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ON THE MEROMORPHIC NON-INTEGRABILITY OF SOME

N-BODY PROBLEMS

Abstract. We present a proof of the meromorphic non�integrability of the
planar N -Body Problem for some special cases. A simpler proof is added to
those already existing for the Three-Body Problem with arbitrary masses. The
N -Body Problem with equal masses is also proven non-integrable. Further-
more, a new general result on additional integrals is obtained which, applied to
these speci�c cases, proves the non-existence of an additional integral for the
general Three-Body Problem, and provides for an upper bound on the amount
of additional integrals for the equal-mass Problem for N = 4, 5, 6. These results
appear to qualify di�erential Galois theory, and especially a new incipient the-
ory stemming from it, as an amenable setting for the detection of obstructions
to Hamiltonian integrability.
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1. Introduction. Arguably the cornerstone of Celestial Mechanics, the N -Body
Problem has long been seen in Astrophysics and Applied Mathematics as an epitome
of chaotic behavior. The search for a global solution to the problem was �rst glanced
upon in the 1880s by K. T. W. Weierstrass who, with the aid of G. Mittag-Le�er and
under the auspices of King Oscar of Sweden, favoured the announcement of a prize
in Acta Mathematica (volume 7, 1885/86) for �nding the solution as a uniformly
convergent series. The di�culty of �nding such a series, let alone a convergent one, is
inferred from the revised draft of H. Poincaré's attempt which, although thwarted,
won the prize and is nowadays considered landmark in the theory of Dynamical
Systems; that alone attests the complexity of it all. The problem as stated in the
terms of the prize was �nally solved (except for the case of zero angular momentum)
by K. Sundman in [84] though, unfortunately, the series he found was far too slowly
convergent and thus of no practical use � not even for numerical computations.
Q. D. Wang obtained a similar general solution for the N -body problem, but the
problems arising from slow convergence were present in his in�nite sum, too, and
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the question of singularities was completely left o�: [93], [94]. See [24] for details on
the subject's evolution from Weierstrass and Poincaré's �brilliant failure� onward.

It may still be argued that there is no debate on the Problem's �solvability�, in
view of those results by Sundman and Wang. But a solution in the form of a slowly-
converging series not only has virtually no numerical utility: it does not predict the
existence of periodic orbits, unbounded motion, or collision of two or more bodies
either, in turn yielding further open problems which could only be settled with
more information than is provided by an in�nite series, such as stability, central
con�gurations, variational problems, properties of the eight solution, existence of
choreographies, Levi's problem, constancy of moment of inertia, Saari's conjecture,
etc. And, although an adequate set of conserved quantities could help solving these
problems, �nding it stands as an obstacle on its own since only a comparatively small
set of such (so-called classical) �rst integrals is known, and any other algebraic �rst
integral, in the case of N = 3 bodies, would necessarily be algebraically dependent
with the classical ones in virtue of Bruns' theorem (Theorem 2.5) � a result which
has recently been generalized by E. Julliard (Theorem 2.6) to arbitrary N .

Hence, the Problem's history of parallel attempts both at looking for new �rst
integrals and proving it analytically or meromorphically non-integrable should not
come up as a surprise. Even less surprising is the partial success of the latter,
especially in recent times thanks to two parallel lines of study with more than a trait
in common: the line of study initiated by S. L. Ziglin ([103]) and the one begotten
by the present paper's �rst author and J.-P. Ramis: see [60] and [58]. Ziglin's
theory relied strictly on the monodromy generators of the variational equations
around a given particular solution, whereas the latter theory, used in the present
work, uses linear algebraic groups containing the aforementioned monodromies and
is naturally immersed in the Galois theory of linear di�erential equations, which we
assume the reader is already familiar with � otherwise, see [91] or [58, Chapter 2]
for the minimum necessary concepts.

Using a consequence of this new theory as applied to the factorization of linear
operators, D. Boucher and J.-A. Weil ([16], [15]) proved the meromorphic non-
integrability of the Three-Body Problem. On the other hand, using the Ziglin
approach, A. V. Tsygvintsev ([86], [87], [88], [89], [90]) proved the meromorphic non-
integrability of the Three-Body Problem and ultimately settled the non-existence
of a single meromorphic �rst integral; he established both things for all except three
special cases (see Remark 4.1). It is �nally worth noting that Ziglin ([105, Sections
3.1 and 3.2]) managed to settle strong conditions on the integrability of the Three-
Body Problem and the equal-mass N -Body Problem.

Our work is aimed at reobtaining in simpler ways, strengthening and generalizing
the results mentioned in the previous paragraph using the aforementioned theory
started in [60] as applied to Hamiltonians of a speci�c kind: to wit, those which are
classical with an integer degree homogeneous potential. Although conjectures and
open problems will still prevail (see Section 5), the proofs given here are signi�cantly
shorter thanks to a signi�cant step forward made in [61]. Furthermore, using this
same Theorem a new necessary condition is established in Section 2.3 of this paper
on the existence of a single additional integral for any classical conservative system
� a condition in turn allowing us to discard the existence of an additional integral for
the Three-Body Problem with arbitrary positive masses, and of a certain amount of
additional �rst integrals for the N -Body Problem with equal masses if N = 4, 5, 6.
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Regarding notation and basic conventions, all vectors will be denoted in boldface
and their norms will be written in ordinary face. All norms will be assumed Eu-
clidean by default, for it is through these that the N -Body Problem �nds its simplest
known formulation. For every vector whose entries are likely to be broken down
in separate vectors of lesser size, at most two di�erent boldface types will be used,
albeit with the same letter: for any n, m ∈ N, a vector in Cnm will be written with
italic boldface, q (its norm being q) if the n consecutive m-vectors making up for its
entries are also being considered; in such case, these latter will be written in regular
boldface, q1, . . . ,qn ∈ Cm, their norms written as q1, . . . , qn, respectively. If further
hierarchy is needed, we will maintain either italic or regular boldface. Vectors will be
freely written in concatenation, e.g. zT =

(
qT ,pT

)
=
(
qT

1 , . . . ,qT
n ,pT

1 , . . . ,pT
n

)T
,

but we will avoid the T superindex unless we have to make speci�c reference to scalar
products, e.g. in Rayleigh quotients. Boldface as described in all of the above con-
siderations will be applied exclusively to constant vectors and vector functions of
one variable, e.g. q = q (t), whereas vector functions with more than one argu-
ment, e.g. f = f (t, q), will be written in regular face. Since there will only be
one independent variable t properly regarded as time, an overdot will stand for d

dt

all through the text and (k) will stand for dk

dtk , k ≥ 4, whereas ′ will usually imply
derivation with respect to phase variables of Hamiltonian systems. It is worth not-
ing this time variable t will be complex by default all through the text. Γ will often
stand for Riemann surfaces, and P1 will always stand for the (complex) projective

line. De�ning the Kronecker delta δi,j as usual,
{
en,k = (δi,k)T

i=1,...,n

}
will be the

canonical basis for Rn. Zero vectors and zero and identity matrices will be writ-
ten with their dimension as a subindex whenever deemed necessary, e.g. 0n ∈ Cn

or 0n×n, Idn ∈ Mn (C). |·| will denote absolute value or modulus indistinctively.√
−1 = will always be denoted in Roman, non-italic font. The consideration of

points in the plane as either complex numbers or real 2-vectors will also be tacit
depending on the context. The determination for complex square roots will be that
given by the analytic continuation of the positive real square root, i.e.

√
z :=

√
re

θ
2

whenever z = reθ and θ ∈ [0, 2π].

2. Linear and Hamiltonian integrability.

2.1. Di�erential Galois Theory. See [58] or [91] for more information. Given a
linear di�erential system (whether or not autonomous), with coe�cients in a di�er-
ential �eld (K, ∂) whose �eld of constants C is algebraically closed (e.g.

(
C(t) , d

dt

)
),

∂y = A (t)y, (1)

di�erential Galois theory assures the existence of

• a di�erential �eld L ⊃ K, unique up to K-isomorphism, containing all entries
of a fundamental matrix Ψ = [ψ1, . . . ,ψn] of (1);

• an algebraic group (see Appendix A) G linked to K ⊂ L (the di�erential
Galois group of (1)), such that G acts over the C-vector space 〈ψ1, . . . ,ψn〉
of solutions of (1) as a linear transformation group over C, and the mon-
odromy group of (1) is contained in G.

(1) is called integrable if its general solution can be written as a �nite sequence
of quadratures, exponentials, and algebraic functions (and any of their inverses). In
the Galoisian setting, assertion �(1) is integrable� is equivalent to the following: the
identity component G0 of the di�erential Galois group G of (1) is solvable.
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2.2. A general non-integrability theorem. Heuristics of all non-integrability
results considered here are �rmly rooted in the following general principle: if we
assume any system

ẏ = X (y) (2)

�integrable" in some reasonable sense, then the corresponding variational equations
along any integral curve Γ of (2) must be also integrable (in the sense of linear
Galois di�erential theory). Any attempt at ad-hoc formulations of this heuristic
principle for a speci�c system (2) has an asset and a drawback. As seen above,
there is a de�nition of integrability for linear systems (and thus, for the variational
system): that the identity component of its Galois group be solvable. But still, in
order to transform this principle into a true conjecture it is necessary to clarify a
notion of �integrability " for (2). Everything is considered in the complex analytical
setting from now on.

There is a speci�c notion of integrability for Hamiltonian systems, namely in the
sense of Liouville-Arnold, for which the aforementioned general principle does have
an implementation:

Theorem 2.1. (J. Morales-Ruiz & J.-P. Ramis, 2001) Let H be an n-degree-
of-freedom Hamiltonian having n independent �rst integrals in pairwise involution,
de�ned on a neighborhood of an integral curve Γ. Then, the identity component
of the Galois group of the variational equations of H along Γ is a commutative
group.

See [60, Corollary 8] or [58, Theorem 4.1] for a precise statement and a proof.

Remark 1. An essential tool in the proof, which does not require the dynamical
system to be Hamiltonian, is the following ([60, Lemma 9], see also [58, Lemma
4.6]). Let f be a meromorphic �rst integral of any autonomous dynamical system
(2). Then, the Galois group of the variational system has a non-trivial rational
invariant .

2.3. A special case: homogeneous potentials.

2.3.1. Prior results. This Subsection is nothing but a reenaction of [58, �5.1.2],
Section 7 in the second issue of [60] (pp. 97�111 of the same volume) and [61, �1�3].
Assume XH is given by a classical n-degree-of-freedom Hamiltonian,

H (q,p) = T + V =
1
2
pTp+ V (q) , (3)

V (q) being homogeneous of degree k ∈ Z. Hamiltonians such as these are
by no means generical. The fact V is homogeneous implies the observance of the
principle of mechanical similarity ([45]): the orbits on any integral manifold can be
rescaled to one of a �nite set of such manifolds (typically corresponding to energy
values −1, 0, 1), i.e. freedom of choice of the energy constant is only countered by
discrete gaps in the dynamics generated by V ; indeed, transformation q 7→ α2q,
p 7→ αkp, with possible change in time t 7→ it, yields the new energy H̃ = (±) α2kH
for any given α. In order to see further uses of this fact, as well as generalizations
to not necessarily �nite values of the energy, see [37], [75] and [102].

XH de�ned as above, every vector function ẑ (t) =
(
φ (t) c, φ̇ (t) c

)
, such that

φ̈ + φk−1 = 0 and c ∈ Cn satis�es c = V ′ (c), is a solution of Hamilton's equations
for H, as may be easily proven using the fact that the n entries in vector V ′ (q)
are homogeneous polynomials of degree k − 1. Such a vector c is usually called
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a homothetic point of potential V . Other references call this vector a Darboux
point as well.

Writing in�nitesimal variations on the canonical variables as δq = ξ̃ and δp = η̃,
the equations satis�ed by these are

d

dt
ξ̃ = η̃,

d

dt
η̃ = −φ (t)k−2

V ′′ (c) ξ̃,

or equivalently d2

dt2 ξ̃ = −φ (t)k−2
V ′′ (c) ξ̃. Assume V ′′ (c) is diagonalizable; this is

the case, for instance, if c ∈ Rn. Then, any transformation ξ̃ = Uξ, η̃ = Uη with
an adequate U ∈ GLn (C) transforms the system, written as

d

dt
ξ = η,

d

dt
η = −φ (t)k−2 [

U−1V ′′ (c)U
]
ξ,

into

d2

dt2
ξ = −φ (t)k−2


λ1

λ2

. . .
λn

 ξ,
where {λ1, . . . , λn} = Spec V ′′ (c).

In other words, along ẑ, variational equations may be split into a direct sum⊕n
i=1 VEi of n uncoupled equations, each of the form

d2ξi

dt2
+ λi [φ (t)]k−2

ξi = 0, i = 1, . . . , n, (4)

Furthermore,
V ′′ (c) c = (k − 1) c, (5)

is easily established as a special case of Euler's Theorem; thus, we may set λ1 = k−1;
the corresponding variational equation, VE1, is trivially integrable. The remaining
n−1 eigenvalues λ2, . . . , λn may be enough to determine the non-integrability de XH

in this special case of [60, Corollary 8]; indeed, (4) following [101], the �nite branched
covering map Γ → P1 is considered, given by t 7→ x := φ (t)k, where Γ is the compact
hyperelliptic Riemann surface of the hyperelliptic curve w2 = 2

k

(
1− φk

)
(see [58,

�4.1.1)], [60, �4.1]). With this covering in consideration, (4) are �nally written as a
system of hypergeometric di�erential equations ([38], [97]) in the new independent
variable x, each of them of the form:

x (1− x)
d2ξi

dx2
+
(

k − 1
k

− 3k − 2
2k

x

)
dξi

dx
+

λi

2k
ξi = 0. (6)

These equations are usually called the algebraic variational equations (AVE =⊕n
i=1 AVEi). Kimura's table ([41]), in turn owing to Schwarz's ([69]), provides

a concise list of those cases in which hypergeometric equations are integrable by
quadratures, i.e. in which the Galois group of (6) has a solvable identity com-
ponent. Both tables were based on properties of the monodromy group ([38]).
Adapting both tables to the new hypothesis, namely that the Galois group of each
of the variational equations must have a commutative identity component, yields
the following fundamental result:

Theorem 2.2. ([60, Theorem 3] (see also [58, Theorem 5.1])) Assume XH , given
by (3), is completely integrable with meromorphic �rst integrals; let c ∈ Cn a so-
lution to V ′ (c) = c and assume V ′′ (c) is diagonalizable; then, if λ1, . . . , λn are
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the eigenvalues of V ′′ (c) and we de�ne λ1 = k − 1, each pair (k, λi) , i = 2, . . . , n
matches one of the following items (p being an arbitrary integer):

Table 1
k λ k λ

1 k p + p (p− 1) k
2 10 −3 25

24 −
1
24

(
12
5 + 6p

)2
2 2 arbitrary z ∈ C 11 3 − 1

24 + 1
24 (2 + 6p)2

3 −2 arbitrary z ∈ C 12 3 − 1
24 + 1

24

(
3
2 + 6p

)2
4 −5 49

40 −
1
40

(
10
3 + 10p

)2
13 3 − 1

24 + 1
24

(
6
5 + 6p

)2
5 −5 49

40 −
1
40 (4 + 10p)2 14 3 − 1

24 + 1
24

(
12
5 + 6p

)2
6 −4 9

8 −
1
8

(
4
3 + 4p

)2
15 4 − 1

8 + 1
8

(
4
3 + 4p

)2
7 −3 25

24 −
1
24 (2 + 6p)2 16 5 − 9

40 + 1
40

(
10
3 + 10p

)2
8 −3 25

24 −
1
24

(
3
2 + 6p

)2
17 5 − 9

40 + 1
40 (4 + 10p)2

9 −3 25
24 −

1
24

(
6
5 + 6p

)2
18 k 1

2

(
k−1

k + p (p + 1) k
)

(7)

Remarks 2.1.
1. Theorem 2.2 strengthens what was done by H. Yoshida for n = 2 from refer-

ence [101] onward; indeed, his result, which is not generalizable to n > 2 in
a simple, straightforward manner, pivoted on the use of Ziglin's Theorem in
which, as said in [76, Remark 2.3.2(2)], complete integrability may only be
assumed if n = 2. Hence, Yoshida's line of study only allowed one non-trivial
integer λ2; besides, it ended up in a wider set of non-integrability regions for
λ2, each with a non-zero Lebesgue measure. Since Yoshida's result is a corol-
lary to Theorem 2.2 for n = 2 ([61, p. 6], see also [58, p. 105]), and since
the latter works for arbitrary n ≥ 2 and restricts the non-integrability regions
much further (namely, to discrete sets rather than in�nite unions of intervals),
Table 1 appears, in expectation for advances concerning the higher variational
equations (see [76, Subsection 5.3.1]), as the strongest current tool for test-
ing the non-integrability of Hamiltonians of the form (3) from the Galoisian
viewpoint.

