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Abstract. A classical problem in the study of the (conservative) unfoldings
of the so called Hopf-zero bifurcation, is the computation of the splitting of a

heteroclinic connection which exists in the symmetric normal form along the

z-axis. In this paper we derive the inner system associated to this singular
problem, which is independent on the unfolding parameter. We prove the ex-

istence of two solutions of this system related with the stable and unstable

manifolds of the unfolding, and we give an asymptotic formula for their differ-
ence. We check that the results in this work agree with the ones obtained in

the regular case by the authors.

Dedicated to Carles Simó for his 60th birthday

1. Introduction. We consider the family of autonomous differential equations in
C3 given by

dφ

dτ
= −ηφ− (α+ cη) iφ+ εF1(φ, ϕ, η)

dϕ

dτ
= −ηϕ+ (α+ cη) iϕ+ εF2(φ, ϕ, η) (1.1)

dη

dτ
= η2 + bφϕ+ εH(φ, ϕ, η)

where (F1, F2,H)(ξ, η, ζ) = O(‖(ξ, η, ζ)‖3) are analytic functions on the open ball
B(r0) := {(x, y, z) ∈ C3 : ‖(x, y, z)‖ < r0} for some r0 > 0. The parameter ε is not
necessarily small. In fact, the results given in this paper are rigourously proved for
any value of ε, in particular for ε = 1.

It is straightforward to see that, when F1 = F2 = H = 0, this system has a
particular solution, Ψ(τ) = (φ(τ), ϕ(τ), η(τ)) with φ(τ) = ϕ(τ) = 0 and η(τ) = − 1

τ ,
verifying that limRe τ→±∞Ψ(τ) = 0.

Our goal is to prove the existence and useful properties of special solutions of
the full system (1.1) Ψ±(τ, ε) = (φ±(τ, ε), ϕ±(τ, ε), η±(τ, ε)) which will be defined
in some regions of the complex plane and will satisfy the asymptotic condition

lim
Re τ→±∞

Ψ±(τ, ε) = 0.
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We will give an asymptotic formula for its difference Ψ−(τ, ε)−Ψ+(τ, ε) as Im τ →
−∞.

1.1. Motivation. As we will see in this section, the origin of system (1.1) can be
found in the study of the analytic unfoldings of the so called Hopf-zero singularity.
More concretely, let us consider a vector field in R3 which has the origin as a critical
point and, for some positive α∗, the eigenvalues of the linear part at the origin are 0,
±α∗ i. Then the linear part of this vector field can be transformed to the following
form:  0 α∗ 0

−α∗ 0 0
0 0 0

 , α∗ > 0. (1.2)

The unfoldings of this singularity in the conservative case and all the different
behaviour these families can present have been broadly studied [17, 19, 18, 14, 5,
1, 10, 7, 11, 6, 15]. The standard way to proceed in the study of these unfoldings,
is to use the normal form theory to write the vector field as simple as possible up
to some order and then to study the effects of the non symmetric terms in the
dynamics. In our case, we consider Xµ a family of conservative vector fields on
R3 such that X0 has the origin as a critical point with linear part (1.2). After the
normal form procedure up to order two, we obtain that the vector field Xµ in the
new coordinates (x̄, ȳ, z̄) takes the form

dx̄

ds
= x̄ (A2(µ) +A4(µ)z̄) + ȳ (A1(µ) +A3(µ)z̄) +O3(x̄, ȳ, z̄, µ)

dȳ

ds
= −x̄ (A1(µ) +A3(µ)z̄) + ȳ (A2(µ) +A4(µ)z̄) +O3(x̄, ȳ, z̄, µ)

dz̄

ds
= B1(µ)− 2A2(µ)z̄ +B3(µ)(x̄2 + ȳ2)−A4(µ)z̄2 +O3(x̄, ȳ, z̄, µ)

where A1(0) = α∗, A2(0) = B1(0) = 0. And moreover, after some scaling of the
parameters we can assume that ∂µB1(0) = −1. To simplify the notation we call
aj = Aj(0), bj = Bj(0), for j = 3, 4.

When µ > 0, and a4 < 0, we perform the scaling x̄ = (δ/
√
−a4)x, ȳ =

(δ/
√
−a4)y, z̄ = (δ/

√
−a4)z, δ =

√
µ and the change of time t =

√
−a4δs. Then

the system becomes:

dx

dt
= −xz +

(α
δ

+ cz
)
y + δpf(δx, δy, δz, δ)

dy

dt
= −yz −

(α
δ

+ cz
)
x+ δpg(δx, δy, δz, δ) (1.3)

dz

dt
= −1 + b(x2 + y2) + z2 + δph(δx, δy, δz, δ)

where α = α∗√
−a4

, c = a3√
−a4

, p = −2, and f, g, h = O(‖(δx, δy, δz, δ)‖3) are analytic
functions in B(r0).

In [4] the authors studied this system in the perturbative case p > −2 and they
gave a rigorous proof of the breakdown of a heteroclinic orbit (located at x = y = 0)
that exists if we consider only the terms coming from the normal form, that is,
the case f = g = h = 0. The proof consisted in validating that the first order
perturbation theory, that in this case was explicitly given by a Melnikov function,
provided the correct prediction even if the Melnikov function (and the corresponding



THE INNER EQUATION FOR UNFOLDINGS OF HOPF-ZERO SINGULARITY 325

distance between the invariant manifolds) was exponentially small with respect to
the parameter δ.

In this paper we will give some partial results to cover the case p = −2. To this
end, and in order to compare with the results already obtained when p > −2, we
add an extra parameter ε, not necessarily small, and we consider the system:

dx

dt
= −xz +

(α
δ

+ cz
)
y + εδ−2f(δx, δy, δz, δ)

dy

dt
= −yz −

(α
δ

+ cz
)
x+ εδ−2g(δx, δy, δz, δ) (1.4)

dz

dt
= −1 + b(x2 + y2) + z2 + εδ−2h(δx, δy, δz, δ)

Let us observe that, taking ε = δp+2 we recover the result given in [4] for p > −2
when ε is small and we deal with the case corresponding to a generic unfolding
taking ε = 1.

Let us observe that, if ε = 0, system (1.4) has two fixed points given by S± =
(0, 0,±1) with eigenvalues ∓1 + |αδ ± c| i, ∓1 − |αδ ± c| i and ±2. Moreover, one
branch of the one-dimensional unstable manifold of S+ and one branch of the one-
dimensional stable manifold of S− coincide giving rise to a heteroclinic orbit between
them which can be parameterized by

σ0(t) = (0, 0,− tanh t), lim
t→±∞

σ0(t) = S∓. (1.5)

The following result assures that for any ε > 0, system (1.4) has two fixed points of
saddle-focus type.

Lemma 1.1. Given any ε0 > 0, there exists δ0 small enough such that if 0 < δ < δ0
and |ε| < ε0, system (1.4) has two fixed points S±(δ, ε) of saddle-focus type such
that S+(δ, ε) has a one-dimensional unstable manifold and S−(δ, ε) has a stable one.
We call them W u,s respectively.

Moreover, for any ν < 1/3 there exists 0 < δ1 ≤ δ0 such that there are no other
fixed points of (1.4) in the closed ball B(δ−ν) if 0 < δ < δ1.

Proof. It is straightforward since we only need to consider the function

P (x, y, z, δ) =

 −xzδ + (α+ δcz)y + εδ−1f(δx, δy, δz, δ)
−yzδ − (α+ δcz)x+ εδ−1g(δx, δy, δz, δ)
−1 + b(x2 + y2) + z2 + εδ−2h(δx, δy, δz, δ)


and apply adequately the implicit function theorem as it was done in [4].

Once we know that the critical points S±(δ, ε) exist and are hyperbolic, it is a
natural question to ask if their one-dimensional unstable and stable manifolds W u

and W s are either still coincident or they split.
In [4], an asymptotic formula for the distance between W u and W s when they

encounter the plane z = 0 was obtained when p > −2. This formula showed that
this distance is exponentially small, in fact it is O(δp e−π|α|/(2δ)). To prove this
fact, it was crucial to obtain good parameterizations of the stable and unstable
manifolds, W u,s, in a complex domain which reaches a neighborhood of order δ
of the singularities ± iπ/2 of the heteroclinic connection (1.5) of the unperturbed
system (system (1.3) with f = g = h = 0).

These parameterizations xu,s(t), yu,s(t), zu,s(t) of W u,s, behave as

xu,s(t), yu,s(t) ∼ Cδp+4
∣∣∣t∓ i

π

2

∣∣∣−3

, zu,s(t) + tanh t ∼ Cδp+3 log δ
∣∣∣t∓ i

π

2

∣∣∣−2

(1.6)
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as t ∼ ± iπ/2.
Even if the results in [4] are only valid for p > −2, these estimates indicate that

if |t∓ iπ/2| = O(δ), then for p = −2,

xu,s(t), yu,s(t), zu,s(t) ∼ O(δ−1).

So, in the case p = −2, when we evaluate the vector field (1.3) at xu,s, yu,s, zu,s, all
the terms become of order O(δ−2) and the system is not a perturbation of the case
f = g = h = 0 anymore.

