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Abstract. We use the parameterization method to prove the existence and
properties of one-dimensional submanifolds of the center manifold associated
to the fixed point of Cr maps with linear part equal to the identity. We also
provide some numerical experiments to test the method in these cases.

1. Introduction. We consider Cr maps of R1+n having a parabolic fixed point
and study the existence of one-dimensional invariant manifolds passing through
this fixed point.

We assume that the fixed point is the origin and that the linear part of the map
at the fixed point is the identity. Then a whole neighborhood of the origin is a center
manifold. However there may exist invariant submanifolds of points which go to
the origin by the iteration of the map. In this setting we refer to such submanifolds
as stable manifolds. In the same way we can speak of unstable manifolds.

These problems appear naturally in Celestial Mechanics. In these applications,
often the fixed point is the image of infinity under a suitable transformation and
the invariant manifolds are the separation from bounded and unbounded motions.
See for example, [23, 16, 19, 6, 15] for studies of parabolic invariant manifolds in
R

2 and applications to Celestial Mechanics.
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Another situation where this problem appears is in complex analytical dynamics
in the neighborhood of a fixed point whose linearization is a root of unity. Studies
of one-dimensional complex dynamics in neighborhoods of fixed points in complex
dimension one go back to Fatou. A survey including more recent developments is
[17]. Since the parameterization method includes a description of the dynamics in
the manifold, these studies will be relevant for us. See also [9, 8, 7] for other studies.

Proofs of existence of (complex) one-dimensional invariant manifolds near para-
bolic points in analytic maps of Cp appear in [13].

In renormalization group theory, eigenvalues of modulus 1 are called marginal
eigenvalues. The behavior of the renormalization group associated to these eigen-
values has been studied in [12]. Indeed, the manifolds tangent to the marginal
eigenvalues seem to be closely related to the renormalons.

In fluid mechanics, parabolic manifolds play a role in the separation of fluids
from a boundary [18]. Important studies of parabolic manifolds in this case are
[14, 24].

A very systematic study of analytic and continuous invariant manifolds (of any
dimension) for parabolic points of maps of arbitrary dimensions can be found in [1].

See [10, 5, 11] for studies of the dynamics in maps with parabolic points with non-
diagonalizable linear part. The previous papers consider either analytic mappings
or use topological methods for differentiable maps and obtain analytical or Lipschitz
results respectively.

In this paper, we consider finitely and infinite differentiable mappings and obtain
finite and infinite differentiable results. See Theorem 2.1 for a precise statement of
the main result.

The method we use in this paper is the parameterization method introduced
recently in [2, 3, 4]. In this method, one tries to look at the same time for a
parameterization of the invariant manifold and for a version of the dynamics on it.
We give an overview of the method in Section 2.

The solution of the resulting functional equation for the parameterization and
the dynamics, has two parts. In the first part, carried out in Section 3, we ob-
tain a polynomial approximation of the solution just matching powers, and in the
second part, we study the equation for the parameterization minus the polynomial
approximation.

The resulting functional equation has several remarkable functional analysis
properties and we show it can be solved using the contraction mapping princi-
ple in an appropriate Banach space. This has the consequence that, given some
approximate solutions, there is a true solution nearby, and hence the proof can be
used to validate numerical computations.

See Section 4 for the treatment of the functional equation. We anticipate that the
main technique is the introduction of appropriate Banach spaces that incorporate
the fact that the functions we are interested in vanish at the origin with their
derivatives (see Section 4.1). In these spaces, the equation of the parameterization
method can be treated as a fixed point equation.

We also remark that the parameterization method is very well suited for numer-
ical implementations. When carried out with the help of a computer, the power
matching methods in the first part of the proof yield a very accurate solution. Of
course, given the “a-posteriori” form of our functional analysis treatment, we know
that the true solution will be close to the computed one. We present the results
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of a computer implementation in Section 5. Even if preliminary, this implemen-
tation suggests several conjectures. We also present some comparisons with other
algorithms. Besides issues of accuracy and speed, we point out that the parameter-
ization can follow turns of the manifold which prevent to treat it as a graph.

2. Statement of the main result. In this paper we look for one-dimensional
invariant manifolds of maps F : U ⊂ R1+n → R1+n. We will write a point in R1+n

as (x, y) ∈ R × Rn. Without any loss of generality we will assume that the fixed
point is the origin and that, at the fixed point, the manifold, if it exists, is tangent
to the first axis.

The parameterization method consists in looking simultaneously for an embed-
ding K : I0 ⊂ R → R1+n and a map R : I0 ⊂ R → R such that

F ◦K = K ◦R. (2.1)

K is a parameterization of a curve and R is a representation of the dynamics on
the curve. Condition (2.1) ensures that the range of K is invariant by F . The fact
that the curve passes through the origin and is tangent to the first axis is ensured
by the supplementary conditions

K(0) = 0, DK(0) = (1, 0)⊤.

It is known that invariant manifolds associated to eigenvalues equal to one are,
in general, not smooth at the fixed point. We will take I0 as an interval of the form
[0, t0) and we will obtain certain regularity on [0, t0) and the same regularity as the
map on (0, t0).

The map R is one-dimensional with the origin as a parabolic fixed point. These
maps are considered in [25] where it is proved that if f(x) = x + akx

k + . . . , with
ak 6= 0, is C∞ there is a C∞ change of variables ϕ such that

ϕ−1 ◦ f ◦ ϕ(x) = x± xk + cx2k−1,

where the sign ±1 and c are completely determined by the (2k − 1)-jet of f .
The main result of this paper is

Theorem 2.1. Let F = (F 1, F 2) : U ⊂ R1+n → R1+n be a Cr map, r ≥ 2 or
r = ∞, such that F (0, 0) = 0, DF (0, 0) = Id ,

DjF 1(0, 0) = 0, for 2 ≤ j ≤ N − 1, (2.2)

DjF 2(0, 0) = 0, for 2 ≤ j ≤M − 1 (2.3)

and
∂NF 1

∂xN
(0, 0) < 0,

∂MF 2

∂xM
(0, 0) = 0 (2.4)

for some 2 ≤ N,M ≤ r.
In the case M ≤ N assume furthermore

Spec
∂MF 2

∂xM−1∂y
(0, 0) ⊂ {z ∈ C | Re z > 0}. (2.5)

Let L = min(N,M) and η = 1 +N − L.
We assume that r > 2N − 1.
Then there exist a Cp map K : [0, t0) ⊂ R → R1+n, with p = [(r−N +1)/η]− 1,

of class Cr in (0, t0) and a polynomial R : R → R such that

F ◦K = K ◦R. (2.6)
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Moreover K(t) = (t, 0) + O(t2) and R(t) = t + dN t
N + O(t2N−1) with dN =

∂N F 1

∂xN (0, 0) < 0.

Remark 2.2. The fact that ∂N F 1

∂xN (0, 0) = dN < 0 implies that the origin is an
attractor for the map R. Let [0, t∗) be contained in the basin of attraction of R.
Using the formula Fn◦K = K◦Rn, which is directly obtained from (2.6), we deduce
that K([0, t∗)) is attracted to the origin by F , and hence is a stable manifold.

In case ∂N F 1

∂xN (0, 0) > 0 then R would be an expansion and, under suitable addi-
tional conditions we would have an unstable manifold instead of a stable one. The
definition of unstable manifold is made precise using the inverse map. This inverse
map will have the corresponding coefficient negative, and the additional conditions
should imply the remaining hypotheses of Theorem 2.1 — vanishing of terms in
the Taylor expansion — for F−1. The stable manifolds of F−1 are the unstable
manifolds of F .

The parameterization given in Theorem 2.1 provides a stable manifold in the half
space {(x, y) ∈ R × Rn | x > 0}.

We can also use Theorem 2.1 to study the invariant manifolds in the half space
{(x, y) ∈ R × R

n | x < 0} making the change of coordinates (x, y) 7→ (−x, y). For
instance, if the hypotheses hold and N,M are odd, there is a stable manifold in
{(x, y) ∈ R × Rn | x < 0}. If N,M are even, there is an unstable manifold in the
latter half-space.

It is worth noting that there are examples of maps with a stable manifold which
do not have an unstable one, even when the map is assumed to be symplectic.
Indeed the time one map of the Hamiltonian

H(x, y) = −x3y

satisfies the hypotheses of Theorem 2.1 therefore it has a one-dimensional stable
manifold of the origin, the origin is unstable but does not have an unstable manifold
as can be easily seen from the explicit solutions of the Hamiltonian equation.

In the reversible case where the map is composition of two involutions, if there is
a stable manifold also there is an unstable manifold and each involution sends the
stable manifold to the unstable one.

Remark 2.3. In [1] it is proved that if we are under the hypotheses of Theorem 2.1
and, regardless of the values of N and M , Condition (2.5) holds, there is a stable
manifold which is locally unique among the Lipschitz ones, in the sense that within
a sector whose vertex is the origin, there is no other Lipschitz stable manifold.

However if Condition (2.5) does not hold and M > N Theorem 2.1 applies but
the map may have an open stable set which contains the curve provided by the
theorem. For instance, for the map

F (x, y) = (x− x3, y − x4y − y5)

the origin is an isolated fixed point, we have N = 3, M = 5, F satisfies the
hypotheses of Theorem 2.1 and the origin attracts an open set of full measure,
which contains the curve we have found.

We note however that there is some uniqueness. As we will see, the invariant
manifold will be constructed by applying a contraction mapping problem. Hence,
the invariant manifold is unique among a class of curves satisfying conditions of
differentiability and tangency to the invariant space. A similar situation happens
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in the study of slow manifolds. Even if the manifold is unique in a certain class of
differentiability, it is far from unique among less regular functions.

Remark 2.4. The analytic case is considered in [1], where one deals with manifolds
of arbitrary (finite) dimension. Under the hypotheses of Theorem 2.1, assuming
condition (2.5) even if M > N , and analyticity of F , taking into account that we
are looking for one-dimensional manifolds, Theorem 4.1 of that paper applies and
we have that the obtained manifold is analytic, except at the fixed point.

Remark 2.5. As far as stability is concerned the papers [20, 22] study two-
dimensional analytic area preserving maps with a parabolic fixed point (assume
it is the origin) with diagonal and non-diagonal linear part respectively, and pro-
vide conditions for stability in terms of a suitable normal form. In [21] an unified
approach considers a generating function G of the map and characterizes stability
in terms of strict extrema of G. Moreover, if G = 0 has branches passing through
the origin it is claimed that the map has invariant curves reaching the origin.

The scheme of the proof consists of first looking for polynomials K≤ and R of
sufficiently large degree — actually of degree 2N − L for K≤ and degree 2N − 1
for R — so that the invariance equation (2.6) is satisfied up to a high order error.
Then we set K = K≤ +K> and we seek K> satisfying

F ◦ (K≤ +K>) = (K≤ +K>) ◦R.

The computation of K≤ and R is done by matching powers of t in (2.6). One
obtains a hierarchy of equations that can be solved recursively. The proof is very
explicit and is the basis of a practical algorithm which we implement in Section 5.

