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Abstract

Solar sails are a proposed form of spacecraft propulsion using large membrane
mirrors to propel a satellite taking advantage of the solar radiation pressure. To model
the dynamics of a solar sail we have considered the Earth - Sun Restricted Three Body
Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface
of equilibrium points parametrised by the two angles that define the sail orientation. In
this paper we study the non-linear dynamics close to an equilibrium point, with special
interest in the bounded motion. We focus on the region of equilibria close to SL1. For
different fixed sail orientations we find families of planar, vertical and Halo-type orbits.
We have also computed the centre manifold around different equilibria and used it to
describe the quasi-periodic motion around them. We show how the geometry of the
phase space varies when we vary the sail orientation. These kind of studies can be very
useful for future mission applications.

1 Introduction

Solar Sails are a proposed form of spacecraft propulsion that takes advantage of the solar
radiation pressure to propel a spacecraft by means of a large membrane mirror. The impact
of the photons emitted by the Sun on the surface of the sail and its further reflection will
accelerate the spacecraft. Although the acceleration produced by the solar radiation pressure
is smaller than the one achieved by the traditional propulsion systems, this one is continuous
and unlimited. This makes long term missions more accessible [14]. It also opens a wide new
range of possible mission applications that cannot be achieved by a traditional spacecraft,
e.g. Geostorm Warning Mission, Polar Observer and the GeoSail [16].

The acceleration given by the sail depends on the orientation of the sail and its efficiency.
In this paper we consider a flat and perfectly reflecting sail, so the force due to the solar
radiation pressure is normal to its surface. The orientation of the sail is parametrised by two
angles α and δ and its efficiency is given in terms of the sail lightness number β. To model
the dynamics of a solar sail we have taken the Sun - Earth Restricted Three Body Problem
(RTBP) and added the solar radiation pressure.
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The Restricted Three Body Problem for a Solar Sail (RTBPS) can be expressed as a
perturbation of the RTBP. If the radiation pressure is discarded (β = 0 or the sail is aligned
with the Sun - sail direction) the system has five equilibrium points. When we add the
effect of the solar sail, for a fixed sail lightness number β 6= 0, these points are replaced by
2D families of equilibria parametrised by the two angles defining the orientation of the sail
(α, δ) [14, 15].

These artificially generated equilibrium points offer the possibility of considering very
interesting mission applications, two examples would be the Geostorm Warning Mission [16,
27] and the Polar Observer Mission [16]. The Geostorm is a mission concept where a modest
sail is placed sun-wards of the classical Earth-Sun L1 point. Then with a magnetometer we
can detect the solar wind polarity and give enhanced warning of the geomagnetic storms,
doubling the time of alert of a conventional L1 Halo orbiter such as SOHO. The aim of the
Polar observer mission is to place a solar sail around an equilibrium point displaced above
the ecliptic plane, above one of the Earth’s poles. This would provide constant viewing of
the polar regions and could be useful to imaging the polar regions or carrying out studies
on the climate evolution on the Arctic zone.

Both missions require to keep a solar sail close to an unstable equilibrium point. Hence we
need to derive a station keeping strategy to maintain a solar sail around it. Several authors
have already discussed the controllability of these regions and studied different possibilities
for the station keeping of a solar sail around unstable equilibrium points [17, 11, 1, 6].

In [6, 7] we describe how to use the information of the linear dynamics close to an
equilibrium point to derive station keeping strategies. The main idea is to know how the
fixed points and stable and unstable manifolds vary when the sail orientation is changed. A
change on sail orientation implies a change on the phase space portrait. If we understand
how this changes affect the trajectory of the sail, we can try to change the sail orientation
in an appropriate way to make the phase space act in our favour. We end up finding a
sequence of changes for the sail orientation, discrete in time, so that the trajectory of the
sail remains close to the equilibrium point. Using feedback control we would have to change
the sail orientation in a continuous way.

In this paper we want to study and understand the non - linear dynamics around equi-
libria. We want to know what other invariant objects exist in the phase space and how
they change when we consider different sail orientations. In particular we will describe the
families of periodic and quasi-periodic orbits. Some of these invariant objects can offer in-
teresting possibilities for other mission applications. In the near future we want to use this
information, to derive strategies in the philosophy of [6, 7], to maintain a solar sail close to
some of these invariant objects.

We will focus on the particular case of α = 0 (i.e. we just allow the sail orientation
to vary vertically w.r.t. the Sun - sail line), when the system is time reversible. This will
ensure us, that under certain constraints on the nature of the equilibrium points, there exists
families of periodic and quasi-periodic orbits around equilibria.