System (1.1) comes from (1.4) (which is (1.3) when p = −2 in the case ε = 1)
performing adequate changes of coordinates for studying the behavior of the solution
when |t∓iπ/2| = O(δ) and taking into account the dominant terms in δ. Concretely,
for studying the behavior of the one dimensional stable and unstable manifolds of
system (1.4) in a neighborhood of the singularity t = iπ/2, taking into account
(1.6), we perform the change of coordinates (φ, ϕ, η) = Cδ(x, y, z) given by

φ = δ(x+ i y), ϕ = δ(x− i y), η = δz, τ =
t− iπ/2

δ

and we obtain the system

dφ

dτ
=

(
− (α+ cη) i−η

)
φ+ εF̃1(φ, ϕ, η, δ)

dϕ

dτ
=

(
(α+ cη) i−η

)
ϕ+ εF̃2(φ, ϕ, η, δ) (1.7)

dη

dτ
= −δ2 + bφϕ+ η2 + εH̃(φ, ϕ, η, δ)

where

F̃1(φ, ϕ, η, δ) = f(C−1
δ (φ, ϕ, η), δ) + i g(C−1

δ (φ, ϕ, η), δ),

F̃2(φ, ϕ, η, δ) = f(C−1
δ (φ, ϕ, η), δ)− i g(C−1

δ (φ, ϕ, η), δ),

H̃(φ, ϕ, η, δ) = h(C−1
δ (φ, ϕ, η), δ).

Then, for studying the behavior of W u,s when t is close to iπ/2, it is natural
to consider, as a first approximation, system (1.7) with δ = 0 which is system
(1.1) under consideration in this paper taking Fi(φ, ϕ, η) = F̃i(φ, ϕ, η, 0), and
H(φ, ϕ, η) = H̃(φ, ϕ, η, 0). Using the language of asymptotic methods, one can
say that system (1.1) is the “inner” system associated to the invariant manifolds
of system (1.4). Moreover, one expects that, around the singularities of the hete-
roclinic connection, the stable and unstable one dimensional manifolds of system
(1.4) will behave as

xu,s(τ), yu,s(τ) ∼ 1
δτ3

, zu,s(τ) ∼ 1
δτ
.

Thus, after the change of variables, they will be well approximated by special solu-
tions, Ψ± of system (1.1) having the asymptotic behavior

lim
Re τ→±∞

Ψ±(τ) = 0, Im τ < 0.

1.2. Main results. This Section is devoted to introduce the main results and the
notation we will use along this work.
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Given γ, ρ, ε0 > 0 and ν ∈ R, we define the domains B(ε0) = {ε ∈ C : |ε| < ε0},

D+
γ,ρ = {z ∈ C : | Im z| > −γ Re z + ρ}, D−γ,ρ = −D+

γ,ρ,

Eγ,ρ = D+
γ,ρ ∩D−γ,ρ ∩ {z ∈ C : Im z < 0},

that is

and the functional spaces

X±ν,γ,ρ = {ψ : D±γ,ρ ×B(ε0) → C, ψ analytic, sup
(z,ε)∈D±

γ,ρ×B(ε0)

|zνψ(z, ε)| < +∞}

Yν,γ,ρ = {ψ : Eγ,ρ ×B(ε0) → C, ψ analytic, sup
(z,ε)∈Eγ,ρ×B(ε0)

|zνψ(z, ε)| < +∞}

We endow X±ν,γ,ρ and Yν,γ,ρ with the norms

‖ψ‖±ν = sup
(z,ε)∈D±

γ,ρ×B(ε0)

|zνψ(z, ε)|, ‖ψ‖ν = sup
(z,ε)∈Eγ,ρ×B(ε0)

|zνψ(z, ε)|

respectively and they become Banach spaces.
We also consider the norms

‖(φ, ϕ)‖±ν,× = max{‖φ‖±ν , ‖ϕ‖±ν }, ‖(φ, ϕ)‖ν,× = max{‖φ‖ν , ‖ϕ‖ν}

defined on the product spaces X±ν,γ,ρ ×X±ν,γ,ρ and Yν,γ,ρ × Yν,γ,ρ respectively.
We also use the notation ‖ · ‖ to indicate the supremum norm. As usual we will

denote by πi the projection on the i-component and by πi,j the projection on the
i, j-components.

Theorem 1.2. Given γ, ε0 > 0 there exists ρ big enough such that system (1.1)
has two solutions Ψ± ∈ X±3,γ,ρ ×X

±
3,γ,ρ ×X

±
1,γ,ρ respectively satisfying

sup
(τ,ε)∈D±

γ,ρ×B(ε0)

|τ2(log τ)−1(π3Ψ±(τ, ε) + τ−1)| <∞.

Let ∆Ψ = Ψ− −Ψ+. There exist C(ε), an analytic function on B(ε0), and ξ(τ, ε),
an analytic function on Eγ,ρ ×B(ε0) satisfying limIm τ→−∞ ξ(τ, ε) = 0, such that(

π1,2∆Ψ(τ, ε)
τ2π3∆Ψ(τ, ε)

)
= τ e− i(|α|τ−c log τ) ε(C(ε) + ξ(τ, ε)), τ ∈ Eγ,ρ.

We also have that π1,2ξ = O(τ−1 log τ).
Moreover C(ε) 6= 0 if and only if ∆Ψ 6= 0 and the constant C(ε) satisfies that

π2C(ε) = 0 if α > 0 and, analogously, π1C(ε) = 0 if α < 0.
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Let

m1(τ) = τ−1−i cF1(0, 0,−τ−1) =
∑
n≥3

m1
n

τn+1+i c
,

m2(τ) = τ−1+i cF2(0, 0,−τ−1) =
∑
n≥3

m2
n

τn+1−i c

and their Borel transform

m̂1(ζ) =
∑
n≥3

m1
n

ζn+i c

Γ(n+ 1 + i c)
, m̂2(ζ) =

∑
n≥3

m2
n

ζn−i c

Γ(n+ 1− i c)
.

Then we have that

π1C(0) = 2π i m̂1(iα), α > 0

π2C(0) = 2π i m̂2(− iα), α < 0.

Remark 1.3. There are several works relating the Borel transform of some ade-
quate function depending on the initial system and the asymptotic expression for
the splitting of either homoclinic or heteroclinic connections. For the analytic point
of view we mention [8, 12, 16, 4] and for the numerical one the works [9, 13], where
the numerical results require high-precision computations.

Remark 1.4. In [4] the authors found the following asymptotic formula for the
difference of the stable and unstable manifolds of S± in system (1.3), as a function
of t, for α > 0, when p > −2:

δ((xu(t)− xs(t))+ i(yu(t)− ys(t))) =

cosh t e− i α
δ (t−i π

2 ) ei c ln cosh t
δ 2πδp+1m̂1(iα) ec π

2 +O(δp+2 e−
απ
2δ ).

It is straightforward to see that the main term of this formula when t = i π
2 + δτ is

given by π1∆Ψ(τ, ε) in Theorem 1.2, taking ε = δp+2.
The reason of this agreement is that, for p > −2, the invariant manifolds W u,s

are well approximated by Ψ± when the time t is close to the singularity iπ/2 of
the unperturbed heteroclinic orbit. As a consequence the difference between these
manifolds is well approximated by the difference between Ψ+ and Ψ−.

In the case p = −2 we also expect that the difference between Ψ+ and Ψ− will
give the dominant term of the difference between W s and W u. However, a rigorous
asymptotic formula for (xu(t) − xs(t)) + i(yu(t) − ys(t)) is still needed in the case
p = −2. To this end, the authors will use complex matching to validate that the
invariant manifolds W u,s are well approximated by the solutions Ψ± when t is close
to ± iπ/2 also in this case.

1.3. Preliminaries. For technical reasons, we perform the change of variables
given by (φ, ϕ, η) = (φ, ϕ,−s−1) and we obtain that system (1.1) can be expressed
as:

dφ

dτ
=

1
s
φ−

(
α− c

s

)
iφ+ εF1(φ, ϕ,−s−1)

dϕ

dτ
=

1
s
ϕ+

(
α− c

s

)
iϕ+ εF2(φ, ϕ,−s−1) (1.8)

ds

dτ
= 1 + s2(bφϕ+ εH(φ, ϕ,−s−1)).
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We write F = (F1, F2) and

A(s) =
(
−(α− cs−1) i+s−1 0

0 (α− cs−1) i+s−1

)
. (1.9)

Let us consider system(
φ′

ϕ′

)
=

1
1 + s2(bφϕ+ εH(φ, ϕ,−s−1))

(
A(s)

(
φ
ϕ

)
+ εF (φ, ϕ,−s−1)

)
(1.10)

with ′ = d
ds , which is formally equivalent to (1.8). From now on we will work with

this system instead of (1.8). In Section 3.2 we will check that both are equivalent.

Theorem 1.5. Given γ, ε0 > 0, there exists ρ big enough such that system (1.10)
has two solutions (φ±, ϕ±) belonging to X±3,γ,ρ ×X

±
3γ,ρ respectively. These solutions

are the only ones satisfying the asymptotic condition:

lim
Re s→±∞

(φ±(s, ε), ϕ±(s, ε)) = 0.

Let ∆Φ = (φ− − φ+, ϕ− − ϕ+). There exists ξ̃ ∈ Y1,γ,ρ × Y2,γ,ρ and an analytic
function on B(ε0), C(ε), such that

∆Φ(s, ε) = s e− i(|α|s−(c+εαh0) log s) ε(C(ε) + ξ̃(s, ε)) (1.11)

with h0 = lims→+∞ s3H(0, 0,−s−1). In addition, C(ε) 6= 0 if and only if ∆Φ 6= 0
and π2C(ε) = 0 if α > 0 and π1C(ε) = 0 if α < 0.

We also have that

π1C(0) = 2π i m̂1(iα), α > 0

π2C(0) = 2π i m̂2(− iα), α < 0.

The main part of the paper is devoted to prove Theorem 1.5. The proof of this
result is decomposed in two main parts. The first one deals with the existence and
appropriate properties of solutions φ±, ϕ± of system (1.10) and it is done in Section
2. The second step is related to the asymptotic expression given in (1.11) and it is
postponed to Section 3. We will recover Theorem 1.2 from Theorem 1.5 in Section
3.2.

2. Existence of solutions (φ±, ϕ±). In this section we will prove the existence
and useful properties of solutions (φ±, ϕ±) of system (1.10) having the asymptotic
property limRe s→±∞(φ±, ϕ±) = 0.