2. It is not di�cult to see that, for any given i = 2, . . . , n, if λi does not appear in
Table (7), then the Galois group Gi of equation (4) is precisely SL2 (C); indeed,
the fact λi falls out of the Table guarantees the non-solvability of the identity
component Ĝ0

i of the Galois group Ĝi of the hypergeometric equation (6). It
now only takes recalling the result [60, Theorem 5] (see also [58, Theorem
2.5]), according to which the identity component of the Galois group remains
invariant under �nite branched coverings. Since t 7→ φ (t)k is precisely one
such covering, G0

i is non-commutative. The fact Gi ⊂ SL2 (C) (due to the
absence of dξi

dt in (4), see e.g. [58, �2.2]) obviously implies G0
i ⊂ SL2 (C)

and the fact G0
i is not solvable renders G0

i = Gi = SL2 (C) in virtue of the
classi�cation of subgroups of SL2 (C) given in [58, Proposition 2.2] and the
analysis done thereof in the last paragraph of [58, �2.1].
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2.3.2. Existence of an additional integral. If XH has p �rst integrals f1 = H, . . . , fp

in pairwise involution and independent over a neighborhood of the integral curve Γ
de�ned by φ (t) c, the normal variational equations ([60, �4.3], see also [58, �4.1.3])
are equal to n− p of the initial variational equations; reordering indexes if needed,
let us write them as VEp+1, . . . ,VEn with corresponding di�erential Galois groups
Gp+1, . . . , Gn and let us write the eigenvalues corresponding to VEp+1, . . . ,VEn

(each of them of the form (4)) as λn−p+1 = k − 1, . . . , λn and assume they are all
in Table (7). In virtue of what was stated in [76, Remark 2.2.12], the di�erential

Galois group GNVE = Gal
(⊕n−p

i=1 VEi

)
of the normal variational equations satis�es

GNVE ⊂ G1 × · · · × Gn−p and, de�ning π1, . . . , πn−p as the usual projections of
G1×· · ·×Gn−p, πi (GNVE) ' Gi for i = 1, . . . , n−p. In an similar manner, applying
the covering t 7→ φk to each one of the normal variational equations VE1, . . . ,VEn−p

we obtain the algebraic normal variational equations, ANVE =
⊕n−p

i=1 AVEi.
Recently A. J. Maciejewski, M. Przybylska and H. Yoshida proved the following:

Theorem 2.3. ([49, Theorem 1.2]) Let XH be a Hamiltonian �eld given by (3). If
there is at least an additional single �rst integral f independent with {f1, . . . , fp} on
a neighborhood of Γ (but may be dependent on Γ), then we have one of the following
two situations:

1. At least one of the eigenvalues λ1, . . . , λn−p belongs to Table 1.
2. There are 1 ≤ i < j ≤ n− p such that√

(k − 2)2 + 8kλi −
√

(k − 2)2 + 8kλj ∈ 2kZ. �

This theorem was in turn based on a essential result by E. Kolchin about algebraic
dependence ([42], see also [49, Theorem A.2]). We will actually perform a step
further and, as a by-product, obtain an alternative proof for Theorem 2.3 without
resorting to Kolchin's result.

Theorem 2.4. Let XH be a Hamiltonian �eld given by (3). If there is (at least)
an additional single �rst integral f independent with {f1, . . . , fp} on a neighborhood
of Γ, then we have one of the following two situations:

1. At least one of the eigenvalues λ1, . . . , λn−p belongs to Table 1.
2. There exist 1 ≤ i < j ≤ n− p such that√

(k − 2)2 + 8kλi −
√

(k − 2)2 + 8kλj ∈ 2kZ. (8)

Moreover if we divide the set of eigenvalues {λ1, . . . , λn−p} in equivalence
classes, Λ1 = {λ1,1, . . . , λ1,k1}, . . . Λr = {λr,1, . . . , λr,kr}, {λK+1}, . . . , {λn−p},
with respect to the relation de�ned by (8) with k1, k2, . . . , kr all greater than 1
(by reordering the eigenvalues we can assume this) and K :=

∑r
i=1 ki. Then

XH can have at most 2K − 3r additional meromorphic �rst integrals.

Proof. In the proof we will use three distinct kinds of normal variational equations,
two of which have already been introduced above:

• NVE =
⊕n−p

i=1 VEi corresponding to equations (4) for i = 1, . . . , n − p and
having Galois group GNVE;

• ANVE =
⊕n−p

i=1 AVEi corresponding to equations (6) for i = 1, . . . , n−p with
Galois group GANVE;
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• the invariant algebraic normal equations obtained from (6) for i = 1, . . . , n−p
by means of the classical transformation

ξi = ηi exp

(
1
2

∫ k−1
k − 3k−2

2k x

x (1− x)
dx

)
,

aimed at vanishing the coe�cients in dηi

dx in the resulting n − p second-order
equations in ηi; the Galois group of such a system of equations will be written
as H. For each i = 1, . . . , n−p, let Hi be the Galois group of the corresponding
equation in ηi; it is immediate that H ⊂ H1×· · ·×Hn−p and that πi (H) ' Hi

for i = 1, . . . , n− p, as was the case for GNVE.

In virtue of Remark 2.1(2) and the fact that only algebraic functions are intro-
duced by the changes ξi 7→ ηi, the identity component of all three groups is one and
the same. Hence, in virtue of what was said at the end of the proof of Theorem
A.10, GNVE is q-Ziglin for some q if and only H is. Furthermore, GNVE is contained
in SL2 (C)n−p; such is the case for H, as well.

Assume none of λ1, . . . , λn−p belongs to Table (7); then, in virtue of Remark
2.1(2), we have Gi ' SL2 (C) for all i = 1, . . . , n− p. If there is an additional �rst
integral f which is independent with the set {f1, . . . , fp}, then by Ziglin's Lemma
([58, Lemma 4.3], [60, Lemma 6], [76, Remark 2.3.2(2)]) the normal variational
equations must have a non-trivial rational �rst integral f̃ with coe�cients inM

(
Γ
)

and thus, in virtue of the fundamental lemma [60, Lemma 9], see also [58, Lemma
4.6], GNVE must have a non-trivial rational invariant, i.e. GNVE is at least 1-Ziglin.
Inclusion GNVE ⊂ G1 × · · · × Gn−p, isomorphisms Gi ' SL2 (C) , i = 1, . . . n − p

and [76, Remark 2.2.12] yield a faithful representation of GNVE in SL2 (C)n−p such
that πi (GNVE) ' SL2 (C) for each i = 1, . . . , n − p. Thus, we are in the situation
of Appendix A, GNVE being at least 1-Ziglin. Since 2K − 3r is zero if and only if
r = 0, and by Theorems A.10 and A.8, we know that the structure of GNVE is as
in Theorem A.8 with r ≥ 1 and m = n − p − K. That is, elements of GNVE are
expressible as

diag
(
[A1]

χ1
k1

, . . . , [Ar]
χr

kr
, Ar+1, . . . , An−p−K

)
, A1, . . . , An−p−K ∈ SL2 (C) . (9)

All of the above assertions concerning GNVE are true, mutatis mutandis, for H ⊂
H1×· · ·×Hn−p. Therefore, we may also apply Theorems A.10 and A.8 and conclude
that the elements of H are of the form (9) as well. The remainder of the proof will
be done exclusively using H. Let us �x j ∈ {1, . . . , r}.

In each diagonal block [Aj ]
χj

kj
(denoted accordingly as in (45) and Theorem

A.8), we have a pairwise relation between the 2 × 2 submatrices: for each i1, i2 =
0, . . . , kj − 1, χj,i1A

(i1)
j , χj,i2A

(i2)
j are such that A

(i1)
j , A

(i2)
j are equivalent (in the

sense of the representation theory, see Subsection A.3.2), with the conditions χj,0 :=
1 and A

(0)
j = Aj . As we are going to see, this relation corresponds exactly to

equation (8), as was also shown in [49] in order to prove Theorem 2.3. We know
χj,i1 , χj,i2 ∈ {±1}, hence the 2 × 2 matrices χj,i1A

(i1)
j , χj,i2A

(i2)
j have the same

eigenvalues up to a sign.
We recall that each matrix χj,iA

(i)
j corresponds to a faithful representation of

the Galois group of one of the equations in η1, . . . , ηn−p, which we may denote as
Hi without loss of generality. For i1, i2 as above, it is a well-known fact that the
monodromy groups around x = ∞ of the corresponding two equations belong to the
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Galois groups Hi1 ,Hi2 , respectively; hence, the local monodromy matrices Mi1 ,Mi2

of these two equations around x = ∞ are precisely equal to two matrices of the form
χj,i1A

(i1)
j , χj,i2A

(i2)
j introduced in the above paragraph.

The di�erences of exponents at in�nity of these local monodromies Mi1 and Mi2

are given by √
(k − 2)2 + 8kλi1

2k
,

√
(k − 2)2 + 8kλi2

2k
,

respectively (see [58, �5.1.2]). It is now a simple exercise to verify, by means of the
computations in the proof of Theorem 2.3, that the identity between the eigenvalues
of Mi1 and Mi2 up to a sign implies the relation (8) (see reference [49], and especially

�6 therein, for details). In particular, to each block [Aj ]
χj

kj
in the structure Theorem

A.8 corresponds one of the equivalence classes Λ1, . . . ,Λr.
The fact that we can have at most 2K − 3r meromorphic �rst integrals follows

from Ziglin's lemma and the fundamental Lemma in [60, Lemma 9] (see also [58,
Lemma 4.6]), since if XH has q additional meromorphic �rst integrals then the
Galois group GNVE must be q-Ziglin; the result now follows from Theorem A.10.

Remark 2. In the hypotheses of Theorem (namely, right before items 1 and 2),
the presumed additional single �rst integral f independent with {f1, . . . , fp} on a
neighborhood of Γ may still be dependent therewith on Γ.

2.4. The N-Body Problem.

2.4.1. De�nitions. Let d, N ≥ 2 be two integers. The (General d-dimensional)
N-Body Problem is the model describing the motion of N mutually interacting
point-masses in an Euclidean d-space led solely by their mutual gravitational attrac-
tion. It is determined by the initial-value problem given by the 2N initial conditions
x1 (t0) , . . . ,xN (t0) ∈ Rd and ẋ1 (t0) . . . , ẋN (t0) ∈ Rd, such that xj (t0) 6= xk (t0) if
j 6= k, and the system of Nd scalar second-order di�erential equations

miẍi = −G
N∑

k 6=i

mimk

‖xi − xk‖3
(xi − xk) , i = 1, . . . , N, (10)

where, for each i = 1, . . . , N , xi ∈ Rd is a d-dimensional vector function of the time
variable t describing the position of a body and mi is the mass of the body with
position qi. G, the gravitational constant, may and will be set equal to one from
now on by an appropriate choice of units.

Hamiltonian formulation ensues in a most natural way; de�ning

M = diag (m1, . . . ,m1, · · · ,mN , . . . ,mN ) ∈MNd (R) ,

and assembling the coordinates of our phase space among the Nd-dimensional vec-
tors

x (t) = (xi (t))i=1,...,N , y (t) = (yi (t))i=1,...,N := (miẋi (t))i=1,...,N

of positions and momenta, respectively, the equations of motion may now be
expressed as

ẋ = M−1y, ẏ = −∇UN,d (x) , (11)

where UN,d (x) := −
∑

1≤i<k≤N
mimk

‖xi−xk‖ is the potential function of the grav-
itational system. System (11) is the set of Hamilton's equations linked to the
Hamiltonian

HN,d (x,y) :=
1
2
yT M−1y + UN,d (x) . (12)
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Most of the bibliography on the subject deals with either the planar (d = 2)
or spatial (d = 3) N -Body Problem since raising the dimension of the ambient
space deprives the problem of most of its physical signi�cance; it must be said,
nevertheless, that further research has been attempted assuming d is an arbitrary
integer � needless to say, the reader can already infer that such an assumption is
by no means a symptom of con�dence in our knowledge of the planar and spatial
problems, as may be ascertained in the following Sections of this paper.

2.4.2. Known �rst integrals. Transformations of the form x 7→ TQ,v,w,t (x) := Qx+
v + tw, formed by a rotation Q ∈ OdN (R) and a translation linear with respect to
time, are easily proven to be symmetries of (10). v represents constant translation,
and tw represents the change to a moving frame which moves with a constant
velocity w. Since symmetries come paired with �rst integrals (see [68]), the �rst
step is looking for conserved quantities linked to symmetries as basic as TQ,v,w,t.
The vector cG (t) := 1

m

∑N
i=1 mixi (t), where m =

∑N
i=1 mi, is the center of mass

of the con�guration x (t). It corresponds to a con�guration whose movement is
rectilinear and uniform: c̈G = 1

m

∑N
i=1 miẍi = 0, due to the symmetry of the

expression in the second addition. Thus,

cG (t) = c1t + c2, ci ∈ Rd. (13)

In particular IL := mc1 =
∑N

i=1 miẋi, usually called the linear momentum, is a
vector of conserved quantities of the system; the ones associated to translation, that
is. The conserved quantities linked to rotation all lie in the angular momentum
IA = (IA,k,l)1≤k<l≤d ∈ Rd(d−1)/2,

IA,k,l =
N∑

i=1

xd(i−1)+kẋd(i−1)+l − xd(i−1)+lẋd(i−1)+k, 1 ≤ k < l ≤ d,

obviously summing up to a single scalar quantity if d = 2: IA :=
∑N

i=1 mixi ∧ ẋi.
In view of (13), cG can always be assumed �xed at the origin since TId,−c1t,−c2,t is
a symmetry for (10); except for De�nition 2.7, we will assume cG = 0 from now on.

Let us de�ne the scalar product 〈x,y〉 := (Mx)T
y in RNd. The moment of

inertia for a given solution x (t) of (10) is de�ned as I (x) := 〈x,x〉. This is not a
�rst integral of the problem but will be useful in the next Subsection.

All in all, the N -body problem has 1
2 (d + 2) (d + 1) (so-called classical) �rst

integrals (see [96]):

1. 2d for the invariance of the linear momentum IL, i.e. for the uniform linear
motion of the center of mass;

2. d (d− 1) /2 for the invariance of the angular momentum IA;
3. one for the invariance of the Hamiltonian HN,d.

That makes 6 for the planar problem and 10 for the spatial problem. Bruns'
theorem, given in 1887, asserts these are the only �rst integrals algebraic with
respect to phase variables for the Three-Body Problem:

Theorem 2.5 (Bruns' Theorem, [20]). Every �rst integral of the spatial Three-
Body Problem which is algebraic with respect to positions, momenta and time is an
algebraic function of the classical ten �rst integrals.

An attempt at extending this result was done by P. Painlevé, namely at proving
that any integral depending algebraically on the moments y1, . . . ,yN , regardless of
how it depends on the positions x1, . . . ,xN , is a function of the classical integrals.
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The proof of this assertion, written in [65], is wrong, though; see also [33]. The best
generalization of Theorem 2.5 known to date is the following:

Theorem 2.6 (Julliard's Theorem, [39]). In the d-dimensional N -body problem
with 1 ≤ d ≤ N , every �rst integral which is algebraic with respect to positions,
momenta and time is an algebraic function of the classical 1

2 (d + 2) (d + 1) integrals.

Our obvious aim, both in the present paper and in the future, is to take the
thesis in Theorem 2.6 to its most extreme generalization.

2.4.3. Central con�gurations of the N -body problem. Despite the general lack of
faith in �nding simple closed-form solutions for the N -body problem ([24]), there
are special solutions whose orbits allow for a complete qualitative study without
having to resort only to the in�nite series given in [84], [93] and [94]. Such solutions,
called homographic, are those preserving the initial �gure formed by the bodies,
except for homothecies and rotations:

De�nition 2.7. A solution x (t) of the N -body problem is called homographic if
there are functions r : J ⊂ R → R and Φ : J ⊂ R → SOd (R) de�ned on an open
interval J ⊂ R, such that

xi (t)− cG (t) = r (t) Φ (t) (xi (t0)− cG (t0)) ,

Using the homogeneity of UN,d (x) and I (x) of degree −1 and 2, respectively, the
Euler relation for homogeneous functions and the method of Lagrange multipliers,
it may be easily proven that initial conditions x of homographic solutions satisfy
system

U ′
Nd

(x) = λMx, (14)

where λ > 0; actually λ = UN,d (x) /I (x). If the bodies are released with zero
initial velocity, these initial conditions give rise to simple, explicit homothetical
solutions of the N -Body Problem (i.e. solutions showing homothetical collapse to
the origin).

De�nition 2.8. An initial con�guration x (t0) of a homographic solution (i.e. a
solution to (14)) will be called a central con�guration.

Remark 3. λ may be set equal to one; indeed, the −2-homogeneity of U ′
N,d assures

us U ′
N,d (λαx) = λ−2αU ′

N,d (x); thus, assuming U ′
N,d (x) = λMx, de�ning x̃ = λx

and asking for U ′
N,d (x̃) = M x̃ to hold, we obtain α = −1.

The above remark implies that the set of solutions to (14) is independent of the
value of λ and thus has the same cardinal as the set of solutions to U ′ (x) = −λ∗Mx
for any other λ∗ > 0. Measuring such a cardinal is a fundamental problem in
Celestial Mechanics; in order for this problem to make sense, the usual procedure
is studying the quotient modulo symmetries of rotation Od (R), translation (Rd)
and homothecy (R \ 0), i.e. counting classes of central con�gurations modulo these
symmetries. For planar central con�gurations, the set of mutual distances between
the bodies may occasionally prove an adequate coordinate system for this quotient
space, albeit a rather redundant one since its cardinality is equal to

(
N
2

)
and a set

of merely 2N − 4 coordinates su�ces in the planar case. See [6].

Examples 2.1.
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1. Regardless of m1,m2,m3, there exists a central con�guration of the Three-
Body Problem, called a Lagrange (triangular) con�guration, consisting
of an equilateral triangle whose vertexes are the point-masses (see [44] or
Remark 5 and Section 4.1 below).

2. Generalizing Example 1 above, the regular d-simplex is a central con�guration
of the d-dimensional Problem for any d ≥ 2 and N = d + 1 (see [67]): for
instance, Lagrange's triangular con�guration if d = 2 or a regular tetrahedron
if d = 3 ([47]).

3. Again regardless of m1,m2,m3, each ordering of three bodies arranged on
a straight line forms a central con�guration, called an Euler (collinear)
con�guration (see [27]).

4. Yet again we may generalize Example 3: for each N ≥ 3 and each set of
positive values m1, . . . ,mN , N bodies with masses m1, . . . ,mN arranged in a
straight line lead to N !/2 central con�gurations � one for each ordering of the
point-masses; we call these the Moulton (or Euler-Moulton) con�gura-
tions (see [62]).