In section 3 we describe the families of periodic orbits that emanate from different equi-
librium points. We find planar and vertical families of periodic orbits, as well as Halo - type
orbits. In section 4 we describe the quasi-periodic motion around the equilibrium point, find-
ing new families of periodic orbits and invariant tori around equilibria due to the interaction
between the two frequencies defining the centre motions.

We will see that if α = δ = 0, i.e. the sail is perpendicular to the Sun-sail line, the
qualitative behaviour of the system around the equilibrium point is similar to the behaviour
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around the collinear point L1 of the RTBP. We will show how the loss of symmetry of the
system when δ 6= 0 affects the phase space portrait.

As the equilibrium points are unstable, we need to be careful with the numerical tools
that we use. We have developed our own algorithms to avoid problems during the integration
due to the instability of the region. To the computation of the periodic orbits we have used
a parallel shooting method. To study the quasi-periodic motion we have performed the
reduction to the centre manifold. In section 4.1 we give some of the main details on how to
deal in an efficient way with the computation of this last invariant object.

2 Solar Sails in the RTBP

To describe the motion of a solar sail in the Earth - Sun system, we take the Restricted
Three Body Problem for a Solar Sail (RTBPS). We assume that the Earth and Sun are
point masses moving in a circular orbit around their common centre of mass, and the sail
is a massless particle that is affected by the gravitational attraction of both bodies and the
solar radiation pressure. The units of mass, distance and time are normalised so that the
total mass of the system is 1, the Earth - Sun distance is 1 and the period of its orbit is
2π. We use a rotation reference system so that Earth and Sun are fixed on the x - axis, z
is perpendicular to the ecliptic plane and y defines an orthogonal positive oriented reference
system (Figure 1 left).

We consider the solar sail to be flat and perfectly reflecting. This means that the force
due to the solar radiation pressure is in the normal direction to the surface of the sail. In
such case, the force due to the sail is given by,

~Fsail = β
1− µ
r2
PS

〈~rs, ~n〉2~n,

where β represents the sail lightness number, ~rs is the Sun - line direction and ~n is the
normal direction to the surface of the sail (both vectors have norm 1). The sail orientation
is parametrised by two angles, say α and δ: α is the angle between the projection of the
Sun - sail line and the normal vector to the surface of the sail ~n on the ecliptic plane; δ is
the difference between: a) the angle between the projection of the Sun - sail line with the
ecliptic plane; and b) the angle of the normal vector ~n with the ecliptic plane (see Figure 1
right). There are other possibilities to define these angles, see [14, 17].

The equations of motion are,

Ẍ = 2Ẏ +X − (1− µ)

r3
PS

(X − µ)− µ

r3
PE

(X − µ+ 1)− β (1− µ)

r3
PS

〈~rs, ~n〉2NX ,

Ÿ = −2Ẋ + Y −
(

(1− µ)

r3
PS

+
µ

r3
PE

)
Y − β (1− µ)

r3
PS

〈~rs, ~n〉2NY ,

Z̈ = −
(

(1− µ)

r3
PS

+
µ

r3
PE

)
Z + β

(1− µ)

r3
PS

〈~rs, ~n〉2NZ ,

(1)

where, rPS =
√

(X − µ)2 + Y 2 + Z2, and rPE =
√

(X − µ+ 1)2 + Y 2 + Z2, are the Sun-
sail and Earth-sail distances respectively, ~rs = (X − µ, Y, Z)/rPS is the normalised Sun-sail
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Figure 1: Left: Schematic representation of the position of the two primaries and the solar
sail in the synodical reference system. Right: Graphic description of the two angles defining
the sail orientation

direction and ~n = (NX , NY , NZ) is the normal direction to the surface of the sail. Using the
above definition for the sail orientation,

NX =
X − µ
rps

cosα cos δ − Z(X − µ)

rpsr2
cosα sin δ − Y

rps
sinα cos δ +

Y Z

rpsr2
sinα sin δ,

NY =
Y

rps
cosα cos δ − Y Z

rpsr2
cosα sin δ +

X − µ
rps

sinα cos δ − Z(X − µ)

rpsr2
sinα sin δ,

NZ =
Z

rps
cos δ +

r2
rps

sin δ,

where r2 =
√

(X − µ)2 + Y 2. As ~n cannot point towards the Sun there are some restrictions
on the normal direction, namely 〈~rs, ~n〉 ≥ 0. Notice that if β = 0 or 〈~rs, ~n〉 = 0 the solar
radiation pressure is discarded and we have the RTBP.