In Subsection 2.1 we introduce some notation and the set up we will work in.
More concretely we will reduce our problem to a fixed point problem in adequate
Banach spaces. At the end of this Subsection, we enunciate the rigorous statement
about solutions (φ±, ϕ±) which we will prove in Subsections 2.2 and 2.3.

2.1. Set up. Now we are going to write system (1.10) in a more appropriate way.
Let h0 = lims→∞H(0, 0,−s−1)s−3 as in Theorem 1.5. We decompose the func-

tion s2(bφϕ+ εH) in the form

s2(bφϕ+ εH(φ, ϕ,−s−1)) = εh0s
−1 + H̄(φ, ϕ,−s−1, ε) (2.1)

with H̄(0, 0,−s−1, ε) = εs2
(
H(0, 0,−s−1)− h0s

−3
)

= O(|s|−2). We also introduce
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R(φ, ϕ)(s, ε)

=εF (φ, ϕ,−s−1)(1 + εh0s
−1 + H̄(φ, ϕ,−s−1, ε))−1 (2.2)

+A(s)
[
(1 + εh0s

−1 + H̄(φ, ϕ,−s−1, ε))−1 − (1 + εh0s
−1)−1

]( φ
ϕ

)
.

Hence, using decomposition (2.1), it is clear that system (1.10) can be written
in the form

d

ds

(
φ
ϕ

)
= (1 + εh0s

−1)−1A(s)
(
φ
ϕ

)
+R(φ, ϕ)(s, ε). (2.3)

Lemma 2.1. The linear system
d

ds

(
φ
ϕ

)
= (1 + εh0s

−1)−1A(s)
(
φ
ϕ

)
(2.4)

has a fundamental matrix of the form

M(s) = s(1 + εh0s
−1) diag

(
e− i(αs+β(s,ε)), ei(αs+β(s,ε))

)
(2.5)

where β(s, ε) = −(c+ εαh0) log
(
s(1 + εh0s

−1)
)
.

To prove Lemma 2.1 is straightforward.

Remark 2.2. We recall that we are looking for solutions φ±, ϕ± defined on D±γ,ρ

respectively. Hence, when we deal with the − case, in the definition of β we choose
a determination of logarithm defined in C\{u ∈ C : Imu = 0, Reu ≥ 0} and,
analogously, we take the logarithm in the + case by a determination defined in
C\{u ∈ C : Imu = 0, Reu ≤ 0}.

Next we write the functional equation that (φ±, ϕ±) have to satisfy. We introduce
Φ± = (φ±, ϕ±) and we note that, since Φ± are solutions of system (2.3), by Lemma
2.1 they can be expressed as

Φ±(s) = M(s)

(
K± +

∫ s

s±0

M(t)−1R(Φ±)(t, ε) dt

)
with K± ∈ C2 and s±0 ∈ D±γ,ρ respectively. Now we impose that

lim
Re s→±∞

Φ±(s, ε) = 0,

hence, since ‖M(s)‖ → +∞ as Re s → ±∞, the constants K± are determined by
K± = −

∫ ±∞
s±0

M(t)−1R(Φ±)(t, ε) dt and then Φ± satisfy the fixed point equation

Φ±(s) = M(s)
∫ s

±∞
M(t)−1R(Φ±)(t, ε) dt. (2.6)

Finally we observe that, since we are looking for bounded solutions of system (2.3)
and ‖M(s)−1‖ → 0 as |Re s| → ∞, by Cauchy’s theorem, the fixed point equation
(2.6) is equivalent to

Φ±(s) = M(s)
∫ 0

±∞
M(s+ t)−1R(Φ±)(s+ t, ε) dt. (2.7)

We introduce the linear operators

B±(ψ)(s) = M(s)
∫ 0

±∞
M(s+ t)−1ψ(s+ t) dt
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and we stress that the fixed point equation (2.7) can be written as

Φ± = F±(Φ±) := B± ◦ R(Φ±), (2.8)

where R was defined in (2.2).
The remaining part of this section is devoted to prove the following proposition:

Proposition 2.3. Given γ, ε0 > 0, there exists ρ big enough such that system (2.3)
has two solutions Φ± belonging to X±3,γ,ρ × X

±
3,γ,ρ of the form Φ± = Φ±0 + Φ±1 with

Φ±0 = B± ◦ R(0) ∈ X±3,γ,ρ × X±3,γ,ρ and Φ±1 ∈ X±4,γ,ρ × X±4,γ,ρ. We also have that
‖Φ±1 ‖3,× < ‖Φ±0 ‖3,×.

Moreover they are the unique solutions of (2.3) satisfying the asymptotic condi-
tion limRe s→±∞Φ±(s) = 0.

2.2. The linear operators B±. Now we are going to study the linear operators
B±. Along this section, if there is no danger of confusion, we will omit the de-
pendence on γ, ρ of the Banach spaces X±ν,γ,ρ, thus we will write them simply as
X±ν .

Lemma 2.4. Let ν, γ, ε0 > 0. There exists ρ big enough such that the operators
B± : X±ν × X±ν → X±ν−1 × X±ν−1 are well defined and there exists a constant CB±
depending on ν, γ, ε0, α, c such that

‖B±(ψ)‖±ν−1,× ≤ CB±‖ψ‖±ν,×, for all ψ ∈ X±ν ×X±ν .

In addition,

B±(ψ) ∈ X±ν ×X±ν , for all ψ ∈ X±ν ×X±ν , Dψ ∈ X±ν+1 ×X
±
ν+1. (2.9)

Here D denotes the derivative with respect to s.

Proof. We prove Lemma 2.4 only in the − case, being the + case analogous. As we
pointed out in Remark 2.2 we have chosen a determination of the logarithm defined
in C\{u ∈ C : Im z = 0, Re z ≥ 0}.

We claim that there exists a constant C depending on c, ε0, α such that, if ρ is
big enough, for all s ∈ D−γ,ρ and t ≤ 0,

‖M(s)M(s+ t)−1‖ ≤ C
|s|

|s+ t|
. (2.10)

(‖ · ‖ denotes the matricial supremum norm). Indeed, for all t ≤ 0, s + t ∈ D−γ,ρ

and arg(s + t) ∈ (arctan(γ), 2π − arctan(γ)). Moreover, if ρ > ε0|h0|
√

1 + γ2,
then s + t + εh0 ∈ D−

γ,ρ−ε0|h0|
√

1+γ2
and we also have that arg(s + t + εh0) ∈

(arctan(γ), 2π − arctan(γ)). Therefore

∣∣ Im (β(s, ε)− β(s+ t, ε)
)∣∣ = ∣∣∣∣Im((c+ εαh0) log

(
s+ εh0

s+ t+ εh0

))∣∣∣∣
=|c+ εαh0|

∣∣ arg(s+ εh0)− arg(s+ t+ εh0)
∣∣

≤2|2π − arctan(γ)| · (|c|+ ε0|αh0|). (2.11)

Taking into account definition (2.5) of M , this bound implies that

‖M(s)M(t+s)−1‖ ≤ |s||1 + εh0s
−1|

|s+ t||1 + εh0(s+ t)−1|
exp(2|2π−arctan(γ)| ·(|c|+ε0|αh0|))
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and (2.10) follows from the above bound taking into account that, if s ∈ D−γ,ρ and
t ≤ 0, |s+ t| > ρ(1 + γ2)−1/2 and then |1 + εh0s

−1||1 + εh0(s+ t)−1|−1 is bounded
if ρ is big enough.

Let ψ ∈ X−ν ×X−ν . By (2.10), it is clear that, for all s ∈ D−γ,ρ and t ≤ 0,

‖M(s)M(s+ t)−1ψ(s+ t)‖ ≤ C‖ψ‖−ν,×
|s|

|s+ t|ν+1
(2.12)

(here ‖ · ‖ denotes the supremum norm in R2).
We claim that ∫ 0

−∞

1
|s+ t|ν+1

dt ≤ Kν,γ
1
|s|ν

if s ∈ D−γ,ρ, (2.13)

where Kν,γ = 2(1 + γ2)ν/2γ−ν
∫ +∞
0

(1 + t2)(ν+1)/2 dt. We can check bound (2.13)
by using that, if Re s > 0 and s ∈ D−γ,ρ, γ|s| ≤ (1 + γ2)1/2| Im s|. The case Re s ≤ 0
is obvious. Hence, using (2.12) and (2.13) to bound B−(ψ) we have that, for all
s ∈ D−γ,ρ,

‖B−(ψ)(s)‖ ≤ C‖ψ‖−ν,×|s|
∫ 0

−∞

1
|s+ t|ν+1

dt ≤ CKν,γ‖ψ‖−ν,×
1

|s|ν−1

and the first part of Lemma 2.4 is proved.
Now we deal with (2.9). Let ψ ∈ X−ν × X−ν satisfying that Dψ ∈ X−ν+1 × X

−
ν+1.

To simplify the notation we introduce A(s) = A(s)(1 + εh0s
−1)−1. Integrating by

parts and using that M−1(s) = − d
dsM

−1(s)A
−1

(s), we obtain

B−(ψ) = −M(s)
∫ 0

−∞
DtM

−1(s+ t)A
−1

(s+ t)ψ(s+ t) dt

= −A−1
(s)ψ(s) +M(s)

∫ 0

−∞
M−1(s+ t)Dt(A

−1
(s+ t)ψ(s+ t)) dt

= −A−1
(s)ψ(s) + B−(D(A

−1
ψ))(s). (2.14)

As usual, D denotes the derivative with respect to s. It is clear, by definition (1.9)
of A, that all the components of A

−1
belong to X−0 and hence A

−1
ψ ∈ X−ν × X−ν .

