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Abstract

We show the existence of families of hip–hop solutions in the equal–mass 2N–body
problem which are close to highly eccentric planar elliptic homographic motions of 2N
bodies plus small perpendicular non–harmonic oscillations. By introducing a parame-
ter ε, the homographic motion and the small amplitude oscillations can be uncoupled
into a purely Keplerian homographic motion of fixed period and a vertical oscilla-
tion described by a Hill type equation. Small changes in the eccentricity induce large
variations in the period of the perpendicular oscillation and give rise, via a Bolzano ar-
gument, to resonant periodic solutions of the uncoupled system in a rotating frame. For
small ε 6= 0, the topological transversality persists and Brouwer’s fixed point theorem
shows the existence of this kind of solutions in the full system.

1 Introduction

Hip–hop solutions of the equal–mass 2N–body problem are periodic solutions in which all
the bodies move in such a way that their positions in configuration space are at the vertices
of a regular antiprism for all time.

A regular antiprism is a polyhedron formed by two congruent regular N–gons perpen-
dicular to the line joining their centers and such that their orthogonal projections along this
line form a regular 2N–gon, i.e. one of the N–gons has been rotated an angle π/N on its own
plane. The polyhedron is completed by connecting both N–gons, which we call the bases, by
an alternating band of isosceles triangles. The symmetries of the equations of motion when
all the masses are equal ensure that if at a given time t0 the 2N bodies are on the vertices of
a regular antiprism and the velocities satisfy the appropriate conditions of symmetry, then
they will stay forever on the vertices of an antiprism.
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If we take the line joining the centers of the bases to be the z-axis and the center of mass
at the origin, then the picture of a hip–hop solution is similar to having two equal planar
homographic elliptic solutions on parallel planes, each one rotated through half a central
angle with respect to the other, together with an oscillatory motion of the planes along their
common perpendicular. The planes will coincide at a given time with opposite velocities,
separate in opposite directions, reach a maximum distance and fall again to coincide. The
orthogonal projection of both N–gons on the z = 0 plane will always be a regular rotating
2N–gon of variable size. A hip–hop solution is a periodic solution of this type, where periodic
has the usual meaning of periodic in an ad–hoc rotating reference frame (see [2], [6]).

A number of results on hip–hop solutions have been obtained by means of variational
methods. With these methods it is possible to find solutions that do not depend on a small
parameter (see [3], [6] and the references therein for more details). In [2], the authors show
that Poincare’s argument of analytic continuation can be used to add vertical oscillations to
the circular motion of 2N bodies of equal mass occupying the vertices of a regular 2N–gon,
and prove the existence of families of hip–hop solutions with eccentricity close to zero. An
infinite number of these orbits are 3D choreographies, i.e. all the bodies move on the same
non–planar curve at equally spaced time intervals.

In this work we prove the existence of hip–hop solutions for values of the eccentricity
close to 1. Roughly speaking, these solutions are obtained by introducing a small parameter
ε in order to rescale the z variable and uncouple the equations of motion into a homographic
motion and a vertical oscillation. The homographic motion is not affected by the vertical
motion, but the period of the vertical oscillation is greatly affected by small changes in
the eccentricity of the homographic motion when the eccentricity is close to unity. As the
vertical oscillation period depends continuously on the eccentricity, a standard Bolzano type
argument shows the existence of periodic solutions in the uncoupled problem.

When ε 6= 0 is small, the homographic motion is perturbed by the vertical motion, but
the topological transversality can be shown to persist using Brouwer’s fixed point theorem
(see [4] for a general reference). These solutions are probably among the very spectacular
orbits computed numerically by Terracini and shown at the Celmec IV meeting in Viterbo
(2004).