If we look for manifolds of higher dimension we note that it may be impossible
to obtain the polynomials K≤ and R. So that, when we consider two dimensional
manifolds it may be impossible to have C2 invariant manifolds. This will be clearer
at the end of the next section and this is the reason why in this paper we only
consider one dimensional manifolds.

The high order part of the parameterization K> will be found as the fixed point
of the contraction operator N = S0 ◦ F (see (4.53) below). It is well known that
if K>

∗ verifies ‖K>
∗ − N (K>

∗ )‖ ≤ ε then the distance of K>
∗ to the true solution

K> is ‖K> −K>
∗ ‖ ≤ εℓ/(1 − ℓ), where ℓ = Lip (N ). This “a posteriori” estimate

provides an explicit bound of the error in the computed approximation, K≤.

3. Polynomial approximation. We shall denote by E1 the one-dimensional sub-
space generated by the first variable and by E2 the n-dimensional space generated
by the last n variables. We shall denote πi, i = 1, 2, the corresponding projectors
onto E1 and E2 respectively, and π2,l = π̃lπ2 : R1+n → R, 1 ≤ l ≤ n, where π̃l is
the projector from E2 onto its l coordinate. Also E2,l = π2,lE2.

We write F = (F 1, F 2) = Id +
∑r

j=L Fj + F̃r+1 in the form

F 1(x, y) = x+
r∑

j=N

F 1
j (x, y) + o(|(x, y)|r), (3.1)

F 2(x, y) = y +

r∑

j=M

F 2
j (x, y) + o(|(x, y)|r), (3.2)

where F 1
j , F 2

j are homogeneous polynomials of degree j taking values in E1 and E2

respectively and F̃r+1(x, y) = o(|(x, y)|r).
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Moreover we will write F i
j = πiFj and F 2,l

j = π2,lFj , etc. We also introduce the
notation

F 1
k (x, y) =

∑

j+|m|=k

aj,mx
jym, F 2,l

k (x, y) =
∑

j+|m|=k

blj,mx
jym,

where we have used the usual multindex notation: k ∈ Zn, ym = ym1

1 · · · ymn
n , and

aN,0 = aN,0,...,0, the vector bM,0 = (b1M,0,...,0, . . . , b
n
M,0,...,0)

⊤ and the matrix

BM−1,1 =




b1M−1,1,0,...,0 . . . b1M−1,0,0,...,1

. . .
bnM−1,1,0,...,0 . . . bnM−1,0,0,...,1


 .

Condition (2.4) on F implies that aN,0 < 0, bM,0 = 0, and Condition (2.5) implies
that the eigenvalues of BM−1,1 have positive real part.

Lemma 3.1. Let F = (F 1, F 2) : U ⊂ R1+n → R1+n be a Cr map, such that
F (0, 0) = 0, DF (0, 0) = Id and satisfies (2.2)–(2.5). Given 2 ≤ m ≤ r, there

exist polynomials K = K1 +
∑m−L+1

j=2 Kj and R = R1 +
∑m

j=N Rj, where L =

min(N,M) and Kj and Rj are homogeneous polynomials of degree j, with K1(t) =
(t, 0), R1(t) = t, such that

F ◦K(t) −K ◦R(t) = o(tm).

Moreover, we can choose R and K of the form

R =

{
R1 +RN if N ≤ m < 2N − 1,

R1 +RN +R2N−1 if m ≥ 2N − 1,

K =

{∑m−N+1
j=1 Kj if N ≤M,

(
∑m−N+1

j=1 K1
j ,
∑m−M+1

j=1 K2
j ) if M < N.

Remark 3.2. If N < M we do not need to use Condition (2.5) to determine K
and R.

Proof. Since we want that K(0) = 0 and R(0) = 0 we look for K and R in the form

K(t) =

m∑

j=1

Kj(t), R(t) =

m∑

j=1

Rj(t). (3.3)

We introduce the notation

K1(t) =

m∑

i=1

c1i t
i, K2,l(t) =

m∑

i=2

c2,l
i ti, R(t) =

m∑

i=1

dit
i.

We substitute (3.3) into F ◦K−K ◦R = 0 to determine Kj and Rj order by order.
At first order we obtain

K1 −K1 ◦R1 = o(t).

Here we have several possible choices, however we take

K1(t) = (K1
1 (t),K2

1 (t)) = (t, 0), R1(t) = t.

Case N ≤ M . If 2 ≤ j < N (of course this case is void if N = 2) from F ◦K −
K ◦R = 0 we can write

K1 +K2 + · · · +Kj −K1 ◦R−K2 ◦R− · · · −Kj ◦R = o(tj).



ONE-DIMENSIONAL INVARIANT MANIFOLDS 841

Comparing the terms of order two we get K2 −K1 ◦ R2 −K2 ◦ R1 = 0 and hence
R2 = 0 and K2 is free. Assuming inductively that Rp = 0 for 2 ≤ p < l ≤ j we have

K1 + · · · +Kl −K1 ◦ (R1 +Rl) − · · · −Kl ◦ (R1 +Rl) = o(tl)

and comparing the terms of order l we get the condition Kl −K1 ◦Rl −Kl ◦R1 =
0. Projecting onto the first component we obtain Rl = 0. Moreover Kl is free.
Therefore R2 = · · · = RN−1 = 0.

For j ≥ N we write

j∑

i=1

Ki +

j∑

i=N

Fi ◦K −

j∑

i=1

Ki ◦ (R1 +RN + · · · +Rj) = o(tj).

When j = N , comparing terms of order N we have

KN + FN ◦K1 −K1 ◦RN −KN ◦R1 = 0. (3.4)

Since R1(t) = t we get that KN is free and F 1
N ◦K1 = RN . Thus dN = aN,0. We

note that the projection onto E2 of the left-hand side of (3.4) vanishes. Indeed, if
M > N , by the form of F , F 2

N = 0. If M = N we have F 2
N ◦K1(t) = F 2

M (t, 0) = 0
by Condition (2.4).

When j > N , the terms of order j can be obtained from

K1 + · · · +Kj + FN ◦ (K1 + · · · +Kj−N+1) + · · · + Fj ◦K1

= K1 ◦ (R1 +RN + · · · +Rj) + · · · +Kj ◦R1 + o(tj). (3.5)

Actually from (3.5) we will obtain Kj−N+1 and Rj assuming we already know
Kp for p < j −N + 1 and Rp for p < j. Indeed, projecting (3.5) onto E2,l by π2,l,
and equating the terms of order j we get

c2,l
j + blN−1,1,0,...,0c

2,1
j−N+1 + blN−1,0,1,...,0c

2,2
j−N+1 + · · · + blN−1,0,0,...,1c

2,n
j−N+1

= (j −N + 1)c2,l
j−N+1dN + c2,l

j + Γ2,l
j ,

where Γ2
j = (Γ2,1

j , . . . ,Γ2,n
j ) depends on F,K2, . . . ,Kj−N , RN , . . . , Rj−1. Hence, in

matrix notation

(BN−1,1 − (j −N + 1)aN,0Id )c2j−N+1 = Γ2
j . (3.6)

If N = M the matrix BN−1,1 − (j −N + 1)aN,0Id is invertible because, by the
property on the eigenvalues of BM−1,1 and the fact that aN,0 < 0, all its eigenvalues
have positive real part, and hence they are non-zero. If N < M then BN−1,1 = 0
and (j − N + 1)aN,0Id is invertible. Hence in both cases we can solve (3.6) and
obtain K2

j−N+1.

Projecting (3.5) onto E1 we have

c1j +NaN,0,0,...,0c
1
j−N+1 + aN−1,1,0,...,0c

2,1
j−N+1 + aN−1,0,1,...,0c

2,2
j−N+1 + . . .

= dj + (j −N + 1)c1j−N+1dN + c1j + Γ1
j , (3.7)

where Γ1
j depends on F,K2, . . . ,Kj−N , RN , . . . , Rj−1.

Condition (3.7) becomes

(2N − j − 1)aN,0c
1
j−N+1 − dj = known terms. (3.8)

Therefore, if j 6= 2N − 1 we can take dj = 0 and determine c1j−N+1 from (3.8). If

j = 2N − 1 we have c1N free and we must determine d2N−1 from (3.8).
Case M < N . If 2 ≤ j < M (this case is void if M = 2) we have, as in the

previous case, Rj = 0 and Kj is free.
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If M ≤ j < N we claim that, having fixed K1 and R1, Rj = 0, K1
j is free and

K2
j is uniquely determined. Indeed, we check the claim by induction. We write

j∑

i=1

Ki +

j∑

i=M

Fi ◦K −

j∑

i=1

Ki ◦ (R1 +Rj) = o(tj). (3.9)

When j = M , projecting onto E1 we get K1
M − K1

1 ◦ RM − K1
M ◦ R1 = 0, which

implies that RM = 0 and K1
M remains free.

Projecting (3.9) onto E2,l by π2,l and considering the terms of order M we obtain

K2
M + F 2

M ◦K1 −K2
M ◦R1 = 0.

Since bM,0 = 0, the terms of order M agree.
We assume the claim is true for M ≤ l < j. Projecting (3.9) onto E1, we get

K1
j −K

1
1 ◦Rj −K1

j ◦R1 = 0 from which we obtain Rj = 0 and K1
j is free. Projecting

(3.9) onto E2

K2
j +

j∑

i=M

[F 2
i ◦ (K1 + · · · +Kj−M+1)]j = K2

j ◦R1,

where [·]k stands for the terms of order k of the expression contained in brackets.
From this we obtain

BM−1,1c
2
j−M+1 = known terms

and, since BM−1,1 is invertible, we can determine uniquely K2
j−M+1 from the pre-

vious condition.
Next, when j = N , from (3.9) with j = N , using that Rj = 0 for 2 ≤ j ≤ N − 1,

projecting onto E1 and considering the terms of order N we have K1
N +F 1

N ◦K1 −
K1

1 ◦RN −K1
N ◦R1 = 0 which implies RN (t) = F 1

N (t, 0) and hence dN = aN,0. K
1
N

remains free.
Projecting onto E2,l and considering the terms of order N we have

K2
N +[F 2

M ◦(K1+· · ·+KN)]N +· · ·+[F 2
N ◦(K1+· · ·+KN)]N −K2

1RN −K2
N ◦R1 = 0.

As in the previous case we deduce that BM−1,1c
2
N−M+1 = known terms, which

permits to obtain K2
N−M+1.

Finally, when j > N , projecting F ◦K −K ◦R = 0 onto E1 and considering the
terms of order j we have

K1
j + [F 1

N ◦ (K1 + · · · +Kj)]j + · · · + [F 1
j ◦ (K1 + · · · +Kj)]j

−K1
1Rj − [K1

2 ◦ (R1 +RN + · · · +Rj−1)]j − · · · −K1
j ◦R1 = 0.

Then

NaN,0c
1
j−N+1 + known terms − dj − [K1

j−N+1(R1 +RN )j−N+1]j = 0.

