̄1 are the pair of complex eigenvalues for (x̄2, ȳ2). Then,

x̄2(t) = x̄2 + r̄0 cos(ω̄1(t− t0) + τ̄0)
ȳ2(t) = ȳ2 + r̄0 sin(ω̄1(t− t0) + τ̄0)

}
, (11)

where r̄0 =
√

(x̄2 − x̄20)2 + (ȳ2 − ȳ20)2, τ̄0 = arctan

(
ȳ2 − ȳ20

x̄2 − x̄20

)
and (x̄20, ȳ20) is the initial

condition.
The control on the saddle part fixes the time between manoeuvres, in Section 4.1.1 we

have seen how to estimate ∆t1 and ∆t2 (remember ∆t2 varies with the fixed point). So
the movement in the centre part will be a sequence of rotations around each of the fixed
points. The rotations around the origin will be of angle θ1 = ω1∆t1 and the rotations
around the different fixed points will be of θ2 = ω̄1∆t2, where also θ2 varies with the fixed
point.

The composition of rotations around different fixed points does not need to be bounded.
We would like to place the fixed points so that this movement does not grow. In fact we
will find a sequence of fixed points so that the trajectory tends to the equilibrium point.

We are assuming that, for α = α0, δ = δ0 the fixed point is at the origin and the
trajectory is an arc starting at the initial condition (x20, y20) and radius r0 =

√
x2

20 + y2
20.

Let (ζ2, η2) be the change point, we want to find a fixed point (x̄2, ȳ2) so that arc described
around this fixed point ends closer to the origin than (x20, y20).

Depending on the position of (x̄2, ȳ2) with respect to the (ζ2, η2) the arc will or will not
be totally included in the disk centred at the origin and radius r0 (D0). We are interested
in taking fixed point so that the arc described by the probe is totally included in D0 (see
Figure 9).

It is true that knowing the arc of rotation θ2 there are lots of fixed points that can
describe an arc totally included in D0, but as we are not going to know θ2 exactly, as
it depends on the fixed point, we need to find fixed points so that ∀ θ2 ∈ [0, 2π] the arc
described is included in D0.

Lemma 4.2 Let D0 be the disk centred at the origin and of radius r0 =
√
x2

20 + y2
20 and

(ζ2, ν2) the change point on ∂D0. Then all the fixed points (x̄2, ȳ2) such that x̄2 = s · ζ2,
ȳ2 = s · η2 and s ∈ [0, 1) describe an arc included in D0 ∀ θ2 ∈ [0, 2π). If s = 1/2 the
distance to the origin of the end point of the arc is minimal.
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Figure 9: Left: Relative position of a fixed point so that the arc described by the probe is included
in D0. Right: Relative position of a fixed point so that the arc describe by the probe is NOT
included in D0

Proof
If two disks coincide in one point, one is included in the other if only if these two disks

are tangential and the centres are included in the biggest disk. So we are looking for arc’s
tangent to D0 and with the centre included in D0.

If (ζ2, η2) is the change point and (x̄2, ȳ2) is the fixed point, the arc will be tangential
if only if (x̄2, ȳ2) = (s · ζ2, s · η2). If the centre is to be included in D0 then s ∈ (−1, 1).

Then the arc described by the probe is given by,

x̄2(T ) = sr0 cos(θ1 + τ) + (s− 1)r0 cos(T + τ̄), (12)

ȳ2(T ) = sr0 sin(θ1 + τ) + (s− 1)r0 sin(T + τ̄), (13)

which depends on the time T ∈ [0, θ2].
We want,

x̄2(θ2)
2 + ȳ2(θ2)

2 = r2
0(2s

2 + 2s− 1 + 2s(s− 1) cos(θ1 − θ2 + τ − τ̄)) < r2
0 (14)

Let us consider f(s) = 2s(s− 1)(1 + cos(θ1 − θ2 + τ − τ̄)). Solving (14) is equivalent
to finding s such that f(s) < 0. It is easy to see that f(s) < 0 for s ∈ (0, 1) independent
to the value of θ2.