2 Equations of motion

Consider 2N bodies of equal mass m moving under Newton’s law and let (ri, ṙi), i =
1, · · · , 2N , be their positions and velocities in R3. The equations of motion of the 2N–
body problem, in a normalized system of units, are

r̈i =
2N∑

k=1,k 6=i

rk − ri

r3
ki

, i = 1, . . . , 2N, (1)

where rki = |rk − ri|.
As we mentioned in the introduction, we are looking for hip–hop solutions of the 2N–

body problem, i.e. solutions such that the bodies are on the vertices of an antiprism for
all time. Due to the symmetries involved, it is enough to know the position of one of the
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bodies. Thus, in a suitable reference system, if r = r1(t) = (x, y, z), ṙ = ṙ1(t) = (ẋ, ẏ, ż)
are the position and velocity of one of the bodies, then the position and velocity of the i–th
body, for i = 2, . . . , 2N , is

ri = Ri−1r1, ṙi = Ri−1ṙ1,

where R is a rotation plus a reflection given by the matrix

R =




cos( π
N

) − sin( π
N

) 0
sin( π

N
) cos( π

N
) 0

0 0 −1


 . (2)

These equations are written in a frame such that the center of mass is at the origin and the
bases (the two sets of N bodies) of the antiprism are parallel to the z = 0 plane. There is
clearly no loss of generality in doing so and it gives a lot of insight into the physics of the
problem.

The study of hip–hop solutions is reduced to the study of the three–degree of freedom
system given in Proposition 1 (see [2] for details).

Proposition 1 The vector (r1, r2, . . . , r2N) = (r, Rr, . . . , R2N−1r), where R is the matrix
given in (2), is a solution of the 2N–body problem (1) if and only if r(t) satisfies the equation

r̈ =
2N−1∑

k=1

(Rk − I)r

|(Rk − I)r|3 , (3)

where I is the identity matrix.

The equations (3) can be written as the differential system associated to the Hamiltonian

H =
1

2
(p2

x + p2
y + p2

z)−
1

2

2N−1∑

k=1

1√
4(x2 + y2) sin2

(
kπ
2N

)
+ ((−1)k − 1)2z2

, (4)

where px, py and pz are the momenta conjugated to the x, y, z coordinates. We introduce
cylindrical coordinates (r, φ, d) by means of the change

x = r cos φ, y = r sin φ, z = d,

and the Hamiltonian (4) becomes

H =
1

2
(p2

r +
p2

φ

r2
+ p2

d)−
1

2

2N−1∑

k=1

1√
4r2 sin2

(
kπ
2N

)
+ ((−1)k − 1)2 d2

, (5)

where pr, pφ and pd are the momenta associated to the cylindrical coordinates.
The function H does not depend on φ, which means that ṗφ = 0. As the angular

momentum pφ = Φ is constant it can be computed from the initial conditions and then the
variable φ can be obtained by means of a quadrature from the equation

φ̇ =
Φ

r2
. (6)
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Let us call the reduced problem that consisting only of the equations for the r and d variables
given by

r̈ =
Φ2

r3
− 2r

2N−1∑

k=1

sin2
(

kπ
2N

)
(
4r2 sin2

(
kπ
2N

)
+ ((−1)k − 1)2 d2

)3/2
,

d̈ = −d

2

2N−1∑

k=1

(
(−1)k − 1

)2

(
4r2 sin2

(
kπ
2N

)
+ ((−1)k − 1)2 d2

)3/2
,

(7)

and the complete problem the whole set of equations (6) and (7). Our first aim is to find
periodic solutions of the reduced problem. These solutions will be periodic or quasi–periodic
solutions of the complete problem depending on the commensurability of their period T with
φ(T ).

As the equations of motion of the reduced problem (7) are invariant by the symmetry

S : (t, r, d, ṙ, ḋ) −→ (−t, r,−d,−ṙ, ḋ),

we have the following well–known proposition, which provides sufficient conditions for sym-
metric periodic solutions to exist.

Proposition 2 Let q(t) = (r(t), d(t), ṙ(t), ḋ(t)) be a solution of the equations (7). If q(t)
satisfies d(0) = ṙ(0) = 0 and d(τ) = ṙ(τ) = 0 at some instant of time t = τ , then q(t) is a
symmetric periodic solution of period 2τ .