As we know, the RTBP can be expressed as a Hamiltonian system by introducing the
momenta: PX = Ẋ − Y, PY = Ẏ + X,PZ = Ż. Unfortunately, when we introduce the solar
radiation pressure the Hamiltonian character of the system only holds for a small set of sail
orientations: when the sail is aligned with the Sun-sail line (i.e. 〈~rs, ~n〉 = 0) and when the
sail is perpendicular to the Sun-sail line (i.e. 〈~rs, ~n〉 = 1). For the other cases, the system is
not Hamiltonian, but it is still conservative (in the sense that the volume in phase space is
preserved by the flow).

There is another particular case that offers interesting properties: when α = 0 and
δ ∈ [−π/2 : π/2]. This means that we only allow vertical oscillations on the sail orientation
with respect to the Sun - line. Here the system is time reversible by the symmetry

R : (X, Y, Z, Ẋ, Ẏ , Ż)→ (X,−Y, Z,−Ẋ, Ẏ ,−Ż).

Hence, under certain constraints on the nature of the equilibrium points the system behaves
locally as a Hamiltonian [18]. In this paper we will focus on this particular case.

It is well known that the RTBP has 5 equilibrium points L1,...,5 [23]. When the effect of
the solar radiation pressure is added these 5 equilibrium points are replaced by a 2D family
of equilibrium points parametrised by the two angles α and δ. If we take α = 0 there are 5
1D families of equilibria parametrised by the angle δ. Each of families contains one of the
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classical Lagrangian equilibrium points L1,...,5 and the displaced equilibrium point SL1,...,5
1, we call each of these families FL1,...,5. In Figures 2 and 3 we can see these families for
different values of β. Notice that as β increases these families get “larger”, having fixed
points higher above the ecliptic plane and closer to the Sun.

In Figure 2 we have the families FL1 (left), FL2 (centre) and FL3 (right) for different
values of β, all of them are contained on the Y = 0 plane. All of these equilibrium points are
unstable, for small values of β, the spectrum of the equilibrium point is {±λ,±iω1,±iω2}.
In Figure 4 we show the spectrum of the fixed points for β = 0.051689. For large β the
spectrum for some of the equilibrium points is {±λ1,±λ2,±iω1} [25, 26].

In Figure 3 we have the FL4 family for different values of β, it is no longer on the Y = 0
plane. The FL5 family is symmetric to FL4 with respect to Y = 0. The spectrum for all
these points is {γ1±iω1, γ2±iω2, γ3±iω3}, where γi 6= 0 with γ1 > 0, γ2 < 0 and γ3 positive
on FL4 and negative on FL5. In Figure 5 we see the spectrum for β = 0.051689 for FL4

and FL5. Notice that although γi 6= 0, it is very small. Hence, they present a very mild
instability, we can say that the equilibrium points are practically stable.
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Figure 2: Families of equilibrium points for β1 = 0.01, β2 = 0.05, β3 = 0.1, β4 = 0.15 and
β5 = 0.2. From left to right: the FL1, FL2 and FL3 families of equilibria.
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Figure 3: FL4 family of equilibrium points for β1 = 0.01, β2 = 0.05, β3 = 0.1, β4 = 0.15 and
β5 = 0.2. From left to right: XY projection and XZ projection.

Our aim is to understand the dynamics of the system around different unstable equilibria
of these families. We will consider the sail orientation to be fixed along time and study the
dynamics for different sail orientations. In Section 3 we will describe the families of periodic
orbits that appear around different equilibrium points. In Section 4 we will perform the
reduction to the centre manifold around the equilibrium points and use it to describe the
bounded motion around them.

1SL1,...,5 are the equilibrium points of the system when the sail is oriented perpendicular with respect to
the Sun-sail line. They are placed close to the classical Lagrangian points L1,...,5 but closer to the Sun [5].
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Figure 5: Spectrum of the equilibrium points on the FL4 and FL5 families for β = 0.051689.