Notice that if f(s) is minimal the distance to the origin is also minimal. It is easy to
see that this is achieved when s = 1/2.

�

As before, let us define (ζ
(i)
2 , η

(i)
2 ) as the change points, having for i odd change points

from (10) to (11) and for i even change points from (11) to (10). As we have already

said we will find a sequence of fixed points (x̄
(i)
2 , ȳ

(i)
2 ) that make the trajectory tend to the

origin.

Lemma 4.3 Let (x̄
(i)
2 , ȳ

(i)
2 ) be the sequence of new fixed points for the control strategy and

(ζ
(i)
2 , η

(i)
2 ) the sequence of fixed points. If we choose x̄

(i)
2 = ζ

(2i+1)
2 /2 and ȳ

(i)
2 = η

(2i+1)
2 /2

then the sequence of change points (ζ
(i)
2 , η

(i)
2 ) tend to the origin and so does the trajectory.
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Figure 10: Sequence of fixed points and the projection of the probe’s trajectory in the centre
plane.

Proof
Let us consider r(i) =

√
(ζ(i))2 + (η(i))2. It is easy to see that r2i = r(2i+1) as the

change points (ζ2i, η2i) and (ζ2i+1, η2i+1) belong to the same arc centred on the origin.

As a consequence of lemma 4.2 we can see that taking (x̄
(i)
2 , ȳ

(i)
2 ) = (ζ(2i+1)/2, η(2i+1)/2)

we get,
r2i+1 > r2i+2.

So we have that r2i > r2i+2 and the sequence for change points tend to the origin and
so does the projection of the trajectory.

�

So taking the sequence of new fixed points (x̄
(i)
2 , ȳ

(i)
2 ) = (ζ

(2i+1)
2 /2, η

(2i+1)
2 /2) the central

movement will tend to the origin as can be seen in Figure 10.

4.2 Choosing the New Sail Orientation (α, δ)

In Sections 4.1.1 and 4.1.2 we have found an ideal sequence of fixed points to control the
instability of p0. As we have already said the fixed points live on a 2D surface parametrised
by α and δ in a 6D phase space. So we might not be able to find a sail orientation α1 and
δ1 so that the fixed point is one of the described before.

As we do not know explicitly the 2D surface of fixed points (p(α, δ)), in Section 3.1
we have seen how to find the linear approximation of this surface. So we would like to
find h = (α− α0, δ − δ0)

T such that,

p̄− p0 = Dp · h, (15)
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(0, 0)

(x̄1, ȳ1)

B1 B2

Figure 11: Possible position of the new fixed point p(α1, δ1) in the saddle projection that will
not control the unstable behaviour.

where p̄ is the desired new fixed point (described in Section 4.1.1 and 4.1.2). Notice that
(15) is (3) rewritten and that it has 6 equations and 2 unknowns. We would like to find
α1, δ1 such that ‖p̄− p(α1, δ1)‖ is small enough.

Notice that although ‖p̄− p(α1, δ1)‖ can be small p(α1, δ1) may not be able to control
the instability due to the saddle part: If the projection of p(α1, δ1) on the saddle plane
is on the left hand side of B2 then the unstable direction of p(α1, δ1) will not bring the
probe back (see Figure 11). So we will fix one of the components of p̄, having to find the
fixed points in a 1D surface.

We will now give more details of the process described above. As said before, Sec-
tions 4.1.1 and 4.1.2 show the ideal position for the new fixed point (p̄). The coordinates
of p̄ are given in the {p0;~v1, . . . , ~v6} reference system and equation (15) is in synodical
coordinates. So we first have to change the base. Let Mv be the matrix that has ~vi for
i = 1, . . . , 6 as columns and s = (s1, . . . , s6) are the coordinates of the desired new fixed
point (p̄) in this coordinate system. Then if A = M−1

v Dp equation (15) becomes,

sT = A · h. (16)

To avoid problems in the saddle behaviour we will fix s1:

1. If a11 = a12 = 0 ⇐⇒ ∂p
∂α
, ∂p

∂δ
⊥ ~v1:

In this case there are no fixed points using the linear approximation for which its
saddle behaviour brings the sail back.