Other symmetries are possible (see for instance [2]). We do not intend to explore, in
the present paper, all possible symmetries but, indeed, to show that for high eccentricities
hip–hop solutions can be shown to exist by means of topological arguments.

In equation (7) the initial conditions d(0) = ḋ(0) = 0 will result in a planar (in the z = 0
plane) homographic motion of the 2N bodies. We intend to add a small vertical motion in
the z direction and show the existence of periodic 3–dimensional hip–hop solutions. When
the amplitude of the vertical motion tends to zero, the planar motion can be uncoupled from
the system; the uncoupling can be accomplished through a rescaling of the variable d as
follows. If we substitute εd for d in the equations (7) we obtain (see [2] for more details)

r̈ =
Φ2

r3
− K2

N

r2
+ O(ε2),

d̈ = −S2
N

r3
d + O(ε2),

(8)

where

K2
N =

1

4

2N−1∑

k=1

1

sin
(

kπ
2N

) , S2
N =

1

64

2N−1∑

k=1

((−1)k − 1)4

sin3
(

kπ
2N

) . (9)

For ε small we intend to treat the above system as a perturbation of the case ε = 0.
It must be borne in mind, however, that the expansions in ε are valid only if r is bounded
away from zero because coefficients involving terms of the form 1/rn are likely to appear in
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the expansions. As the equations are analytic, we can say that given r∗ > 0, the right–hand
sides of equations (8) hold good uniformly in ε for r > r∗.

The next Lemma provides a useful bound on the constants S2
N and K2

N which will be
useful later on.

Lemma 1 Let SN and KN the sums defined in (9). Then, for all integers N > 1,

S2
N

K2
N

≥ 2

(2(N − 1) + sin( π
2N

)) sin2( π
2N

)
≥ 8

4 +
√

2
.

Proof. Let us define δk =

{
0, k even
1, k odd

. Each sum can be written as follows

4S2
N = δN + 2

N−1∑

k=1

δk

sin3( kπ
2N

)
, 4K2

N = 1 + 2
N−1∑

k=1

1

sin( kπ
2N

)
,

and then

S2
N

K2
N

≥

2

sin3( π
2N

)

1 +
2(N − 1)

sin( π
2N

)

=
2

(2N − 2 + sin( π
2N

)) sin2( π
2N

)
.

Notice that the function f(x) = (π
x
− 2 + sin x) sin2 x is monotone increasing in [0, π/4] and

thus
S2

N

K2
N

≥ 2

f(π/4)
=

8

4 +
√

2
.

3 Periodic solutions of the uncoupled system

Recall that 2N is the number of bodies in the problem. As we always think of a fixed N ,
we will suppress all references to N in what follows. So, the constants SN and KN will be
written simply as S and K from now on.

If we set ε = 0 in equations (8) we get

r̈ =
Φ2

r3
− K2

r2
, (10)

d̈ = −S2

r3
d, (11)

where the first equation is just the radial motion of a Kepler problem (only the radial part
is written here, the angular part can always be obtained through the angular momentum
integral) and the second is a classical linear Hill’s equation which represents (due to the
rescaling introduced in the previous Section) the small vertical oscillation of the bodies.
Ideally we could solve equation (10) for r(t), substitute the result in equation (11) and solve
the latter for d(t).
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Let us denote by rp(t, a, e) the solution of equation (10) with semiaxis a and eccentricity
e starting at the pericenter of the orbit at t = 0, i.e. rp(0, a, e) = a(1− e) and ṙp(0, a, e) = 0.
The function rp(t, a, e) is given by

rp(t, a, e) = a(1− e cos E(t)), (12)

where E(t) is defined implicitly by Kepler’s equation E(t)− e sin E(t) = M(t), with M(t) =
Ka−3/2t. The magnitudes E and M are called traditionally eccentric anomaly and mean
anomaly. A general reference for all issues concerning Kepler’s equation is [1].

The parameters a and e are related to the angular momentum through the equality
Φ2 = a(1 − e2)K2 and to the initial position through rp(0, a, e) = a(1 − e). The function
rp(t, a, e) is periodic of period 2T where T = πa3/2/K is the Keplerian semi–period of the
orbit.