In what follows we focus on the FL1 family for β = 0.051689 and δ close to zero. The
equilibrium points on the FL1 family for δ small are placed between the Earth and the Sun
close to the displaced collinear equilibrium point SL1. We consider this region to be relevant
region for possible mission applications. Taking β = 0.051689, corresponds to a sail with
a characteristic acceleration of 0.3mm/s2 or a sail loading of 30g/m2. This sail lightness
number has been considered for the Geostorm Mission and is thought to be a reasonable
value for the sail’s lightness number for a near term mission application [14, 16, 25]. Although
we only focus on a neighbourhood of equilibria of the family FL1, the same numerical tools
that we have used here can be applied to study the motion around the equilibrium points
on the FL2,3 families.

3 Periodic Motion

It is well known that if we have a fixed point p0 on a Hamiltonian system, with ±iω as
an eigenvalue, then under suitable non-resonance conditions with respect to the remaining
eigenvalues λi, the Lyapunov Centre Theorem [12] ensures that there exist a one - parametric
family of periodic orbits emanating from p0, with limiting period 2π/ω. Unfortunately the
Hamiltonian character of the set of equations when α = 0 is only true for 3 values of δ (δ = 0
that happens when the sail oriented perpendicular to the Sun-sail line and δ = ±π/2 when
the sail is aligned with the Sun-sail line and there is no sail effect).

In any case, we have already mentioned that for α = 0 the RTBPS is time R - reversible
by

R : (t,X, Y, Z, Ẋ, Ẏ , Ż)→ (−t,X,−Y, Z,−Ẋ, Ẏ ,−Ż).

It is known [18, 10], that under certain constraints a time reversible system behave locally
as Hamiltonian systems around an equilibrium point. In particular, around this point the
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Lyapunov’s Centre Theorem [4, 13, 18, 10] and KAM Theory [19, 10] also apply.

Theorem 3.1 [4] Let ẋ = f(x), with f ∈ C2 and x ∈ R2n be an autonomous R - reversible
dynamical system, where dim(Fix(R)) = n. Let p0 be a fixed point such that R(p0) = p0,
and with ±iω, ±λ2, . . . , ±λn as eigenvalues.

Then, if ∀λi we have that iω/λi /∈ Z, there exists a one-parametric family of periodic
orbits emanating from p0, where the period of these orbits tends to 2π/ω when approaching
p0.

This Theorem is commonly known as Devaney - Lyapunov’s Centre Theorem, for further
details see [4, 18].

One can check that the only equilibrium points that remain fixed by R are the ones on
the FL1, FL2 and FL3 families. Hence, the local behaviour around these equilibria will be
Hamiltonian. Theorem 3.1 [4] assures that under non - resonant conditions between the
frequencies ω1, ω2 we have two families of periodic orbits emanating from the fixed point.

In this section we want to describe the two families of periodic orbits that appear around
an equilibrium point of the FL1 family. We distinguish the two families by their vertical
oscillation, the family related to ω2 has a wider vertical oscillation than the one emanating
from ω1. Then, we call the P - Lyapunov Family to the family of periodic orbits emanating
from p0 related to ω1 and the V - Lyapunov Family to the family emanating from p0 related
to ω2.

Due to the symmetric reversibility properties of the system, all these families of periodic
orbits are symmetric with respect to Y = 0. Furthermore, for δ small, the P - Lyapunov
Family cross transversally Y = 0 and the V - Lyapunov Family cross transversally Z = Z∗

just two times. From now on, we will only consider δ > 0, as the systems is also symmetric
by

S : (X, Y, Z, Ẋ, Ẏ , Ż, δ)→ (X, Y,−Z, Ẋ, Ẏ , Ż,−δ).
We start taking δ = 0 and studying the behaviour of the two families of periodic orbits, then
we see how these families vary when δ 6= 0.

To compute the families of periodic orbits, we have designed our own routines for the
numerical refinement and continuation of periodic orbits. For each of the families we have
taken into account the transversality properties mentioned before. To deal with the insta-
bility of the region and to avoid difficulties in the integration of the periodic orbits we have
used a multiple shooting method [22] using two spatial sections. For the P - Family we have
taken the sections Γ1 = {Y = 0, Ẏ > 0} and Γ2 = {Y = 0, Ẏ > 0}, and for the V - Family
we have taken the sections Σ1 = {Z = Z∗, Ż > 0} and Σ2 = {Z = Z∗, Ż > 0}. As an initial
guess for the continuation we can take the linear approximation of the solutions of the flow.
We must also mention that due to the symmetries on the equations, if we take the cross
section Γ1 and Γ2 we can save time by just integrating half of the period.