2. If a11 = max(|a11|, |a12|):

s1 = a11h1 + a12h2 ⇒ h1 =
s1 − a12h2

a11

, (17)
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3. If a12 = max(|a11|, |a12|):

s1 = a11h1 + a12h2 ⇒ h2 =
s1 − a11h1

a12

, (18)

This reduces (16) into ŝ = Â·ĥ (5 equations and 1 unknown). Then ĥ so that ‖ŝ−Â·ĥ‖
is minimal is,

ĥ = (ÂT Â)−1ÂT s. (19)

4.3 Summary of the Control Algorithm

Suppose p0 is a fixed points for α = α0, δ = δ0 that is linearly unstable. Let {λi, ~vi}i=1,...,6

be the eigenvalues and eigenvectors forDXf(p0). We will fix a reference system {p0;~v1, . . . , ~v6}
where,

• p0 is the fixed point.

• ~v1 is the unstable eigenvector (+λ).

• ~v2 is the stable eigenvector (−λ).

• ~v3, ~v4 is the couple that defines one of the central movements (±iω1).

• ~v5, ~v6 defines the second central movement (±iω2).

From now on the trajectories will be seen in this reference system (x(t∗) =
∑
si~vi),

being (s1, . . . , s6) the coordinates of the trajectory in this reference system.
Let εmax be the maximal distance we will allow to escape from the fixed point and

εmin the closest distance to the fixed point, needed when the probe is coming back (see
Section 4.1.1). These constants depend on the mission objectives and the dynamical
properties.

We start with the probe close to the fixed point p0 with α = α0, δ = δ0. When
|s1| > εmax, the probe is far from p0, we chose the appropriate α1, δ1 that takes the probe
back to a neighbourhood of p0 (see 4.2) and change the sail orientation (α = α1, δ = δ1).
When |s1| < εmin, the sail is close to p0 and we change the sail orientation back to α = α0,
δ = δ0. This process is then restarted.

5 Mission Application

We have seen a technique that uses dynamical system tools and permits a solar sail
maintain its trajectory close to a fixed point. This is something that cannot be done with
a traditional satellite as a high amount of fuel is required. We would like to illustrate
how this control technique behaves with missions that are now being developed as the
Geostorm Warning and the Polar Observer Missions.

First we will briefly explain what the two missions consist and how to use the control
techniques on them. Finally, several simulations have been done and we will explain the
results obtained.
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Figure 12: Schematic representation of the position of the Geostorm Mission (not to scale).

5.1 The Geostorm Mission

Its primary goal is to provide enhanced warning of geomagnetic storms to allow to take
preventive actions to protect vulnerable systems. Geomagnetic storms are principally the
result of Coronal Mass Ejections (CME), the violent release of large volumes of plasma
from the solar corona. The impact of CME on the Earths magnetosphere can change its
magnetic field and produce electromagnetic storms.

Currently predictions of future activity are made by the National Oceanic Atmospheric
Administration (NOAA) Space Environment Centre in Colorado using terrestrial data
and real-time solar wind data obtained from the Advanced Compositions Explorer (ACE)
spacecraft. The ACE spacecraft is stationed on a halo orbit near L1, at about 0.01 AU
from the Earth. From this position the spacecraft has continuous view of the Sun and
communication with the Earth. Since the spacecraft is located sun wards of the Earth,
the solar wind disturbances sensed by the instruments on board the ACE spacecraft are
used to provide early warning of the impinging geomagnetic storms. Typically predictions
of order 1 hour can be made from the L1 Lagrange point.

The enhanced storm warning provided by ACE is limited by the need to orbit the
L1 point. However, since solar sails add an extra force to the dynamics of the orbit, the
location of L1 can be artificially displaced, as has been shown in Section 3. The goal of
Geostorm is to station a solar sail twice as far from the Earth than L1 while remaining
close to the Earth-Sun line as can be seen in Figure 12. Since the CME will be detected
earlier than by ACE the warning times and alerts will be at least doubled.