5. Whenever the masses are equal, regular N -polygons with the point-masses at
the vertexes are central con�gurations, see [23], [64], [66], [100] or Remark 5
and Lemma 4.1. Conversely, for N > 3, regular polygons are central con�gu-
rations if and only if the masses are equal (again [23], [64], [66] or [100]).

6. Whenever N of the masses are equal and an additional mass is allowed into the
system, regular N -polygons with the bodies of equal masses at the vertexes
and the body corresponding to the isolate mass mN+1 placed at the center of
the polygon (i.e. the center of mass) are central con�gurations, see Remark 5
and Lemma 5.2.

7. Depending on N and on the speci�c masses, other special con�gurations may
be proven to exist. See for instance [28] and [64] for the so-called pyramidal
con�gurations, and [34] and [73] for some insight and new results on the case
N = 4.

Remark 4. Inasmuch as in Examples 1, 2, 5 and 6, the exact coordinates of the
solution in Example 3 may be found explicitly, albeit in a less straightforward way:
indeed, for an adequate mutual-distance quotient parameter ρ, the so-called Euler
quintic holds along any collinear three-body solution:

(m2 + m3) + (2m2 + 3m3) ρ + (3m3 + m2) ρ2 − (3m1 + m2) ρ3

− (3m1 + 2m2) ρ4 − (m1 + m2) ρ5 = 0 (15)

Equation (15) may be solved explicitly by transforming P to Bring reduced form
PB (ρ) = ρ5 − ρ− β by means of three Tschirnhaus transformations and expressing
the roots of PB (ρ) in terms of generalized hypergeometric functions 4F3, although
such calculus is not necessary for our study and will be skipped; see [85].

For more information on central con�gurations, see [57].
There are some facts proving the importance of research in central con�gurations

for the N -body problem:

1. Besides the orbits of the two-body problem, the only known explicit solutions
for the N -body problem are homographic orbits, i.e. those having as an initial
condition a central con�guration.
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2. Thanks to Sundman ([84]), we know all orbits beginning or ending at a total
collision are asymptotic to a homothetic movement, i.e. the con�guration
formed by the bodies tends to a central con�guration.

3. All changes in the topology of the integral varieties VH,IA
corresponding to

the energy H and the angular momentum IA are due to central con�gurations
([2], [22], [53], [78]). However, the concise description of these varieties with
prescribed values of H, IA is not even concluded for N = 3 ([72, �2], [53]).

4. The sixth problem proposed by S. Smale in [79] is whether or not, given
m1, . . . ,mN , the number of classes of central con�gurations is �nite. His pro-
gram pivoted precisely on the topology of the VH,IA

so as to pursue topological
stability; namely pivoting on the impossibility of transition between connected
components. This is useful if N = 3, since there exist ranges for which VH,IA

has some connected component projecting on a bounded set of the x-space.
For N ≥ 4, however, there is always only one connected component, and it
has unbounded x-projection: see [72, �2] and, especially, [74].

3. Preliminaries.

3.1. Statement of the main results. Symplectic change x = M−1/2q, y =
M1/2p renders HN,d a classical Hamiltonian HN,d = 1

2p2 +VN,d (q) with a potential
which is homogeneous of degree −1:

VN,d (q) := −
∑

1≤i<j≤N

(mimj)
3/2∥∥√mjqi −
√

miqj

∥∥ . (16)

In virtue of Theorem 2.2, performing the following two steps would prove HN,d not
meromorphically integrable:

Step I either explicitly �nding or proving the existence of an adequate constant
vector c ∈ C2N such that

V ′
N,d (c) = c; (17)

Assume V ′′
N,d (c) is diagonalizable.

Step II proving that at least one of the eigenvalues of V ′′
N,d (c) does not belong to

the set given by items 1 and 18 in Table (7), which happens to be a set of
integers:

S :=
{
−p (p− 3)

2
: p ∈ Z

}
=
{
− (p + 2) (p− 1)

2
: p ∈ Z

}
⊂ Z, (18)

whose symmetry allows for the assumption p > 1; the size of the consecutive
gaps in this discrete set is strictly increasing, as is seen in its �rst elements:
{1, 0,−2,−5,−9,−14,−20,−27,−35, . . .}.

In virtue of Theorem 2.4, isolating an adequate set of eigenvalues and performing
the following third step would be enough to set a very precise upper bound on the
amount of additional meromorphic integrals:

Step III proving that, except for a set S̃ of notable eigenvalues corresponding to
the set of classical �rst integrals, there is no other eigenvalue of V ′′

N,d (c) in S.

This is exactly what will be done for the equal-mass 4, 5, 6-Body Problem (item 1
in Theorem 3.2 below).

And in virtue of either [49, Theorem 1.2] or Theorem 2.4, the following fourth step
would be enough to discard the existence of even a single additional meromorphic
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integral; in other words, we would prove a generalized version of Theorems 2.5 and
2.6:

Step IV performing Step III and proving that, except for said notable set S̃,

Spec
(
V ′′

N,d (c)
)
\ S̃ consists exclusively of eigenvalues not satisfying relation

(8) pairwise.

As asserted in Theorem 3.1 below, this last step has been attained for N = 3; see
Subsection 4.1 for a proof.

Remark 5. Solving (17) for the general case appears as anything but trivial. In
virtue of Remark 3, real vector solutions to V ′

N,d (c) = c correspond exactly to

homothetical central con�gurations, since M1/2V ′
N,d (q) = U ′

N,d

(
M−1/2q

)
and thus

U ′
N,d (x) = Mx (for x = M−1/2q) is equivalent to

V ′
N,d (q) = M−1/2MM−1/2q = q.

Were solving (17) a straightforward task, so would be computing central con�gura-
tions; in view of the egregious amount of research involving or needed for the latter,
even in special cases, e.g. the lines of study hinted at in [3], [4], [5], [6], [7], [25],
[28], [29], [43], [52], [57], [67], or [98], such a premise is arguable at best.

We are proving the following two main results:

Theorem 3.1. For every d ≥ 2, there is no additional meromorphic �rst integral
for XH3,d

with arbitrary positive masses which is independent with the classical �rst
integrals.

Theorem 3.2. Let XH̃N,d
stand for any d-dimensional equal-mass N -Body Prob-

lem:

1. For the planar Problem XH̃N,2
, the number of additional meromorphic �rst

integrals is no larger than:
a) one if N = 4;
b) three if N = 5, 6.
In particular, the Problem is not meromorphically integrable in the sense of
Liouville for all three values of N .

2. For N ≥ 3 and d ≥ 2, XH̃N,d
is not meromorphically integrable in the sense

of Liouville.

Consider any triangular homographic solution (Example 2.1(1)) corresponding
to energy level zero; such a solution is usually called the parabolic Lagrangian
solution since the orbit of each of the point-masses is precisely a parabola. By
means of Ziglin's Theorem, A. V. Tsygvintsev not only proved there is no com-
plete set of meromorphic �rst integrals for the planar Three-Body Problem in a
neighborhood of a parabolic Lagrangian solution; he further transited from this
non-integrability proof to one of the absence of a single additional integral, except
for the three special cases shown in (31) below. See [90, Theorems 2 and 4]; see
also [86, Theorem 1.1 and Corollary 1.2], [87, Theorems 6.1 and 6.3], [88, Theorem
1.1], [89, Theorem 4.1]. In [105, Section 3.1], S. L. Ziglin himself established a
non-integrability proof provided (m1,m2,m3) belongs to the intersection of some
neighborhood of {m1 = m2}∪{m1 = m3}∪{m2 = m3} in R3

+ with the set of deleted
lines

⋃
k 6=i {mk/mi 6= 11/12, 1/4, 1/24}; this he did exploiting the proximity of the

particular solutions with respect to a certain collinear con�guration. Although by
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no means proven valid for a wide set of values of the masses, Ziglin's result had
the advantage of considering general dimension d for the point masses. D. Boucher
and J.-A. Weil also proved the planar Three-Body Problem non-integrable in [14,
Theorem 9] (see also [16, Theorem 2] and [15, Theorem 3]) by using a criterion of
their own (e.g. [15, Theorem 2], [14, Theorem 8], [16, Criterion 1]) devised from
Theorem 2.1, and consisting on the detection of logarithms in the factorization of a
certain reduced variational system; the particular solution along which variational
equations were reduced and factorized was a Lagrange zero-energy solution, just as
in the results by Tsygvintsev. As for the equal-mass N -Body Problem, in [105, Sec-
tion 3.2] Ziglin allowed one of the masses, say mN , to be di�erent from the others
and made attempts at the very same thesis we use here: to wit, that the trace of the
Hessian matrix for V ′′

N,d (c) is not contained in Z for some solution c of (17). The
main result in [105, Section 3.2] was the existence of at most �nitely many values
mN for which the Problem is integrable, although none of these values was actually
given.

Theorem 3.1 completes the aforementioned results by Tsygvintsev by discarding
the three special cases remaining therein. Furthermore, the proof given here is
shorter thanks to Theorems 2.2 and 2.4. Theorem 3.1 also completes what was
done by S. L. Ziglin in [105, Section 3.1] and complements the non-integrability
result by D. Boucher and J.-A. Weil by extending it to arbitrary dimension, besides
being a consistent generalization of Bruns' Theorem 2.5 and the case N = 3 of
Julliard's Theorem 2.6. Theorem 3.2, on the other hand, completes the results in
[105, Section 3.2], though the tools used here hardly qualify as a theoretical step
forward since, as said above, the author of the latter reference shared our aim. A
comment will be made in Section 5.3.2 concerning the hypotheses in [105, Section
3.2].

Remark 6. Wemust observe that HamiltonianHN,d is not meromorphic. However,
any �rst integral of XHN,d

(e.g. HN,d itself), when restricted to a domain of each
determination of HN,d, is meromorphic and thus amenable to the whole theory
explained so far; see, for instance, [48, pp. 156-157] for more details as applied to a
di�erent homogeneous potential.

3.2. Setup for the proof.

3.2.1. Known eigenvalues. Let us �nd the exceptional set S̃ hinted at in Steps III
and IV, which consists of p = d + n + 1 eigenvalues, all belonging to {−2, 0, 1}.
For the sake of a more comfortable notation, we will denote them from subindex
1 onward, say {λ1, . . . , λd+n+1}, as opposed to the notation used in Subsection
2.3.2. d of them, for instance λ2, . . . , λd+1, appear for any solution of Hamilton's
equations, and the remaining ones appear speci�cally for solutions of the form φc
with φ̈ + φ−2 = 0 and V ′

N,d (c) = c.

Lemma 3.3. Let q (t) = (q1 (t) , . . . ,qN (t)) be a solution of the N -Body Problem.
Then, d of the eigenvalues of V ′′

N,d (q) are identically zero.

Proof. This results from the invariance of the linear momentum IL (Subsection
2.4.2), which after symplectic change xi = 1√

mi
qi and yi =

√
mipi becomes∑N

i=1

√
miq̈i = 0. Since q̈i = ṗi = −∂VN,d

∂qi
for i = 1, . . . , N , we obtain

N∑
i=1

√
mi

∂VN,d

∂qd(i−1)+k
= 0, k = 1, . . . , d,
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and derivating these equations with respect to q we obtain d distinct relations of
linear dependence between the columns of the Hessian,

N∑
i=1

√
mi

∂2VN,d

∂qd(i−1)+k∂qj
= 0, j = 1, . . . , 2N, k = 1, . . . , d,

rendering
{∑N

i=1

√
miedN,d(i−1)+j : j = 1, . . . , d

}
an independent eigensystem for

the eigenvalue 0; that alone allows us to write λ2 = λ3 = · · · = λd+1 = 0.

Let q = φ (t) c as above in the next two Lemmae. The �rst of them takes no
other e�ort in proving than referring the reader back to the consequence (5) of
Euler's Theorem while setting k = −1:

Lemma 3.4. We may write λ1 = −2. �

Lemma 3.5. 1 ≤ n ≤
(
d
2

)
of the eigenvalues, say λd+2, . . . , λd+n+1, are equal to 1.

Proof. This is a consequence of the invariance of the angular momentum; derivating
IA once after expressing it in coordinates q, p, we obtain

0 =
N∑

i=1

qd(i−1)+k q̈d(i−1)+l−qd(i−1)+lq̈d(i−1)+k, 1 ≤ k < l ≤ d,

and thus

0 =
N∑

i=1

qd(i−1)+k
∂VN

∂qd(i−1)+l
−qd(i−1)+l

∂VN

∂qd(i−1)+k
, 1 ≤ k < l ≤ d,

which derivated with respect to q yields

0 =
N∑

i=1

(
δd(i−1)+k,j

∂VN,d

∂qd(i−1)+l
− δd(i−1)+l,j

∂VN,d

∂qd(i−1)+k

)

+
N∑

i=1

(
qd(i−1)+k

∂2VN,d

∂qd(i−1)+l∂qj
− qd(i−1)+l

∂2VN,d

∂qd(i−1)+k∂qj

)
,

1 ≤ k < l ≤ d, j = 1, . . . , dN ;

thus, assuming q = φ (t) c as above we have

0 =
N∑

i=1

φ−2
(
δd(i−1)+k,jcd(i−1)+l − δd(i−1)+l,jcd(i−1)+k

)
+

N∑
i=1

φ−2

(
cd(i−1)+k

∂2VN

∂qd(i−1)+l∂qj
(c)− cd(i−1)+l

∂2VN

∂qd(i−1)+k∂qj
(c)
)

,

j = 1, . . . , dN, 1 ≤ k < l ≤ d,

which means
∑N

i=1 ki,k,l is an eigenvector of V ′′
N,d (c) of eigenvalue 1, where ki,k,l =

−cd(i−1)+ledN,d(i−1)+k +cd(i−1)+kedN,d(i−1)+l, for each 1 ≤ k < l ≤ d.
(
d
2

)
is clearly

an upper bound for the dimension of vector space
〈∑N

i=1 ki,k,l : 1 ≤ k < l ≤ d
〉
.

Corollary 3.6. Assume q = φ (t)
(
cT
1 , . . . , cT

N

)T
, where

ci =
(
cd(i−1)+1, cd(i−1)+2, 0, . . . , 0

)T
, i = 1, . . . , N,
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and there are at least two ci1 , ci2 such that cd(ij−1)+1cd(ij−1)+2 6= 0, j = 1, 2 and

cd(i1−1)+1

cd(i1−1)+2
6=

cd(i2−1)+1

cd(i2−1)+2
.

Then, there are at least n = 2d− 3 eigenvalues equal to one.

Proof. Let c̃ =
(
c̃T
1 , . . . , c̃T

N

)T
be the vector formed by shifting the �rst two entries

in each ci and multiplying the �rst of them by −1:

c̃i =
(
−cd(i−1)+2, cd(i−1)+1, 0, . . . , 0

)T
, i = 1, . . . , N.

According to the previous Lemma, c̃ ∈ ker
(
V ′′

N,d (c)− IddN

)
. The same Lemma

asserts that the set W ∪ W̃ := {vk : 3 ≤ k ≤ d} ∪ {ṽk : 3 ≤ k ≤ d} , where each of
its elements is de�ned as

vk :=
(
cd(i−1)+1ed,k

)
i=1,...,N

, ṽk :=
(
cd(i−1)+2ed,k

)
i=1,...,N

, k = 3, . . . , d,

is also set of eigenvectors of V ′′
N,d (c) for eigenvalue 1, all of them independent with

c̃ by hypothesis cd(i1−1)+1cd(i1−1)+2 6= 0. The dimension of the space spanned by
W (resp. W̃ ) is d−2, and any relation of linear independence of a vector of vk ∈ W

with one vector in ṽl ∈ W̃ would necessarily imply k = l; in particular, we would
have

cd(i1−1)+1

cd(i1−1)+2
=

cd(i2−1)+1

cd(i2−1)+2
,

which contradicts our hypothesis. Hence, dim W ⊕ W̃ = 2d− 4 and adjoining c̃ to
W ∪ W̃ yields 2d− 3 independent eigenvectors for V ′′

N,d (c).

3.2.2. Notation for the planar case. De�ning qi = (q2i−1, q2i) for i = 1, . . . , N and
q = (q1, . . . ,qN ), we have

∂VN,2

∂qi
=

n∑
k=1,k 6=i

√
mk (mimk)3/2

D−3
i,k Di,k, i = 1, . . . , N, (19)

where Di,j = (d2i−1,2j−1, d2i,2j)
T := √

mjqi −
√

miqj for each i, j = 1, . . . , N , and

we obtain the block expression for the Hessian matrix: V ′′
N,2 (q) =

(
Ũi,j

)
i,j=1,...,N

,

de�ning

Ũi,j :=
{
−√mimjUi,j , i 6= j,∑

k 6=i mkUi,k, i = j
(20)

where

Ui,j = Uj,i =

{
02×2, i = j,

(mimj)
3/2 (

d2
2i−1,2j−1 + d2

2i,2j

)−5/2
Si,j , i < j,

(21)

and

Si,j = Sj,i :=
(

d2
2i,2j − 2d2

2i−1,2j−1 −3d2i−1,2j−1d2i,2j

−3d2i−1,2j−1d2i,2j d2
2i−1,2j−1 − 2d2

2i,2j

)
, i 6= j. (22)
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3.2.3. Reduction to the planar case. We are now justifying our future trend to re-
strict ourselves to d = 2. All there is to prove is that, assuming c is embedded in

a particular way into a wider ambient space, the only changes in Spec
(
V ′′

N,d

)
are

possibly the multiplicity of its existing elements, and possibly the addition of new
ones:

Lemma 3.7. For any given d ≥ 2, let

c : (c1, . . . , cN ) ∈ C2d, ci : (ui,1, ui,2) , i = 1, . . . , N,

be a solution to V ′
N,2 (c) = c, and

c̃ : (c̃1, . . . , c̃N ) ∈ CNd, c̃i : (ui,1, ui,2, 0, . . . , 0) , i = 1, . . . , N.