This gives (2N − j − 1)aN,0c
1
j−N+1 − dj = known terms. This equation coincides

with (3.8) and we deal with it as we did there.
Projecting onto E2,l and considering the terms of order j we have

K2
j +

j∑

i=M

[F 2
i ◦ (K1 + · · · +Kj)]j −

j∑

i=1

[K2
i ◦ (R1 +RN + · · · +Rj)]j = 0. (3.10)

This gives as before BM−1,1c
2
j−M+1 = known terms, and hence we can obtain

K2
j−M+1 uniquely from it. 2
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Remark 3.3. If we try to follow the same scheme for two dimensional invariant
manifolds, we get into trouble because matching Taylor coefficients in t ∈ R2 in the
equation F ◦K−K◦R = 0 we obtain more conditions than the number of coefficients
we have to determine and, in general, these conditions are not compatible. Since
the invariance equation cannot be solved even formally to order two, we conclude
that — even for polynomial F — one cannot guarantee the existence of a C2 2-
dimensional manifold tangent to an eigenspace of an eigenvalue 1.

Hence we conclude there is no straightforward extension of Theorem 2.1 for
manifolds of dimension 2 or larger. Less regular invariant manifolds are established
in [1].

4. Invariant manifold. Let k be an integer such that 2N − 1 ≤ k ≤ r. We
decompose F = P + Qk, where P is the Taylor polynomial of degree k − 1 of F ,
which by (2.2)–(2.5) has the form (using ⊤ to denote transposed)

P (x, y) =

(
x+ aN,0x

N + y⊤fN−1(x, y) + fN+1(x, y)
y + BM−1,1x

M−1y + y⊤gM−2(x, y)y + gM+1(x, y)

)

with y⊤gM−2(x, y)y = (y⊤g1
M−2y, . . . , y

⊤gn
M−2y)

⊤ and gj
M−2 = O(|(x, y)|M−2) is a

n× n matrix for j ∈ {1, . . . , n} and Qk = O(|(x, y)|k).
Let K≤ : R → R × Rn and R : R → R be polynomials obtained applying

Lemma 3.1 with F = P and m = k−1. We have K≤(t) = (t,K2
2 t

2)+(O(t2), O(t3))
and

P ◦K≤ −K≤ ◦R = Tk, (4.1)

where Tk is a polynomial such that Tk = o(tk−1) and hence DlTk = O(tk−l) for all
0 ≤ l ≤ r.

Our goal is to find K> such that

F ◦ (K≤ +K>) − (K≤ +K>) ◦R = 0. (4.2)

For that we will transform (4.2) into a fixed point equation for K> and we will look
for K> in a space of differentiable functions of order O(tk).

4.1. The Banach spaces X k
r . We fix η = 1 +N − L as in Theorem 2.1.

Given E a Banach space, t0 ∈ (0, 1), r ≥ 0 and k ∈ R, we introduce the Banach
space

X k
r = {f : (0, t0) → E | f ∈ Cr, max

0≤j≤r
sup

t∈(0,t0)

t−k+jη |Djf(t)| <∞},

with the norm
‖f‖r,k := max

0≤j≤r
sup

t∈(0,t0)

t−k+jη|Djf(t)|.

The following proposition is an elementary consequence of the definition of the
Banach spaces.

Proposition 4.1. The following three conditions are equivalent:

f ∈ X k
r . (4.3)

Dlf ∈ X k−lη
r−l , 0 ≤ l ≤ r. (4.4)

f ∈ Cr(0, t0) and Dlf ∈ X k−lη
0 0 ≤ l ≤ r. (4.5)

If f ∈ X k
r , ‖f‖r,k = max0≤l≤r ‖Dlf‖r−l,k−lη = max0≤l≤r ‖Dlf‖0,k−lη.

k1 ≥ k2 =⇒ X k1

r ⊂ X k2

r , ‖f‖r,k2
≤ ‖f‖r,k1

, for f ∈ X k1

r .
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r1 ≥ r2 =⇒ X k
r1

⊂ X k
r2
, ‖f‖r2,k ≤ ‖f‖r1,k, for f ∈ X k

r1
.

Proposition 4.2. If f(t) ∈ L(Rp,Rq) with f ∈ X k
r and g(t) ∈ Rp with g ∈ X l

r then
fg ∈ X k+l

r and

‖fg‖r,k+l ≤ 2r‖f‖r,k‖g‖r,l. (4.6)

More generally, if f(t) ∈ Lp(X2, X3) with f ∈ X k
r and hi(t) ∈ Lqi(X1, X2), with

hi ∈ Xmi
r , 1 ≤ i ≤ p, where X1, X2 and X3 are Banach spaces, we have f h1 · · ·hp ∈

X
k+m1+···+mp
r and

‖f h1 · · ·hp‖r,k+m1+···+mp
≤ (1 + p)r‖f‖r,k‖h1‖r,m1

· · · ‖hp‖r,mp
. (4.7)

Proof. This follows easily from

t−k−l+jη |Dj(fg)(t)| = t−k−l+jη |

j∑

m=0

(
j

m

)
Dj−mf(t)Dmg(t)|

≤

j∑

m=0

(
j

m

)
t−k−l+jηtk−(j−m)η‖f‖r,kt

l−mη‖g‖r,l

= 2j‖f‖r,k‖g‖r,l.

2

The following proposition deals with the composition in X r
k spaces. It will be

used in Section 4.10.

Proposition 4.3. Let G : U ⊂ R1+n → E be a Cr map, where E is a Banach
space, and m ∈ R be such that |DpG(x, y)| ≤ Mp|(x, y)|m−p for all 0 ≤ p ≤ r and
(x, y) ∈ U \ {(0, 0)}. Then,

a) If g ∈ X 1
j with 0 ≤ j ≤ r and g((0, t0)) ⊂ U , then G ◦ g ∈ Xm

j .

b) If g ∈ X 1
j with 0 ≤ j ≤ r, g((0, t0)) ⊂ U and hi ∈ Xmi

j for some mi ∈ R,

i = 1, · · · , l, and 0 ≤ l ≤ r, then (DlG ◦ g)h1 · · ·hl ∈ Xm−l+m1+···+ml
s , where

s = min{r − l, j}.

Proof. It is clear that G ◦ g ∈ Cj and since for all t ∈ (0, t0),

|G ◦ g(t)| ≤M0|g(t)|
m ≤M0‖g‖

m
j,1t

m,

G ◦ g ∈ Xm
0 . Moreover, for 0 ≤ l ≤ r, by Faa-di-Bruno’s formula,

Dl(G ◦ g)(t) =

l∑

i=1

∑

1≤l1,··· ,li≤l
l1+···+li=l

σDiG ◦ g Dl1g · · ·Dlig,

(where σ is a combinatorial coefficient which depends on the indices) and the fact

t−m+lη|DiG(g(t))| |Dl1g(t)| · · · |Dlig(t)|

≤ t−m+i|DiG(g(t))| t1−l1η|Dl1g(t)| · · · t1−liη|Dlig(t)| ≤Mi‖g‖
i
r,1

we obtain that Dl(G ◦ g) ∈ Xm−lη
0 and therefore we conclude that G ◦ g ∈ Xm

j .

To prove b) we use that, by a) applied to DlG instead of G, DlG ◦ g ∈ Xm−l
s .

Then applying (4.7) we obtain (DlG ◦ g)h1 · · ·hl ∈ Xm−l+m1+···+ml
s . 2
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4.2. A motivating example. To motivate the choice of the Banach spaces X k
r ,

we consider the following example to emphasize the fact that we may lose more
than one order in the scale of spaces when taking derivatives. Let F : U ⊂ R2 → R2

be defined by

F (x, y) = (x− xN + f(x, y), y + xM−1y + g(x, y)),

where f, g ∈ Cr, r > 2N − 1, f, g = O(|(x, y)|r) and Df,Dg = O(|(x, y)|r−1).
Taking K≤(t) = (t, 0) and R(t) = t− tN and have that

Tr := F ◦K≤ −K≤ ◦R = (f(t, 0), g(t, 0)) = O(tr).

Now we look for K> satisfying (4.2). It is easy to see that (4.2) is equivalent to

(DF ◦K≤)K> −K> ◦R = −Tr −N (K>) (4.8)

with N (K>) = F ◦ (K≤ +K>) − F ◦K≤ − (DF ◦K≤)K>.
In view of Lemma 3.1 we consider K≤ as a polynomial of degree r − N . To

solve this equation we will work in a space of differentiable functions K> of order
O(tr−N+1). In such case, using Taylor’s theorem, we get N (K>)(t) = O(tr+1).
Indeed, N (K>) ≈ (1/2)(D2F ◦K≤)(K>)2 and hence

N (K>)(t) = O(tL−2)O(t2(r−N+1)).

We have L− 2 ≥ 0 and since r ≥ 2N − 1 then 2(r −N + 1) ≥ r + 1.
Using

K>(t) −K>(t− tN ) = −

∫ 1

0

DK>(t− stN )(−tN ) ds,

DF (K≤)K> −K> ◦R = [DF (K≤) − Id ]K> +K> −K> ◦R,

we rewrite equation (4.8) more explicitly as:

(
−NtN−1π1K

>

tM−1π2K
>

)
+tN

∫ 1

0

DK>(t−stN ) ds = −Tr−N (K>)+O(t2r−N ). (4.9)

Our goal is to determine η such that DK>(t) = O(tr−N+1−η). We observe that,
if the second component of equation (4.9) is satisfied, we have to match terms
of orders O(tr+M−N ), O(tr+1−η) and O(tr). Hence, if M < N , we must have
r + M − N = r + 1 − η, which implies η = 1 + N −M , and if N ≤ M , we must
have η = 1. To deal simultaneously with the cases M < N and N ≤ M we take
η = 1 +N − L, as in the statement of Theorem 2.1.

4.3. Decomposition of the interval. To obtain bounds of several objects we will
use the decomposition of (0, t0), associated to the map R, given by the following
lemma.

Lemma 4.4. Let R be an analytic map in a neighborhood of the origin of the form
R(z) = z + dNz

N + O(z2N−1) with dN < 0 and let α = 1/(N − 1). If t0 is small
enough there exist s and a collection of intervals Ik = [ ck+1

(s+k+1)α ,
ck

(s+k)α ] such that

1) (0, t0] = ∪k≥0Ik.
2) R(Ik) = Ik+1.

Moreover ck = c0 +O( 1
kβ ), where c0 = (−α/dN )α and β is any number in (0, 1).
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Proof. We will use the Fatou coordinates in the attracting petal which intersects
the positive real axis (see for instance [17]). First we conjugate R by ϕ1(w) =

c0w
−1/(N−1), where c0 =

(
−1

(N−1)dN

)1/(N−1)
. This gives

G1(w) := ϕ−1
1 ◦R ◦ ϕ1(w)

= ϕ−1
1

( c0
w1/(N−1)

+ dN
cN0

wN/(N−1)
+O

( 1

w(2N−1)/(N−1)

))

= w
[
1 + (N − 1)dN

cN−1
0

w
+O

( 1

w2

)]−1

= w + 1 +O
( 1

w

)
.