We have also computed the stability of the periodic orbits on each family. As we know,
if φt(x) is the flow associated to an ODE, the normal behaviour around a T - periodic orbit
through x0 is given by the monodromy matrix M = DφT (x0). As we are in a reversible
system, the eigenvalues come in pairs, so

spect(M) = {1, 1, λ1, λ
−1
1 , λ2, λ

−1
2 }.

We define the stability parameters of the periodic orbit as si = λi + λ−1
i for i = 1, 2. We

use them to describe the stability of the periodic orbit. Each si is related to an invariant
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plane by M , they can either be hyperbolic, elliptic, parabolic or complex unstable. We say
that they are:

• Hyperbolic if si ∈ R with |si| > 2 (i.e. λi ∈ R \ {−1, 1}).

• Elliptic if si ∈ R with |si| < 2 (i.e. λi = eiρ with ρ ∈ R).

• Parabolic if si ∈ R with |si| = 2 (i.e. λi = ±1).

• Complex unstable if λi ∈ C \ R (i.e. λi ∈ C \ R, |λi| 6= 1).

We say that the periodic orbit has an hyperbolic direction if one of the si is hyperbolic
and that it has an elliptic direction if one of the si is elliptic. Notice that if s1 is complex
unstable, then s2 is also complex unstable, in fact s2 = s1. A periodic orbit is unstable if at
least one hyperbolic or complex unstable direction.

3.1 P - Family of periodic orbits

For all the computations we have considered the X coordinate of the point where the orbit
crosses the section Γ1 as the parameter of continuation.

When δ = 0 the periodic orbits that are born close to the equilibrium point are totally
contained on the Z = 0 plane. In Figure 6 we can see the continuation scheme, on the
x - axis we have the continuation parameter (X) and on the y - axis the Z component of the
point of the orbit on the section Γ1. At a certain time, a pitchfork bifurcation takes place,
and two new periodic orbits are born, commonly known as Halo orbits.

On the left - hand side of Figure 6 we can see this bifurcation, in red we have plotted
those periodic orbits with one elliptic and one hyperbolic direction, and in blue those orbits
with two hyperbolic directions. On the right - hand side of Figure 6 we have the evolution
on the stability parameters along the family.
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Figure 6: P - family of periodic orbits for δ = 0. Left: bifurcations diagram for the
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in blue. Right: evolution of the stability parameters s1 and s2 along the family of periodic
orbits.

On the left hand side of Figure 7 we see the planar periodic orbits on the P - Family,
before and after the bifurcation point, this family is totally contained on the Z = 0 plane.
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In Figure 7 (middle and right) we see different projections of one of the two families of Halo
orbits. The other family of Halo orbits is symmetric to this one w.r.t Z = 0. Finally, in
Figure 8 we have two different 3D projections on the position space of the three branches of
the periodic orbits on the family.
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When δ 6= 0, as we can see in Figure 9 there is no longer a pitchfork bifurcation giving
rise to two Halo-type orbits as it happened for δ = 0. Now two of the branches have split,
leaving a family of periodic orbits with no change in the stability and another family with
a saddle - node bifurcation (Figure 9 left). This is due to a symmetry breaking [8, 3] in the
system. It is well known that the pitchfork bifurcations are a degenerate type of bifurcations,
that usually appear when the system has some symmetries, as it happens when δ = 0. But
when δ 6= 0 this symmetry breaks and a saddle - node bifurcation appears instead (the
saddle - node bifurcations are more generic, and do not require symmetries). On the right -
hand side of Figure 9, we can see the evolution of the continuation scheme when we vary δ.
Notice that the separation between the two branches increases with δ.

In Figures 10 and 11 we can see different projections of these two families for δ = 0.01. In
Figure 10 we have the family that emanates from the equilibrium point. We can see how, as
the orbits amplitude increases they gain Z amplitude, ending up looking like Halo type orbits.
Here all the periodic orbits have one hyperbolic and one elliptic direction. In Figure 11 we
see the family of periodic orbits that appears after the saddle - node bifurcation. The orbits
on the second component of the family that have less Z oscillation have two hyperbolic
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directions, while the other ones have one hyperbolic and one elliptic direction. Finally, in
Figure 12 we have different 3D projections, on the position space, of the two disconnected
branches of the P - Family of periodic orbits for δ = 0.01. We can see that qualitatively
behaviour for δ 6= 0 is not that different to the one for δ = 0, in both cases we find planar
and Halo - type orbits.
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Figure 10: For δ = 0.01. Different projections of the periodic orbits on P - Family that
emanate form the fixed pint. From left to right: XY projection, XZ projection and Y Z
projection.
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Figure 12: Different projections on the XY Z space of the 2 disconnected branches of periodic
orbits for δ = 0.01.