For this mission the solar sail is firstly transfered to a conventional halo orbit at L1.
At L1 the sail would be deployed and transfered to its location at 0.98 AU from the Sun.
Once we arrive near to these region a control strategy must be designed in order to deal
with the instability of this region.

Studies of this mission have been made by McInnes [9] [8], Chen-Wan [12] and Lisano [7].
McInnes [9] [8] makes a description of the mission concept, studies where the spacecraft
should be placed and what sail could be used for this specific mission, but does not de-
scribe the trajectory that the sail should follow and what control techniques should be
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used in order to control the instability of the trajectory. There we can see that a char-
acteristic acceleration of a0 = 0.3mm/s2 is required so that the spacecraft is placed at a
double distance from the Earth-Sun L1 point.

Further studies of station keeping strategies have been made by Chen-Wan [12] and
Lisano [7]. Chen-Wan presents two different station keeping strategies, the first considered
a constant characteristic acceleration and changes the sail orientation after some period of
time in order to return the sail to its original position. The second strategy uses constant
variation of the sail orientation for the same aim. On the other hand, Lisano, makes a
more detailed description of different strategies for the transfer from the L1 halo orbit to
the Sub-L1 region, and uses similar strategies as Chen-Wan for the station keeping.

5.1.1 Mission Orbit

As it has already been said we want to displace the spacecraft at a double distance from the
Earth-Sun L1 point. For this purpose we need a0 = 0.3 mm/s2 ([9], [12], [8]). In Figure 13
we have plotted the position of the equilibrium points for different sail orientations and
sail acceleration close to the Earth - Sun line. As a constant communications with the
Earth is needed we must displace the Sail approximately 10o from this line. In this region
the fixed points are linearly unstable.

We have taken a reference system ({p0;~v1, . . . , ~v6}) such that the p0 is a fixed point
satisfying the requirements explained before for a fixed sail orientation α0, δ0. We have
done 1000 simulations with different initial conditions chosen in a random way. The
control strategy has been applied up to 30 years and we have measured for each one the
time between manoeuvres, the variation of the sail orientation (α, δ) and the variation of
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Figure 14: Left: maximum and minimum time between manoeuvres vs number of simulation.
Right: maximum angular variation between p0 and the probe trajectory vs number of simulation.

the trajectory w.r.t p0.

On the left hand side of Figure 14 we can see for each simulation the maximum
and minimum time between manoeuvres. As we can see the minimum time between
manoeuvres is around 40 days and the maximum time is around 146 days. On the right
hand side of Figure 14 we have the maximum angular variation between the fixed point
(p0) and the probe’s trajectory seen from the Earth for each simulation. Notice that the
maximum variation experienced is 0.45 degrees. The variation in the sail orientation is
reflected in the variation of two angles α and δ. For these simulations we have seen that
α varies between 0.0695 and 0.0694 degrees every time the sail orientation is changed and
δ varies around 0.005 degrees.

Figure 15 shows the x, y and z oscillations with respect to time for 3 specific simula-
tions. Notice that the x and y oscillate in a bounded region during all the time and z
tends to zero. This illustrates the fact that, for this particular mission, the station keeping
tends to take the probe’s trajectory to the {x, y}- plane.

Finally in Figure 16 we can see one particular orbit after applying the control strategy
on the {x, y}-plane (left), the {x, z}-plane (middle) and the 3D trajectory (left). Figure 17
shows the projection of this orbit on the saddle plane generated by the eigenvector ~v1, ~v2

(left) and the projection on the other two central planes ~v3, ~v4(middle) and ~v5, ~v6 (right).

5.2 The Polar Observer Mission

High latitude regions are of importance for a number of commercial and environmental
interests. During the cold war the Arctic was a strategically important region, also the
growing interest for the oil and mineral extraction of these regions may lead to a growing
demand for communication services. The Arctic and Antarctic are also of great envi-
ronmental importance and there is a requirement for relaying data from remote weather
stations and automated monitoring platforms. Additional environmental requirements
for polar services include continuous imaging of polar weather systems and monitoring of
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Figure 18: Schematic representation of the Polar Observer Mission (not to scale).

polar ice coverage for climate studies between others.
The limitation of geostationary orbits for such applications may be overcome to some

extent using satellites in polar orbits. These orbits require the use of various satellites for a
complete mapping or having to wait between imaging. Similarly communications services
can be provided using high inclination Molniya orbits or through constellation satellites
in low Earth orbits. While such systems are well suited for infrequent communications,
they are to expensive for real-time relaying data.