Then, V ′
N,d (c̃) = c̃ and Spec

(
V ′′

N,2 (c)
)
⊂ Spec

(
V ′′

N,d (c)
)
.

Proof. V ′
N,d (c̃) = c̃ is immediate since

∂VN,d

∂qi

∣∣∣∣
qi=c̃i

=

( ∑n
k=1,k 6=i

√
mk (mimk)3/2

D−3
i,k Di,k

0d−2

)∣∣∣∣∣
qi=ci

=

(
∂VN,2
∂qi

0d−2

)∣∣∣∣∣
qi=ci

.

V ′′
N,d (c̃) takes the following form: V ′′

N,d (c̃) =
(
Ũd,i,j

)
i,j=1,...,N

, where

Ũd,i,j :=
{
−√mimjUd,i,j , i 6= j,∑

k 6=i mkUd,i,k, i = j
(23)

and the block structure of these matrices will be

Ud,i,j =
(

Ui,j 0T
d−2

0d−2 αi,jIdd−2

)
, i, j = 1, . . . , N,

where Ui,j is de�ned as in (21) and

αi,j = αj,i =
{

0, i = j,

(mimj)
3/2

D−3
i,j , i 6= j = 1, . . . , N.

Thus, if

v : (v1, . . . ,vN ) ∈ C2d, vi : (vi,1, vi,2) , i = 1, . . . , N,

is an eigenvector of V ′′
N,2 (c), then

ṽ : (ṽ1, . . . , ṽN ) ∈ CNd, ṽi : (vi,1, vi,2, 0, . . . , 0) , i = 1, . . . , N,

is an eigenvector of V ′′
N,d (c̃) for the same eigenvalue.

We will de�ne VN := VN,2 from now on, and save for indication of the contrary
(e.g. for Section 4.1), we will assume we are dealing exclusively with the planar
case.

4. Proofs of Theorems 3.1 and 3.2.
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4.1. Proof of Theorem 3.1. Step I in Section 3.1 is computing a solution c of
(17) for N = 3. Let us de�ne m = m1 + m2 + m3 (which may be always set to 1
by the reader if even simpler calculations are sought all through this section) and
D = m1m2 + m2m3 + m3m1, and consider vectors of the form c = m−2/3M1/2ĉ,
where M = (miIdd)i=1,...,N as in Subsection 2.4.1 and

ĉ =


a2m2 + a3m3

b2m2 + b3m3

a3m3 − a2 (m1 + m3)
b3m3 − b2 (m1 + m3)
a2m2 − a3 (m1 + m2)
b2m2 − b3 (m1 + m2)

 (24)

and a2, a3, b2, b3 are solutions to(
a2
2 + b2

2

)3/2
=
(
a2
3 + b2

3

)3/2
=
[
(a2 − a3)

2 + (b2 − b3)
2
]3/2

= 1.

See Subsection 5.2.2 for an explanation of such an assumption. An example of such
a vector ĉ is

ĉ =


(m2 + 2m3) α

m2β
− (m1 −m3) α
− (m1 + m3)β
− (2m1 + m2)α

m2β

 , (25)

where α2+β2 = 1 and α3 = 1/8. The possible choices of α and β add up to two such
vectors as (25), and thus two solutions c = m−2/3M1/2ĉ and c∗ = m−2/3M1/2ĉ∗ for
(17): those corresponding to α = 1/2 and α∗ = −1+i

√
3

4 , respectively; keeping with
what was said in Section 1, square roots are taken in their principal determination.
A simple, if tedious computation proves c and c∗ solutions to (17), indeed. c yields
an explicit parametrization for the (homothetical) Lagrange triangular solution (Ex-
ample 2.1(1)).

The rest of the proof is based on performing both Steps II and III in Section 3.1
at a time. The eigenvalues of V ′′

3 (c) are {−2, 0, 0, 1, λ+, λ−}, where

λ± := −1
2
± 3

√
m2

1 + m2
2 + m2

3 −m1m2 −m1m3 −m2m3

2 (m1 + m2 + m3)
.

As said in Theorem 2.4, the existence of a single additional meromorphic integral
for XH3 implies either λ∗+ ∈ S or λ∗− ∈ S, where S =

{
− 1

2p (p− 3) : p > 1
}
,

which means (de�ning R :=
√

m2 − 3D) that ±3R ∈
{(

p2 − 3p− 1
)
m : p > 1

}
and therefore

−27 (m1m2 + m1m3 + m2m3) ∈
{
m2 (p− 1) (p− 2) (p− 4) (p + 1) : p > 1

}
, (26)

impossible if p ∈ {2, 4} or p > 4 since it would have a strictly negative number
equaling a non-negative one. For p = 3 (26) becomes 8m2 = 27D, that is,

m1m2 + m1m3 + m2m3

(m1 + m2 + m3)
2 =

8
27

. (27)

The eigenvalues of V ′′
3 (c∗) are

{
−2, 0, 0, 1, λ∗+, λ∗−

}
, where λ∗± = − 1

2±
3
√

A
2
√

2m
, and

A = 2m2
1 +2m2

2 +2m2
3−5m1m2−5m2m3 +7m1m3− i

√
3(m1m2 +m2m3−5m1m3).
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See Appendix B for details. Again, the thesis in Theorem 2.4 amounts to either
λ∗+ ∈ S or λ∗− ∈ S, which here becomes ±3

√
A =

(
p2 − 3p− 1

)√
2m, and thus

A− 2m2 ∈
{

2
9

(p− 1) (p− 2) (p− 4) (p + 1)m2 : p > 1
}

;

a necessary condition for this to hold with real masses is the vanishing of the imag-
inary term in A

−i
√

3 (m1m2 + m2m3 − 5m1m3) = 0, (28)

implying m1m2 + m2m3 = 5m1m3. Thus,

−378m1m3 = 2 (p− 1) (p− 2) (p− 4) (p + 1) m2, (29)

for some p > 1. We discard p = 2, 4 in (29) assuming the strict positiveness of
m1 and m3. The only integer p > 1 for which the right side can be negative is: 3,
implying −378m1m3 = −16 (m1 + m2 + m3)

2. These two constraints arising from
(28) and (29),

5m1m3 = m1m2 + m2m3,
189
8

m1m3 = (m1 + m2 + m3)
2
, (30)

cannot hold at the same time as condition (27). Indeed, the former two substituted
into the latter would yield (5m1m3+m1m3)

189
8 m1m3

= 8
27 , i.e.

16
63 = 8

27 which is obviously

absurd. Thus, either (27) holds or both equations in (30) hold. In particular, term

A in λ∗± = − 1
2 ±

3
√

A
2
√

2m
does not vanish if (27) holds, which implies λ∗− 6= λ∗+

and thus V ′′
3 (c∗) has a diagonal Jordan canonical form; indeed, the Jordan blocks

for eigenvalues 0,−2, 1 are already diagonal since the eigenvectors provided by the
proofs Lemmae 3.3 and 3.4 and Corollary 3.6 are eigenvectors here as well. In
other words, in spite of being complex, the second vector c∗ does not prevent the
symmetrical matrix from being diagonalizable, and thus amenable to the application
of Theorem 2.4.

Let us now prove that V3 does not satisfy the remaining hypothesis in said The-
orem. The di�erence in (8), E (λi, λj) =

(√
9− 8λj −

√
9− 8λi

)
/2, will be studied

both for Spec (V ′′
3 (c∗)) and Spec (V ′′

3 (c)). Let

a :=
(
m2

1 + m2
2 + m2

3 −m1m2 −m1m3 −m2m3

)1/2
(m1 + m2 + m3)

−1 ≥ 0.

The only case worth considering for the real eigenvalues is

E (λ+, λ−) =
√

13 + 12a−
√

13− 12a

2
,

which is real only if a ∈
[
0, 13

12

]
. In this interval, moreover, the only possible integer

values of E (λ+, λ−) are 0, 1, 2. Note that a =
√

1− 3Q, where Q = D/m2 =
(m1m2 + m1m3 + m2m3) (m1 + m2 + m3)

−2. The solution to
√

1− 3Q = n for
n = 0, 1, 2 is, respectively, Q = 1/3, 0,−1, among which the only possible value for
Q is 1/3. Hence, E (λ+, λ−) can only be real if a = 0, i.e. Q = 1/3.

Now consider the complex eigenvalues λ∗± = − 1
2 ±

3
√

a∗

2 of V ′′
3 (c∗). Since

E
(
λ∗+, λ∗−

)
=
√

13


√

1 + 12
13a∗ −

√
1− 12

13a∗

2

 ,
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it is enough to prove that (a∗)2 is always complex, non-real whenever Q = 1/3.
Indeed, if z = z1 + z2i with z1z2 6= 0, then

√
1 + z −

√
1− z is always complex:(√

1 + z −
√

1− z
)2

= 2− 2
√

1− z2 and since z2 is non-real, so is 2− 2
√

1− z2.

In order to prove a∗, (a∗)2 ∈ R \ C, we will see that the imaginary term inside
the square root, −5m1m3 + m2m1 + m2m3, is always nonzero if Q = 1

3 . Indeed,
otherwise 5m1m3+m1m3

(m1+m2+m3)
2 = 1

3 , i.e. 16m1m3−m2
1− 2m2m1−m2

2− 2m2m3−m2
3 = 0;

from 5m1m3 = m2m1 + m2m3, we also deduce m2 = 5m1m3
m1+m3

and therefore

16m1m3−m2
1−2m2m1−m2

2−2m2m3−m2
3 =

4m3
1m3 − 15m2

1m
2
3 + 4m1m

3
3 −m4

1 −m4
3

(m1 + m3)
2 = 0,

and the only values of m3 allowing this are

(2 + 3i)± (1 + 2i)
√

3
2

m1
(2− 3i)± (1− 2i)

√
3

2
m1,

which are obviously not positive real numbers. The lack of an additional mero-
morphic �rst integral for arbitrary m1,m2,m3 > 0 is thus proven in the planar
case.

Furthermore, for the general case d ≥ 3, we may embed c and c∗ into vectors
c̃, c̃∗ ∈ C3d as in Lemma 3.7. In virtue of Lemmae 3.3 and 3.4 and Corollary 3.6,
we have d + 1 + 2d− 3 = 3d− 2 eigenvalues (that is, all of them but two) belonging
to {−2, 0, 1} and due to the classical �rst integrals; the remaining two eigenvalues
of V ′′

3,d (c) (resp. V ′′
3,d (c∗)) are λ± (resp. λ∗±) due to Lemma 3.7. �

Remarks 4.1.
1. It is worth noting that the only cases forcing us to resort to a second solution

to (17) are precisely two of the three cases exceptional to A. V. Tsygvintsev's
proof ([90]):

D

m2
∈
{

1
3
,
23

33
,

2
32

}
. (31)

2. Yet another valid (and even shorter) proof would be feasible were more knowl-
edge available concerning the collinear solution; see Section 5.2, and especially
(39), for details.

3. A proof could be attempted at by using Bring forms as in Remark 4, although
the amount of calculations involving generalized hypergeometric functions 4F3

appears to be rather cumbersome. We are therefore avoiding this for the sake
of simplicity.

4.2. Proof of Theorem 3.2. In this speci�c case, since every choice of mass units
amounts to a symplectic change in the extended phase space, we may set m1 =
· · · = mN = 1. Expressions (19) and (20) may be found explicitly in terms of
trigonometric functions if we choose the polygonal con�guration (Example 2.1 (5))
as a solution to (17). De�ne

sk := sin
πk

N
, ck := cos

πk

N
, k ∈ N,

and ζ = e
2π
N = c2 + s2.

Lemma 4.1. Vector cP = (c1, . . . , cN ) de�ned by cj = β
1/3
N (c2j , s2j), where βN =

1
4

∑N−1
k=1 csc

(
πk
N

)
, is a solution for V ′

N (q) = q.
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Proof. Indeed, assume cj = A
(
cos 2πj

N , sin 2πj
N

)
for some A > 0. We have

∂VN

∂qj
(cP ) =

1
4A2

 ∑N−1
k=1

cos 2πj
N

sin π
N k∑N−1

k=1
sin 2πj

N

sin π
N k


due to the fact that

N∑
k=1,k 6=j

ζj − ζk

|ζj − ζk|3
= ζj

N−1∑
k=1

1− (c2k + is2k)

|1− ζk|3
,

and, since the imaginary part of this sum satis�es:
N−1∑
k=1

s2k

|1− ζk|3
=

N−1∑
k=1

2skck

8c3
k

=
1
4

N−1∑
k=1

ck

s2
k

= 0,

we �nally obtain ζj
∑N−1

k=1
1−(c2k+is2k)

|1−ζk|3 = 1
4ζj

∑N−1
k=1 s−1

k . Now V ′(cP ) = cP if and

only if
∑N−1

k=1
1

4A2sk
= A. The latter holds for A = β

1/3
N .

Let us see how this speci�c vector simpli�es V ′′
N . Keeping expression (20) in

consideration we have d2i−1,2j−1 + d2i,2j = β
1/3
N

(
ζi − ζj

)
which implies

Si,j = 2
(
β

1/3
N si−j

)2
(

3c2(i+j) − 1 3s2(i+j)

3s2(i+j) −3c2(i+j) − 1

)
,

for each 1 ≤ i, j ≤ N , and thus

Ui,i = 02×2, i = 1, . . . , N,

Ui,j = Uj,i =
(
2β

1/3
N si−j

)−5

Si,j

=
|si−j |−3

16βN

(
3c2(i+j) − 1 3s2(i+j)

3s2(i+j) −3c2(i+j) − 1

)
, i 6= j,

from which de�ning

Ũi,i =
∑
j 6=i

|si−j |−3

16βN

(
3c2(i+j) − 1 3s2(i+j)

3s2(i+j) −3c2(i+j) − 1

)
,

Ũi,j =
|si−j |−3

16βN

(
1− 3c2(i+j) −3s2(i+j)

−3s2(i+j) 3c2(i+j) + 1

)
, i 6= j,

we have V ′′
N (cP ) =

(
Ũi,j

)
i,j=1,...,N

.

Lemma 4.2. The trace for V ′′
N (cP ) is equal to −(N/8) (αN/βN ), where αN =∑N−1

k=1 csc3
(

πk
N

)
and βN is de�ned as in Lemma 4.1.

Proof. In virtue of the above simpli�cations for (20), tr (V ′′
N (cP )) is equal to

µN := − 2
βN

∑
1≤k1<k2≤N

∣∣ζ2k1 − ζ2k2
∣∣−3

.

We have −µN

4

∑N−1
k=1 csc

(
πk
N

)
=
∑

1≤k1<k2≤N 2
∣∣ζ2k1 − ζ2k2

∣∣−3
; on the other hand,

the symmetry of a regular polygon assures∑
1≤k1<k2≤N

2 |2sk2−k1 |
−3 = N

N−1∑
k=1

(2sk)−3 ;
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thus, 2µN

∑N−1
k=1 csc

(
πk
N

)
= −N

∑N−1
k=1 csc3

(
πk
N

)
.

4.2.1. Case 1: N = 3, 4, 5, 6. We can a�ord a result stronger than non-integrability
for these values without using Lemma 4.2, in view of Theorem 2.4. We just have to
prove the following:

Lemma 4.3. V ′′
N (cP ), N = 3, 4, 5, 6, has only four eigenvalues in S: λ1 = −2, λ2 =

λ3 = 0, λ4 = 1. Furthermore, the sets of equivalence classes given by relation
E (λi, λj) ∈ Z in (8) with cardinality greater than one are (assuming j > 4):

1. a double eigenvalue for N = 3, 4;
2. three double eigenvalues for N = 5, 6.

Proof. The eigenvalues of V ′′
3 (cP ) are λ1, λ2, λ3, λ4 and λ5,6 = −1/2. Those of

V ′′
4 (cP ) are λ1, λ2, λ3, λ4 and λ5 =

2(5−3
√

2)
7 , λ6,7 =

2(
√

2−4)
7 , λ8 = 6

√
2−17
7 . The

corresponding relations are

E

(
2
(
5− 3

√
2
)

7
,
2
(√

2− 4
)

7

)
= − 1

14

√
−119 + 336

√
2 +

1
14

√
889− 112

√
2,

E

(
6
√

2− 17
7

,
2
(√

2− 4
)

7

)
= − 1

14

√
1393− 336

√
2 +

1
14

√
889− 112

√
2,

E

(
6
√

2− 17
7

,
2
(
5− 3

√
2
)

7

)
= − 1

14

√
1393− 336

√
2 +

1
14

√
−119 + 336

√
2.

V ′′
5 (cP ) has six di�erent non-trivial double eigenvalues:

λ5,6,7,8 =
√

5− 5±
√

518− 222
√

5
4

, λ9,10 =
√

5− 4
2

.

Relations are

E (λ5,6, λ7,8) =

√
19− 2

√
5 + 6

√
37− 2

√
37
√

5−
√

19− 2
√

5− 6
√

37 + 2
√

37
√

5

2
,

E (λ5,6, λ9,10) =

√
25− 4

√
5−

√
19− 2

√
5− 6

√
37 + 2

√
185

2
,

E (λ7,8, λ9,10) =

√
25− 4

√
5−

√
19− 2

√
5 + 6

√
37− 2

√
185

2
.