Moreover, a simple computation, shows that all the components of DA
−1

belong
to X−2 × X−2 , hence D(A

−1
ψ) = DA

−1
ψ + A

−1
Dψ ∈ X−ν+1 × X−ν+1 provided that

Dψ ∈ X−ν+1 × X−ν+1. The proof is finished, by using equality (2.14) and the fact
that B− : X−ν+1 ×X

−
ν+1 → X−ν ×X−ν .

2.3. The fixed point equation Φ = F±(Φ). Let U ⊂ Cn be an open neighbor-
hood of 0. Given an analytic function f : U ⊂ Cn → Cm, we introduce the standard
notation f = Ol to indicate that f is a function of order l, that is f(X) = O(‖X‖l).

Lemma 2.5. Given r > 0, let f : B(r) ⊂ C3 → Cm be an analytic function such
that f = O3. Then, for all (x, y, z) ∈ B(r/2),

f(x, y, z)− f(0, 0, z) = ∆f(x, y, z)
(
x
y

)
where ∆f is a m× 2 matrix with all the components satisfying ∆fi,j = O2.

Consequently, there exists a constant C, depending on r and f , such that

|f(x, y, z)− f(0, 0, z)| ≤ C‖(x, y, z)‖2‖(x, y)‖.
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(Here ‖ · ‖ denotes the supremum norm).

We enunciate a technical lemma which was proved in [3] in a more general setting.

Lemma 2.6. We fix ν ≥ 0, γ, ρ > 0 and h ∈ X±ν,γ,ρ. Then for any l ∈ N\{0},

∂l
sh ∈ X±ν+l,2γ,4ρ, ‖∂l

sh‖ν+l ≤ Cl‖h‖ν

where Cl is a constant depending on l, γ and ρ.

To check this property we use Cauchy’s theorem and the fact that there exists a
constant Cγ,ρ, depending only on γ and ρ, such that the open ball of center s and
radius Cγ,ρ|s| belongs to Dγ/2,ρ/4 for all s ∈ Dγ,ρ.

Given γ, ρ > 0, let B±(R) be the closed ball of radius R > 0 and center the
origin of X±3,γ,ρ ×X

±
3,γ,ρ. Our purpose is to prove the following lemma

Lemma 2.7. For any γ > 0, there exists ρ big enough and R > 0 such that the
operators F± : B±(R) → B±(R/4) are well defined.

Proof. We prove this lemma only in the − case. The + case can be done in a similar
way. Along this proof we omit the − sign in our notation. If there is no danger
of confusion we also omit the dependence on ρ, γ and ε in such a way that in the
sequel, we will write Xν instead of X−ν,γ,ρ.

Since F can be expressed in the form (2.8), we need to study the operator R
defined in (2.2). As F is analytic in B(r0), we fix ρ0 such that Lemma 2.4 holds and
ρ0(1 + (γ/2)2)−1/2 > 8r−1

0 . We notice that with this choice of ρ0, if s ∈ Dγ/2,ρ0/4,
then |s−1| < r0/2.

We fix γ > 0 and ρ > 0 big enough, which we will determinate later on. Let
Φ = (φ, ϕ) ∈ X3 ×X3. In order to clarify the notation we introduce

h̄(Φ)(s) = εh0s
−1 + H̄(Φ(s),−s−1),

G(Φ)(s) = F (Φ(s),−s−1)(1 + h̄(Φ)(s))−1, (2.15)

with H̄ defined by (2.1), and we note that

R(Φ)(s) = εG(Φ)(s) +A(s)Φ(s)
[
(1 + h̄(Φ)(s))−1 − (1 + εh0s

−1)−1
]
. (2.16)

We claim that R(0) ∈ X3,γ/2,ρ0/4 ×X3,γ/2,ρ0/4. Indeed, from definition (2.15) of
G we have that

R(0)(s) = εG(0)(s) = εF (0,−s−1)(1 + εh0s
−1 + H̄(0,−s−1))−1

= εF (0,−s−1)(1 + εs2H(0,−s−1))−1

and since F (0,−s−1) ∈ X3,γ/2,ρ0/4 × X3,γ/2,ρ0/4 and (1 + εs2H(0,−s−1))−1 ∈
X0,γ/2,ρ0/4, we have that R(0) ∈ X3,γ/2,ρ0/4 × X3,γ/2,ρ0/4. In addition, by Lemma
2.6, one can deduce that DR(0) ∈ X4,γ,ρ0 ×X4,γ,ρ0 .

We define the radius
R = 8‖B(R(0))‖3,× (2.17)

and we observe that, by (2.9) of Lemma 2.4, R is well defined (here the norm ‖·‖3,×
is on X3,γ,ρ0 ×X3,γ,ρ0).

Let ρ ≥ max{ρ0, 21/3R1/3(1 + γ2)1/2/r
1/3
0 } and let Φ ∈ B(R). We note that, if

s ∈ Dγ,ρ, then (Φ(s),−s−1) ∈ B(r0/2) ⊂ C3, that is (Φ(s),−s−1) belongs to the
domain of analyticity of F and H̄. Indeed, clearly

‖Φ(s)‖ ≤ R|s|−3 ≤ R(1 + γ2)3/2ρ−3 <
r0
2
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(as usual, ‖ · ‖ denotes the supremum norm). Our goal is to estimate ‖R(Φ)(s) −
R(0)(s)‖ for s ∈ Dγ,ρ.

Since H(x, y, z) = O3 and taking into account decomposition (2.1), we have that,
by Lemma 2.5, for all s ∈ Dγ,ρ

|H̄(Φ(s),−s−1)− H̄(0,−s−1)| ≤|b||s2φ(s)ϕ(s)|
+ |εs2(H(Φ(s),−s−1)−H(0,−s−1))|

≤|b||s|−4R2 + CH(R|s|−3 + |s|−1)2R|s|−1

≤2CH |s|−3R (2.18)

if ρ is big enough. Moreover, since H̄(0,−s−1) ∈ X2, there exists KH such that
|H̄(0,−s−1)| ≤ KH |s|−2 and therefore

|H̄(Φ(s),−s−1)| ≤ KH |s|−2 + 2CH |s|−3R. (2.19)

Using the fact that |(1 + ξ)−1 − (1 + ζ)−1| ≤ 4|ξ − ζ| if |ξ|, |ζ| ≤ 1/2 and bounds
(2.18) and (2.19), we deduce from definition (2.15) of h̄ that

|(1 + h̄(Φ)(s))−1 − (1 + εh0s
−1)−1| ≤ 4|s|−2(KH + 2CHR|s|−1)

|(1 + h̄(Φ)(s))−1 − (1 + h̄(0)(s))−1| ≤ 8CH |s|−3R, (2.20)

taking ρ big enough to satisfy |h̄(Φ)(s)| < 1/2 and |εh0s
−1| < 1/2, for all s ∈ Dγ,ρ.

To bound ‖G(Φ)(s)−G(0)(s)‖ we take into account the previous bounds and we
use again Lemma 2.5, in order to check that

‖G(Φ)(s)−G(0)(s)‖ ≤‖F (0,−s−1)‖|(1 + h̄(Φ)(s))−1 − (1 + h̄(0)(s))−1|
+ ‖F (Φ(s),−s−1)− F (0,−s−1)‖|1 + h̄(Φ)(s)|−1

≤KG|s|−5R, (2.21)

for some constant KG, if ρ is big enough. In the last bound we have used that
F (0,−s−1) ∈ X3.

Finally, by definition (2.16) of R, using bounds (2.21) and (2.20) and the fact
that ‖A(s)‖ ≤ 2|α| if ρ is big enough, we get that for all s ∈ Dγ,ρ

‖R(Φ)(s)−R(0)(s)‖ ≤ |s|−5
[
ε0KGR+ 8|α|R(KH + 2CHR|s|−1)

]
≤ |s|−4 R

8CB
(2.22)

with CB the constant given in Lemma 2.4. In the last equality we have taken ρ big
enough and we have used that if s ∈ Dγ,ρ then |s| > ρ(1 + γ2)−1/2.

Bound (2.22) implies that R(Φ)−R(0) ∈ X4×X4 if Φ ∈ B(R) and that ‖R(Φ)−
R(0)‖4,× ≤ R/(8CB). Therefore by Lemma 2.4, taking ρ big enough if necessary,
B(R(Φ))−B(R(0)) ∈ X3×X3 and since B(R(0)) ∈ X3×X3, we have that B(R(Φ))
also belongs to X3 × X3. Moreover, by definition (2.17) of R and again by bound
(2.22), we have that

‖B(R(Φ))‖3,× ≤ ‖B(R(0))‖3,× + ‖B(R(Φ)−R(0))‖3,× ≤
R

8
+
R

8
=
R

4
and then the operator F± = B± ◦ R : B±(R) → B±(R/4) is well defined.

End of the proof of Proposition 2.3. The existence statement of Proposition 2.3 fol-
lows from Lemma 2.7 and
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Lemma 2.8 ([2]). Let E be a complex Banach space, and let f : Br → Bθr be a
holomorphic mapping, where Bρ = {x ∈ E : ‖x‖ < ρ}.

If θ < 1/2, the map f|Bθr
is a contraction, and hence has a unique fixed point in

Br.

Indeed, since the operators F± are analytic in Φ and F±(B±(R)) ⊂ B±(R/4),
by Lemma 2.8, every F± is a contraction. Thus F± have a unique fixed point Φ±

belonging to B±(R), that is, there exist Φ± ∈ B±(R) such that F±(Φ±) = Φ±.
Moreover we have obtained that Φ± = B± ◦ R(0) + B± ◦ (R(Φ±) − R(0)) :=

Φ±0 + Φ±1 with Φ±0 ∈ X±3,γ,ρ×X
±
3,γ,ρ and Φ±1 ∈ X±4,γ,ρ×X

±
4,γ,ρ. Indeed, we only need

to emphasize that, in fact, by (2.22) R(Φ±) − R(0) ∈ X±5,γ,ρ × X±5,γ,ρ and apply
Lemma 2.4.