Let dp(t, a, e) be the solution of equation (11) with r(t) = rp(t, a, e) and initial conditions
dp(0, a, e) = 0, ḋp(0, a, e) = 1. Notice that in view of the linearity of the equation (11) the
solution with initial velocity equal to λ is λdp(t, a, e).

We have in mind to show that for many values of the eccentricity e a zero of ṙp(t, a, e)
coincides with a zero of dp(t, a, e). For any positive integer m we know that ṙp(mT, a, e) = 0
for any value of e. By carefully adjusting the value of e, we want to get dp(mT, a, e) = 0.

Given a positive integer m and e < 1, let Z(m, a, e) be the number of zeros of dp(t, a, e)
in the interval [0,mT ]. If e < 1 the equations (10) and (11) are analytic and we can apply
straightforward Sturm theory. The coefficient on the right hand side of the equation (11)
is periodic and strictly negative, so the zeros of dp(t, a, e) are all simple, separate those of
ḋp(t, a, e) for t > 0 and there are only finitely many of them. So, Z(m, a, e) is well defined
(it could well happen that Z(m, a, e) = 0, but by no means Z(m, a, e) = ∞). We will see,
however, that if e tends to 1, the number of zeros increases unboundedly. This means that
zeros of dp(t, a, e) must be “entering” the interval [0,mT ] from the right and we must have
dp(mT, a, e) = 0 for certain values of e.

The limiting case e = 1 of these equations plays an important role in the analysis of the
problem. For e = 1, the solution E(M) of Kepler’s equation E − sin E = M can be given in
the form E = (6M)1/3α(M), which is valid only for small values of M and where α(M) is a
continuous function with α(0) = 1 (see [1]). Then

rp(t, a, 1) = a(1− cos E) = 2a sin2(E/2) =
62/3

2
aM2/3β(M),

where β(M) is a continuous function with β(0) = 1. Let β0 be such that 1 < β3
0 < 64

9(4+
√

2)
,

and ζ ∈ (0, π) be small enough so that β(M) < β0 for M ∈ [0, ζ]. If γ = S2

K2
2

9β3
0

the inequality

S2

r3
p(t, a, 1)

>
γ

t2
,

holds for t ∈ (0, ζ a3/2

K
].

Consider now the Euler’s equation

ÿ = − γ

t2
y,
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which will be helpful in deriving properties of the function dp(t, a, e). From Lemma 1 we
have γ > 1/4 and then, the solutions of the Euler’s equation are of oscillatory type and given
by

y(t) =
√

t
(
C1 sin(

√
γ − 1/4 log t) + C2 cos(

√
γ − 1/4 log t)

)
, (13)

where log is the natural logarithm and C1, C2 arbitrary constants.
The function y(t) has infinitely many zeros with t = 0 as unique accumulation point, so

that for any positive integer k there exists δ > 0 such that y(t) has at least k zeros in the
interval [δ, ζa3/2/K]. See for instance [5].

In the compact defined by t ∈ [δ, ζa3/2/K] and e ∈ [0, 1] we have lim
e→1

rp(t, a, e) = rp(t, a, 1)

because we are away from the singularity t = 0. It is possible then to find e∗ < 1 such that
for e ∈ [e∗, 1] and t ∈ [δ, ζa3/2/K] the inequality

S2

r3
p(t, a, e)

>
γ

t2
,

holds good.
As [δ, ζa3/2/K] ⊂ [0,mT ], Sturm’s comparison theorem asserts that the function dp(t, a, e)

has at least k zeros in the interval [0, mT ]. So Z(m, a, e) ≥ k, for e ∈ [e∗, 1), and the following
proposition is true.

Proposition 3 The integer–valued function Z(m, a, e) is well defined for e < 1 and lim
e→1

Z(m, a, e) =

+∞.

The following proposition shows the existence of infinitely many periodic solutions of the
uncoupled system.