The eight non-trivial eigenvalues for V ′′
6 (cP ) are

λ5 =
4
(
29
√

3− 94
)

59
, λ6,7 =

34
√

3−
√

133465− 59584
√

3− 157
118

,

λ8,9 =
2
(
7
√

3− 41
)

59
, λ10,11 =

34
√

3 +
√

133465− 59584
√

3− 157
118

,

λ12 =
4
(
53− 22

√
3
)

59
.
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The relations are

E (λ5, λ6,7) =
√

s1 + 236s2 − s3

118
, E (λ5, λ8,9) =

s4 − s3

118
,

E (λ5, λ10,11) =
√

s1 − 236s2 − s3

118
, E (λ5, λ12) =

s5 − s3

118
,

E (λ8,9, λ10,11) =
√

s1 − 236s2 − s4

118
, E (λ8.9, λ12) =

s5 − s4

118
,

E (λ6,7, λ8,9) =
s4 −

√
s1 + 236s2

118
, E (λ6,7, λ12) =

s5 −
√

s1 + 236s2

118
,

E (λ10,11, λ12) =
s5 −

√
s1 − 236s2

118
,

E (λ6,7, λ10,11) =
√

s1 − 236s2 −
√

s1 + 236s2

118
,

with s1 = 68381 − 8024
√

3, s2 =
√

133465− 59584
√

3, s3 =
√

208801− 54752
√

3,
s4 =

√
70033− 6608

√
3, s5 =

√
−68735 + 41536

√
3.

Let us now determine an upper bound for the amount of meromorphic �rst inte-
grals for the equal�mass Problem. We will reorder non-trivial eigenvalues according
to their multiplicity as in Theorem 2.4. Let Γ be the integral curve given by the
solution z = φcP of XHN,2 and GNVE = Gal (NVEΓ) as in the proof of Theorem
2.4.

1. For N = 3, we have Λ1 = {λ5,6} = {1/2} and the structure of the representa-
tion given in Section A.3.4, modulo equivalence, is(

A1

χA1

)
, A1 ∈ SL2 (C) ,

where either χ = 1 (the connected case) or χ = −1. Hence, GNVE has a
polynomial invariant: J1 = det (v1,v2), in turn allowing the existence of an
additional meromorphic �rst integral around Γ. That possibility, however, is
ruled out by the complex solution given in the proof of Theorem 3.1.

2. For N = 4, we have Λ1 = {λ6,7} and two simple eigenvalues: {λ5} and {λ8};
reordering the blocks in the representation in the same manner, we obtain:

A1

χA1

A2

A3

 , A1, A2, A3 ∈ SL2 (C) .

Hence the action of the Galois group,

(v1,v2,v3,v4) 7→ (A1v1, χA1v2, A2v3, A3v4) , v1,v2,v3,v4 ∈ C2,

has a single polynomial invariant: J1 = det (v1,v2). In other words: there
may be at most one additional meromorphic �rst integral de�ned on a neigh-
borhood of Γ.
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3. For N = 5, we have Λ1 = {λ5,6}, Λ2 = {λ7,8}, Λ3 = {λ9,10}, rendering GNVE

a group whose representation, according to Theorem A.8, may adopt the form:

A1

χ1A1

A2

χ2A2

A3

χ3A3

 ,

where A1, A2, A3 ∈ SL2 (C) and χ1, χ2, χ3 ∈ {1,−1}. The action of GNVE has
three invariants:

J1 = det (v1,v2) , J2 = det (v3,v4) , J3 = det (v5,v6) .

Obviously, {J1, J2} = {J2, J3} = {J1, J3} = 0, {·, ·} being the Poisson
bracket ; see [58, �3.4] for more details. Hence, there may be at most three
additional meromorphic integrals for XH̃N,2

in a neighborhood of Γ.
4. For N = 6, we have Λ1 = {λ6,7}, Λ2 = {λ8,9}, Λ3 = {λ10,11}, and two simple

eigenvalues {λ5} and {λ12}, rendering GNVE a group whose representation
according Subsection A.3.4 may adopt the form:

A1

χ1A1

A2

χ2A2

A3

χ3A3

A4

A5


,

for A1, A2, A3, A4, A5 ∈ SL2 (C) and χ2
i = 1. The scenario is the same as

for N = 5: three invariants in pairwise involution � hence, at most three
additional meromorphic integrals.

Thus follows item 1 in Theorem 3.2. �

Remark 7. The above pattern appears to persist for higher values of N , although
a rigorous proof is still un�nished. See Conjecture 7 for a precise statement.

4.2.2. Case 2: N = 7, 8, 9. Proceeding from Lemma 4.2, it is straightforward to see
the traces for V ′′

N (c) for these three values of N are non-integers since

µ7 = −

√
413 + 56

√
7 cos

(
1
3 arctan 3

√
3
)

2 cos
(

1
6 arctan 3

√
3

13

) ∈ (−12,−11) ,

µ8 =
4
(
−2633 + 766

√
2 + 4

√
118010− 68287

√
2
)

241
∈ (−17,−16) ,

µ9 = −9
2

8
√

3
9 + csc3 π

9 + csc3 2π
9 + csc3 4π

9

2
√

3
3 + csc π

9 + csc 2π
9 + csc 4π

9

∈ (−22,−21) .
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4.2.3. Case 3: N ≥ 10. We will prove V ′′
N (cP ) has at least an eigenvalue greater

than 1. We know the following holds ([1]),

csc x =
1
x

+ f (x) :=
1
x

+
∑
k≥1

(−1)k−1 2
(
22k−1 − 1

)
B2kx2k−1

(2k)!
, (32)

f being analytical for |x| < π (which obviously holds if x = πj
N , j = 1, . . . , N − 1)

and Bk, k ≥ 1, being the Bernoulli numbers ([1, Chapter 23], [81, �3.3]).

Lemma 4.4. For each N ≥ 10, SN := 2
∑N−1

j=1

(
csc2 jπ

N − 5
)
csc jπ

N > 0.

Proof. Recall the Euler-MacLaurin summation formula ([81, �3.3]): for any f ∈
C2s+2 ([a, b]) and n ∈ N, and de�ning h = b−a

n , the following holds,

n∑
j=0

f(a + jh) =

∫ b

a
f

h
+

f(a) + f(b)
2

+
s∑

r=1

h2r−1B2r
f (2r−1)(b)− f (2r−1)(a)

(2r)!
+ Rs,

where Rs = nh2s+2 B2s+2
(2s+2)!f

(2s+2) (α) for some α ∈ (a, a + nh). Substituting in

a = h = π/N , n = N − 2, b = a + hn = π(N−1)
N , f (x) = 2

(
csc2 x− 5

)
csc x and

s = 2, we obtain∫ b

a
f (x) dx

h
=

2N

π

(
cot

π

N
csc

π

N
+ 9 ln

(
tan

π

2N

))
,

f (a) + f (b)
2

= 2
(
csc2 π

N
− 5
)

csc
π

N
,

hB2
f ′ (b)− f ′ (a)

2
=

π cot π
N csc π

N

(
3 csc2 π

N − 5
)

3N
,

h3B4
f ′′′ (b)− f ′′′ (a)

4!
= −

π3 csc6 π
N

(
742 cos π

N + 213 cos 3π
N + 5 cos 5π

N

)
2880N3

> −
π3 (742 + 213 + 5) csc6 π

N

2880N3
= −

π3 csc6 π
N

3N3
,

and

R2 (α) =
csc9 (α) (N − 2) π6P (α)

1935360N6
,

where P (x) := 1110231 + 1256972 cos 2x + 206756 cos 4x + 6516 cos 6x + 5 cos 8x;.
In previous formulae, we have used B2 = 1/6, B4 = −1/30, B6 = 1/42 and several
trigonometric identities in order to express the di�erent terms in a suitable way for
what follows.

The remainder of the proof is a shorter version of the original one, for whose
development we are indebted to C. Simó. Introducing variable w = cos 2x, we may
write the function de�ned by the �rst three terms in P (x) as

P̂ (w) := 903475 + 1256972w + 413512w2.

Then, for each w ∈ [−1, 1], one has P̂ ′ (w) > 0; hence, for x ∈ (0, π) we obtain
P (x) ≥ P̂ (−1) − 6516 − 5 > 0 and therefore R2 (α) > 0, which leads to the
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following:

SN =

∫ b

a
f

h
+

f (a) + f (b)
2

+
2∑

r=1

h2r−1B2r
f (2r−1) (b)− f (2r−1) (a)

(2r)!
+ R2 (α)

>

∫ b

a
f (x) dx

h
+

f (a) + f (b)
2

+
2∑

r=1

h2r−1B2r
f (2r−1) (b)− f (2r−1) (a)

(2r)!

>
2N
(
cot π

N csc π
N + 9 ln

(
tan π

2N

))
π

+ 2
(
csc2 π

N
− 5
)

csc
π

N

+
π cot π

N csc π
N

(
3 csc2 π

N − 5
)

3N
−

π3 csc6 π
N

3N3
.

There is a number of possible ways of proving this latter lower bound strictly posi-
tive. For instance, since, for N ≥ 10, cot π

N > 3, we have

SN >
2N

π

(
cot

π

N
csc

π

N
+ 9 ln

(
tan

π

2N

))
+ 2

(
csc2 π

N
− 5
)

csc
π

N

+
π

N
csc

π

N

(
3 csc2 π

N
− 5
)
−

π3 csc6 π
N

3N3

=: σN .

The �rst term in that sum is exactly 2N
π F

(
tan π

2N

)
, where

F : (0,∞) → R, F (z) :=
z−2 − z2

4
+ 9 ln z,

is strictly decreasing in
(
0,
√

5− 2
)
. Since tan π

2N <
√

5− 2 for all N ≥ 10, we have

F
(
tan

π

2N

)
≥ F

(
tan

π

20

)
> −20

3
,

and thus,

σN >
2N

π

(
−20

3

)
+ 2

(
csc2 π

N
− 5
)

csc
π

N
+

π

N
csc

π

N

(
3 csc2 π

N
− 5
)
−

π3 csc6 π
N

3N3

>
csc π

N

3N3
GN

(
csc

π

N

)
,

where GN (x) := −π3x5 + 3N2 (2N + 3π) x2 − N2 (55N + 15π) and we have used
csc (x) > 1

x for all x ∈ (0, π) (see (32)) and thus − 40N
3π > − 40

3 csc
(

π
N

)
for all N ≥ 2.

It is immediate that G′
N (x) > 0 if

x ∈

(
0,

N

π

(
12 + 18 π

N2

5

)1/3
)
⊃
(

0,
N

π

4
3

)
.

For all N ≥ 3, the latter interval contains
[

N
π , csc π

N

]
, thus allowing us to lower-

bound GN

(
csc π

N

)
by

GN

(
N

π

)
=

N5

π2

(
−1 + 6 +

9π

N
− 55π2

N2
− 15π3

N4

)
> 0, N ≥ 10.

In this way we obtain SN > σN >
csc( π

N )
3N3 G

(
csc π

N

)
> 0, N ≥ 10.

Lemma 4.5. For N ≥ 10, V ′′
N (cP ) has at least one eigenvalue greater than 1.
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Proof. Indeed, let A = (ai,j)i,j=1,...,2N = V ′′
N (cP ). The Rayleigh quotient for vector

v = e2N,2N−1 = (0, 0, · · · , 0, 1, 0)T is

vT Av

vTv
=

vT
N ŨN,NvN

vT
NvN

= a2N−1,2N−1 =

∑N−1
j=1

(
csc3 j π

N

) (
3 cos 2j π

N − 1
)

4
∑N−1

j=1 csc j π
N

,

and it will be strictly greater than 1 if and only if

N−1∑
j=1

(
3 cos

2jπ

N
− 1
)

csc3 jπ

N
− 4

N−1∑
j=1

csc
jπ

N
=

N−1∑
j=1

2
(

csc2 jπ

N
− 5
)

csc
jπ

N
> 0,

which we already know holds for N ≥ 10 by Lemma 4.4. Elementary Linear Algebra
then yields the existence of at least one eigenvalue λ̃ > 1 for V ′′

N (cP ).

Since max S = 1 < λ̃, λ̃ /∈ S and this ends the proof for Theorem 3.2, item 2. �

4.3. Proof isolate: N = 2m equal masses. For the sake of a (modest) diversi�ca-
tion, and in order to show yet another way of confronting issues of non-integrability
with arithmetical tools, we include this alternative proof of a weaker version of
Theorem 3.2, item 2: namely, the case N = 2m with m ≥ 2.

We know we can reorder the eigenvalues so as to obtain λ1 = k − 1 = −2,
λ2 = λ3 = 0 and λ4 = 1. These four eigenvalues belong to S. If all of λ5, . . . , λ2N

did too, their sum

tr (V ′′
N (cP )) = −1 + λ5 + · · ·+ λ2N = −N

∑N−1
k=1

1

sin3(πk
N )

2
∑N−1

k=1
1

sin(πk
N )

 , (33)

would be an integer number µN such that −∞ < µN ≤ 2N − 5 since the only
positive term in S is 1.

Proving the trace of V ′′
N (c), i.e. the sum of its eigenvalues, a non-integer will

be enough to settle the rest of Corollary 4.9; in view of (33), such a condition is
immediate if we prove that any relation of the form

n1

N−1∑
k=1

csc
π

N
k + n2

N−1∑
k=1

csc3 π

N
k = 0, (34)

where n1, n2 ∈ Z, implies n1 = n2 = 0.
As in the previous Subsection, let ζ = cos π

N + i sin π
N be a primitive 2N th root

of unity. Then, sin πk
N = 1

2i

(
ζk−ζ−k

)
for each k, and thus

N−1∑
k=1

csc
π

N
k = 2i

N−1∑
k=1

1
ζk − ζ−k

,
N−1∑
k=0

csc3 π

n
k = −8i

N−1∑
k=1

(
1

ζk − ζ−k

)3

.

Any relation of the form (34) would thus yield

N−1∑
k=1

1
ζk − ζ−k

− α
N−1∑
k=1

(
1

ζk − ζ−k

)3

= 0,

for some α ∈ Q. Singling out summands with index N/2 yields

2
N−1∑
k=1

1
ζk − ζ−k

+
1

ζN/2 − ζ−N/2
= α

[
2

N−1∑
k=1

1

(ζk − ζ−k)3
+

1(
ζN/2 − ζ−N/2

)3
]

= 0,
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which, since ζN/2 = i, and thus ζ−N/2 = −i, becomes

2
N/2−1∑

k=1

1
ζk − ζ−k

− i
2

= α

2
N/2−1∑

k=1

1

(ζk − ζ−k)3
+

i
8

 (35)

for some α ∈ Q. The next lemmae are aimed at proving that such an equation as
(35) is unfeasible for the only possible value of α, which will be found to be −4.

Remark 8. We recall that since dimQ Q (ζ) = N = 2m, the set of roots of unity{
1, ζ, . . . , ζN−1

}
is rationally independent. So is, thus, any set

{
ζkj : 1 ≤ j ≤ M

}
of cardinality M ≤ N − 1, where k > 0 is an arbitrary integer.

We may �nd two possible expressions of 1
ζk−ζ−k depending on the parity of k:

Lemma 4.6. Let k = 1, . . . , N/2. Then,

1
ζk − ζ−k

=

{
− 1

2

∑N/2
j=1 ζ(N−2j+1)k, k odd,

− 1
2

∑2m−n−1

j=1 ζ(2m−n−2j+1)k, k = 2nq, q odd.

Proof. In general, if u = ζk and 1
u−u−1 = − 1

2

(
u + u3 + u5 + · · ·+ ur−3 + ur−1

)
for

some r ≤ N ,

−2 =
(
u− u−1

) (
u + u3 + u5 + · · ·+ ur−3 + ur−1

)
= u2 + u4 + · · ·+ ur−2 + ur −

(
1 + u2 + u4 + · · ·+ ur−2

)
= ur − 1,

meaning ζkr = −1, i.e. kr = N (2p + 1) for some p ∈ N.
1. If k is odd, the facts kr = N (2p + 1) and N = 2m imply k | 2p + 1 and

thus r = q̃2m for some odd q̃; the minimum value of r satisfying this is
r = 2m = N , and indeed 1

ζk−ζ−k = − 1
2

(
ζk + ζ3k + · · ·+ ζ(N−1)k

)
as may be

checked multiplying both sides by ζk − ζ−k.
2. For even k we have k = 2ns < N/2 = 2m−1 for some odd integer s, imply-

ing n < m − 1; furthermore, kr = N (2p + 1) implies sr = (1 + 2p) 2m−n;
since s is odd, s | 2p + 1 and thus r = q̃2m−n for some odd q̃; the mini-
mal such r is r = 2m−n, and again a simple check indeed assures 1

ζk−ζ−k =

− 1
2

(
ζk + ζ3k + · · ·+ ζ(2m−n−1)k

)
.

Let P (ζ) (resp. Q (ζ)) be the polynomial expression of
∑N/2−1

k=1
1

ζk−ζ−k (resp.∑N/2−1
k=1

(
1

ζk−ζ−k

)3

) of degree smaller than or equal to N−1, attained by reduction

via ζN = −1. This means (35) may be written as 2P (ζ)− i
2 = α

(
2Q (ζ) + i

8

)
; let

us write P (ζ) =
∑N−1

k=0 akζk and Q (ζ) =
∑N−1

k=0 bkζk. We are now going to discard
cross-contributions to two particular powers of ζ in these polynomials:

Lemma 4.7. Let k̃ ∈ {1, . . . , N − 1}. Then,
1. if k̃ = N/2, ak̃ = bk̃ = 0. In particular, α = −4.

2. If k̃ = 2m−2, the only summand 1
ζk−ζ−k in P (ζ) (resp.

(
1

ζk−ζ−k

)3

in Q (ζ))

whose polynomial in powers of ζ contains a non-zero coe�cient of ζ k̃, is pre-

cisely 1

ζk̃−ζ−k̃
(resp.

(
1

ζk̃−ζ−k̃

)3

).