Now we deal with the uniqueness. We deal only in the − case. First we will prove
that, if Ψ is a solution of system (2.3) defined on D−γ,ρ, satisfying the asymptotic
condition

lim
Re s→−∞

Ψ(s) = 0, (2.23)

then Ψ ∈ X−3,γ0,ρ0
for some γ0 ≥ γ and ρ0 ≥ ρ big enough. Indeed, by the mean’s

value theorem

R(Ψ)(s)−R(0)(s) =
∫ 1

0

DR(λΨ)(s) dλ ·Ψ(s).

Henceforth, using that Ψ satisfies the asymptotic condition (2.23), we obtain that,
for any λ ∈ [0, 1], the function DR(λΨ)(s) → 0 as Re s goes to −∞ and thus, taking
ρ1 big enough, sups∈D−

γ,ρ1
‖DR(λΨ)(s)‖ < |α|/4. This bound implies that, for all

s ∈ D−γ,ρ1
,

‖R(Ψ)(s)−R(0)(s)‖ ≤ |α|
4
‖Ψ(s)‖. (2.24)

On the other hand, by Lemma 2.6, we conclude that ∂sΨ ∈ X−1,2γ,4ρ × X−1,2γ,4ρ

provided that, by the asymptotic condition (2.23), Ψ ∈ X−0,γ,ρ ×X
−
0,γ,ρ.

Since Ψ is a solution of system (2.3), we have that

A(s)(1 + εh0s
−1)−1Ψ(s) +R(Ψ)(s)−R(0)(s) =

d

ds
Ψ(s)−R(0)(s).

On the one hand we note that, by definition (1.9) of A, ‖A(s)(1 + εh0s
−1)v‖ ≥

|α|
2 ‖v‖, if v ∈ C2. Thus, using bound (2.24), we obtain that for any s ∈ D−γ,ρ1

,

‖A(s)(1 + εh0s
−1)−1Ψ(s)+R(Ψ)(s)−R(0)(s)‖

≥ ‖A(s)(1 + εh0s
−1)Ψ(s)‖ − ‖R(Ψ)(s)−R(0)(s)‖

≥ |α|
2
‖Ψ(s)‖ − |α|

4
‖Ψ(s)‖ =

|α|
4
‖Ψ(s)‖.

On the other hand, by Lemma 2.6, for any s ∈ D−2γ,4ρ,

‖ d
ds

Ψ(s)−R(0)(s)‖ ≤ ‖∂sΨ(s)‖+ ‖R(0)(s)‖ ≤ C1‖Ψ‖−0,×|s|−1 + ‖R(0)‖−3,×|s|−3.

Taking into account the above bounds one concludes that
|α|
4
‖Ψ(s)‖ ≤ C1‖Ψ‖0,×|s|−1 + ‖R(0)‖−3,×|s|−3

for any s ∈ D−γ,ρ1
∩ D−2γ,4ρ. Consequently, Ψ ∈ X−1,2γ,ρ1

× X−1,2γ,ρ1
, renaming if

necessary ρ1.
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Iterating this process, we obtain that, since Ψ ∈ X−1,2γ,ρ1
× X−1,2γ,ρ1

, by Lemma
2.6, for any s ∈ D−4γ,4ρ1

,

‖ d
ds

Ψ(s)−R(0)(s)‖ ≤ ‖∂sΨ(s)‖+ ‖R(0)(s)‖ ≤ C2‖Ψ‖−1,×|s|−2 + ‖R(0)‖−3,×|s|−3.

and therefore we can conclude that
|α|
4
‖Ψ(s)‖ ≤ C2‖Ψ‖−1,×|s|−2 + ‖R(0)‖−3,×|s|−3

and hence Ψ ∈ X−2,4γ,4ρ1
× X−2,4γ,4ρ1

. Finally, following the same procedure we get
that Ψ ∈ X−3,γ0,ρ0

×X−3,γ0,ρ0
for some γ0 ≥ γ and ρ0 ≥ ρ.

It is not difficult to see that, following the computations performed in the previous
lemma, if Ψ ∈ X−3,γ0,ρ0

, then R(Ψ) − R(0) ∈ X−5,γ0,ρ0
and henceforth, B−(R(Ψ) −

R(0)) ∈ X−4,γ0,ρ0
. Therefore, taking ρ0 big enough, ‖B−(R(Ψ) − R(0))‖−3,× < R/8

and this implies that, by definition of R:

‖Ψ‖−3,× ≤ ‖B−(R(0))‖−3,× + ‖B−(R(Ψ)−R(0))‖−3,× ≤
R

8
+
R

8
=
R

4
.

Thus, Ψ is Φ−, the solution found by the fixed point theorem, and we are done.
This ends the proof of Proposition 2.3.

3. Asymptotic expression for the difference Φ−−Φ+. When we will not want
to stress the definition domain, we will omit the dependence on γ, ρ of the Banach
space Yν,γ,ρ so we will write Yν instead of Yν,γ,ρ. If there is no danger of confusion,
the dependence on ε will be also omitted.

Let Φ± the solutions given by Proposition 2.3. We define ∆φ = φ− − φ+, ∆ϕ =
ϕ−−ϕ+ and ∆Φ = Φ−−Φ+ and we note that ∆Φ is defined on Eγ,ρ ⊂ D−γ,ρ∩D+

γ,ρ

and it belongs to Y3 × Y3.
From now on we suppose that α > 0. The case α < 0 is analogous.
Our goal in this section is to finish the proof of Theorem 1.5 and to provide

a proof of Theorem 1.2. The main part of this section is to check the following
proposition, which deals with the asymptotic expression of ∆Φ.

Proposition 3.1. Let α > 0. Given γ > 0 there exist ρ > 0 big enough, C =
(κ, 0) ∈ C2 and χ ∈ Y1 × Y2 such that

∆Φ(s) = s e− i(αs+β(s,ε)) ε(C + ξ(s)), s ∈ Eγ,ρ.

where β(s, ε) = −(c+ εαh0) log
(
s(1+ εh0s

−1)
)

is defined in Lemma 2.1. Moreover
C 6= 0 if and only if ∆Φ 6= 0.

The main idea of the proof of Proposition 3.1 is to study the differential equation
that ∆Φ verifies and to use that ∆Φ is a bounded and analytic function on a sector
of the lower complex half plane, Eγ,ρ. From these properties of ∆Φ we will deduce
its asymptotic behavior in Eγ,ρ.

Subtracting equations (2.3) for Φ− and Φ+ we get that ∆Φ must satisfy the
differential equation

∆Φ′ =
[
(1 + εh0s

−1)−1A(s) +R(s)
]
∆Φ (3.1)

where R is the matrix defined by

R(s) =
(
R1(s)T

R2(s)T

)
=
∫ 1

0

DR(Φ+(s) + λ(Φ−(s)− Φ+(s))) dλ
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and R was given by (2.2). Since ∆Φ satisfies equation (3.1), there exists a constant
K = (κ0, κ1) ∈ C2 such that

∆Φ(s) = M(s)
[
K +

∫ s

− i ρ

M(t)−1R(t)∆Φ(t) dt
]

where M was given in Lemma 2.1. Using the expression (2.5) of M , we have that

∆φ(s) =s(1 + εh0s
−1) e− i(αs+β(s,ε))

[
κ0 +

∫ s

− i ρ

ei(αt+β(t,ε))

t(1 + εh0t−1)
〈R1(t),∆Φ(t)〉 dt

]
∆ϕ(s) =s(1 + εh0s

−1) ei(αs+β(s,ε))
[
κ1 +

∫ s

− i ρ

e− i(αt+β(t,ε))

t(1 + εh0t−1)
〈R2(t),∆Φ(t)〉 dt

]
where 〈·〉 denotes the scalar product. We notice that, since ∆Φ ∈ Y3 × Y3, we
have that limIm s→−∞∆Φ(s) = 0. On the other hand, s ei(αs+β(s,ε)) is not bounded
as Im s → −∞. So that we can deduce that κ1 = −

∫ − i∞
− i ρ

e− i(αt+β(t,ε)) t−1(1 +
εh0t

−1)−1〈R2(t),∆Φ(t)〉 dt and therefore

∆φ(s) =s(1 + εh0s
−1) e− i(αs+β(s,ε))

[
κ0 +

∫ s

− i ρ

ei(αt+β(t,ε))

t(1 + εh0t−1)
〈R1(t),∆Φ(t)〉 dt

]
∆ϕ(s) =s(1 + εh0s

−1) ei(αs+β(s,ε))

∫ s

− i∞

e− i(αt+β(t,ε))

t(1 + εh0t−1)
〈R2(t),∆Φ(t)〉 dt. (3.2)

Once we know that ∆Φ = (∆φ,∆ϕ) satisfies the integral equation (3.2), we proceed
to obtain an asymptotic expression for it.

Remark 3.2. Using that Φ± ∈ Y3×Y3 and definition (2.2) of R, it is not difficult
to check that all the coefficients of matrix R belong to Y2, hence R1, R2 ∈ Y2×Y2.

We define the linear operator G by the expression:

G(Ψ)(s) = s(1 + εh0s
−1)

 e− i(αs+β(s,ε))

∫ s

− i ρ

ei(αt+β(t,ε))

t(1 + εh0t−1)
〈R1(t),Ψ(t)〉 dt

ei(αs+β(s,ε))

∫ s

− i∞

e− i(αt+β(t,ε))

t(1 + εh0t−1)
〈R2(t),Ψ(t)〉 dt


and the function

∆Φ0(s) = s(1 + εh0s
−1)

(
κ0 e− i(αs+β(s,ε))

0

)
. (3.3)

We observe that
∆Φ(s) = ∆Φ0(s) + G(∆Φ)(s). (3.4)

Our strategy to prove the result will be to check that ∆Φ = (Id − G)−1(∆Φ0).
For that, since we only know that ∆Φ ∈ Y3 × Y3, we will prove that the linear
operator Id−G is invertible on Y3×Y3. After that we will study how the operator
(Id− G)−1 acts on ∆Φ0.