Then by Lemma 7.8 in [17] there exists an analytic ϕ2 which conjugates G1 to
the translation w 7→ w + 1. In that lemma the asymptotic expression for ϕ2 is
not made explicit, but working out some more details of the proof we obtain that
ϕ2(w) = w +O(w1−β) with β ∈ (0, 1). Therefore

ϕ(w) := ϕ1 ◦ ϕ2(w) =
c0
wα

+O
( 1

wα+β

)

conjugates R to z 7→ z + 1, i.e. R(ϕ(z)) = ϕ(z + 1). Let s such that ϕ(s) = t0.
If t0 is small enough, s is big and ϕ is monotonically decreasing in (s,∞). Then
(ϕ(s+ k))k≥0 converges monotonically to zero and since R(ϕ(s+ k)) = ϕ(s+ k+1)
then R([ϕ(s + k + 1), ϕ(s + k)]) = [ϕ(s + k + 2), ϕ(s + k + 1)]. We define ck =
(s+ k)αϕ(s+ k) = c0 +O(1/kβ). Then the proof is complete. 2

4.4. Scaling and preliminary lemmas. As a first adjustment, we scale the y-
variable through Eδ(x, y) = (x, δy). After the scaling, equations (4.1) and (4.2)
become

P̃ ◦ K̃≤ − K̃≤ ◦R = T̃k (4.10)

and

F̃ ◦ (K̃≤ +K>) − (K̃≤ +K>) ◦R = 0, (4.11)

where F̃ = E−1
δ ◦F ◦Eδ, P̃ = E−1

δ ◦P ◦Eδ, Q̃k = E−1
δ ◦Qk ◦Eδ, K̃

≤ = E−1
δ ◦K≤

and T̃k = E−1
δ ◦ Tk.

We have:

P̃ (u, v) =

(
u+ aN,0u

N + δv⊤fN−1(u, δv) + fN+1(u, δv)
v +BM−1,1u

M−1v + δvT gM−2(u, δv)v + δ−1gM+1(u, δv)

)
(4.12)

and

K̃≤(t) = (t, δ−1K2
2 t

2) + (O(t2), δ−1O(t3)). (4.13)

From now on, we drop the tilde in (4.10), (4.11) (4.12) and (4.13) and we assume
that δ is small. Let

σ := δα|aN,0|
−1 sup

t∈(0,t0)

|fN−1(t, 0)t−N+1|. (4.14)

As a second adjustment, in the case that M ≤ N , we choose a norm in E2 such
that

‖Id −BM−1,1t
M−1‖ ≤ 1 − µtM−1 (4.15)

for some µ > 0. This is possible by Condition (2.5). Indeed, in a basis where
BM−1,1 is in Jordan form, with small non-diagonal terms, Id −BM−1,1t

M−1 is also
in Jordan form. Then we can take the max norm in this basis.
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Finally in R1+n we take the norm |(x, y)| = max(|x|, |y|∗), (x, y) ∈ R×Rn, where
| · |∗ is the norm just chosen in Rn. For the sake of simplicity, in what follows we
will not write the subindex * in the norm.

Lemma 4.5. If t0 is small enough, for all t ∈ (0, t0),

‖(DP )−1(K≤(t))‖ ≤ 1 − aN,0t
N−1(N + σα−1) + CtN . (4.16)

Proof. Taking into account (4.12) and (4.13) we can write DP (K≤(t)) as
(

1 +NaN,0t
N−1 +O(tN ) δfN−1,0(t) +O(tN )

δ−1O(tM ) + (M − 1)BM−1,1K
2
2 t

M +O(tM+2) Id +BM−1,1t
M−1 +O(tM )

)
.

(4.17)

Let t0 = t0(δ) > 0 be such that t
1/2
0 δ−1 < 1. Then since DP ◦K≤ is close to the

identity,

(DP )−1(K≤(t)) =

(
1 −NaN,0t

N−1 +O(tN ) −δfN−1,0(t) +O(tN )
−δ−1O(tM ) Id −BM−1,1t

M−1 +O(tM )

)
.

(4.18)
Now we compute the matrix norm of (DP ◦ K≤)−1. Since we use the max norm

in R × Rn, the matrix norm of

(
c11 c12
c21 c22

)
is less or equal than max{|c11| +

|c12|, |c21| + ‖c22‖}. For the first row, using that aN,0 < 0 we have

|1 −NaN,0t
N−1 +O(tN )| + |δfN−1(t, 0) +O(tN )|

≤ 1 −NaN,0t
N−1 + δtN−1 sup

t∈(0,t0)

|fN−1(t, 0)t−N+1| +O(tN )

≤ 1 − aN,0t
N−1(N + σα−1) +O(tN ). (4.19)

For the block of the n remaining rows, using that t
1/2
0 δ−1 < 1 and the hypotheses

we have that, if M ≤ N ,

‖Id −BM−1,1t
M−1 +O(tM )‖ + δ−1O(tM )

≤‖Id −BM−1,1t
M−1‖ +O(tM−1/2) < 1 (4.20)

if t0 is small enough.
When N < M we bound the right-hand side of (4.20) by 1 + tM−1‖BM−1,1‖ +

O(tM−1/2). Recalling that aN,0 < 0, (4.19) implies (4.16) in this case. When
N ≥M , we have (4.16) because of the second adjustment (4.15) and (4.19). 2

4.5. Weak contraction generated by the nonlinear terms. From now on C
will be a generic constant depending only on t0, N and k, that can take different
values at different places.

Although the origin is not hyperbolic we get some contraction from the non-linear
terms. The next result gives some quantitative estimates which are consequence of
the weak hyperbolicity provided by the standing hypotheses.

Lemma 4.6. Let {In}n≥0 ⊂ (0, t0) and s > 0 be as in Lemma 4.4. There exists
a constant C depending only on t0, N and k, such that for any n ≥ 0, t ∈ In and
j ≥ 0,

j∏

l=0

‖(DP )−1(K≤(Rl(t)))‖ ≤ C

(
s+ n+ j

s+ n

)Nα+σ

, (4.21)

‖D[(DP )−1 ◦K≤](t)‖ ≤ C(s+ n)−α(L−2), (4.22)
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|DRj(t)| ≤ C

(
s+ n

s+ n+ j

)Nα

, |D2Rj(t)| ≤ C(s+ n)Nα−1|DRj(t)|. (4.23)

Proof. Let t ∈ In. First we observe that, since Rl(t) ∈ In+l by bound (4.16) we
have that:

‖(DP )−1(K≤(Rl(t)))‖

≤ 1 − aN

(
cn+l

(s+ n+ l)α

)N−1

(N + σα−1) + C

(
cn+l

(s+ n+ l)α

)N

≤ 1 + (Nα+ σ)
1

s+ n+ l
+ C

1

(s+ n+ l)1+γ
,

where γ = min{β, α}. Recall that, if N = 2, α = 1 and β < 1, otherwise we can
take β > α.

Therefore

j∏

l=0

‖(DP )−1(K≤(Rl(t)))‖

≤ exp
( j∑

l=0

log
(
1 + (Nα+ σ)

1

s+ n+ l
+ C

1

(s+ n+ l)1+γ

))

≤ exp
( j∑

l=0

(Nα+ σ)
1

s+ n+ l
+ C

1

(s+ n+ l)1+γ

)

≤ exp
(

log
(s+ n+ j

s+ n− 1

)Nα+σ

+
C

γ

( 1

(s+ n− 1)γ
−

1

(s+ n+ j)γ

))
.

This proves the first bound of Lemma 4.6. The second one follows differentiating
(4.17) and using that t ∈ In.

Now we deal with the bounds involving the derivatives of R. Since R(t) =
t+ aN,0t

N + d2N−1t
2N−1, we have that for t ∈ In,

|DR(t)| ≤ 1 −Nα
1

s+ n+ 1
+ C

1

(s+ n+ 1)1+β
. (4.24)

Using

DRj =

j−1∏

l=0

DR ◦Rl, j ≥ 1 (4.25)

together with (4.24) we have that

|DRj(t)| ≤ exp
( j−1∑

l=0

log
(
1 −

Nα

s+ n+ l + 1
+

C

(s+ n+ l + 1)1+β

))

≤ exp
(
−

j−1∑

l=0

Nα

s+ n+ l + 1
+

C

(s+ n+ l + 1)1+β

)

≤ exp
(

log
(s+ n+ j

s+ n

)−Nα

+
C

β

( 1

(s+ n)β
−

1

(s+ n+ j)β

))
.
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The first bound of (4.23) follows easily from the above inequality. Now we deal with
the bound of D2Rj . Differentiating formula (4.25), we have that

D2Rj(t) =

j−1∑

l=0

D2R◦Rl ·DRl

∏j−1
i=0 DR ◦Ri

DR ◦Rl
= DRj

j−1∑

l=0

D2R◦Rl DRl

DR ◦Rl
. (4.26)

We note that |DR(Rl(t))| ≥ 1/2 and |DR2(Rl(t))| ≤ 2N(N − 1)|aN,0||Rl(t)|N−2 if
t0 is small enough. Hence using the first bound in (4.23), for t ∈ In ⊂ (0, t0), we
have that

j−1∑

l=0

|D2R◦Rl(t)|
|DRl(t)|

|DR ◦Rl(t)|
≤ C

j−1∑

l=0

(s+ n)Nα

(s+ n+ l)α(N−2)+Nα

= C(s+ n)Nα

j−1∑

l=0

1

(s+ n+ l)2
≤ C(s+ n)Nα 1

s+ n− 1
.

Therefore, from (4.26), we obtain the second bound of (4.23) with some constant
C independent of n and j. 2

4.6. The operators Lj. Our goal is to find a solution of equation (4.2) after
scaling, that is a solution of equation (4.11). Assuming that K≤ satisfies equation
(4.1), then K> is a solution of equation (4.2) (we recall that F = P + Qk) if and
only if

(DP ◦K≤)K> −K> ◦R (4.27)

= −Tk −Qk ◦ (K≤ +K>) − P ◦ (K≤ +K>) + P ◦K≤ + (DP ◦K≤)K>.

This motivates the definition of the linear operator

L0(S) = (DP ◦K≤)S − S ◦R. (4.28)

When dealing with the derivatives of K> we will need the operators

Lj(H) = (DP ◦K≤)H −H ◦R (DR)j , j ≥ 1. (4.29)

We note that if S is a Cr solution of L0(S) = T , with T ∈ Cr, then for 0 ≤ j ≤ r,
H = DjS is a solution of equation

Lj(H) = T j, (4.30)

where T j is defined by the recurrence

T 0 = T,

T j+1 = DT j −D(DP ◦K≤)DjS + jDjS ◦R (DR)j−1D2R. (4.31)

We recall that η = 1 +N − L and σ is defined in (4.14).

Lemma 4.7. If k > 2N−1 and σ < α(k−2N+1), the operators Lj : X k−N+1−jη
0 →

C0, j ≥ 0, defined by (4.28) and (4.29) are one to one.

Remark 4.8. The conditions for injectivity become weaker when j grows. For
instance, if j = 1 it is enough k > 2N − L and σ < α(k − 2N + L).