Proposition 4 Given a positive integer m, there exists a non negative integer k and an
increasing sequence of eccentricities {en}n≥1 converging to 1 such that the function dp(t, a, en)
has exactly n + k zeros in the interval t ∈ [0,mT ] and dp(mT, a, en) = 0

Proof.
Let us consider equation (11) as a system of first order and introduce polar coordinates

as follows: d = ρ sin θ, ḋ = ρ cos θ. Then the system becomes

θ̇ =
S2

N

r3
p(t, a, e)

sin2 θ + cos2 θ,

ρ̇ =

(
1− S2

N

r3
p(t, a, e)

)
sin 2θ

2
ρ.

(14)

Denote by θp(t, a, e) the solution of the first equation of system (14) with initial condition
θp(0, a, e) = 0. Clearly, dp(mT, a, e) = 0 if and only if θp(mT, a, e) ∈ πZ. From Proposi-
tion 3 and the fact that θp(t, a, e) is a strictly increasing function of t and its derivative is
greater than a certain positive constant, for each positive integer k, there exists e∗ such that
θp(mT, a, e) > kπ, for e ∈ [e∗, 1] and

lim
e→1

θp (mT, a, e) = ∞. (15)
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Furthermore, there exist k a non–negative integer such that

k = min{k ∈ N; k > 0, ∃e ∈ [0, 1] such that θp (mT, a, e) = kπ}. (16)

Now, for each value of a, let us consider the analytic function e ∈ [0, 1] −→ θp(mT, a, e).
Let us define the sequence {en}n∈N in the following way. Firstly, we take e0 as the minimum

value of e such that is a zero of θp(mT, a, e)− kπ = 0 with odd multiplicity and, secondly,

en = min
{
e ∈ [0, 1] ; e > en−1, θp (mT, a, e)− (n + k)π = 0 with odd multiplicity

}
, (17)

for n ≥ 1. We observe that en exist due to (15). Then, the sequence {en}n∈N is strictly

increasing and converging to 1. The solution dp(t, a, en) has n+k zeros in the interval [0,mT ]
and dp(mT, a, en) = 0.

Clearly the eccentricities en and the non–negative integer k defined in Proposition 4
depend on m, but in order to keep the notation reasonable simple in what follows we will
generally suppress the explicit dependence on the parameter m when not essential.

4 The reduced problem

Consider the equations for the reduced problem (8). We will show that for any of the periodic
orbits of the uncoupled problem founded in Section 3 there exists ε > 0 such that, for any
ε ∈ [0, ε], there exists a periodic solution of the reduced problem near the solution of the
uncoupled system, that is, if ε → 0, the solution of the reduced problem tends to the solution
of the uncoupled system.

Given a value of the angular momentum Φ, let rε
p(t, r0, ḋ0) and dε

p(t, r0, ḋ0) be a par-

ticular solution of equations (8) with initial conditions rε
p(0, r0, ḋ0) = r0, ṙε

p(0, r0, ḋ0) = 0,

dε
p(0, r0, ḋ0) = 0, ḋε

p(0, r0, ḋ0) = ḋ0. Notice that due to the rescaling introduced in the vari-

able d in Section 2, taking any other value of ḋε
p(0, r0, ḋ0) would result in a different rescaled

values of ε.
Using Proposition 2, we need to prove that there exist values of r0, ḋ0 and τ such that

the solution of equations (8) rε
p(t, r0, ḋ0) and dε

p(t, r0, ḋ0) satisfies

ṙε
p

(
τ, r0, ḋ0

)
= 0,

dε
p

(
τ, r0, ḋ0

)
= 0.

In the case ε = 0, we have the following result equivalent to Proposition 4. From now
on, we denote T = mT , i.e. a multiple of the Keplerian semi–period.

Proposition 5 Given a positive integer m and for each value of the semimajor axis a, there
exist sequences of initial conditions {rn

0}n∈N and momenta {Φn}n∈N, both converging to zero,
such that the solution rε

p(t, r0, ḋ0) and dε
p(t, r0, ḋ0) of equations (8) with ε = 0, Φ = Φn and

initial conditions r0 = rn
0 and ḋ0 any value, is a periodic solution of period 2T .