3.2 V - Family of periodic orbits

Now for all the computations we have considered the Ż coordinate of the point where the
orbit crosses the section Σ1 as the parameter of continuation.

When δ = 0 the periodic orbits are symmetric with respect to the planes Z = 0 and
Y = 0. In Figure 13 we have different projections of this family of periodic orbits. We can
see that these orbits have a bow tie shape. All of them have one hyperbolic and one elliptic
direction.
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Figure 13: For δ = 0. Different projections of the periodic orbits on the V - family. From
left to right: XY projection, XZ projection and Y Z projection.

For δ 6= 0 the family of periodic orbits is only symmetric with respect to the Y = 0
plane. The periodic orbits that are born near the equilibrium point are seen as circles on the
XZ projection. As we move along the family, their shape changes and they also look like
a bow tie, although it is no longer symmetric. For small δ, the shape of most of the orbits
in the family is still like a bow tie. We can see that as δ increases there is more difference
between the two loops on the bow tie. In Figure 14 we have different projections of this
family for δ = 0.01. As before, all of these periodic orbits have one hyperbolic and one
elliptic direction.

Finally, in Figure 15 we have 3D projections, on the position of these families for different
values of δ. We can see clearly, how these families get more asymmetric as δ increases. In
the picture we have δ = 0, 0.005, 0.01 and 0.03.
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Figure 14: For δ = 0.01. Different projections of the periodic orbits on the V - family. From
left to right: XY projection, XZ projection and Y Z projection.
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4 Quasi - Periodic Motion

In the previous section we have described the families of periodic orbits that appear around
the fixed points and studied their stability. Now we want to give a more detailed description
of the non - linear dynamics around the equilibrium point.

As we know, the linear dynamics of the fixed points on the FL1 family is the cross
product of a saddle and two complex directions with zero real part and we want to study
the bounded motion around them. Due to the instability produced by the saddle, taking
arbitrary initial conditions and integrating them numerically to produce plots of the orbits
is not a good option as the trajectories will escape quickly. To get rid of the instability
produced by the saddle, we have performed the so - called reduction to the centre manifold.

We call centre manifold to an invariant manifold that is tangent to linear subspace gen-

12



erated by the different pairs of complex eigenvectors. We know that this invariant manifold
might not be unique, although the Taylor expansion of the graph of this invariant manifold
at the equilibrium point is [2, 20, 24]. The reduction to the centre manifold process consists
in finding a high order approximation of this invariant manifold. The main idea is to un-
couple the saddle direction from the other directions up to high order. Then, neglecting the
reminder we obtain a high order approximation of the flow on an invariant manifold that
does not contain the saddle. In this way we can do numerical integrations and study the
motion around the equilibrium point on the centre manifold.

If the system is Hamiltonian we can compute this manifold using a partial normal form
scheme of the Hamiltonian [9], but this is not the case, as the system is Hamiltonian only
for a small set of parameters. To deal with this situation we have used the graph transform
method [2, 21, 5]. The idea is to compute, formally, the power expansion of the graph of
the centre manifold at the equilibrium point. In section 4.1 we give the main ideas of the
algorithms that we have used to compute the graph of the centre manifold y = v(x) in an
efficient way, for further details on the algorithm see [5].

Finally, we have computed the centre manifold around several equilibrium points on the
FL1 family. For each one we have computed the Taylor series of the graph of the centre
manifold up to degree 16. In section 4.2 we will use this manifold to study the local dynamics
around the different equilibrium point.

4.1 Reduction to the Centre Manifold

Let ż = F (z) be an ordinary differential equation where z ∈ R6 and has a fixed point of
the type centre × centre × saddle. Without loss of generality we can assume that the fixed
point is at the origin. It is well known that with an appropriate linear transformation, the
equations of motion can be written as:

ẋ = Ax+ f(x, y),
ẏ = By + g(x, y),

(2)

where x ∈ R4, y ∈ R2, all the eigenvalues of the matrix A have zero real part and all the
eigenvalues of the matrix B are real. The functions f and g are sufficiently smooth and
satisfy,

f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0.