Here we could take k ≥ 2N − 1 and σ < αj(N − η).
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Proof. Let j ≥ 0. We look for the kernel of Lj . Let S ∈ X k−N+1−jη
0 be such that

Lj(S) = 0. This is equivalent to S = [(DP )−1 ◦K≤]S ◦R(DR)j . Using iteratively
this condition and (4.25) we obtain,

S =
[ i∏

m=0

(DP )−1 ◦K≤ ◦Rm
]
S ◦Ri+1(DRi+1)j , i ≥ 0. (4.32)

Let t ∈ In. We can bound the norms of the terms in the right-hand side of (4.32)
by using Lemma 4.6 and the fact that Ri+1(t) ∈ In+i+1. We obtain

|S(t)| ≤ C

(
s+ n+ i

s+ n

)Nα+σ (
s+ n

s+ n+ i+ 1

)Nαj

|S ◦Ri+1(t)|

≤ C‖S‖0,k−N+1−jη
(s+ n)Nαj−Nα−σ

(s+ n+ i)−Nα−σ+Nαj+(k−N+1−jη)α
.

Hence, since α(k − 2N + 1) − σ > 0 and N − η ≥ 1,

|S(t)| ≤ lim
i→∞

C‖S‖0,k−N+1−jη
(s+ n)Nα(j−1)−σ

(s+ n+ i)α(k−2N+1)−σ+αj(N−η)
= 0.

Thus S = 0 and therefore KerLj = 0. 2

4.7. The operators Sj . To obtain a formal solution of Lj(H) = T we rewrite it
as the fixed point equation

H = [(DP )−1 ◦K≤]H ◦R (DR)j + [(DP )−1 ◦K≤]T. (4.33)

Iterating (4.33), assuming that
[∏i

m=0(DP )−1 ◦K≤ ◦Rm
]
H ◦Ri+1 (DRi+1)j goes

to 0 as i tends to ∞, we obtain H = Sj(T ) with

Sj(T ) =
∑

i≥0

[ i∏

m=0

(DP )−1 ◦K≤ ◦Rm
]
T ◦Ri · (DRi)j . (4.34)

The following two sections are devoted to study the operators defined by (4.34)

in different spaces. In particular in Lemma 4.9 we will prove that if T ∈ X k−jη
0

the right-hand side of (4.34) is absolutely convergent. Then if T ∈ X k−jη
0 we can

compute Lj(Sj(T )) rearranging terms and we obtain

Lj(Sj(T )) = lim
i→∞

[T −
i+1∏

m=1

(DP )−1 ◦K≤ ◦Rm T ◦Ri+1(DRi+1)j ] = T. (4.35)

4.8. The operators Sj on spaces of low regularity. In this section, given

j ∈ Z, j ≥ 0, we consider the operator Sj defined by (4.34) on the spaces X k−jη
0

and X k−jη
1 .

Lemma 4.9. If k > 2N − 1 and σ < α(k− 2N + 1) then, (4.34) defines a bounded
linear operator

Sj : X k−jη
0 −→ X k−N+1−jη

0 .

We have

Lj ◦ Sj = Id on X k−jη
0 .

Moreover (4.34) also defines a bounded linear operator

Sj : X k−jη
1 −→ X k−N+1−jη

1
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and if T ∈ X k−jη
1

D[Sj(T )] = Sj+1(T̃ ),

where

T̃ = DT −D(DP ◦K≤)Sj(T ) + jSj(T ) ◦R (DR)j−1D2R. (4.36)

Proof. Let t ∈ In ⊂ (0, t0) and T ∈ X k−jη
0 . We denote S = Sj(T ). Bounding the

right-hand side of (4.34) using Lemma 4.6 we obtain

|S(t)| ≤
∑

i≥0

[ i∏

m=0

‖(DP )−1(K≤(Rm(t)))‖
]
|T (Ri(t))| |DRi(t)|j

≤
∑

i≥0

C

(
s+ n+ i

s+ n

)Nα+σ

‖T ‖0,k−jη|R
i(t)|k−jη |DRi(t)|j

≤
∑

i≥0

C

(
s+ n+ i

s+ n

)Nα+σ

‖T ‖0,k−jη

(
cn+i

(s+ n+ i)α

)k−jη (
s+ n

s+ n+ i

)Nαj

,

if k − jη ≥ 0. In the case that k − jη < 0, we use that Ri(t) > cn+i+1

(s+n+i+1)α and

hence

|S(t)| ≤

∑

i≥0

C

(
s+ n+ i

s+ n

)Nα+σ

‖T ‖0,k−jη

(
cn+i+1

(s+ n+ i+ 1)α

)k−jη (
s+ n

s+ n+ i

)Nαj

.

Hence in both cases we have that

|S(t)| ≤ C‖T ‖0,k−jη(s+ n)Nα(j−1)−σ
∑

i≥0

(s+ n+ i)−α(k−N+j(N−η))+σ. (4.37)

We have N − η ≥ 1 and by hypothesis α(k−N)−σ > α(N −1) = 1, thus the series
in the right-hand side of (4.37) is convergent. Moreover

|S(t)| ≤ C‖T ‖0,k−jη(s+ n)Nα(j−1)−σ

∫ ∞

s+n−1

dx

xα(k−N+j(N−η))−σ

≤ C‖T ‖0,k−jη(s+ n)1−α(k−jη)

and therefore, since t ∈ In, |t−k+N−1+jηS(t)| ≤ C‖T ‖0,k−jη which implies that

Sj(T ) ∈ X k−N+1−jη
0 , ‖Sj(T )‖0,k−N+1−jη ≤ C‖T ‖0,k−jη. (4.38)

This also proves the uniform convergence of the right-hand side of (4.34). Hence
substituting (4.34) into (4.30) we can reorder the terms and check that Sj(T ) indeed
solves (4.30). See formula (4.35). This ends the proof of the first part of the lemma.

We claim that, if T ∈ X k−jη
1 , then T̃ ∈ X

k−(j+1)η
0 . Indeed, it follows from

DT ∈ X
k−(j+1)η
0 , (4.38), the fact that D(DP ◦K≤) ∈ XL−2

0 , D2R ∈ XN−2
0 and the

definition of η.

Next we prove that DSj(T ) = Sj+1(T̃ ). Let T ∈ X k−jη
1 . We observe that, if

Sj(T ) is differentiable, then differentiating equation (4.30), we obtain thatD[Sj(T )]
must be a solution of

Lj+1(H) = DP ◦K≤ ◦H −H ◦R (DR)j+1 = T̃ . (4.39)

Thus, if Sj(T ) is differentiable and its derivative belongs to X
k−N+1−(j+1)η
0 , the

uniqueness result of Lemma 4.7 applied to Lj+1 implies that D[Sj(T )] = Sj+1(T̃ ),
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since both D[Sj(T )] and Sj+1(T̃ ) are solutions of equation (4.39) belonging to

X
k−N+1−(j+1)η
0 .
Therefore it remains to prove that Sj(T ) is differentiable and its derivative be-

longs to X
k−N+1−(j+1)η
0 .

Differentiating formally (4.34) we obtain D[Sj(T )] = ∆S1 + ∆S2 + ∆S3, where

∆S1 =
∑

i≥0

[ i∏

m=0

(DP )−1 ◦K≤ ◦Rm
]
DT ◦Ri (DRi)j+1,

∆S2 =
∑

i≥0

[ i∏

m=0

(DP )−1 ◦K≤ ◦Rm
]
T ◦Ri j(DRi)j−1D2Ri,

∆S3 =
∑

i≥0

i∑

m=0

[m−1∏

ν=0

(DP )−1 ◦K≤ ◦Rν
]
D
(
(DP )−1 ◦K≤ ◦Rm

)
×

×
[ i∏

ν=m+1

(DP )−1 ◦K≤ ◦Rν
]
T ◦Ri (DRi)j .

Next we prove that ∆S1,∆S2 and ∆S3 are absolutely convergent and hence Sj(T )
is differentiable.

First we deal with ∆S1. Since T ∈ X k−jη
1 , DT ∈ X

k−(j+1)η
0 and therefore, by

(4.38) ∆S1 = Sj+1(DT ) ∈ X
k−N+1−(j+1)η
0 and

‖∆S1‖0,k−N+1−(j+1)η ≤ C‖DT ‖0,k−(j+1)η ≤ C‖T ‖1,k−jη. (4.40)

Next we consider ∆S2. Let t ∈ In ⊂ (0, t0). By Lemma 4.6,

∥∥∥
[ i∏

m=0

(DP )−1(K≤ ◦Rm(t))
]
T ◦Ri(t)j(DRi(t))j−1D2Ri(t)

∥∥∥

≤ jC(s+ n)Nα−1
[ i∏

m=0

‖(DP )−1(K≤ ◦Rm(t))‖
]
|T ◦Ri(t)| |DRi(t)|j

≤ jC(s+ n)Nα−1

(
s+ n+ i

s+ n

)Nα+σ
‖T ‖0,k−jη

(s+ n+ i)α(k−jη)

(
s+ n

s+ n+ i

)Nαj

= jC‖T ‖0,k−jη
(s+ n)Nαj−1−σ

(s+ n+ i)α(k−N+j(N−η))−σ
.

Therefore, since α(k −N) − σ > 1 and N − η ≥ 1 we have that

|∆S2(t)| ≤ C‖T ‖0,k−jη(s+ n)Nαj−1−σ

∫ ∞

s+n−1

dx

xα(k−N+j(N−η))−σ

≤ C(s+ n)−α(k−N−jη)‖T ‖0,k−jη (4.41)

which implies that the series defining ∆S2 converges uniformly, ∆S2 ∈ X k−N−jη
0 ⊂

X
k−N+1−(j+1)η
0 and

‖∆S2‖0,k−N+1−(j+1)η ≤ ‖∆S2‖0,k−N+1−jη ≤ C‖T ‖0,k−jη.
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Finally we deal with ∆S3. Let t ∈ In ⊂ (0, t0). Applying Lemma 4.6 and the
chain rule

‖D
(
(DP )−1(K≤ ◦Rm(t))

)
‖ ≤ C(s+ n+m)−α(L−2)|DRm(t)|

≤ C(s+ n+m)−2+α(η−1)(s+ n)Nα.

Since 2−α(η−1) > 1 we also have
∑i

m=0(s+n+m)−2+α(η−1) ≤ C(s+n)−1+α(η−1).
Proceeding as in (4.41), using the fact that ‖(DP )−1(K≤◦Rν(t))‖ ≥ 1 and again

Lemma 4.6, we get

|∆S3(t)| ≤ C
∑

i≥0

i∑

m=0

[ i∏

ν=0

‖(DP )−1(K≤ ◦Rν(t))‖
]
×

×
(s+ n)Nα

(s+ n+m)2−α(η−1)

‖T ‖0,k−jη

(s+ n+ i)α(k−jη)

(
s+ n

s+ n+ i

)Nαj

≤ C‖T ‖0,k−jη(s+ n)Nαj−1+α(η−1)−σ
∑

i≥0

1

(s+ n+ i)α(k−N+j(N−η))−σ

≤ C(s+ n)−α(k−N+1−(j+1)η)‖T ‖0,k−jη.

This implies that the series defining ∆S3 is uniformly convergent, and therefore

∆S3 ∈ X
k−N+1−(j+1)η
0 and

‖∆S3‖0,k−N+1−(j+1)η ≤ C‖T ‖1,k−jη.