30 ON THE MEROMORPHIC NON-INTEGRABILITY OF SOME N-BODY PROBLEMS

Proof.
1. Let j ∈ {1, . . . , N − 1}. We may assume j < N/2 due to (35) and in view of

Lemma 4.6 there is an even rj ∈ {2m−n, N} such that{ (
ζj − ζ−j

)−1 = − 1
2

(
ζj + ζ3j + · · ·+ ζ(rj−1)j

)
,(

ζj − ζ−j
)−3 = − 1

8

(
ζj + ζ3j + · · ·+ ζ(rj−1)j

)3
;

(36)

a) if j is odd, ζj + ζ3j + · · · + ζ(rj−1)j includes exclusively odd powers of

ζ, i.e. aN/2 = 0; this is also the case with
(
ζj + ζ3j + · · ·+ ζ(N−1)j

)3
,

since it is a polynomial containing powers of the form ζ(q1+q2+q3)j where
q1 + q2 + q3 > 1 is an odd positive integer. Thus, in particular bN/2 = 0.

b) If j is even, say j = 2nq with q odd (which implies n < m−1 ), ζj +ζ3j +
· · · + ζ(2m−n−1)j consists of powers of the form ζ q̃2n

with q̃ odd. These
even exponents q̃2n are di�erent (mod 2N) from 2m−1 = N/2. Indeed,
any relation of the form 2n · q̃ = 2m−1 + p2m+1 for some integer p would
imply q̃ = 2m−n−1 + p2m−n+1, impossible since 2m−n−1 + p2m−n+1 is

even. Meanwhile, the exponents in
(
ζj + ζ3j + · · ·+ ζ(2m−n−1)j

)3

are

again of the form (q1 + q2 + q3) j as in a), and thus a particular case of
the form q̃2n just studied, which implies [(q1 + q2 + q3) j]2N 6= [N/2]2N

and thus bN/2 = 0.
Thus, for each j neither of the sum expressions in (36) contains ζN/2,
implying aN/2 = bN/2 = 0, and since i = ζN/2 and

{
ζkj : 1 ≤ j ≤ N − 1

}
is an independent set (Remark 8), the only contribution to i in each side
of (35) is precisely the one we singled out of each sum in that equation,
i.e. − i

2 = α i
8 , meaning α = −4.

2. For the same reasons as in item 1, we may restrict to j ∈ {1, . . . , N/2− 1}.
a) If j is odd, as seen in 1.a) above both ζj + ζ3j + · · · + ζ(2m−1)j and(

ζj + ζ3j + · · ·+ ζ(2m−1)j
)3

are a sum of odd powers of ζ, none of them
congruent to the even number k̃ = 2m−2 (mod 2N).

b) If j < 2m−1 = N/2 is even and j 6= 2m−2, writing j = 2n ·q for some n and
some odd q, implies n < m− 2 (since n = m− 2 would imply q = 1 and

thus j = 2m−2) and ζj + ζ3j + · · · + ζ(2m−n−1)j , has exponents di�erent
modulo N from 2m−2 as is proven by the exact same reasoning as in item
1.b) while since every expression of the form 2m−n−2 +Q2m−n, Q ∈ Z, is

even if n < m− 2. Same applies thus to
(
ζj + ζ3j + · · ·+ ζ(2m−n−1)j

)3

,

as in item 1 mutatis mutandis.

We �nally obtain the result which is central to this Subsection:

Theorem 4.8. For any N ∈ N of the form N = 2m, m ≥ 2,
∑N−1

k=1 csc π
N k

and
∑N−1

k=1 csc3 π
N k are Q-independent, i.e., any equation of the form (34), where

n1, n2 ∈ Z, implies n1 = n2 = 0.

Proof. As said before, any relation of the form (34) may be written in the form (35)
for some α ∈ Q. In virtue of item 1 in Lemma 4.7, α = −4, and (35) thus provides
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for

2
N/2−1∑

k=1

1
ζk − ζ−k

− i
2

= −4

2
N/2−1∑

k=1

1

(ζk − ζ−k)3
+

i
8

 ,

i.e. for 2
∑N−1

k=0 akζk − i
2 = −4

(
2
∑N−1

k=0 bkζk + i
8

)
(according to the notation

introduced immediately prior to Lemma 4.7), which in view of Remark 8 implies
ak = −4bk for k = 1, . . . N − 1. However, let us express ak̃ = αbk̃ for k̃ = 2m−2 =
N/4; this we can do since, in virtue of Lemma 4.7 (item 2), we just have to compare

the coe�cients in ζ k̃ of 1

ζk̃−ζ−k̃
and

(
1

ζk̃−ζ−k̃

)3

. Since ζ4k̃ = ζN = −1, we have

ζ6k̃ = −i = ζ−2k̃, meaning

1
ζ k̃ − ζ−k̃

= −1
2

(
ζ k̃ + ζ3k̃

)
,

(
1

ζ k̃ − ζ−k̃

)3

=
1
4

(
ζ k̃ + ζ3k̃

)
,

which would imply −ζ k̃/2 = αζ k̃/4, i.e. α = −2, an absurd since we know α =
−4.

Hence, the trace of V ′′
3 (cP ), written in (33), is irrational, and thus a non�integer;

in virtue of Theorem 2.2 and Lemma 3.7, we conclude the following:

Corollary 4.9. The d-dimensional N -Body Problem with N equal masses is mero-
morphically non-integrable for N = 2m with m ≥ 2. �

5. Conclusions and work in progress.

5.1. Overview. With the aid of a special case of the Morales�Ramis Theorem
we have established a necessary condition on the existence of a single additional
�rst integral for Hamiltonian systems with a homogeneous potential. Using this
condition we have generalized Theorems 2.5 and 2.6 for N = 3 with arbitrary
masses, and (partially) for N = 3, 4, 5, 6 with equal masses. Finally, we have proven
the non-integrability of the N -Body Problem for N ≥ 7 equal masses.

Proving non�integrability for the given instances of the N -Body Problem re-
quired nothing but the exploration of the eigenvalues of a given matrix, with the
advantage of knowing four of them explicitly: −2, 0, 0, 1. Thus, whether it be for
generalizations of Bruns' Theorem or just for proofs of non-integrability, not all
variational equations were needed but those not corresponding to these four eigen-
values � this is exactly what transpires from the reduction of variational systems
and the introduction of normal variational equations in Section 2.3.2.

The main goal of the present paper was presenting a number of (old and new)
possible ways of proving Hamiltonian non-integrability, rather than exhausting all
possible open problems that might appear. Our immediate goal at this point is
proving one of the following:

Conjecture 1 (Non-integrability of the N -Body Problem). Regardless of the value
of the masses m1, . . . ,mN > 0, the d-dimensional N -Body Problem has no set of
dN meromorphic �rst integrals independent and in pairwise involution.

Conjecture 2. Except for an identi�able, zero-measure family M ∈ RN
+ of mass

vectors (m1, . . . ,mN ), the d-dimensional N -Body Problem has no meromorphic �rst
integral independent and in involution with the classical ones.
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The latter, which in some sense may be seen as a generalization of Bruns' The-
orem 2.5, obviously implies the former whenever (m1, . . . ,mN ) /∈ M, although the
di�erence in complexity between both can only be a source of speculation at this
point. Besides, proving any of these will de�nitely call for a further extension of our
present knowledge regarding central con�gurations and Galois di�erential theory.

5.2. Perspectives on Conjectures 1 and 2.

5.2.1. The N -body problem with arbitrary masses. Numerical exploration does sug-
gest special values of the masses for which at least one of the eigenvalues of V ′′

N may
belong to Table (7). Re�ning of these values has been done in order to obtain gen-
eralizations of relation (31) � to no avail. Thus, most of what follows for arbitrary
masses would be more likely applied to Conjecture 1 than to Conjecture 2.

Let cL = (c1, . . . , cN ) ∈ RNd be the collinear solution de�ned in Section 2.4.3.
We assume

ci : (
√

m1ci, 0, . . . , 0) , i = 1, . . . , N, (37)

are, respectively, the coordinates of the bodies of masses m1, . . . ,mN . Tracing the
steps in Moulton's existence and unicity proof it is easy to prove there exists such
a solution as (37). The very particular form of cL allows for a more speci�c version
of Lemma 3.7. V ′′

N (cL) = (Vi,j)i,j=1,...,N , where for each i, j = 1, . . . , N we have

Vi,i =

 N∑
k 6=i,k=1

mk

|ci − ck|3

A, 1 ≤ i ≤ N,

Vi,j = Vj,i = −
√

mi
√

mj

|ci − cj |3
A, 1 ≤ i < j ≤ N,

where A =
(
−2 0T

0 Idd−1

)
. The following appears to be a direct consequence of

this:

Conjecture 3. The following holds:

Spec
(
V ′′

N,d (cL)
)

= {µ1, . . . , µN ,−2µ1, . . . ,−2µN} ,

where µi ≥ 0 and −2µi has multiplicity d− 1 for every i = 1, . . . , N .

Hence, we may cling to the planar collinear solution

cL : (
√

m1c1, 0,
√

m2c2, 0,
√

m3c3, 0, . . . ,
√

mNcN , 0) .

The main line of study pivots around a property which seems true for all values
numerically tested:

Conjecture 4. There is at least an i = 1, . . . , N such that
∑N

k 6=i,k=1
mk

|ck−ci|3
> 1.

The known result closest resembling our goal is apparently what was done for
m1 = · · · = mN = m in [21], although deviating one, two or more of the masses
away from the common value m has consequences still unknown to us. Anyway,
proving Conjecture 4 proves Conjecture 1. Indeed, we have

V ′′
N (cL) = diag

{(
−2
∑N

k 6=i,k=1
mk

|ck−ci|3
0

0
∑N

k 6=i,k=1
mk

|ck−ci|3

)
: 1 ≤ i ≤ N

}
+BN ,

BN being null along its three main diagonals; hence, inasmuch as was done in
Subsection 4.2.3, we could now proceed to search for vectors yielding a Rayleigh
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quotient greater than 1. One such vector is wi := e2N,2i (i as in Conjecture

4), since the following holds: wT
i Awi

wT
i wi

=
∑N

k 6=i,k=1
mk

|ci−ck|3
> 1; this proves the

existence of an eigenvalue strictly greater than one, and thus not belonging to
S =

{
− 1

2p (p− 3) : p > 1
}
.

The second line of study, using Conjecture 3, would be based on the following:

Lemma 5.1. Assume all of the eigenvalues of V ′′
N (cL) belong in Table (7). Then,

they all belong to S̃ = {−2, 0, 1}.

Proof. For any λ = − 1
2p (p− 3) ∈ S, assume λ = −2µ for some other µ ∈ S̃. Then

de�ning µ = − 1
2q (q − 3), we would have

−1
2
p (p− 3) = q (q − 3) , (38)

implying p = p± = 3
2 ±

1
2

√
∆, where ∆ = −8q2 + 24q + 9. ∆ ≥ 0 only holds for

q ∈
[
3
(
2−

√
6
)
/4, 3

(
2 +

√
6
)
/4
]
⊂ (−1, 4), and for q = 0, 1, 2, 3 the corresponding

values of p± are easily proven to yield either −2 or 0 for both sides of (38).

Hence, if we prove the following we are done with Conjecture 1:

Conjecture 5. There is at least one eigenvalue of V ′′
N (cL) not in {−2, 0, 1}.

Numerical evidence of this is overwhelming.

5.2.2. Other possibilities. Since only four of the eigenvalues are known for sure and
little is known about central con�gurations, most of the remaining possible methods
of proving Conjectures 1 and 2 are likely to be dead-end sidings, at least if we are
expecting simple proofs for these conjectures.

1. Matrix de�ation is already useless for N = 3 in the Euler collinear case cL

and arguably remains so for higher N : if we choose for instance null-vectors

v1 : (
√

m1, 0,
√

m2, 0,
√

m3, 0) , v2 : (
√

m1, 0,
√

m2, 0,
√

m3) ,

for the corresponding 6×6 and 5×5 matrices to be de�ated with, respectively,
it is easy to see that Spec V ′′

N (cL) = {−2, 0, 0, 1, λ,−2λ}, where

λ = −1 +
m1 + m2

|c1 − c2|3
+

m1 + m3

|c1 − c3|3
+

m2 + m3

|c2 − c3|3
. (39)

Proving that one or both of λ and −2λ lies outside S̃ is as open a problem as
the one posed in Conjecture 4 and requires more knowledge on the collinear
solution than we currently have.

2. Another apparent dead end is the use of a more general family of solutions
than the one appearing in Section 4.1. It may be shown that a solution for

V ′
N (c) = c is ĉ =

(∑N
k=1 mk

)−2/3

c, where(
c1

c2

)
=

√
m1

∑
k 6=1

(
akmk

bkmk

)
,

(
c2i−1

c2i

)
=

√
mi

 ∑
k 6=i,k≥2

mk

(
ak

bk

)
−

 ∑
k 6=i,k≥2

mk

( ai

bi

) , i ≥ 2,
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and a2, . . . , aN , b2, . . . , bN are solutions to(
a2

i + b2
i

)3/2
= 1,

(
(ai − aj)

2 + (bi − bj)
2
)3/2

= 1, i 6= j = 2, . . . , N.

A special case for N = 3 is the solution (24) used Section 4.1. The problem,
though, is assuring the existence of such a set {a2, . . . , aN , b2, . . . , bN} ⊂ C
when N ≥ 4. Another problem is determining how many solutions of (17)
do not match pattern ĉ; in particular, determining whether or not (24) and
collinear solutions are the only possible complex solutions of (17) for N = 3.

3. A formula of the sorts of

f (A) =
1

2πi

∫
∂Ω

(A− zId2N )−1
f (z) dz, (40)

where f (z) =
∑∞

k=0 akzk is any given analytical function with a matrix coun-
terpart f(A) :=

∑∞
k=0 akAk and Spec A ⊂ Ω, is hardly of any use here

no matter how simple f is, since everything basically boils down to ob-
serving obstructions to an equality such as (40) on the complementary of
a discrete set and this is arguably the opposite of the way a proper proof
works, especially considering our scarce knowledge of the Hessian matrix A.
This is especially evident when trying to compute, for instance, the matrix
sine f (A) = sin (πA) := 1

2i [exp (iπA)− exp (−iπA)], the matrix exponential
exp : M2N×2N (C) →M2N×2N (C) being de�ned as usual. Proving sin (πA)
has not a single zero (resp. at least a non-zero) eigenvalue would establish
Conjecture 2 (resp. 1), but �nding plausible properties (or patterns, for that
matter) for the in�nite series involved requires a knowledge on A which we
currently don't have, not even for the relatively sparse form A = V ′′

N (cL) it
has in the collinear case.

4. Ger²gorin and Bauer-Fike bounds ([81, �6.9]) are probably just as useless
here since numerical evidence yields non-void pairwise intersection of nearly
all of the disks containing the eigenvalues for a widespread set of values of the
masses.

5. Finally, and in spite of some distant similarities, the reduction of V ′′
N (c) to a

Toeplitz matrix ([13], [32]) seems di�cult to perform, even for solutions such
as those given by the polygonal and collinear con�gurations. Hence, none of
the well-known results of detection of extreme eigenvalues for such matrices
is likely to hold here, at least not regardless of N and c.

5.3. Candidates for a partial result.

5.3.1. The N -body problem with equal masses. We already generalized Bruns' The-
orem for this special case with N ≤ 6, and proved non-integrability for N ≥ 7. Let
cP be the polygonal solution (Example 2.1(5) and Section 4.2). Numerical evidence
supports the following fact for all N ≥ 3: Spec V ′′

N (cP ) = S̃ ∪ {µ1, . . . , µn}, where
S̃ = {−2, 0, 1} (−2 and 1 simple, 0 double) and µ1 ≤ · · · ≤ µn, where:

1. if N is even, µ1 and µn are simple, and the remaining µ2, . . . , µn−1 are double
eigenvalues;

2. if N is odd, all of µ1, . . . , µn are double eigenvalues;

and, most importantly:

Conjecture 6. There is not a single element in {µ1, . . . , µn} belonging to S̃.
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A partial result, weaker than the above Conjecture 2, would be given by both
the multiplicity of the eigenvalues just hinted at and a generalization of Theorem
3.2:

Conjecture 7. H̃N,2 has at most 2
[

N−1
2

]
− 1 �rst integrals, independent both

pairwise and with respect to the classical ones.

We may also hint at the following generalization of Theorem 4.8, although the
result it implies (namely, that the Problem with equal masses is not integrable) has
been already obtained by other means in Theorem 3.2, item 2:

Conjecture 8. For any N ∈ N, N ≥ 7,
∑N−1

k=1 csc π
N k and

∑N−1
k=1 csc3 π

N k are
Q-independent.

5.3.2. The N + 1-body problem with N equal masses. Assume m1 = · · · = mN = 1
and mN+1 > 0 is the additional mass. The next two Lemmae are as immediate to
prove as Lemmae 4.1 and 4.2:

Lemma 5.2. The vector cC = β̃
1/3
N (c1, . . . , cN , cN+1), de�ned by

cj = (c2j−1, c2j) =
{ (

cos 2πj
N , sin 2πj

N

)
, j < N + 1,

(0, 0) , j = N + 1,
(41)

where β̃N := mN+1 + 1
4

∑N−1
k=1 csc

(
πk
N

)
, is a solution for V ′

N+1 (c) = c. �

Lemma 5.3. The trace for V ′′
N+1 (cC) is equal to

µ̃N := −N

2

∑N−1
k=1 csc3

(
πk
N

)
+ 8 (mN+1 + 1)∑N−1

k=1 csc
(

πk
N

)
+ 4mN+1

. �

Observation of Lemma 4.4 for N ≥ 10 and a direct check for N < 0 assure the
following fact:

∑N−1
k=1 csc3

(
πk
N

)
+ 8 > 2

∑N−1
k=1 csc

(
πk
N

)
for all N ; hence, we have

N−1∑
k=1

csc3

(
πk

N

)
+ 8 (mN+1 + 1) > 2

N−1∑
k=1

csc
(

πk

N

)
+ 8mN+1,

and thus
∑N−1

k=1 csc3(πk
N )+8(mN+1+1)

2
∑N−1

k=1 csc(πk
N )+8mN+1

> 1; hence, as was already stated in reference

[105, Section 3.2]:

Corollary 5.4. Given N , tr V ′′
N+1 (cC) is a non-integer for all but a �nite number

of values of mN+1 > 0. The cardinality of this exceptional set depends on N . �

Let cC be as in Lemma 5.2. Numerics seem to corroborate the following asser-
tions:

Conjecture 9. V ′′
N+1 (cC) has at least an eigenvalue λ > 1.