We introduce the auxiliary linear operator Lα defined for h = (h1, h2) as:

Lα(h)(s) =

 e− i(αs+β(s,ε))

∫ s

− i ρ

ei(αt+β(t,ε)) h1(t) dt

ei(αs+β(s,ε))

∫ s

− i∞
e− i(αt+β(t,ε)) h2(t) dt

 . (3.5)
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Lemma 3.3. For any ν ≥ 0, α > 0 and γ > 0, there exists ρ > 0 big enough such
that Lα : Yν × Yν → Yν × Yν . Moreover, there exists a constant C > 0 such that
‖Lα(h)‖ν,× ≤ C‖h‖ν,×.

Proof. We note that there exists a constant K (depending on γ, α, c, ε0) such that

| ei(β(s,ε)−β(t,ε)) | ≤ K, for all s, t ∈ Eγ,ρ. (3.6)

To prove this bound we proceed in a similar way as in (2.11).
Let h = (h1, h2) ∈ Yν × Yν . We write Lα(h) = (Lα

1 (h1),Lα
2 (h2)). First we deal

with Lα
2 (h2). By Cauchy’s theorem,

Lα
2 (h2)(s) = i

∫ 0

−∞
eαt ei(β(s,ε)−β(s+i t,ε)) h2(s+ i t) dt

Therefore, using (3.6) and that h2 ∈ Yν ,

|Lα
2 (h2)(s)| ≤ K‖h2‖ν

∫ 0

−∞
eαt 1

|s+ i t|ν
dt ≤ K‖h‖ν,×|s|−να−1. (3.7)

Now we deal with Lα
1 (h1). Let cγ = γ−1(1 + γ2). We notice that, using again

bound (3.6),

|Lα
1 (h1)(s)| ≤ K

∣∣∣ ∫ s

− i ρ

∣∣ ei α(t−s) h1(t)
∣∣ dt∣∣∣

≤ K
|s+ i ρ|
| Im s+ ρ|

‖h1‖ν

∫ | Im s+ρ|

0

e−αt

|t+ Im s|ν
dt

≤ Kcγ‖h‖ν,×

∫ | Im s+ρ|

0

e−αt

|t+ Im s|ν
dt (3.8)

provided that |s+i ρ|| Im s+i ρ|−1 < cγ . We define Iν =
∫ | Im s+ρ|
0

e−αt |t+Im s|−ν dt.
Integrating by parts Iν , it is easily checked that Iν ≤ α−1

(
| Im s|−ν + νρ−1Iν

)
and

therefore, if ρ > 2να−1, Iν ≤ 2α−1| Im s|−ν . Hence, bounding (3.8) and using that
|s| ≤ cγ | Im s|, we get

|Lα
1 (h1)(s)| ≤ 2Kcν+1

γ α−1|s|−ν‖h‖ν,×

and Lemma 3.3 is proved.

Lemma 3.4. The map G : Y3×Y3 → Y3×Y3 is well defined. Moreover, if ρ is big
enough, Id−G is invertible.

Proof. We write G = (G1,G2) and we fix s ∈ Eγ,ρ and Ψ ∈ Y3 × Y3. We define the
auxiliary function h = (h1, h2) by

h(t) =
1

t(1 + εh0t−1)
R(t)Ψ(t). (3.9)

We observe that
G(Ψ)(s) = s(1 + εh0s

−1)Lα(h)(s). (3.10)

We note that, since R1, R2 ∈ Y2 × Y2 and Ψ belongs to Y3 × Y3, we have that
h ∈ Y6 × Y6, if ρ > ε0h0, and moreover

‖h‖6,× ≤ 3 max{‖R1‖2,×, ‖R2‖2,×}‖Ψ‖3,× (3.11)
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if ρ is big enough. By identity (3.10) and using Lemma 3.3 and (3.11) to bound
G(Ψ)(s) we get:

‖G(Ψ)(s)‖ ≤ (1 + ε0|h0||s|−1)3C|s|−5 max{‖R1‖2,×, ‖R2‖2,×}‖Ψ‖3,×

≤ 6C|s|−5 max{‖R1‖2,×, ‖R2‖2,×}‖Ψ‖3,×

if ρ is big enough. We recall that ‖ · ‖ denotes the supremum norm in C2. Hence
G(Ψ) ∈ Y5 × Y5 ⊂ Y3 × Y3 and since |s| > ρ if s ∈ Eγ,ρ, we obtain

‖G(Ψ)‖3,× ≤ 6Cmax{‖R1‖2,×, ‖R2‖2,×}‖Ψ‖3,×ρ
−2 ≤ 1

2
‖Ψ‖3,× (3.12)

taking ρ big enough. Since G is a linear operator, this implies that Id − G is
invertible.

We recall that in (3.3) we had defined ∆Φ0 as:

∆Φ0(s) = s(1 + εh0s
−1) e− i(αs+β(s,ε))

(
κ0

0

)
.

We observe that, by Lemma 3.4 and expression (3.4) of ∆Φ,

∆Φ = (Id− G)−1(∆Φ0) =
∑
n≥0

Gn(∆Φ0). (3.13)

Once we have proved that ∆Φ can be obtained from formula (3.13), we have to
see how the operator G and its iterates Gn act on ∆Φ0. For that we introduce new
Banach spaces. At the end, we will get exponentially small bounds for ∆Φ.

For any ν ≥ 0, we define the Banach space

Zν = {h : Eγ,ρ → C, analytic and ‖h‖ν,e := sup
s∈Eγ,ρ

|sν ei(αs+β(s,ε)) h(s)| < +∞}.

We note that ∆Φ0 ∈ Z−1 × Zl for all l ≥ 0. For later convenience we are going to
study how the operator G acts on functions of Z−1 × Z0. We define the norm on
Z−1 ×Z0

‖(h1, h2)‖−1,0 = max{‖h1‖−1,e, ‖h2‖0,e}.

Lemma 3.5. For any γ > 0, there exists ρ big enough such that the operator
G : Z−1×Z0 → Z−1×Z1 is well defined. In addition, for any h ∈ Z−1×Z0, there
exists a constant K̄(ρ) depending on ρ such that

π1G(h)− s e− i(αs+β(s,ε)) K̄(ρ) ∈ Z0.

Moreover the linear operator Id− G is invertible on Z−1 ×Z0.

Proof. Let h = (h1, h2) ∈ Z−1 ×Z0. We introduce the auxiliary function

h̄(t) = (h̄1(t), h̄2(t)) = ei(αt+β(t,ε)) 1
t(1 + εh0t−1)

R(t)h(t)

and we claim that h̄ ∈ Y2×Y2 for ρ > ε0h0. Indeed, let s ∈ Eγ,ρ, then, by definition
of Z−1 ×Z0,

h1 ei(αt+β(t,ε)) ∈ Y−1, h2 ei(αt+β(t,ε)) ∈ Y0

and the claim is proved provided that R1, R2 ∈ Y2×Y2. Moreover it is not difficult
to check that, if ρ is big enough

‖h̄‖2,× ≤ 2 max{‖R1‖2,×, ‖R2‖2,×}‖h‖−1,0. (3.14)
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We write G(h) = (G1(h),G2(h)). For any s ∈ Eγ,ρ,

G1(h)(s) = e− i(αs+β(s,ε)) s(1 + εh0s
−1)

∫ s

− i ρ

h̄1(t) dt

G2(h)(s) = ei(αs+β(s,ε)) s(1 + εh0s
−1)

∫ s

− i∞
e−2 i(αt+β(t,ε)) h̄2(t) dt

Now we deal with G2(h). We observe that

ei(αs+β(s,ε))

s(1 + εh0s−1)
G2(h)(s) = e2 i(αs+β(s,ε))

∫ s

− i∞
e−2 i(αt+β(t,ε)) h̄2(t) = L2α

2 (h̄2)(s)

where L2α was defined in (3.5). Taking into account that h̄2 ∈ Y2 and Lemma
3.3, we conclude that ei(αs+β(s,ε)) s−1G2(h)(s) ∈ Y2 and henceforth G2(h)(s) ∈ Z1.
Moreover, using again Lemma 3.3 and (3.14) to bound ‖h̄‖2,×, we obtain that for
all s ∈ Eγ,ρ,

| ei(αs+β(s,ε)) G2(h)(s)| = |s(1 + εh0s
−1)L2α

2 (h̄2)(s)| ≤ 2C|s|−1‖h̄‖2,×

≤ 2Cρ−1‖h̄‖2,× ≤ 4Cρ−1 max{‖R1‖2,×, ‖R2‖2,×}‖h‖−1,0

≤ 1
4
‖h‖−1,0 (3.15)

if ρ is big enough.
Now we deal with G1(h). First we note that, since h̄1 ∈ Y2, by Cauchy’s theorem,∫ s

− i ρ

h̄1(t) dt =
∫ − i∞

− i ρ

h̄1(t) dt+
∫ s

− i∞
h̄1(t) dt. (3.16)

It is straightforward to check that, if u ∈ Eγ,ρ,∣∣∣∣∫ u

− i∞
h̄1(t) dt

∣∣∣∣ = ∫ 0

−∞
|h̄1(u+ i t)| dt ≤ ‖h̄1‖2

∫ 0

−∞
|u+ i t|−2 dt

≤ ‖h̄1‖2
∫ 0

−∞
(|u|2 + t2)−1 dt = ‖h̄1‖2

π

2
|u|−1. (3.17)

Hence the operator G1 : Z−1 × Z0 → Z−1 is well defined. Moreover, by decom-
position (3.16) and estimate (3.17), we have that

G1(h)− s(1 + εh0s
−1) e− i(αs+β(s,ε))

∫ − i∞

− i ρ

h̄1(t) dt ∈ Z0.