Collecting the previous estimates we deduce that D[Sj(T )] ∈ X
k−N+1−(j+1)η
0 ,

Sj(T ) ∈ X k−N+1−jη
1 and Sj : X k−jη

1 → X k−N+1−jη
1 is a bounded operator. 2

4.9. The operators S0 and S1 in spaces of higher regularity. To deal with
the r-derivative of K> we will need to work with the operators S0 and S1 defined
on the space X k−N+1

s with s ≤ r.

Proposition 4.10. Let r > 0, k > 2N − 1 and σ < α(k − 2N + 1). Then, if
0 ≤ s ≤ r

S0 : X k
s → X k−N+1

s and S1 : X k−η
s → X k−N+1−η

s

are bounded linear operators.

Proof. Given T ∈ X k
r ⊂ X k

0 we introduce the sequence (T j)0≤j≤r defined induc-
tively by

T 0 = T,

T j+1 = DT j −D(DP ◦K≤)Sj(T j) + jSj(T j) ◦R (DR)j−1D2R, (4.42)

for 0 ≤ j ≤ r − 1, where the operators Si are defined by (4.34).

By Lemma 4.9, S0(T 0) ∈ X k−N+1
1 and ‖S0(T 0)‖0,k−N+1 ≤ C‖T 0‖0,k.

We claim that for 1 ≤ j ≤ r the following three properties hold

a) T j has the form

T j = DjT +

j−1∑

l=0

(
Aj

lS
l(T l) + pj

lS
l(T l) ◦R

)
, (4.43)

where
i) Aj

l are matrices whose coefficients are polynomials in the variable t and

belong to XL−1+l−j
r .
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ii) pj
l are polynomials in t and belong to XL−1+l−j

r .

Moreover T j ∈ X k−jη
1 if j ≤ r − 1. For j = r we have that T r ∈ X k−rη

0 .

b) Sj(T j) ∈ X k−N+1−jη
1 and ‖Sj(T j)‖0,k−N+1−jη ≤ cj‖T j‖0,k−jη if j ≤ r − 1.

If j = r we have that Sr(T r) ∈ X k−N+1−rη
0 and ‖Sr(T r)‖0,k−N+1−rη ≤

cr‖T r‖0,k−rη.
c)

D[Sj−1(T j−1)] = Sj(T j). (4.44)

To prove the claim we proceed by induction. When j = 1 we have

T 1 = DT +A1
0 S

0(T 0) + p1
0 S

0(T 0) ◦R

with A1
0(t) = −D(DP ◦ K≤)(t) = O(tL−2) and p1

0(t) = 0. Since DT ∈ X k−η
r−1 ,

A1
0 ∈ XL−2

r and S0(T ) ∈ Xk−N+1
1 , using (4.6) we deduce that T 1 ∈ Xk−η

1 .

Then, by Lemma 4.9 we have that S1(T 1) ∈ X k−N+1−η
1 , ‖S1(T 1)‖0,k−N+1−η ≤

c1‖T 1‖0,k−η and D[S0(T 0)] = S1(T 1).
We assume that a), b) and c) hold true for l with 1 ≤ l ≤ j ≤ r − 1. First we

check that T j+1 has the form (4.43).
Differentiating (4.43) with respect to t we have that

DT j =Dj+1T +

j−1∑

l=0

(
DAj

l S
l(T l) +Aj

lS
l+1(T l+1)

)

+

j−1∑

l=0

(
Dpj

l S
l(T l) ◦R+ pj

lS
l+1(T l+1) ◦RDR

)
. (4.45)

Substituting formula (4.45) into (4.42) we get that T j+1 is of the form (4.43)

with Aj+1
l and pj+1

l given by

Aj+1
0 = DAj

0, pj+1
0 = Dpj

0,

Aj+1
l = DAj

l +Aj
l−1, pj+1

l = Dpj
l + pj

l−1DR, 1 ≤ l ≤ j − 1, (4.46)

Aj+1
j = Aj

j−1 −D(DP ◦K≤), pj+1
j = pj

j−1DR+ j(DR)j−1D2R.

One immediately checks that Aj+1
l and pj+1

l satisfy i) and ii) respectively.

From (4.43) we deduce that T j+1 ∈ X
k−(j+1)η
1 if j < r − 1, and T r ∈ X k−rη

0 .
Now by Lemma 4.9, D[Sj(T j)] = Sj+1(T j+1) and there exists cj+1 > 0 such

that ‖Sj+1(T j+1)‖0,k−N+1−(j+1)η ≤ cj+1‖T j+1‖0,k−(j+1)η. This proves a), b) and
c) for j + 1.

Applying iteratively (4.44) we have that

Dj [S0(T )] = Sj(T j) ∈ X k−N+1−jη
0 , j ≤ r,

and hence S0(T ) ∈ X k−N+1
r .

Finally we prove that S0 is a bounded operator from X k
s to X k−N+1

s . First
we notice that there exists a constant b > 0 such that for all 0 ≤ l ≤ j − 1,
j ≤ r, ‖Aj

l ‖r,L−1+l−j, ‖p
j
l ‖r,L−1+l−j ≤ b. Moreover, since L − 1 + l − j ≥ N −

1 − (j − l)η if 0 ≤ l ≤ j − 1, we also have that Aj
l , p

j
l ∈ X

N−1−(j−l)η
r and

‖Aj
l ‖r,N−1−(j−l)η, ‖p

j
l ‖r,N−1−(j−l)η ≤ b. Since, if 0 ≤ j ≤ r we can express T j
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in form (4.43), by Lemma 4.9, Proposition 4.1 and (4.6) we get that

‖T j‖0,k−jη ≤‖DjT ‖0,k−jη +

j−1∑

l=0

‖Aj
l ‖0,N−1−(j−l)η‖S

l(T l)‖0,k−N+1−lη

+

j−1∑

l=0

‖pj
l ‖0,N−1−(j−l)η‖S

l(T l) ◦R‖0,k−N+1−lη

≤‖T ‖j,k + 2b

j−1∑

l=0

cl‖T
l‖0,k−lη, (4.47)

where we have used that

‖Sl(T l) ◦R‖0,m = sup
|Sl(T l)(R(t))|

tm
≤ sup

|Sl(T l)(R(t))|

|R(t)|m
sup

|R(t)|m

tm

≤ ‖Sl(T l)‖0,m.

We claim that (4.47) implies that there exist constants dj > 0 such that

‖T j‖0,k−jη ≤ dj‖T ‖j,k, 0 ≤ j ≤ r. (4.48)

Indeed, we prove inequality (4.48) by induction. If j = 0, (4.48) is satisfied taking
d0 = 1. We assume that (4.48) is true for l ≤ j. Then, from (4.47) we get

‖T j+1‖0,k−(j+1)η ≤ ‖T ‖j+1,k + 2b

j∑

l=0

cldl‖T ‖l,k ≤
(
1 + 2b

j∑

l=0

cldl

)
‖T ‖j,k

which satisfies (4.48) if we take dj+1 = 1 + 2b
∑j

l=0 cldl.

Finally, since S0(T ) ∈ X k−N+1
r ⊂ X k−N+1

s and Dj [S0(T )] = Sj(T j), 0 ≤ j ≤ r,
we have

‖S0(T )‖s,k−N+1 = max
0≤j≤s

‖Sj(T j)‖0,k−N+1−jη ≤ max
0≤j≤s

cj‖T
j‖0,k−jη

≤ max
0≤j≤s

cjdj‖T ‖j,k ≤ ( max
0≤j≤s

cjdj)‖T ‖s,k.

This ends the proof that S0 : X k
s → X k−N+1

s is a bounded operator.
The proof of the statement for S1 is quite similar to the one of S0. Here, given

T ∈ X k−η
r ⊂ X k−η

0 we define (T j)0≤j≤r by

T 0 = T,

T j+1 = DT j −D(DP ◦K≤)Sj+1(T j) + (j + 1)Sj+1(T j) ◦R (DR)jD2R, (4.49)

for 0 ≤ j ≤ r − 1.

By Lemma 4.9, S1(T 0) ∈ X k−N+1−η
1 and ‖S1(T 0)‖0,k−N+1−η ≤ C‖T 0‖0,k−η.

Also we can prove by induction that for 1 ≤ j ≤ r we have

a) T j has the form

T j = DjT +

j−1∑

l=0

(
Bj

l S
l+1(T l) + qj

l S
l+1(T l) ◦R

)
, (4.50)

where
i) Bj

l are matrices whose coefficients are polynomials in the variable t and

belong to XL−1+l−j
r .

ii) qj
l are polynomials in t and belong to XL−1+l−j

r .

Moreover T j ∈ X
k−(j+1)η
1 if j ≤ r − 1, and T r ∈ X

k−(r+1)η
0 .



856 I. BALDOMÁ, E. FONTICH, R. DE LA LLAVE AND P. MARTÍN

b) Sj+1(T j) ∈ X
k−N+1−(j+1)η
1 and

‖Sj+1(T j)‖0,k−N+1−(j+1)η ≤ cj‖T
j‖0,k−(j+1)η

if j ≤ r − 1. For j = r, Sr+1(T r) ∈ X
k−N+1−(r+1)η
0 and

‖Sr+1(T r)‖0,k−N+1−(r+1)η ≤ cr‖T
r‖0,k−(r+1)η.

c)
D[Sj(T j−1)] = Sj+1(T j). (4.51)

Next the proof proceeds in a completely analogous way as for S0. 2

4.10. Fixed point equation. Using the definition of the operator L0, we can
rewrite equation (4.27) as

L0(K>) = F(K>),

where

F(K>) = −Tk−Qk◦(K≤+K>)−P ◦(K≤+K>)+P ◦K≤+(DP ◦K≤)K>. (4.52)

Assuming formally that L0 ◦ S0 = Id (the fact we can use this property in appro-
priate spaces will be justified later on in this section), it is sufficient to solve

K> = S0 ◦ F(K>). (4.53)

Note that, since Tk and Qk ◦ K≤ belong to X k
r , Proposition 4.10 implies that

S0 ◦ F(0) = S0(−Tk − Qk ◦ K≤) belongs to X k−N+1
r . By this reason, we will

look for the solution of equation (4.53) in X k−N+1
r . However, we will first obtain a

solution of class Cr−1.
Since

‖S0 ◦ F(0)‖r,k−N+1 = ‖S0(−Tk −Qk ◦K≤)‖r,k−N+1

≤ ‖S0‖
(
‖Tk‖r,k + ‖Qk ◦K≤‖r,k

)
,

we will find the solution of the fixed point equation (4.53) in the ball Bk−N+1
r−1,ρ ⊂

X k−N+1
r−1 of radius ρ = 2‖S0‖

(
‖Tk‖r,k +‖Qk◦K≤‖r,k

)
with t0 so small that K≤(t)+

K>(t) belongs to the domain of F . In the next section we will prove that the solution
obtained is indeed of class Cr .

Proposition 4.11. Under the hypotheses of Theorem 2.1, if t0 is small enough,
equation (4.53) has a unique fixed point K> : [0, t0) → R1+n in Bk−N+1

r−1,ρ .