Conjecture 10. V ′′
N+1 (cC) has all of its eigenvalues out of S, except for −2 and

1 (simple) and 0 (double).

Proving these would settle the matter for Conjectures 1 and 2, respectively on
HN+1 with arbitrary mN+1 > 0 and m1 = · · · = mN .
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5.3.3. The Spatial Four-Body Problem. Let cT = (c1, c2, c3, c4) ∈ R12 be a vector
such that V ′′

4,3 (cT ) = cT and c1, c2, c3, c4 are the vertexes of a regular tetrahedron.
Such a vector exists in virtue of Remark 5 and what was said in Example 2.1(2),
and in turn yields a homographic solution for the three-dimensional Four-Body
Problem. The following appears to hold:

Conjecture 11. The eigenvalues of V ′′
4,3 (cT ) are

λ1 = −2, λ2 = λ3 = λ4 = 0, λ5 = λ6 = λ7 = 1, λ8, . . . , λ12,

at least one of λ8, . . . , λ12 being a non-integer.

A stretch may be attempted by asking for Conjecture 2 to hold, at least for
a generic family of masses m1,m2,m3,m4. cT , as is the case for the triangular
solution used in Subsection 4.1, is fairly easy to compute; the main drawback here
is computing the eigenvalues of V ′′

4,3 (cT ).

6. Hamiltonians with a homogeneous potential.

6.1. Higher variational equations. All of what follows is the product of a per-
sonal communication from J.-P. Ramis during a short-term stay in Toulouse in 2005
as well as a couple of conversations with J.-P. Ramis and J.-A. Weil in Luminy and
Barcelona in 2006.

The �rst variational equations along solutions of the form φ (t) c such that (17)
holds are expressible in terms of hypergeometric functions, as was seen in Subsection
2.3. A �rst step should be done forward into expressing higher-order variational
equations along those solutions in terms of generalized hypergeometric functions;
the most general instance of such functions for which a signi�cant amount of study
has been done is the Meijer G-function ([26, �5.3]),

Gm,n
p,q

(
x

a1 · · · ap

b1 · · · bq

)
:=

1
2πi

∫ ∏m
j=1 Γ(βj − τ)

∏m
j=1 Γ(1− αj + τ) xτ∏p

j=n+1 Γ(αj − τ)
∏q

j=m+1 Γ(1− βj + τ)
dτ (42)

where m,n, p, q ∈ N. The change t 7→ x will probably involve a branched covering
much in the way explained in Subsection 2.3. Hence, the study of monodromy
and Galois groups done by Yoshida, Morales-Ruiz and Ramis is here substituted
in by the computation of those groups for di�erential equations with functions
of the form (42). Since higher variational equations are solvable by quadratures
along any known integral curve (using variation of constants), the corresponding
linear di�erential operators given by (42) are reducible; this places us in the least
studied case, since most of the bibliography concerning a Galoisian approach to
generalized hypergeometric functions corresponds to the irreducible case (e.g. [11],
[40]). The most reliable sources concerning this are probably [17], [18], [19] and
[56], in which relevant information has been collected on the Galois group G of
these operators: for instance, that G is the semi-direct product of a reductive group
(computable in terms of the �rst variational equations), and its unipotent radical;
furthermore, a thorough study has been made of this unipotent radical in the �rst
three references, for instance concerning its usual commutativity. However, it is still
not clear whether or not this information (especially the non-trivial direct product
structure) is useful for our purposes here. And even if it were, and the aforesaid
direct product were to yield families of masses m1, . . . ,mN for which the identity
component of G is non-commutative, the task would still remain to �nd such families
� a rather involved task ahead of us, considering we have not one but N parameters
to work with.
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Appendix A. Useful results from Algebraic Geometry. See [9], [12], [36],
[46], [58], [77] or [80] for technical details and further information.

A.1. Preliminaries. From now on, each group G will have its unit element written
as eG, subindex G being dropped for the most part. It is straightforward to establish
that the kernel of any group homomorphism, as well as the image of a normal
subgroup under an epimorphism is always a normal subgroup of the source group.
A sequence of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gm, (43)

for any given m ∈ N, is called a tower of subgroups. Tower (43) is called normal
if Gi+1 is a normal subgroup of Gi for each i = 0, . . . ,m − 1. A group G is called
solvable if there is at least one m ∈ N such that G has a normal tower (43) in which
Gm = {eG}. It is a known fact that given a normal subgroup H ⊂ G then G is
solvable if and only if H and G/H are solvable; in particular, f : H → H ′ = f (H)
given, ker f is a solvable normal subgroup and thus H/ ker f ' H ′ is solvable as
well, meaning: solvability is preserved under group epimorphisms.

Given a �nite-dimensional vector space V over an algebraically closed �eld K, let
S be a �nitely-generated K-algebra of K-valued functions on V . Two such algebras
are:

1. the K-algebra K [V ] of polynomial functions on V , i.e. functions of the form
f = P ◦ ϕ : V → K, P : Kn → K being a polynomial, P ∈ K [x1, . . . , xn],
and ϕ being an isomorphism between V and Kn;

2. and the quotient �eld of K [V ], i.e. the K-algebra K (V ) of rational functions
de�ned on V , i.e. functions of the form f = F ◦ ϕ : V → K, F : Kn → K
being a quotient of polynomials, P (x1, . . . , xn) /Q (x1, . . . , xn) with P,Q ∈
K [x1, . . . , xn], and again ϕ being an isomorphism between V and Kn.

If S = K [V ] it may be easily proven (e.g. [46, Proposition 5.2 (Chapter 10)])
that the sets Z (I) of zeros of ideals I ∈ S are a�ne varieties over K ([36, �1.1])
and thus closed sets of a certain topology called the Zariski topology ([36, �1.2]).
For the remainder of this Section, any reference to topology will be henceforth set
exclusively in either the Zariski topology or the one therefrom induced on subsets
or cartesian products.

We recall a topological space X is irreducible if two non-empty open subsets of
X have a non-empty intersection. In the next results, as said in the previous para-
graph, subsets X ⊂ V will be systematically endowed with the subspace topology
induced by the Zariski topology of V . It is easy to establish that V is irreducible
([80, Corollary 1.3.8]) and thus:

Lemma A.1. Any non-empty open set A ⊂ V is dense in V . �

A.2. Linear algebraic groups and Lie algebras.

A.2.1. Linear algebraic groups. Recall an algebraic group over K as being an
a�ne algebraic variety over K endowed with a group structure such, that the two
maps µ : G × G → G, ι : G → G de�ned by µ (x, y) = xy and ι (x) = x−1 are
morphisms of varieties. In particular, a special type of algebraic group is a linear
algebraic group which is de�ned as a Zariski closed subgroup of some GL (V ),
V being �nite-dimensional K-vector space as above. We also recall ([36, �7.4])
a morphism of algebraic groups as being a group homomorphism φ : G → G′

which is also a morphism of varieties; whenever G′ = GLn (K) we say morphism φ is
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a (rational) representation; in light of this, it is usually advisable to view GL (V )
as an algebraic group all its own, specifying its Zariski topology in an unambiguous
way by any arbitrary choice of basis for V ' Kn since any such choice in Kn

corresponds to an inner automorphism x 7→ yxy−1 in GLn (K). Since the product
topology in G1×· · ·×Gn is precisely the initial topology with respect to projection
maps πi : G → Gi de�ned by πi (g1, . . . , gn) := gi, each of these projections will be
continuous with respect to the Zariski topology in G. In particular, if G1, . . . , Gn are
algebraic groups, then for any connected subgroup H ⊂ G1 × · · · ×Gn each image
πi (H), i = 1, . . . , n, is a connected subgroup of Gi with respect to the Zariski
topology in Gi.

A representation is called faithful if it is injective. Given any representation
φ : G → GL (V ) of an algebraic group G, the operation

G× V, (x,v) 7→ x · v := φ (x)v,

is clearly a group action of G on V . In this case V is usually called a (rational)
G-module. For any algebraic group G acting over V , we call Gv = O (v) =
{g · v : g ∈ G} the G-orbit of v ∈ E. G-module V is called faithful if (x,v) 7→ x ·v
is faithful as a group action, i.e. if φ is a faithful representation. Module V is called
irreducible if it has exactly two submodules: {0} and V itself. More generally,
a �nite-dimensional G-module V is completely reducible if for every submodule
V1 ⊂ V there is another submodule V2 ⊂ V such that V = V1 ⊕ V2 or, equivalently,
if V is the direct sum of some of its irreducible submodules.

Given an algebraic group G, the identity component G0 of G is the unique
(topologically) irreducible component containing eG. Any algebraic group has a
unique largest normal solvable subgroup, which is automatically closed ([36, Corol-
lary 7.4 and Lemma 17.3(c)]). Its identity component is thus the largest connected
normal solvable subgroup of G; it is called the radical of G and denoted R (G).
The subgroup of R (G) consisting of all its unipotent elements (i.e., those ele-
ments expressible as the sum of the identity and a nilpotent element) is normal in
G; it is called the unipotent radical ([36, �19.5]) of G, denoted as Ru (G), and
may be characterized as the largest closed, connected, normal subgroup formed by
unipotent elements of G. If R (G) is trivial and G 6= {e} is connected, G is called
semisimple; this is the case, for instance, for SLn (K) ([36, �19.5]). If G is semi-
simple, then every G-module V is completely reducible. G is furthermore called
simple if it has no closed connected normal subgroups other than itself and {e};
SLn (K) is again a valid example ([36, �27.5]).

A.2.2. Lie algebras. Everything de�ned and asserted in this Subsection is found
and veri�ed in detail in [12, Chapter 1, from �3 onward], [36, Chapters 9 and 10],
[58, Chapters 2, 3 and 4] or [63, Chapters 1 and 3].

A Lie algebra over K is a particular kind of algebra over a �eld; it is de�ned as
a K-vector space a together with a bilinear binary operation [·, ·] : a× a → a, called
the Lie bracket, such that [x,x] = 0 for all x ∈ a and the Jacobi identity holds:

[x, [y,z]] + [y, [z,x]] + [z, [x,y]] , x,y,z ∈ a.

Lie subalgebras will be accordingly de�ned as subspaces of a Lie algebra which
are closed under the Lie bracket. An ideal of the Lie algebra a is a subspace h of
a such that [a,x] ∈ h for all a ∈ g and x ∈ h. All ideals are trivially subalgebras,
although the converse is not always true.
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The commutator series of a Lie algebra a, sometimes also called the derived
series, is the sequence of subalgebras recursively de�ned by ak+1 :=

[
ak, ak

]
, k ≥ 0,

with a0 := a. A Lie algebra a is solvable if its Lie algebra commutator series
{
ak
}

k
vanishes for some k. a is simple if it is not abelian and has no nonzero proper ideals;
it is straightforward to prove that solvable implies not simple for any Lie algebra.
A Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

Let G be an algebraic group over C; since, being an a�ne variety, it may be
endowed with the usual complex topology as well as with the Zariski topology, it
is actually a Lie group ([63, �1 (Chapter 1)]), i.e. a group which is also a di�er-
ential manifold, such that the group operations are compatible with the di�erential
structure. To every Lie group G we can associate a Lie algebra (whose indication
in blackletter, g, is usually the only change in notation), in a way completely sum-
marizing the local structure of the group; the underlying vector space of g is the
tangent space of G at the eG, and we can heuristically characterize all elements of
the Lie algebra as elements of G which are �in�nitesimally close� to eG. We will
usually call g the Lie algebra of G, writing it alternatively as Lie (G). See [36,
Chapter 1] for concise de�nitions and properties. It is also reasonably immediate
to prove that the Lie algebra of a semisimple algebraic group is semisimple itself.

We have the following result (see also [58, Proposition 2.2]):

Lemma A.2. sl2 (C), i.e. the Lie algebra of SL2 (C), has no simple subalgebras
other than itself.

Proof. Indeed, the dimension of sl2 (C) is three, and thus any proper subalgebra of
sl2 (C) should be of dimension smaller than or equal to two; all such subalgebras
are solvable ([58, �2.1]), thus not simple.

A.3. Rational invariants.

A.3.1. Introduction. See [9, �2] for more details on the de�nitions and concepts
introduced in the following paragraph.

Let G ⊂ GL (V ) be a linear algebraic group. We may de�ne, as is done in [58,
�4.2], the action of G on C [V ] or C (V ):

g · f := f ◦ g−1, g ∈ G, f ∈ C (V ) .

We de�ne by C [V ]G (resp. C (V )G) the C-algebra of G-invariant elements of C [V ]
(resp. C (V )); hence the denomination rational invariant for any f ∈ C (V )G.
We may furthermore assume G is connected, since G has an invariant if, and only
if, G0 has an invariant; this fact, which is a consequence of the �nite index of G0

in G, may be found proven in the �rst Lemma of [106, Chapter 1]; see also [9]. Let
G be an algebraic group, V be a G-module and LG the �eld of rational invariants
of V as a G-module. We say G is r-Ziglin if deg tr

(
LG
)

= r.

Lemma A.3. Let g be a simple Lie subalgebra of
⊕n

i=1 sl2 (C) = Lie (SL2 (C)n).
Then g ' sl2 (C).

Proof. For each i = 1, . . . , n let πi|g : g → sl2 (C) , (x1, ...,xn) 7→ xi, be the
restriction of the canonical projection πi :

⊕n
i=1 sl2 (C) → sl2 (C) to g. There is

at least one i such that πi|g (g) 6= {0}, since each element x = (x1, ...,xn) ∈ g is
precisely equal to (π1 (x) , ..., πn (x)), and were πi|g ≡ {0}, i = 1, ..., n, we would
then have g = {0}. Thus, there is at least one i for which πi|g has a non-trivial
image πi (g) 6= {0}, itself a subalgebra of the Lie algebra sl2 (C) which admits no
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simple subalgebras other than itself, as said in Lemma A.2; this latter fact implies
πi (g) = sl2 (C) ' g/ ker πi|g. But g is simple as well, and thus the ideal ker πi|g
must be either {0} or g. It is clear that ker πi|g = {0}, since ker πi|g = g would
imply sl2 (C) ' g/ ker πi|g = {0} which is obviously absurd.

A.3.2. Basic premises. We will now establish the hypotheses for the rest of the
Section.

First of all, we will adopt the following notation for each A ∈ SL2 (C):

[A]k :=
(
A(0), A(1), . . . , A(k−1)

)
=


A(0) 0 · · · 0

0 A(1) . . .
...

...
. . .

. . . 0
0 · · · 0 A(k−1)

 , (44)

where A(0) := A,A(1), . . . , A(k−1) are bound to be equivalent to A in the sense
of equivalence of representations: there are B(1), . . . , B(k−1) ∈ GL2 (C) such that

A(i) = B(i)A(i)
[
B(i)

]−1
regardless of the choice of A(i).

Let k ∈ N and χ = (χ1, . . . , χk−1) ∈ {±1}k−1 be any vector such that either
χi = 1 for i = 1, . . . , k − 1 or both 1 and −1 appear as entries in χ. We denote

[A]χk :=
(
A(0), χ1A

(1), . . . , χk−1A
(k−1)

)
, (45)

again assuming A(0) := A,A(1), . . . , A(k−1) to be equivalent to A in the sense of
representation equivalence as was de�ned above.

All through subsections A.3.3 and A.3.4, we will assume the following: G will
be an algebraic group and V a G-module such that G is faithfully represented as a
subgroup of SL2 (C)n,

ρ : G → SL2 (C)n
.

We will assume πi (G) = SL2 (C) for i = 1, . . . , n,

πi : SL2 (C)n → SL2 (C) , (A1, . . . , An) 7→ Ai,

being the i-th projection for each i = 1, . . . , n.

A.3.3. Case 1. G is connected.

Lemma A.4. Let G be an algebraic group satisfying the hypotheses in A.3.2, with
the additional property of being connected. Then,

1. G is semisimple;
2. G ' SL2 (C)m for some m ≤ n.
3. ρ (G) =

(
[A1]k1

, . . . ., [Am]km

)
, where k1 + · · ·+ km = n.

Proof.
1. The hypotheses imply V is a completely reducible G-module. In order to

further prove G semisimple, let us assume the contrary, i.e. that R (G) 6= {e};
then not every πi (R (G)) would be nontrivial since ρ is injective and thus
so is ρ|R(G), i.e. R (G) is represented faithfully as a subgroup of SL2 (C)n:
R (G) ↪→ π1 (R (G)) × · · · × πn (R (G)) ⊂ SL2 (C)n. But this is absurd since
πi (R (G)) is trivial, i = 1, . . . , n; indeed, each πi (R (G)) ⊂ SL2 (C) is a
normal, connected, solvable subgroup of a simple algebraic group since πi is a
group epimorphism and SL2 (C) is simple. Thus, πi (R (G)) = {Id2} for each
i = 1, . . . , n implying R (G) = {e}, i.e. G is a semisimple algebraic group.
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2. In virtue of the preceding item, g := Lie (G) is a semisimple Lie algebra. Let
g = g1 ⊕ · · · ⊕ gm be its decomposition in simple algebras. From Lemma
A.3, we know gi ' sl2 (C) , i = 1, . . . ,m, and thus g '

⊕m
i=1 sl2 (C). Since

ρ(G) ⊂ SL2 (C)n and ρ is faithful, the rest follows from the standard theory
of representations of semisimple groups (see [36, Chapter XI]); indeed, if G =
G1×· · ·×Gm is the decomposition in simple algebraic groups, with Lie (Gi) =
gi = sl2 (C), i = 1, ...,m, out of the two possibilities for each Gi, SL2 (C) or
PSL2 (C) (see [36, �32.4]), only SL2 (C) is possible, since ρ(G) ⊂ SL2 (C)n.