As solar sails provide a wide range of new artificial equilibrium points, some of these
equilibrium points can be used to place a sail to have constant viewing of the Polar regions
of the Earth. As the Earth’s inclination is of about 23.4o we must place the solar sail at
66.6o from the ecliptic plane. Notice that as the Earth orbits around the Sun, the sail will
maintain its fixed position with respect to the Earth but it will not always have the same
view at the pole due to the Earth’s inclination, see Figure 18. Having the sail perfectly
situated on the north pole during the summer solstice, and during the winter solstice the
sail will appear displaced over the horizon, having still some imaging of the north pole.

More information about the Polar Observer can be found in [9] and [8], where a more
detailed background of the mission is described as well as the the choice of the mission
orbit and sail. This mission has not been as studied as the Geostorm mission probably
due to the fact that the sail must be displaced at about 3.9 million km from the Earth,
having then low resolution imaging of the Poles.

5.2.1 Mission Orbit

Notice that as the sail performance increases the equilibrium points come closer to the
Earth. But as a first mission we are dealing with small resolution sails. In Figure 19 we
can see the relation between the sail effectiveness and the equilibrium point. We will take
a0 = 0.46mm/s2 as it is the minimum sail characteristic acceleration that makes the solar
sail be placed over the north pole. In these region the points are also linearly unstable.

As before we have also taken a reference system {p0;~v1, . . . , ~v6} so that the fixed
point p0 satisfies the required conditions for a fixed sail orientation α0, δ0. We have
also done 1000 simulations applying the control strategy up to 30 years with random
initial conditions and measured the time between manoeuvres, the variation of the sail
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orientation and the angular variation w.r.t p0.
In the left hand side of Figure 20 we can see for each simulation the maximum and

minimum time between manoeuvres. Now the minimum time between manoeuvres is
always around 59 days and the maximum time is around 187 days. In the right hand side
of Figure 20 we have the maximum angular variation between the fixed point (p0) and
the probe’s trajectory for each simulation, where the maximum variation experienced is
around 0.3 degrees. In these simulations we have seen that α varies between 0.03 and
0.02 degrees every time the sail orientation is changed and δ varies around 0.02 degrees.

Figure 23 shows the x, y and z oscillations with respect to time for 3 specific simula-
tions. Now the trajectories oscillate in the three directions but all of them in a bounded
region. In Figure 21 we can see the one particular orbit after applying the control strategy
on the {x, y}-plane (left), the {x, z}-plane (middle) and the 3D trajectory (left). We can
see how on the {x, z}- projection the sail seems to follow a quasi-periodic motion.

Finally in Figure 22 shows the projection of this orbit on the saddle plane gener-
ated by the eigenvector ~v1, ~v2 (left) and the projection on the other two central planes
~v3, ~v4(middle) and ~v5, ~v6 (right).
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Figure 20: Left: maximum and minimum time between manoeuvres vs number of simulation.
Right: maximum angular variation between p0 and the probe trajectory vs number of simulation.
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Figure 21: Trajectory followed by the probe for 30 years. Left: {x, y}- projection, Middle:
{x, z}- projection, Right: {x, y, z}- projection
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Figure 22: Trajectory followed by the probe for 30 years. Left: Projection of the trajectory on
the saddle plane, Middle: Projection of the trajectory in one of the centre planes (~v3, ~v4), Right:
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sail is set to α0, δ0 and in green other orientations.
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6 Sensitivity to Errors During the Control Strategy

It is a known fact that during a mission the position and velocity of the probe will not
be determined exactly, this has an effect on the decisions taken by the control algorithm.
Errors on the sail orientation will also be made and have an important effect in the probe’s
trajectory. We will see the effect of these errors in our control strategy.