We postpone the proof of Proposition 4.11 to the end of this section after we
have developed some preliminary lemmas.

We write
F(K>)(t) = −Tk(t) −H(t,K>(t))

with

H(t, z) = Qk(K≤(t) + z) + P (K≤(t) + z) − P (K≤(t)) −DP (K≤(t))z, (4.54)

t ∈ R, z ∈ R1+n. We observe that H is Cr.
In the following lemma we collect some properties of H that we will use hereafter.

Lemma 4.12. Assume F is Cr and 2N − 1 < k ≤ r. Then, if K> ∈ Bk−N+1
j,ρ ,

0 ≤ j ≤ r − 1, and t0 is small

1) H ◦ (Id ,K>) ∈ X k
j .

2) ∂H
∂t ◦ (Id ,K>) ∈ X k−η

j .

3) ∂H
∂z ◦ (Id ,K>) ∈ X k−η

j .
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Proof. We start the proof of 1). By Taylor’s theorem,

H(t,K>(t)) = Qk(K≤(t)+K>(t))+

∫ 1

0

(1− θ)D2P (K≤(t)+ θK>(t))
(
K>(t)

)2
dθ.

We note that K≤ +K> ∈ X 1
j , 0 ≤ j ≤ r−1, and |DlQk(x, y)| ≤ C|(x, y)|k−l, hence

by a) of Proposition 4.3 we have Qk ◦ (K≤ +K>) ∈ X k
j and using b) of Proposition

4.3 with h1 = h2 = K> we get that, since P is a polynomial, D2P (K≤(t) +

θK>(t))
(
K>(t)

)2
∈ X

L−2+2(k−N+1)
j ⊂ X k

j .

To establish 2), differentiating H with respect to t, applying Taylor’s theorem
and substituting z = K>(t), we can write

∂H

∂t
(t,K>(t)) =DQk(K≤(t) +K>(t))DK≤(t)

+

∫ 1

0

(1 − θ)D3P (K≤(t) + θK>(t))K>(t)DK≤(t) dθ.

Using property b) of Proposition 4.3 with G = Qk, g = K≤ + K> and h1 =

DK≤ ∈ X 0
r we get that DQk(K≤ + K>)DK≤ ∈ X k−1

j ⊂ X k−η
j and using b) of

Proposition 4.3 with G = P , g = K≤ +K> and h1 = K>, h2 = DK≤, we obtain

D3P (K≤ + θK>)K>DK≤ ∈ XL−3+k−N+1
j ⊂ X k−η

j .

Finally, we check 3). Differentiating H with respect to z and substituting z =
K>(t) we can write

∂H

∂z
(t,K≤(t)) = DQk(K≤(t) +K>(t)) +

∫ 1

0

D2P (K≤(t) + θK>(t))K>(t) dθ.

Applying property b) of Proposition 4.3 as before we obtain 3). 2

Lemma 4.13. Assume F is Cr and k−2N +L > 0. Let F be the operator defined
in (4.52). Let ρr = 2‖S0‖(‖Tk‖r,k + ‖Qk ◦K≤‖r,k) and ρ ≥ ρr. Then, there exist
t∗ ∈ (0, 1) such that, for any 0 < t0 < t∗,

1) F is well defined on Bk−N+1
j,ρ and F(Bk−N+1

j,ρ ) ⊂ X k
j for 0 ≤ j ≤ r.

2) F : Bk−N+1
r−1,ρ → X k

r−1 is Lipschitz, with Lipschitz constant bounded by

LipF ≤ Ctk−2N+L
0 . (4.55)

Remark 4.14. Even though in this lemma the condition on k is to be greater than
2N − L, in other previous results, namely Proposition 4.10, we have to require the
stronger condition k > 2N − 1.

Proof. We use the expression F(K>)(t) = −Tk(t)−H(t,K>(t)) with H defined by
(4.54).

Let K> ∈ Bk−N+1
j,ρ . By Lemma 4.12 the fact that F(Bk−N+1

j,ρ ) ⊂ X k
j follows from

‖F(K>)‖j,k ≤ ‖Tk‖j,k + ‖H ◦ (Id ,K>)‖j,k.

To establish the second statement we take K>
1 ,K

>
2 ∈ Bk−N+1

r−1,ρ and 0 ≤ l ≤ r−1.

Then, using 3) of Lemma 4.12,

|Dl(F(K>
1 ) −F(K>

2 ))(t)| = |Dl[H(t,K>
1 (t)) −H(t,K>

2 (t))]|

≤ sup
θ∈(0,1)

|
∂DlH

∂z
(t, θK>

1 (t) + (1 − θ)K>
2 (t))| |K>

1 (t) −K>
2 (t)|

≤ Ctk−(l+1)ηtk−N+1‖K>
1 −K>

2 ‖r−1,k−N+1.
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Hence, since η = 1 +N − L

‖F(K>
1 )−F(K>

2 )‖r−1,k = sup
0≤l≤r−1

‖Dl(F(K>
1 ) −F(K>

2 ))‖0,k−lη

≤ sup
0≤l≤r−1

sup
t∈(0,t0)

Ct−ηtk−N+1‖K>
1 −K>

2 ‖r−1,k−N+1

≤ Ctk−2N+L
0 ‖K>

1 −K>
2 ‖r−1,k−N+1.

2

Proof of Proposition 4.11. Taking ρ as in Lemma 4.13 and using Proposition 4.10
we have

S0 ◦ F : Bk−N+1
r−1,ρ → X k−N+1

r−1 .

Moreover, for any K> ∈ Bk−N+1
r−1,ρ , adding and subtracting F(0) = −Tk −Qk ◦K≤

we can write

‖S0 ◦ F(K>)‖r−1,k−N+1 ≤ ‖S0‖
(
‖F(0)‖r−1,k + ‖F(K>) − F(0)‖r−1,k

)

≤ ‖S0‖
(
‖Tk‖r,k + ‖Qk ◦K≤‖r,k

)
+ Ctk−2N+L

0 ‖S0‖ ‖K>‖r−1,k−N+1.

Then, we can choose t0 such that ‖S0 ◦ F(K>)‖r−1,k−N+1 < ρ, and

Lip (S0 ◦ F)|Bk−N+1

r−1,ρ
≤ Ctk−2N+L

0 ‖S0‖ < 1.

We conclude that equation (4.53) has a unique fixed point in Bk−N+1
r−1,ρ . 2

By Lemma 4.12, if K> ∈ Bk−N+1
r−1,ρ , F(K>) ∈ X k

j ⊂ X k
0 and hence, by (4.35),

L0(S0(F(K>)) = F(K>) and then the solution of the fixed point equation (4.53) is
also a solution of (4.27). At this point we have already proved that K = K≤ +K>

and R are a solution of (2.6) with K ∈ Cr−1.

4.11. The C∞ case. Up to this point, we have established that if F is Cr, with
r > 2N−1, there exists a Cr−1 invariant manifold. More concretely, in the previous
sections we have proved that, once K≤ and R are fixed, there exists ρr such that
for any ρ > ρr there exist tr and a unique K>

r : [0, tr) → R
1+n, K>

r ∈ Bk−N+1
r−1,ρ ⊂

X k−N+1
r−1 , such that K = K≤ +K>

r is a solution of F ◦K = K ◦R.

Now we assume that F is also Cr′

, r′ > r. Taking the same K≤ and R, the
preceding procedure yields the existence of a unique function K>

r′ : [0, tr′) → R1+n,

K>
r′ ∈ Bk−N+1

r′−1,ρ′ ⊂ X k−N+1
r−1 . We claim that both K>

r and K>
r′ coincide in their

common domain [0, t0). Indeed, it is enough to take ρ∗ = max{ρ, ρ′}, then both

Bk−N+1
r−1,ρ and Bk−N+1

r′−1,ρ′ are contained in Bk−N+1
r−1,ρ∗ , and, since the solution is unique in

Bk−N+1
r−1,ρ∗ , the claim follows.
We finally prove that if F is C∞ — and it is a diffeomorphism —, the K thus

obtained actually is C∞. Indeed, since F is C∞, it is Cr, for any r > 0. We fix
some r0 > 2N − 1, and we obtain K = K≤ + K>

r0
as a Cr0−1 parameterization

of the invariant manifold, defined in some interval [0, t0). Let r > r0. By the
previous comments, there exists K>

r defined in [0, tr), which coincides with K>
r0

.

This establishes that K>
r0

is Cr−1 in [0, tr). Now we use the invariance equation
F ◦K = K ◦ R to extend the differentiability to [0, tr). Indeed, there exists k ≥ 0
such that Rk([tr, t0)) ⊂ (0, tr). Now, the relation K = F−k ◦K ◦Rk proves that K
is Cr−1 in [0, t0).
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4.12. Sharp regularity. In Section 4.10 we have proved the existence of a solution
K> ∈ X k−N+1

r−1 of the equation

L0(K>) = F(K>).

Since K> is (r − 1)-times differentiable and r ≥ 2, we can differentiate both sides
of this last equality to obtain

D[L0(K>)] = D[F(K>)].

From the definitions of L0 and L1 we can write

D[L0(K>)] = L1(DK>) +D(DP ◦K≤)K>,

where L1 is defined in (4.29).
On the other hand,

DF(K>)(t) = −DTk(t) −
∂H

∂t
(t,K>(t)) −

∂H

∂z
(t,K>(t))DK>(t).

It is clear that DK> is a solution of

L1(DK>) = A(DK>) +B, (4.56)

where

A(DK>)(t) = −
∂H

∂z
(t,K>(t))DK>(t) (4.57)

and

B(t) = −D(DP ◦K≤)(t)K>(t) −DTk(t) −
∂H

∂t
(t,K>(t)). (4.58)

Lemma 4.15. The operator A, defined by (4.57), is a bounded linear operator from
X k−N+1−η

s to X k−η
s for 0 ≤ s ≤ r − 1. In every case

‖A‖ ≤ Ctk−2N+L
0 . (4.59)

Moreover, B ∈ X k−η
r−1 .

Before addressing the proof of Lemma 4.15, we finish the proof of Theorem 2.1.

End of the proof of Theorem 2.1. We have already checked thatDK> ∈ X k−N+1−η
r−2

is a solution of equation (4.56). Then, by Lemma 4.15 the right-hand side of (4.56)

belongs to X k−η
r−2 . We would like to apply S1 to both sides of (4.56). We note that

S1(L1(DK>)) = lim
i→∞

[DK>−
i∏

m=0

DP−1 ◦K≤◦Rm DK> ◦Ri+1(DRi+1)j ] = DK>

because DK> ∈ X k−N+1−η
0 . Then we can write

DK> = S1 ◦ A(DK>) + S1 ◦B.

By Proposition 4.10, S1 : X k−η
s → X k−N+1−η

s , s ≤ r − 1, is a bounded linear
operator and by Lemma 4.15 the norm of A can be made small by taking t0 small
and hence we can have ‖S1◦A‖L(Xk−N+1−η

s ,Xk−N+1−η
s ) less than one for s = r−2, r−1.

Therefore

DK> = (Id − S1 ◦ A)−1S1B.