Using decomposition (3.16) and (3.14) to bound ‖h̄1‖2, we have that∣∣∣∣∫ s

− i ρ

h̄1(t) dt
∣∣∣∣ ≤ ‖h̄1‖2

π

2
(ρ−1 + |s|−1) ≤ max{‖R1‖2,×, ‖R2‖2,×}‖h‖−1,0πρ

−1

and we obtain that, if ρ is big enough

|G1(h)(s)s−1 ei(α+β(s,ε)) | ≤ 2 max{‖R1‖2,×, ‖R2‖2,×}‖h‖−1,0πρ
−1.

Finally we conclude that, taking if necessary ρ big enough,

‖G1(h)‖−1,e ≤
1
4
‖h‖−1,0 (3.18)

and the lemma is proved.

Now we are going to finish the proof of the main proposition in this section.



THE INNER EQUATION FOR UNFOLDINGS OF HOPF-ZERO SINGULARITY 341

End of the proof of Proposition 3.1. Proposition 3.1 follows, mainly, from the fact
that ∆Φ0 ∈ Z−1 ×Z0, Id− G is invertible on this Banach space and hence

∆Φ = (Id− G)−1(∆Φ0) ∈ Z−1 ×Z0. (3.19)

We notice that, by Lemma 3.5, G(∆Φ) ∈ Z−1×Z1 provided ∆Φ ∈ Z−1×Z0. Then,
since ∆Φ = ∆Φ0 + G(∆Φ), we have obtained that ∆Φ ∈ Z−1 × Z1. In addition,
again by Lemma 3.5, there exists a constant K̄(ρ) such that

π1(∆Φ−∆Φ0)− s e− i(αs+β(s,ε)) K̄(ρ) ∈ Z0

and therefore
∆Φ = s e− i(αs+β(s,ε))(K + χ(s))

where χ ∈ Y1 × Y2, K ∈ C2, π2K = 0 and π1K = κ0 + K̄(ρ). We observe that,
since ∆Φ is independent of ρ, the constant K is independent of ρ too.

Now we prove that K 6= 0 if and only if ∆Φ 6= 0. If there exists s0 ∈ Eγ,ρ such
that ∆Φ(s0) = 0, then ∆Φ(s) = 0 for all s ∈ Eγ,ρ (this fact is obvious since ∆Φ is
a solution of an homogeneous linear equation), hence in this case, clearly, K = 0.

On the other hand, if ∆Φ(s) 6= 0 for all s ∈ Eγ,ρ, then κ0 6= 0 (on the contrary,
∆Φ0 = 0 and by equality (3.19), ∆Φ = 0). We recall that, from (3.18) and (3.15),
we have that ‖G‖−1,0 ≤ 1/4. Henceforth, since

∆Φ−∆Φ0 =
∑
n≥1

Gn(∆Φ0)

we have that
‖∆Φ−∆Φ0‖−1,0 ≤

∑
n≥1

1
4n
‖∆Φ0‖−1,0 =

1
3
κ0.

By definition of the norm ‖ · ‖−1,0, the last bound implies that for any s ∈ Eγ,ρ,

|π1∆Φ(s)s−1 ei(αs+β(s,ε)) | ≥ |π1∆Φ0(s)s−1 ei(αs+β(s,ε)) | − 1
3
κ0,

hence, using that π1∆Φ0(s)s−1 ei(αs+β(s,ε)) = κ0, we have that for all s ∈ Eγ,ρ,

|π1∆Φ(s)s−1 ei(αs+β(s,ε)) | = |π1K + π1χ(s)| ≥ 2
3
|κ0|

and henceforth, taking Im s→ −∞, we get that |π1K| ≥ 2
3 |κ0| and thus K 6= 0.

In addition, by Proposition 2.3, we have that Φ±(s, ε) = Φ±0 (s, ε) + Φ±1 (s, ε)
with Φ±0 (s, ε) = B± ◦ R(0)(s, ε), where R(Φ)(s, ε) is given in (2.16), and Φ±1 (s, ε)
satisfying ‖Φ±1 ‖3,× < ‖Φ±0 ‖3,×. As R(0)(s, 0) = 0, it is clear that Φ±0 (s, 0) = 0
and consequently Φ±(s, 0) = 0. Thus, if ε = 0, then ∆Φ = 0 and this implies that
K = 0 and henceforth χ = 0. We conclude then that K = εC for some constant C
(depending on ε) and χ = εξ with ξ ∈ Y1 × Y2.

3.1. The case ε small. In this subsection we are going to prove the results in
Theorem 1.5 related with the value of the constant C at ε = 0.

Since system (2.3) is analytic with respect to ε, it is clear that the solutions Φ±

can be expressed of the form

Φ±(s, ε) = Φ±(s, 0) + ε∂εΦ±(s, 0) + ε2Φ
±

(s, ε).

On the other hand, as we have pointed out before, Φ±(s, 0) = 0. Hence the varia-
tional equation for ∂εΦ±(s, 0) is given by

d

ds
(∂εΦ±(s, 0)) = A(s)∂εΦ±(s, 0) + ∂εR(0)(s, 0)
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and since ε∂εR(0)(s, 0)+O(ε2) = R(0)(s, ε), and ∂εΦ±(s, 0) goes to 0 as Re s→ ±∞
respectively, we have that

ε∂εΦ±(s, 0) = B±(ε∂εR(0))(s, 0) = B±(R(0))(s, ε) +O(ε2) = Φ±0 (s, ε) +O(ε2).

Therefore, by definition of B± and R we have that

∆Φ(s, ε) = ε(∂εΦ−(s, 0)− ∂εΦ+(s, 0)) +O(ε2)

= (B− ◦ R(0)(s, ε)− B+ ◦ R(0)(s, ε)) +O(ε2)

= εM(s)
∫ +∞

−∞
M(s+ t)−1F (0,−(s+ t)−1) dt+O(ε2).

(We stress that M(s) and M(s+ t) are evaluated at ε = 0). Finally from the above
equality and Theorem 1.5 one deduces that

s e− i(αs+β(s,0))(C(0) + ξ(s, 0)) = M(s)
∫ +∞

−∞
M(s+ t)−1F (0,−(s+ t)−1) dt

=s

 ei c log s

∫ +∞

−∞
ei(αt−c log(s+t)) 1

s+ t
F1(0,−(s+ t)−1) dt

e− i c log s

∫ +∞

−∞
e− i(αt−c log(s+t)) 1

s+ t
F2(0,−(s+ t)−1) dt


:=s

(
M1(s)
M2(s)

)
. (3.20)

Now we are going to estimate M1 and M2. For that we observe that

F1(0,−s−1) =
∑
n≥3

an(−1)ns−n, F2(0,−s−1) =
∑
n≥3

bn(−1)ns−n.

Hence we have that

M1(s) =
∑
n≥3

an(−1)n ei c log s

∫ +∞

−∞

ei αt

(s+ t)n+1+i c
dt :=

∑
n≥3

an(−1)n ei c log s In

M2(s) =
∑
n≥3

bn(−1)n e− i c log s

∫ +∞

−∞

e− i αt

(s+ t)n+1−i c
dt :=

∑
n≥3

bn(−1)n e− i c log s Jn

In [3] was shown that

In = in+1+i c αn+i c 2π
Γ(n+ 1 + i c)

e− i αs(1 +O(| Im s|−1)) (3.21)

|Jn| ≤ C e−2α| Im s| |s|−n

In fact, in [3] the asymptotic expression for In is proved only when In has the form
In =

∫ +∞
−∞ ei αt(s + t)−`−1 dt with ` ∈ Q, but it is immediate that the result also

holds in this case. The estimation for Jn also needs an extra argument to be done
from the results in [3].

Using the asymptotic expressions in (3.21) we obtain that

M1(s) =
∑
n≥3

an(−1)n 2π i
Γ(n+ 1 + i c)

(iα)n+i c e− i(αs−c log s)(1 +O(| Im s|)−1)

M2(s) = O(e−2 i αs |s|−3).
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Hence we have that π2C(0) = 0. Finally, we define m1(u) = u−1−i cF1(0,−u−1) =∑
n≥3m

1
nu
−n−1−i c and its Borel transform m̂1(ζ) =

∑
n≥3m

1
n

ζn+i c

Γ(n+1+i c) and hence,
since m1

n = (−1)nan,

M1(s) = 2π i m̂1(iα) e− i(αs−c log s)(1 +O(| Im s|)−1)

and by (3.20), this implies that

π1C(0) = 2π i m̂1(iα).

3.2. Proof of Theorem 1.2. In this section we will recover Theorem 1.2 from
Theorem 1.5. We will need a technical lemma, analogous to Lemma 2.6, which was
proved in [3].

Lemma 3.6. Let ν, ρ, γ > 0, and h ∈ Yν,γ,ρ. Then there exists a constant C such
that for l ∈ N\{0} we have that

∂l
τh ∈ Yl+ν,2γ,2ρ and ‖∂l

τh‖l+ν ≤ l!2−lC‖h‖ν .

Given Φ±(s, ε) = (φ±(s, ε), ϕ±(s, ε)) the solutions obtained in Theorem 1.5, we
consider the autonomous differential equations given by

ds

dτ
= 1 + s2(bφ±(s, ε)ϕ±(s, ε) + εH(φ±(s, ε), ϕ±(s, ε),−s−1)). (3.22)

We fix γ > 0 and we take any ρ0 > 0 such that the conclusions of Theorem 1.5
become true. Since φ±, ϕ± ∈ X±3,γ/4,ρ0

and H can be decomposed of the form (2.1),
equation (3.22) can be expressed as

ds

dτ
= 1 + εh0s

−1 + S±(s, ε), S± ∈ X±2,γ/4,ρ0
(3.23)

where S± is given by:

S±(s) = H̄(φ±(s), ϕ±(s),−s−1).