Proof. Clearly, for ε = 0, given a fixed value of the semimajor axis a and for any r0 ∈ (0, a],
the solution (r0

p(t, r0, ḋ0) and d0
p(t, r0, ḋ0)) of equations (8) coincide with the solution of
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the uncoupled problem introduced in Section 3. In particular, when ḋ0 = 1, r0
p(t, r0, 1) =

rp(t, a, e) and d0
p(t, r0, 1) = dp(t, a, e) for e = 1 − (r0/a) and Φ2 = a(1 − e2)K2. From

Proposition 4 and according to (12), given any non negative integer m, there exists a sequence
{en}n∈N such that if rn

0 = a(1− en) then

ṙ0
p(T , rn

0 , 1) = ṙp(T , a, en) = 0,

d0
p(T , rn

0 , 1) = dp(T , a, en) = 0.
(18)

As it was pointed out in Section 3, due to the linearity of equation (11), the same result is
also true for any value of ḋ0.

In order to extend the Theorem 5 to the case ε 6= 0 we will use topological arguments as
follows. We fix a value ḋ0 and a, and for each n ∈ N and m ∈ N and ε ≥ 0 we define the
following vector field:

Fε(τ, r0) = (Fε
1(τ, r0),Fε

2(τ, r0)) = ((−1)m+1ṙε
p(τ, r0, ḋ0), (−1)n+1+kdε

p(τ, r0, ḋ0)), (19)

for (τ, r0) ∈ [0,∞)× (0, a] and k defined in (16). The existence of symmetric periodic orbits
of equations (8) reduces to find a singular point (τ, r0) for the vector field F ε.

Lemma 2 Given a positive integer m and any value of ḋ0 and the semimajor axis a, let
T , Φn and rn

0 , n ≥ 1, be as in Proposition 5, rε
p(t, r0, ḋ0) and dε

p(t, r0, ḋ0) be the solution of
equations (8) with Φ = Φn, and F ε(τ, r0) be the vector field defined in (19). Then, for any
fixed value of n, there exists a box D = [T 1, T 2] × [b1, b2] ⊂ (0,∞) × (0, a] and εn > 0 such
that F ε(τ, r0) over ∂D is a vector pointing towards the interior of D for all ε ≤ εn, and
(T , rn

0 ) ∈ D is the only zero of F0 in D.

Proof. In order to prove the first statement it suffices to show that, for ε = 0, we can
construct a box D such that the vector field does not vanish on ∂D and points inwards. As
F ε(τ, r0) is continuous, a standard compacity argument shows that, there exists εn such that
if ε < εn, then F ε still has both properties.

T 1 T 2T

b1

b2

r
n
0

Figure 1: Vector field F ε defined inside the square [T 1, T 2]× [b1, b2]

Clearly, from (18), we have that F0(T , rn
0 ) = (0, 0), and also, for any value of r0 ∈ (0, a],

F0
1 (T , r0) = 0.

Notice that, for any value r0 ∈ (0, a], T is a multiple of the semi-period of the function
r0
p(t, r0, ḋ0), and that r0

p(T , r0, ḋ0) is the distance from the origin to the pericenter (for m

even) or to the apocenter (for m odd). Consequently, if we consider τ < T in a sufficiently
small neighborhood of T , we have ṙ0

p(τ, r0, ḋ0) < 0 (for m even) and ṙ0
p(τ, r0, ḋ0) > 0 (for
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m odd). In a similar way, for T < τ , in a sufficiently small neighborhood of T , we have
ṙ0
p(τ, r0, ḋ0) > 0 (if m is even) and ṙ0

p(τ, r0, ḋ0) < 0 (for m odd). So we can take T 1, T 2,

such that T 1 < T < T 2 and for 0 < r0 < a we have F0
1 (τ, r0) > 0 for T 1 ≤ τ < T , and

F0
1 (τ, r0) < 0 for T < τ ≤ T 2 (see Figure 1).