Note that y = 0 is the linear approximation to the centre manifold. We are interested in
finding y = v(x) with v(0) = 0 and Dv(0) = 0, the local expression of the centre manifold.
If we substitute this on equations (2), we have that v(x) must satisfy:

Bv(x) + g(x, v(x)) = Dv(x)[Ax+ f(x, v(x))], (3)

and the flow restricted to the manifold is given by,

ẋ = Ax+ f(x, v(x)). (4)

To fix notation, if x = (x1, . . . , x4) is a vector of complex numbers and k = (k1, . . . , k4)
a vector of integer numbers, we define |k| = k1 + · · · + k4 and denote xk = xk11 · · ·xk44 (here
00 = 1).

Let us assume that ±λ, ±iω1 and ±iω2 are the eigenvalues of DzF , and that we have
performed a linear transformation such that A and B are in diagonal form. We want to find
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y = v(x) that satisfies equation (3). We take v(x) =
∑
|k|≥2 vkx

k, with vk ∈ R2, the power

expansion of v(x) around the origin and we want to find the values vk = (v1
k, v

2
k) up to high

order. This way we have a good approximation of the centre manifold, for instance, if we
have v̂(x) =

∑N
|k|=2 vkx

k that satisfies equation (3) up to order N , then v̂(x) approximates

the graph of the centre manifold up to the same order, i.e. ||v(x)− v̂(x)|| = O(||x||N). And
ẋ = Ax+ f(x, v̂(x)) is a high order approximation of the flow on the centre manifold.

Notice that equation (3) can be rewritten as,

Dv(x)Ax−Bv(x) = g(x, v(x))−Dv(x)f(x, v(x)), (5)

where the left - hand side of this equation is a linear operator w.r.t v(x) and right - hand
side a non - linear one. As A and B are in their diagonal form, then the left - hand side of
equation (5) takes the diagonal form,

Dv(x)Ax−Bv(x) =


∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ) v1
k x

k

∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ) v2
k x

k

 . (6)

Let h(x) = g(x, v(x))−Dv(x)f(x, v(x)) be the right hand side of equation (5). We take
its expansion h(x) =

∑
|k|≥2 hkx

k around the origin (hk = (h1
k, h

2
k)), where the coefficients

hk depend on the coefficient of vk in a known way. It can be seen that the coefficients hk
for |k| = n depend on vk with |k| < n (see [5]). Hence, we can find the coefficients vk up to
degree N in an iterative way. We already know that vk = 0 for |k| = 0, 1, as v(0) = 0 and
Dv(0) = 0. Then we can compute vk for |k| = 2, . . . , N by solving at each step the diagonal
linear system (5).

This process is carried out up to a sufficiently high order N . Finally, we have the
expansion up to degree N of the local central manifold,

v̂(x) =
N∑
|k|≥2

vkx
k.

Once this is done, we are ready to explore the phase space. We will use ẋ = Ax+ f(x, v̂(x))
to integrate the flow and have a good description of the motion on the centre manifold.

Remark 1 To have an efficient algorithm, we need to find an efficient way to compute the
coefficients hk. As we know they come from the expansion around the origin of

h(x) = g(x, v(x))−Dv(x)f(x, v(x)).

Expanding g(x, y) and f(x, y) and then composing with v(x) is NOT an option, as it is very
hard in terms of computational time. To obtain a more efficient algorithm one we propose
to find a recurrent expression for the expansion of the non - linear terms and use these
expressions to compute the composition of these functions with v(x). For more details on
how to use these recurrent expression see [5].
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Remark 2 It is not necessary to have A and B in their diagonal form, but then the linear
part of equation (5) will not take a diagonal form. Then, as we increase the degree, the
dimension of the linear system we have to solve increases and so does the computational cost
and error propagation while solving it.

The linear system can be solved if and only if

iω1k1 − iω1k2 + iω2k3 − iω2k4 ∓ λ 6= 0.

This is always true as λ ∈ R \ {0} and iω1, iω2 are pure imaginary numbers.

4.2 Dynamics on the Centre Manifold

Using the algorithm explained above we have computed the centre manifold around several
equilibrium points of the FL1 family (i.e. different sail orientations). For each one we have
computed the Taylor series up to degree 16 of the graph of the centre manifold, y = v(x).
Using an Intel Xeon CPU at 3.40GHz this takes around 22 seconds of CPU time.

Once we have reduced to the centre manifold, we are on a 4D phase space. Let (x1, x2, x3, x4)
be the local coordinates on the centre manifold. A 4D phase space is difficult to visualise,
so we need to perform suitable Poincaré sections to reduce the phase space dimension.