Let us first consider the errors on the position and velocity of the probe. As we have
seen in previous sections the sail orientation will be changed when the probe is at a certain
distance of the fixed point in the saddle plane projection. Each time the algorithm asks
itself if the sail orientation has to be changed, the probe’s position in the phase space
has some small error. If the sail orientation is changed the new fixed point will be found
using the wrong position of the probe. So errors made on the measurement of the probe’s
position will make the algorithm take decision of changing the sail orientation when not
desired and the new fixed points position will also be modified. If this errors are not very
big the difference between changing the sail orientation a little before or after in time will
not affect the control of the probe.

We have supposed that all the errors follow a normal distribution with mean 0. We
have taken a precision of the space slant of ≈ 1m and ≈ 2 − 3milli-arc-seconds in the
angle determination. The precision in speed is around 20−30micro/seconds. These errors
magnitudes reflect as errors of order 10−8 in the saddle plane projection, these effect is
almost neglected.

We have done 1000 simulation taking the same initial conditions as in Sections 5.1.1
and 5.2.1 adding the uncertainty in the position and velocity measurement. We have
seen that the results obtained are similar, for all the 1000 simulations in both missions the
probe’s trajectory does not escape after 30 years. The average time between manoeuvre’s
is slightly changed and so are the angular variation in the trajectories position with respect
to the initial fixed point (see Table 1 and 2).

Lets now consider the errors due to the sail orientation. As we will now see these errors
have a more important effect on the sail trajectory and the controllability of the probe.
Each time the sail orientation is changed an error in its orientation is made (α = α1 + εα,
δ = δ1 + εδ). Then the new fixed point p1 is shifted p(α, δ) = p(α1, δ1) + εp and so do the
stable and unstable directions ~v1,2(α, δ) = ~v1,2(α1, δ1)+ εv. These variations can make the
probe’s trajectory not to come close to p0, as p(α, δ) can be placed on the incorrect side
of the saddle (see Section 4.2) or the the central behaviour can blow up.

Depending on the nature of the region where the fixed point is placed the control
strategy will be able to deal with bigger errors in the sail orientation. It will all depend
on the variation of the fixed point and the eigenvectors with respect to the sail orientation.

We have also done 1000 simulations taking the same initial conditions as in Sec-
tions 5.1.1 and 5.2.1 and introducing the uncertainties on sail orientation and probe’s
position and velocity.

Tables 1 and 2 show the results of all these simulations for the Geostorm and Polar
Observer missions respectively. On the first line we have the results for the simulations
when no errors are taken into account. On the second line there are the results when only
error on the position and velocity determination are made. Finally the third line contains
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% Success Max. Time Min. Time Ang. Vari.

No Error 100% 146.77 days 40.20 days 0.3o

Error Pos. 100% 146.82 days 40.19 days 0.30

Error Pos. + Orient. 100% 376.78 days 32.60 days 1.2o

Table 1: Statistics for the Geostorm mission 1000 simulations.
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Figure 24: Geostorm: In red the trajectory followed by the probe when no error during the
control algorithm are made. In green the trajectory followed by the probe when errors on the
position and sail orientation are made. From left to right the projection of the sail’s trajectory
on the saddle, centre 1 and centre 2 planes.

the results when all the errors are taken into account (sail orientation and position +
velocity determination). Notice that Table 2 has a forth line, this is because for the Polar
Observer we have done simulations with errors on the sail orientation of order 0.01o and
0.001o while for the Geostorm the errors made on the sail orientation are only of order
0.01o. Column 2 shows the % of simulations that succeed in controlling the probe, column
3 and 4 have the average maximum and minimum time between manoeuvres respectively
and column 5 has the average angular variation of the trajectory as seen from the Earth.