We will show now that there exist values b1 and b2 such that rn
0 ∈ [b1, b2] and the vector

field is inward-pointing in the region D. If it is necessary, the interval [T 1, T 2] will be
restricted. As in Proposition 4, we write

d0
p(t, r0, ḋ0) = ρp sin θp.

By the definition of en (see (17)), for any positive integer n ≥ 1 we have the following three
consecutive multiples of π

θp(T , a, en−1) = (n− 1 + k)π,

θp(T , a, en) = (n + k)π,

θp(T , a, en+1) = (n + 1 + k)π.

Then, for a small enough value h > 0, there exist two values of the eccentricity η1, η2 such
that en−1 < η1 < en < η2 < en+1, θp(T , a, η1) = (k +n)π−h, and θp(T , a, η2) = (k +n)π +h.
Then, if b1 = a(1 − η1) and b2 = a(1 − η2) the vector field verify that F0

2 (T , b1) < 0 and
F0

2 (T , b2) > 0 (see Figure 1).
As d0

p(t, r0, ḋ0) is a continuous function, there exist δ1 > 0 such that F0
2 (τ, b1) < 0 and

F0
2 (τ, b2) > 0 for

∣∣τ − T
∣∣ < δ1. Now we restrict if necessary the interval [T 1, T 2] and the

proof is complete.
Notice that the box D has been constructed such that (T , rn

0 ) is the only zero of F0 in
D.

Theorem 1 Let N, m be positive integers, N ≥ 2, and let a be a real positive value and
T = mπa3/2/K, where the constant K = KN is defined in (9). There exists infinite sequences
{rn

0}n∈N , {Φn}n∈N and {εn}n∈N, n ≥ 1, such that rn
0 converges to zero, εn > 0 and for any

fixed value of n ≥ 1 and for any ε ∈ (0, εn] there exist T
ε
and rε

0 in such a way that:

1. when ε → 0 then rε
0 → rn

0 and T
ε → T ,

2. the solution of equations (8) for Φ = Φn with initial conditions r(0) = rε
0, ṙ(0) = 0,

d(0) = 0 and ḋ(0) = ḋ0 is a hip–hop solution of period 2T
ε
of the reduced problem.

Proof. Given a value of the semimajor axis a, the existence of sequences rn
0 and Φn are

ensured from Proposition 5. For a fixed value of n ≥ 1, from Lemma 2 and a topological
fixed point argument (see, for example, [4]), there exist a value εn such that, for all ε ≤ εn

there exist rε
0 and T

ε
satisfying that F ε(T

ε
, rε

0) = 0. This proves the second part of the
statement, and the first one comes from the fact that (T , rn

0 ) is the only zero of F0 in the
box D and an argument of continuity.

Theorem 1 shows the existence of periodic orbits of the reduced system (8). Clearly, each
one of these periodic solutions are hip–hop solutions of the equations (7) close to the planar
homographic motion, that is, the projection on the (x, y)–plane performs a precessing highly
eccentric elliptic motion, and with a small vertical amplitude.
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Fixed the number of the bodies 2N , a value for m and for the semimajor axis a, it is easy
to find numerically the firsts elements of the sequence {en}n∈N (up to a certain precision). For
each value en, a family of hip–hop solutions is born from the planar homographic motion,
which can be followed numerically. In Figure 2, two characteristic curves of one of these
families are shown.
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Figure 2: Characteristic curves of a family of hip–hop solutions. On the left, the (r0, T ) curve;
on the right, the (r0, d

′
0) curve. N = 3, a = 1, m = 3 and the initial e1 = 0.721109941900484.

In Figure 3 two hip–hop solutions are shown in (x, y, z) coordinates. They are plotted
for one period of the variables (r, d) (in which the orbit is periodic). Notice that in general,
these solutions are quasi–periodic in the cartesian coordinates.
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Figure 3: Hip–hop solutions for N = 3 and m = 3 (left), N = 7 and m = 3 (right) in the
(x, y, z) and their projections on the (x, y)–plane.
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