3. Every representation of the semisimple group G ' SL2 (C)m is a direct sum
of completely irreducible representations ([30, Prop. 1.8]).

A.3.4. Case 2. G is not connected. Let us now assume G ful�lls all of the hypotheses
in the above Lemma, save for connectivity. From this point onward we will write
ρ (g) and g indistinctively for elements of G. With the notation σg (h) := ghg−1,
let Int

(
G0
)
be the group of internal automorphisms of G0 ' SL2 (C)m:

Int
(
G0
)

:= {σg : G0 → G0 : g ∈ G0}.

Given g ∈ G ⊂ SL2 (C)n, the automorphism σg of G0 is in fact internal, i.e., it
belongs to Int

(
G0
)
, since any automorphism of the form

σ : SL2 (C)m → SL2 (C)m
, σ (A1, . . . , Am) = (σ1A1, ..., σmAm) ,

(σi being the restriction of σ to the i-th component) which preserves the order of
the SL2 (C)-blocks of the representation, is given by automorphisms

σi : SL2 (C) → SL2 (C) .

But it is well-known that the group of automorphisms of SL2 (C) is Int (SL2 (C)).
Another somewhat abstract argument is that the group G0 ' SL2 (C)m is a se-
misimple, simply connected algebraic group and for such groups Aut

(
G0
)
splits

as a product of the �nite group Γ of symmetries of the Dynkin diagram (which
in Aut

(
G0
)
is given as a permutation of elements g = (A1, ..., Am) of G0) and of

Int
(
G0
)
,

Aut
(
G0
)
' Γ · Int

(
G0
)
,

and here the action of G ⊂ SL2 (C)n over G0 preserves the order in (A1, ..., Am)
(see [36, �27.4], [63, p. 35, 203]). Now we can de�ne an epimorphism

Ψ : G → Int
(
G0
)
, Ψ(g) : G0 → G0, Ψ(g) = σg.

As usual we denote

ZG (H) = {g ∈ G : gh = hg, h ∈ H} , Z (H) = {g ∈ H : gh = hg, h ∈ H} ,

the centralizer (in G) and center of a subgroup H ⊂ G, respectively. It is clear
that Int

(
G0
)

= G0/Z
(
G0
)
and that ker (Ψ) is given by all the elements in G which

commute with the elements of G0, i.e., by ZG

(
G0
)
. In virtue of Schur's Lemma

[30] (applied to any of the irreducible representations of G in SL2 (C)n), we may
assert that

ZG(G0) = Z(G) = G ∩ {(χ1Id2, ..., χnId2) : χi ∈ {±1}},
Id2 denoting the identity matrix in SL2 (C). Indeed, by Schur's Lemma the center
of SL2 (C) is given by the scalar matrices (i.e. Id2 multiplied by a constant), and
the scalar matrices inside SL2 (C) are ±Id2 and it is clear that Z(G) ⊂ ZG(G0),
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the equality also following from Schur's Lemma. Thus, applying the isomorphism
theorem we conclude:

Lemma A.5. G/Z(G) ' G0/Z(G0).�

Corollary A.6. G = Z(G) ·G0

Proof. Z(G) ·G0/Z(G) ' G0/Z(G) ∩G0 ' G0/Z(G0) ' G/Z(G0). Hence

Id2n ' G/Z(G)/Z ·G0/Z(G) ' G/Z(G0).

Corollary A.7. G = Z(G)/Z(G0)×G0.

Proof. We prove G/G0 ' Z(G)/Z(G0):

G/G0 ' Z(G) ·G0/G0 ' Z(G)/G0 ∩ Z(G) ' Z(G)/Z(G0).

We remark that it is possible to immerse Z(G)/Z(G0) in G.
De�ning Eki

:= {(Id2, χ1Id2, . . . , χki−1Id2) : χi ∈ {±1}}, a straightforward ar-
gument yields

Z(G)/Z(G0) = G ∩
m∏

i=1

Eki
= {(B1, . . . , Bm) : Bi ∈ Eki

} ,

and thus G = Z(G)/Z(G0)×G0; hence, we have proven:

Theorem A.8. Let G be an algebraic group satisfying the hypotheses in Subsection
A.3.2. Then, there exist integers k1, . . . , km such that k1 + · · ·+ km = n, ki > 1 for
i = 1, . . . , r and kr+1 = · · · = km = 1, and there exist r sets X1, . . . , Xr of vectors
χ satisfying the hypotheses in Subsection A.3.2, for which each element of G is

expressible, using (45), as diag
(
[A1]

χ1
k1

, . . . , [Ar]
χr

kr
, Ar+1, . . . , Am

)
where χi ∈ Xi

for i = 1, . . . , r and Ai ∈ SL2 (C) for i = 1, . . . ,m. �

Remarks A.1.
1. The thesis of the above Theorem implies that all representations of G are

equivalent to one for which each element of the group is expressed as:

A1

χ1,1A1

. . .

χ1,k1−1A1

. . .

Ar

χr,1Ar

. . .

χr,kr−1Ar

Ar+1

. . .

Am


for A1, . . . , Am ∈ SL2 (C) and some set {χ1,1, . . . , χm,km−1} ⊂ {±1}.
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2. For this particular structure of the group G, Kolchin's Theorem [42, p. 1152-
1153] on algebraic dependence in the context of Picard-Vessiot theory appears
as a corollary of the above Theorem A.8. We do not extend on this further,
though.

3. Case r = 0 is possible in the above theorem, it corresponds to G = SL(2,C)n.

A.3.5. Invariants of G. We are now going to analyze the rational invariants of
G. We �rst need to recall the two classical theorems concerning the invariants of
SL2 (C). Consider the faithful representation of SL2 (C) on SL2 (C)k de�ned by

SL2 (C) → SL2 (C)k
, A 7→ (A, . . . , A) .

k is assumed to be greater than one. The action of SL2 (C) on V = C2k is given
by (v1, . . . ,vk) 7→ (Av1, . . . , Avk); in canonical coordinates, we adopt the notation
vi : (xi, yi)

T . A set of generators of the algebra RG (where R = C [V ]) of polynomial
invariants of this representation of SL2 (C) is formed by Ji,j := det (vi,vj) = xiyj−
xjyi, i < j. This is exactly the �rst theorem of invariants of unimodular groups
applied to SL2 (C) ([95, p. 30]).

Lemma A.9. Let L = C (V ) be the �eld of rational functions over V . Then,
deg tr

(
LSL2(C)

)
= 2k − 3.

Proof. deg tr
(
LSL2(C)

)
= dim V −∆, where ∆ is the maximal dimension of orbits

of the G-module V (see [9, Theorem 2.10]). ∆ = 3: indeed, the orbit along a given
v = (v1, . . . ,vk) ∈ V is

Ov =
{

A

(
x1 x2 · · · xk

y1 y2 · · · yk

)
=: AC : A ∈ SL2 (C)

}
,

and dim (Ov) = dim (SL2 (C)) − ∆v , where ∆v is the dimension of the isotropy
group in v. We may now choose C such that rank (C) = 2 (for instance taking
v1,v2 linearly independent); in that case, if a matrix A were such that AC = C,
that would imply that v1,v2 be a basis de ker (A− Id2); since

dim (ker (A− Id2)) = 2− rank (A− Id2) ,

this implies A = Id2; therefore, ∆v = 0 for this choice of v. Hence, dim (Ov) =
3.

Remarks A.2.
1. An alternative proof can be given using the dimension of the associated Grass-

mannian.
2. Another proof could be done using that deg tr

(
RSL2(C)

)
= 2k − 3 and that

Q
(
RSL2(C)

)
= LG (due to the fact that G is semisimple).

3. Lemma A.9 is obviously also true for the equivalent representation A 7→ [A]k
given in (44).

Let G be a group satisfying the hypotheses in Subsection A.3.2.
Assume G is connected; Lemma A.4 assures us that

G =
{(

[A1]k1
, . . . , [Am]kr

)
: A1, . . . , Ar ∈ SL2 (C)

}
,

for some r ∈ N∪{0}. Our G-module is now V = C2n. We de�ne R = C [V ]. Assume
ki > 1, i = 1, . . . , r without loss of generality, otherwise de�ning r as maximal with
this property. Then, G is (

∑r
i=1 2ki − 3r)-Ziglin due to Lemma A.9.
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Let G be any group, whether or not connected, albeit still under the hypotheses
of Theorem A.8. G0 is s-Ziglin if and only if G is (see for instance [9, Prop. 2.9]).
We �nally obtain, by this and the previous paragraph:

Theorem A.10. G is (
∑r

i=1 2ki − 3r)-Ziglin. �

Appendix B. Computations for Theorem 3.1. We have, using the notation
in Subsection 3.2.2,

D1,2 =
(

d1,3

d2,4

)
:=
√

m2q1 −
√

m1q2 =
√

m1m2m
1/3

(
α
β

)
,

D1,3 =
(

d1,5

d2,6

)
:=
√

m3q1 −
√

m1q3 =
√

m1m3m
1/3

(
2α
0

)
,

D2,3 =
(

d3,5

d4,6

)
:=
√

m3q2 −
√

m2q3 =
√

m2m3m
1/3

(
α
−β

)
,

and thus, using the fact that α2 + β2 = 1,

D̃1,2 =
√

d2
1,3 + d2

2,4 =
√

(α2 + β2) m1m2m2/3 =
√

m1m2m2/3,

D̃1,3 =
√

d2
1,5 + d2

2,6 = 2
√

α2m1m3m2/3,

D̃2,3 =
√

d2
3,5 + d2

4,6 =
√

(α2 + β2) m2m3m2/3 =
√

m2m3m2/3;

take into consideration D̃1,2, D̃1,3, D̃2,3 need not be Euclidean norms (hence the
unusual notation, as opposed to the one introduced in Section 1), though this will
be the case if the terms inside the parentheses are real. Furthermore, we will at this
point assume that either α ∈ (0,∞) or α = reθi, with θ ∈ [0, π), as is the case in the
proof of Theorem 3.1: α = 1

2 , −1+
√

3i
4 . In both cases, we have

√
α2 = α according

to our positive determination of the square root.
We know, using the notation in Subsection 3.2.2, that

V ′′
3 (q) =

 A1,1 A1,2 A1,3

A1,2 A2,2 A2,3

A1,3 A2,3 A3,3

 ,
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where

A1,1 = m
3
2
1


(D̃2

1,2−3d2
1,3)m

5
2
2

D̃5
1,2

+
(D̃2

1,3−3d2
1,5)m

5
2
3

D̃5
1,3

− 3d1,3d2,4m
5
2
2

D̃5
1,2

− 3d1,5d2,6m
5
2
3

D̃5
1,3

− 3d1,3d2,4m
5
2
2

D̃5
1,2

− 3d1,5d2,6m
5
2
3

D̃5
1,3

(D̃2
1,2−3d2

2,4)m
5
2
2

D̃5
1,2

+
(D̃2

1,3−3d2
2,6)m

5
2
3

D̃5
1,3

 ,

A1,2 =
m2

1m
2
2

D̃5
1,2

(
3d2

1,3 − D̃2
1,2 3d1,3d2,4

3d1,3d2,4 3d2
2,4 − D̃2

1,2

)
,

A1,3 =
m2

1m
2
3

D̃5
1,3

(
3d2

1,5 − D̃2
1,3 3d1,5d2,6

3d1,5d2,6 3d2
2,6 − D̃2

1,3

)
,

A2,2 = m
3
2
2


(D̃2

1,2−3d2
1,3)m

5
2
1

D̃5
1,2

+
(D̃2

2,3−3d2
3,5)m

5
2
3

D̃5
2,3

− 3d1,3d2,4m
5
2
1

D̃5
1,2

− 3d3,5d4,6m
5
2
3

D̃5
2,3

− 3d1,3d2,4m
5
2
1

D̃5
1,2

− 3d3,5d4,6m
5
2
3

D̃5
2,3

(D̃2
1,2−3d2

2,4)m
5
2
1

D̃5
1,2

+
(D̃2

2,3−3d2
4,6)m

5
2
3

D̃5
2,3

 ,

A2,3 =
m2

2m
2
3

D̃5
2,3

(
3d2

3,5 − D̃2
2,3 3d3,5d4,6

3d3,5d4,6 3d2
4,6 − D̃2

2,3

)
,

A3,3 = m
3
2
3


(D̃2

1,3−3d2
1,5)m

5
2
1

D̃5
1,3

+
(D̃2

2,3−3d2
3,5)m

5
2
2

D̃5
2,3

− 3d1,5d2,6m
5
2
1

D̃5
1,3

− 3d3,5d4,6m
5
2
2

D̃5
2,3

− 3d1,5d2,6m
5
2
1

D̃5
1,3

− 3d3,5d4,6m
5
2
2

D̃5
2,3

(D̃2
1,3−3d2

2,6)m
5
2
1

D̃5
1,3

+
(D̃2

2,3−3d2
4,6)m

5
2
2

D̃5
2,3

 .

In this case, thus, we have

A1,1 =
1
m

 4(1−3α2)m2−m3α−3

4 −3αβm2

−3αβm2
8(1−3β2)m2+m3α−3

8

 ,

A1,2 =
√

m1
√

m2

m

(
3α2 − 1 3αβ

3αβ 3β2 − 1

)
,

A1,3 =
√

m1
√

m3

m

(
α−3/4 0

0 −α−3/8

)
,

A2,2 =
1
m

( (
1− 3α2

)
(m1 + m3) 3αβ (m3 −m1)

3αβ (m3 −m1)
(
1− 3β2

)
(m1 + m3)

)
,

A2,3 =
√

m2
√

m3

m

(
−1 + 3α2 −3αβ
−3αβ −1 + 3β2

)
,

A3,3 =
1
m

 4(1−3α2)m2−m1α−3

4 3αβm2

3αβm2
8(1−3β2)m2+α−3m1

8

 ,
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which under the assumption α3 = 1/8 become

A1,1 =
1
m

(
m2

(
1− 3α2

)
− 2m3 −3αβm2

−3αβm2 m2

(
1− 3β2

)
+ m3

)
,

A1,2 =
√

m1m2

m

(
3α2 − 1 3αβ

3αβ 3β2 − 1

)
,

A1,3 =
√

m1m3

m

(
2 0
0 −1

)
,

A2,2 =
1
m

( (
1− 3α2

)
(m1 + m3) 3αβ (m3 −m1)

3αβ (m3 −m1)
(
1− 3β2

)
(m1 + m3)

)
,

A2,3 =
√

m2m3

m

(
3α2 − 1 −3αβ
−3αβ 3β2 − 1

)
,

A3,3 =
1
m

(
−2m1 +

(
1− 3α2

)
m2 3αβm2

3αβm2 m1 +
(
1− 3β2

)
m2

)
The characteristic polynomial for V ′′

3 (c) is P (x) = x2(x− 1)Q(x)
m2 , where

Q (x) = p1p3m
2
1+p2

1(x−1)m2
2+p1p3m

2
3+p1p2m1m2+2(2+x)p4m1m3+p1p2m2m3,

and

p1 (x) = x + 3
(
α2 + β2

)
− 1,

p2 (x) = 3α2 (x− 1) + 3β2 (x + 2) + (x− 1) (2x + 1) ,

p3 (x) = (x + 2) (x− 1) ,

p4 (x) = (x− 1)
(
x + 3β2 − 1

)
+ 3α2

(
x + 6β2 − 1

)
;

substituting in α2 + β2 = 1 once again, we obtain

p1 (x) = x + 2,

p2 (x) = 2x2 + 2x + 6β2 − 3α2 − 1,

p4 (x) = x2 + x + 18α2β2 − 2,

and thus

P (x) = x2 (x− 1) (x + 2)
Q (x)
m2

,

Q (x) := p3m
2
1 + p1 (x− 1) m2

2 + p3m
2
3 + p2m1m2 + p2m2m3 + 2p4m1m3 having six

roots: −2, 0, 0, 1, λ+, λ− where λ± = − 1
2 ±

√
3
√

ρ

2m and

ρ = 3
(
m2

1 + m2
2 + m2

3

)
+ 2

(
1 + 2α2 − 4β2

)
m2m3

+ 2m1

[
m2

(
1 + 2α2 − 4β2

)
+ 2m3

(
1− 8α2β2

)]
,

which assuming once again that β2 = 1− α2 becomes

ρ = 3
(
m2

1 + m2
2 + m2

3 + 2
(
2α2 − 1

)
(m2m3 + m1m2) + m3 + 8α2

(
α2 − 1

)
m3

)
,

and assuming α4 = α/8 we �nally obtain

ρ = 3
(
m2

1 + m2
2 + m2

3 + 2
(
2α2 − 1

)
(m2m3 + m1m2)− 2

(
8α2 − α− 1

)
m1m3

)
.

For α = 1/2, we obtain ρ = 3
(
m2

1 + m2
2 + m2

3 −m2m1 −m2m3 −m1m3

)
, as was

the case for the real eigenvalues λ± in Subsection 4.1, whereas, de�ning

B1 = 2m2
1 + 2m2

2 + 2m2
3 − 5m1m2 − 5m2m3 + 7m1m3,

B2 =
√

3 (m1m2 + m2m3 − 5m1m3) ,
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for α = −1+
√

3i
4 we have the discriminant ρ = 3(B1−iB2)

2 , precisely the one appearing
in the complex eigenvalues λ∗± in Subsection 4.1.
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