If we look at Table 1 we can see that for the Geostorm mission all of the 1000 simula-
tions succeed even if errors on the sail orientation or on the determination of the probe’s
position and velocity are made. As we can see there is practically no change between
including or not the error in the position determination, but it does change if we intro-
duce errors on the sail orientation. This is due to the big variation in the fixed points
position when these last errors are taken into account. As we can see the angular variation
between is almost doubled when all the errors are taken into account, this is because now
the probe’s trajectory moves on both sides of the saddle as can be seen in Figure 24. In
this figure we can see the difference between the trajectory followed by the probe when
errors in the sail orientation are added for the Geostorm.

In Table 2 we have the results for 1000 simulations for the Polar Observer. As the
table shows, our control strategy, in this particular mission is no able to deal with errors
on the sail orientation of order 0.01o. As we have seen in Table 1, this magnitudes of
errors were acceptable in the Geostorm, this is due to the nature of the region: we recall
that in Section 5.2.1 we have seen that the variation of the sail orientation is α ≈ 0.03o
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% Success Max. Time Min. Time Ang. Vari.

No Error 100% 187.36 days 59.16 days 0.21o

Error Pos. 100% 187.86 days 58.89 days 0.210

Error Pos. + Orient. ∗ 33.9% 490.5 days 41.16 days 0.56o

Error Pos. + Orient. † 100% 246.85 days 55.08 days 0.36o

Table 2: Statistics for the Polar Observer mission 1000 simulations. For ∗ we have take error
on the sail orientation of order 0.01o and for † the errors on the sail orientation of order 0.001o.
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Figure 25: Polar Observer: In red the trajectory followed by the probe when no error during
the control algorithm are made. In green the trajectory followed by the probe when errors on the
position and sail orientation are made. From left to right the projection of the sail’s trajectory
on the saddle, centre 1 and centre 2 planes.

and δ ≈ 0.01o. This is way we need more precision on the sail orientation to be able to
control the probe.

As it happened on the Geostorm mission we can see that the time between manoeuvres
practically does not change when the errors on the position determination are included,
and the same happens for the angular variation. But it does change when errors on the
sail orientation are introduced.

In Figure 25 we can see two different trajectories for the same initial condition, one
made with no errors on the control strategy and the other with errors during the control
strategy for the Polar Observer.

We must also mention that there is a big relation between the variation on the sail
orientation (∆α,∆δ) and the two bound that define the region of movement on the saddle
projection (B1 = {x1 = εmin} and B2 = {x1 = εmax}). Let ∆ε = εmax − εmin, then as
∆ε gets bigger the variation in the sail orientation is bigger. Although ∆ε cannot be too
big, because we would have problems in the station keeping algorithm. Notice that εmax

must be inside the limits where the linear behaviour is valid to define the behaviour of
the probe, which is strictly relationed with the nature of the fixed point and its vicinity.
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7 Conclusions

In this paper we present a new way of controlling a solar sail close to an unstable fixed
point by using dynamical system tools. We have studied the natural dynamics of the
system close to a fixed point and the variation of this point when the sail orientation (α,
δ) is changed. This knowledge has permitted us design a control strategy that maintains
a probe’s trajectory close to an unstable equilibrium.

We have tested this strategy with to different missions, the ’Geostorm Warning Mis-
sion’ and the ’Polar Observer’. In both cases the probe managed to stay close to the fixed
point for 30 years. We have also tested the controllability of the algorithm including errors
in the prediction of the probe’s position and velocity and errors in the sail orientation
angles (α, δ). We have seen that the errors on the position and velocity do not produce
important changes in the sail’s trajectory and its controllability. The errors on the sail’s
orientation are more relevant and give more variations on the trajectory followed by the
probe.

As we have seen, the controllability of the sail is strictly related with the nature of the
neighbourhood of the fixed point where we want to maintain the sail. If the variations of
the fixed points and the eigendirections is understood, we can be understand the dynamics
and, therefore, the reasons that make the control more or less difficult. As we have seen
in the Polar Observer Mission, more precision on the sail orientation was required to be
able to control the probe.

Finally let us mention that the strategy proposed here does not require previous plan-
ing, the decisions taken by the probe depend only on its position on the phase space, that
is known at each moment. In this way, you do not to have to plan the control strategy in
advance and errors made during the manoeuvres can be rectified easily.
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