Moreover, since B ∈ X k−η
r−1 , DK> ∈ X k−N+1−η

r−1 and therefore K> ∈ X k−N+1
r . 2
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Proof of Lemma 4.15. To prove the statement for A, let ψ ∈ X k−N+1−η
s , with

0 ≤ s ≤ r − 1. Using Lemma 4.12 we calculate

|Dm[Aψ](t)| ≤ C

m∑

j=0

∣∣∣Dj ∂H

∂z
(t,K>(t))

∣∣∣|Dm−jψ(t)|

≤ C

m∑

j=0

tk−η−jηtk−N+1−η−(m−j)η‖ψ‖s,k−N+1−η

≤ Ctk−(m+1)η+k−2N+L‖ψ‖s,k−N+1−η, (4.60)

where 0 ≤ m ≤ s. Finally, from (4.60) we obtain

‖Aψ‖s,k−η = sup
0≤m≤s

sup
0<t<t0

|t−k+(m+1)ηDm[Aψ](t)|

≤ sup
0≤m≤s

sup
0<t<t0

C(1 + ρ)tk−2N+L‖ψ‖s,k−N+1−η

≤ Ctk−2N+L
0 ‖ψ‖s,k−N+1−η.

Now we check that B ∈ X k−η
r−1 . We claim that the three terms in the right-hand

side of (4.58) belong to X k−η
r−1 . Indeed, since D(DP ◦K≤) is a polynomial matrix

such that |D(DP ◦K≤)(t)| ≤ CtL−2, then D(DP ◦K≤) ∈ XL−2
r−1 . Therefore, since

K> ∈ X k−N+1
r−1 we have that D(DP ◦K≤)K> ∈ XL−2+k−N+1

r−1 = X k−η
r−1 . Since Tk ∈

X k
r we have DTk ∈ X k−η

r−1 . Finally, Lemma 4.12 asserts that ∂H
∂t ◦ (Id ,K>) ∈ X k−η

r−1 .
This finishes the proof. 2

5. Numerical implementation and examples. In this section we implement
the algorithm given in Section 3 to compute a stable invariant manifold tangent to
the x axis at the origin and we describe some features of it on two examples.

Let F be a map satisfying the hypotheses of Theorem 2.1. The parameterization
method gives polynomials

K≤(t) =

(
t+

k∑

i=2

c1i t
i,

k∑

i=2

c2i t
i

)
and R(t) = t+ dN t

N + d2N−1t
2N−1

satisfying F ◦ K≤ − K≤ ◦ R = o(tk+L−1) if r, the differentiability of F , is bigger
than k + L− 1.

We want to stress that, as we pointed out in Section 3, the parameterization
method leaves free the coefficients c1i , c

2
i for i = 2, N − 1 and c1N . We will discuss

how the choice of these free coefficients may be used to increase the domain where
K≤ gives a good approximation of the invariant manifold. We also emphasize that
a suitable choice of these free coefficients can stabilize numerically the method.

In the examples we admit that K≤ and R are accurate approximations of the
invariant manifold and the dynamics on it respectively in [0, t0] if they satisfy

max
i=0,··· ,I

|F ◦K≤(ti) −K≤ ◦R(ti)| ≤ 10−17, I = 1000, ti = t0
i

I
. (5.1)

We have performed the numerical computations with long double precision.
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5.1. Example 1. The first example is given by:

F (x, y) =

(
x− a2x2 + ay2 + a2x3

y + xy − ax3 + ax4

)
(5.2)

with a = 0.1. This map satisfies the hypotheses of Theorem 2.1, hence it has a stable
manifold which is tangent to the x axis at the origin. In this example N = M = 2
and the coefficient c12 is free.

We have computed a polynomial approximationK≤ of degree 200 of the invariant
manifold and also the polynomial R, the dynamics on the invariant manifold. The
computations took a few seconds. As we pointed out before, the fact that K≤ is an
accurate approximation of an invariant manifold on the domain [0, t0], in the sense
of condition (5.1), may depend on the choice of c12. The following table illustrates
this phenomenon. It shows the maximum value of t0 for which (5.1) holds for
different values of c12.

c12 t0 π1K≤(t0)
−0.5000 0.6975 0.6148036
−0.4375 0.7605 0.6876998
−0.3750 0.8340 0.7773399
−0.3125 0.9255 0.8960931
−0.2500 1.0110 1.0157500
−0.1875 1.0605 1.0848160
−0.1250 1.0620 1.0808590
−0.0625 1.0650 1.0789480

c12 t0 π1K≤(t0)
0.0000 1.0635 1.0716890
0.0625 1.0050 1.0051940
0.1250 0.9360 0.9377373
1.8750 0.8775 0.8865733
0.2500 0.8265 0.8454586
0.3125 0.7725 0.8030672
0.3750 0.7320 0.7736656
0.4375 0.6945 0.7470789

The biggest value of t0 as a function of c12 is t0 = 1.0695 and is obtained for
c12 = −0.12249. The computations give R(t) = t− a2t2 + a2t3. The image of K≤ is
predicted in Figure 1:

0 0.2 0.4 0.6 0.8 1 1.2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

parabolic point
repelling node

Figure 1

It is worth to note that (1, 0) = K≤(1) and that it is a repelling node of F
(in fact F only has two fixed points). Hence there is numerical evidence that K≤

parameterizes a connection between both fixed points.
We note that since, R(t) = t − a2t2 + a2t3, t = 1 is a fixed point of R and the

stable manifold is given by K≤ restricted to [0, 1).
An important feature of this method is that K≤ parameterizes a curve which

contains, and goes beyond, the fixed point (1, 0). Moreover the dynamics on the
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manifold given by R catches this fixed point and the dynamics around it (restricted
to the invariant manifold). In the neighborhood of (1, 0), the image ofK≤ is the slow
manifold of (1, 0), that is, the invariant manifold tangent to the spectral subspace
associated to the smallest eigenvalue (for slow manifolds see [2]).

Note that this piece of the curve can not be obtained by globalizing the local
stable manifold of (0, 0).

We have performed another experiment: we have plotted in clear grey the points
of the rectangle D = [0, 1.1] × [−0.02, 0.02] (where the invariant manifold is con-
tained) such that its iterate by F which is not in D has the y component less than
−0.02. Analogously we have plotted in dark grey the points of D escaping from
above from D. We have also plotted in black the invariant manifold computed
before. The results are showed in Figure 2 where we clearly see that the invariant
manifold separates different dynamical behaviors.

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  0.2  0.4  0.6  0.8  1

Figure 2

This is consequence of the fact that ∂M F2

∂xM−1∂y
= 1 > 0 which provides a weak

expansion in the y direction and is the reason of the uniqueness of the manifold.
From now on we restrict ourselves to the interval (0, 1), since the stable manifold

is the given by K((0, 1)).
In order to check that K≤ is a good approximation of an invariant manifold of

F in [0, t0], we have computed the distance between the curves Fm(K≤) and K≤

for m = 1, 5, 10, 15, 20 by the formula

max
i=0,··· ,I

dist(Fm(K≤(ti)),K
≤) with I = 1000, and ti = t0

i

I
. (5.3)

The results are displayed in the next table.
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m dist(Fm(K≤),K≤)
20 5.801640 · 10−12

15 1.389271 · 10−13

10 3.369653 · 10−15

5 7.892456 · 10−17

1 1.944933 · 10−18

Finally we have compared the parameterization method with the graph transform
method. To compare both methods, we have also computed an approximation of
the stable manifold of F as the graph of a polynomial of degree 200 following
the graph transform method, that is we have looked for ϕ of the form ϕ(x) =
ϕ2x

2 + · · · + ϕ200x
200 such that F 2(x, ϕ(x)) − ϕ(F 1(x, ϕ(x))) = O(x202). We have

obtained that the curve y = ϕ(x) approximates the stable manifold of F for values
of x in [0, 0.015] with an error of order 10−10, that is:

max
i=0,··· ,I

|π2F (xi, ϕ(xi)) − ϕ(π1F (xi, ϕ(xi)))| ≤ 10−10, I = 1000, xi = 0.015
i

I
.

It is clear that the parameterization method is, at least in this example, much better
than the graph transform method.

5.2. Example 2. The second example we consider is given by:

Fα(x, y) =

(
x− 10x2 + (x− y)4 − 0.01y2

y + 20xy + 400(x− y)3 − 2000(x− y)4 + αx10(1 + 2y)10 sin(1/x)

)
.

Note that Fα ∈ C4 but Fα /∈ C5. The map F satisfies the hypotheses of Theorem
2.1 for any α ∈ R with N = M = 2 and r = 4.

Let us consider first the case α = 0. In this case F0 ∈ C∞ and the polynomials
K≤(t) = (t − 10t2,−10t2) and R(t) = t − 10t2 satisfy the invariance condition
F0 ◦K≤ −K≤ ◦ R = 0. To check the parameterization method we have computed
numerically the coefficients of R and K≤ up to order 50 with c12 = −10 using the
algorithm and we have obtained the expressions for K≤ and R given above, that is,
the coefficients of the terms of order bigger or equal than 3 are zero.

Next we consider α = 0.2. We have computed numerically the coefficients of R
and K≤ up to order 9 for different choices of c12 (which is free) and we have obtained
that K≤ is an accurate approximation of the invariant manifold at [0, t0] with:

c12 t0 π2K≤(t0)
−18 0.003600 −1.221890 · 10−4

−17 0.003600 −1.230796 · 10−4

−16 0.003400 −1.108668 · 10−4

−15 0.003400 −1.116350 · 10−4

−14 0.004000 −1.547944 · 10−4

−13 0.003400 −1.131959 · 10−4

−12 0.003200 −1.010587 · 10−4

−11 0.003000 −8.944563 · 10−5

c12 t0 π2K≤(t0)
−9 0.002800 −7.885386 · 10−5

−8 0.002400 −5.817098 · 10−5

−7 0.002200 −4.906015 · 10−5

−6 0.002000 −4.066134 · 10−5

−5 0.002000 −4.082926 · 10−5

−4 0.001800 −3.312480 · 10−5

−3 0.001800 −3.324798 · 10−5

−2 0.001800 −3.337185 · 10−5

0 0.001600 −2.645351 · 10−5

Again for α = 0 we take the value c12 = −10 and obtain the functions K≤(t) =
(t− 10t2,−10t2) and R(t) = t− 10t2. The plot of the image of K≤ is displayed in
Fig. 3. We restrict the manifold to values of the parameter t in [0, 0.1] because we
are looking for invariant manifolds in the right-hand side plane. We remark that
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the image of K≤ provides a global invariant manifold where the global dynamics of
the restriction of F is not invertible.
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 0

 0  0.005  0.01  0.015  0.02  0.025

Figure 3

In the same way as in (5.3) we have computed the distance between the curves
Fm(K≤) and K≤ for some values of m. The results are shown in the following
table

m dist(Fm(K≤),K≤)
1 4.235369 · 10−15

50 3.114468 · 10−15

100 8.152378 · 10−15

500 7.720018 · 10−15

1000 1.962527 · 10−14

5000 4.593030 · 10−13

10000 1.829293 · 10−12

We see that in this example the parameterization is extremely accurate.
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