Lemma 3.7. For any γ > 0, there exists ρ ≥ ρ0 big enough such that equation
(3.23) has two solutions s± satisfying

s±(τ, ε) = τ + εh0 log τ + (εh0)2τ−1 log τ + S±(τ, ε), S± ∈ X±1,γ,ρ. (3.24)

Let ∆s(τ, ε) = s−(τ, ε)− s+(τ, ε). Then

sup
τ∈E2γ,2ρ

|∆s(τ, ε)τ−1 ei(ατ−c log τ) | <∞.

Proof. We look for solutions of equation (3.23). We deal only in the − case being
the + analogous. Along this proof we do not write the dependence on the parameter
ε.

We recall that, as we pointed out in (3.23), S− ∈ X−2,γ/4,ρ0
. We are interested in

solutions of (3.23) of the form s = s0+s1 with s0(τ) = τ+εh0 log τ+(εh0)2τ−1 log τ .
For technical reasons, first we perform the change of coordinates given by s =
u+ h(u) := u+ εh0 log u+ (εh0)2u−1[log u+ 1] and we obtain a new system

u′ = 1 + U−(u), with U−(u) ∈ X−2,γ/2,ρ/4 (3.25)
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provided ρ is big enough. Indeed, it is clear that

u′ =
1

1 + εh0u−1 − (εh0)2u−2 log u
·
(
1 + εh0(u+ εh0 log u+ (εh0)2[u−1 log u+ u−1])−1 + S−(u+ h(u))

)
=
(
1− εh0u

−1 + (εh0)2u−2 log u+O(u−2)
)

·
(
1 + εh0u

−1 − (εh0)2u−2 log u+O(u−3(log u)2) + S−(u+ h(u))
)

:=1 + U−(u).

As we pointed out as a comment below Lemma 2.6, there exists a constant Cγ,ρ

such that if u ∈ D−γ,ρ, then the open ball of radius Cγ,ρ|u| and center u is contained
in D−2γ,4ρ. Hence, taking ρ big enough so that |h(u)| = |εh0 log u+(εh0)2u−1[log u+
1]| ≤ Cγ,ρ|u| we have that u + h(u) ∈ D−γ/4,ρ/16 for u ∈ D−γ/2,ρ/4. One can prove
this fact by using trivial geometric arguments. From that property and taking
into account that S− ∈ X−2,γ/4,ρ0

, it is straightforward to check that U− so defined
satisfies the property in (3.25). Now we look for solutions of (3.25) of the form
u(τ) = τ + u−1 (τ) and we obtain that u−1 has to satisfy

d

dτ
u−1 = U−(τ + u−1 ) (3.26)

We define the integral operator

I−(f)(τ) =
∫ τ

−∞
f(t) dt

and we claim that for any m > 1 and γ, ρ > 0, I− : Xm,γ,ρ → Xm−1,γ,ρ and
moreover ‖I−(f)‖m−1 ≤ Kν,γ‖f‖m. Indeed, the proof is straightforward from
(2.13) and Cauchy’s theorem:

|I−(f)(τ)| =
∣∣∣∣∫ 0

−∞
f(τ + t) dt

∣∣∣∣ ≤ ‖f‖m

∫ 0

−∞

1
|τ + t|m

≤ ‖f‖mKm,γ
1

|τ |m−1
.

We define N−(f)(τ) = U−(τ+f(τ)) and we emphasize that, if u−1 is a solution of
the fixed point equation u−1 = I− ◦N−(u−1 ) then u−1 satisfies equation (3.26). Since
U− belongs to X2,γ/2,ρ/4, we also have that N−(0) ∈ X−2,γ/2,ρ/4. We can also check
that, taking ρ big enough, τ+f(τ) ∈ D−γ/2,ρ/4 if τ ∈ D−γ,ρ and f ∈ X−1,γ,ρ. Moreover,
applying the mean value theorem and Lemma 2.6, then N−(f) −N−(0) ∈ X−4,γ,ρ,
taking ρ big enough. Hence we can conclude that the fixed point equation u−1 =
I− ◦ N−(u−1 ) has a solution belonging to X−1,γ,ρ following similar arguments as the
ones given in the proof of Lemma 2.7. Finally we undo the change of variables and
we obtain the result.

Now we deal with the statement of ∆s. As the functions S± given in equation
(3.23) are

S±(s) = H̄(φ±, ϕ±,−s−1),

it is clear that there exists Θ0(s) ∈ Y0 × Y0 such that

S−(s)− S+(s) = 〈Θ0(s),∆Φ(s)〉.

Moreover

S−(s−(τ))− S−(s+(τ)) =
∫ 1

0

DS−(s+(τ) + λ(s−(τ)− s+(τ))) ·∆s(τ) dλ.
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We note that, by Lemma 2.6, DS−(s) ∈ X3,2γ,2ρ provided S− ∈ X2,γ,ρ, therefore,

S−(s−(τ))− S−(s+(τ)) = Θ3(τ)∆s(τ)

with Θ3 ∈ Y3.
Now we subtract the equations that s± satisfy and we obtain that ∆s satisfies

the differential equation on Eγ,ρ

∆s′(τ) = S−(s−(τ))− S+(s+(τ))

= S−(s−(τ))− S−(s+(τ)) + S−(s+(τ))− S+(s+(τ))

= Θ3(τ)∆s(τ) + 〈Θ0(s+(τ)),∆Φ(s+(τ))〉
and therefore, since ∆s(τ) → 0 as Im τ → −∞, we have that

∆s(τ) =

exp
(∫ τ

− i∞
Θ3(u) du

)∫ τ

− i∞
exp
(
−
∫ t

− i∞
Θ3(u) du

)
〈Θ0(s+(t)),∆Φ(s+(t))〉 dt.

Finally we observe that, as Θ3 ∈ Y3, using Cauchy’s theorem,

|∆s(τ)| ≤C
∫ 0

−∞
|〈Θ0(s+(τ + i t)),∆Φ(s+(τ + i t))〉| dt

≤C‖Θ0‖0,×

∫ 0

−∞
‖∆Φ(s+(τ + i t))‖ dt. (3.27)

By Theorem 1.5 and taking into account expression (3.24) of s+ and that β(s) =
−(c+ εαh0) log(s(1 + εh0s

−1)), there exists a constant K such that

‖∆Φ(s+(τ + i t))‖ ≤ K|s+(τ + i t) e− i(αs+(τ+i t)+β(s+(τ+i t))) |

≤ K|τ + i t| eαt | e− i(ατ−c log(τ+i t) |.

Since | ei c(log τ−log(τ+i t)) | is bounded we have that, changing slightly K,

‖∆Φ(s+(τ + i t))‖ ≤ K|τ + i t| eαt | e− i(ατ−c log τ) |.
Using this fact to bound (3.27) we obtain

| ei(ατ−c log τ) ∆s(τ)| ≤ CK‖Θ0‖0,×

∫ 0

−∞
|τ + i t| eαt dt ≤ CKα−2‖Θ0‖0,×|τ |

and the second part of the lemma is proved.

Proof of Theorem 1.2. Let Φ±(s) = (φ±(s), ϕ±(s)) be the solutions of Theorem
1.5. We observe that (Φ±(s±(τ)), s±(τ)) are solutions of system (1.8). Henceforth
Ψ±(τ) = (Φ±(s±(τ)),−(s±(τ))−1) are solutions of system (1.1).

It is clear that, since Φ± ∈ X±3,γ,ρ×X
±
3,γ,ρ, then, taking ρ big enough if necessary,

π1Ψ±, π2Ψ± ∈ X±3,2γ,2ρ. Moreover

π3Ψ±(τ) = − 1
τ + εh0 log τ + (εh0)2τ−1 log τ + S±(τ)

= −1
τ

+O(τ−2 log τ).

On the other hand,

π1,2(Ψ−(τ)−Ψ+(τ)) = Φ−(s−(τ))− Φ+(s+(τ))

= Φ−(s−(τ))− Φ+(s−(τ)) + Φ+(s−(τ))− Φ+(s+(τ))

= ∆Φ(s−(τ)) +
∫ 1

0

∂sΦ+(s+(τ) + λ∆s(τ))∆s(τ) dλ.
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We note that by Lemma 3.6, ∂sΦ+ ∈ Y4,2γ,2ρ × Y4,2γ,2ρ. Hence, by Lemma 3.7∫ 1

0

∂sΦ+(s+(τ) + λ∆s(τ))∆s(τ) dλ = ξ̄(τ) e− i(ατ−c log τ)

with ξ̄ ∈ Y3,2ρ,2γ × Y3,2ρ,2γ . By Theorem 1.5 and Lemma 3.7, we obtain that

π1,2(Ψ−(τ)−Ψ+(τ)) =s−(τ) e− i(αs−(τ)+β(s−(τ))) ε(C(ε) + ξ(s−(τ)))

+ ξ̄(τ) e− i(ατ−c log τ)

=τ e− i(ατ−c log τ)(εC(ε) + ξ̃(τ))

where ξ̃ = O(τ−1 log τ) and C(ε) is the function defined in Theorem 1.5.
We know that if the constant C(ε) is zero one has that ∆Φ = 0. But in this case

it is easy to see that we also have ∆s = 0, and therefore ∆Ψ = 0.
We also observe that

π3(Ψ−(τ)−Ψ+(τ)) =
1

s−(τ)
− 1
s+(τ)

= − ∆s(τ)
s−(τ) · s+(τ)

=
1
τ

e− i(ατ−c log τ) h(s)

where h is a bounded function in E2γ,2ρ.
Finally we point out that, if ε = 0, again we have that ∆Φ = 0 which implies

that ∆Ψ = 0 and the proof is complete.
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