4.2.1 When the Sail is Perpendicular

As we have already said, when δ = 0, the system is still Hamiltonian. We take advantage of
this to help us visualise the phase space. As we know the Jacobi constant,

JC = (Ẋ2 + Ẏ 2 + Ż2)− 2Ω(X, Y, Z),

is a first integral of the system, hence it remains constant along time for a given trajectory.
We group the trajectories on the phase space by their energy level, i.e. the value of the
Jacobi constant (JC).

To visualise the dynamics on the centre manifold, we first take the Poincaré section
x3 = 0 and fix JC to determine x4. One can check that taking x3 = 0 is the same as to take
z = 0 and x4 is related to ż. Hence, x1, x2 are a linear transformation of the {x, y} - plane.
For each energy level we take several initial conditions and compute 500 iterates on the
Poincaré sections. Figure 16 shows the results for JC = −2.895937,−2.895920,−2.895904
and −2.895889. We can see that for a fixed energy level, the motion on the section is
bounded by the Planar Lyapunov orbit, which is fully contained on this section. The Vertical
Lyapunov orbit is the central fixed point, as it crosses transversally this section close to the
origin.

For small values of the energy, the coupling of the two frequencies, ω1 and ω2, gives rise to
a family of invariant tori. As the JC varies, the Planar Lyapunov orbit changes its stability
and the well know Halo orbits appear (see Section 3.1). These orbits correspond to the two
new fixed points on the section, as the Halo orbits cross also cross transversally this section.
We still see families of invariant tori around the fixed points and around the two Halo orbits.

Notice that x3 = 0 is not the only Poincaré section that we can do. We chose this one
for classical reasons, and because we know that Z = 0 is a cross section and the motion is
symmetric with respect to this plane. But we could chose another one, for instance Y = 0
is also a cross section and a symmetry plane.
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Figure 16: For δ = 0; Poincaré section x3 = 0 for different energy levels. From left to right,
top to bottom JC = −2.895937,−2.895920,−2.895904,−2.895889.

Now that taking x2 = 0 is similar to taking Y = 0. Then we determine x1 from the
JC , that is similar to taking Ẏ . Now we repeat the same process as before, take a value
for JC and several initial conditions x3, x4 and compute 500 Poincaré sections for each one.
Figure 17 shows the results for the same energy levels as before.

Now the Planar Lyapunov orbit is the central fixed point. As before, we can see that for
small values of the energies, we have a family of invariant tori due to the coupling of the two
frequencies. As the energy level increases the Planar Lyapunov orbit changes its stability
and the two Halo orbits appear. Here we can clearly appreciate the pitchfork bifurcation of
the Planar Lyapunov orbit that gives rise to the Halo orbits that was mentioned in Section 3.

We note that the behaviour here is qualitatively the same as for the RTBP close to the
collinear points. Now we want to see how this varies when the sail is no longer perpendicular
to the Sun - line (i.e. δ 6= 0).

4.2.2 When the Sail is not Perpendicular

Now we take different values for the sail orientation δ1 = 0.005 and δ2 = 0.01 and do the
same analysis. The main difference is that now the system is not Hamiltonian, hence we do
not have a first integral to help us reduce the phase space dimension. Nevertheless, we use
the quantity:

J̃C = (Ẋ2 + Ẏ 2 + Ż2)− 2Ω(X, Y, Z) + β(1− µ)
Zr2
r3
PS

cos2 δ sin2 δ.
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Figure 17: For δ = 0; Poincaré section for x2 = 0 for different energy levels. From left to
right, top to bottom JC = −2.895937,−2.895920,−2.895904,−2.895889.

Notice that for δ = 0, J̃C is the Jacobi constant that we have used before. This value varies
little along the trajectories, we will use it as an “approximated energy level” and will help
us to compare the Hamiltonian behaviour with this non - Hamiltonian one.

When the system is Hamiltonian and we take several initial conditions with the same
energy level, their trajectories are in the same surface of fixed energy. Hence, we are reducing
in one the phase space dimension. When the system is not Hamiltonian and we take several
initial conditions with the same J̃C , the “approximated energy level”, the value J̃C does not
remain fixed for all of the points on the trajectories. But it can be seen that close to the
equilibrium point, J̃C varies slightly. We can say, that we are almost reducing in one the
phase space dimension. The projection of the trajectories on a fixed surface of fixed J̃C will
be good enough.

As before we first perform the Poincaré section x3 = 0. Now this is like taking the cross
section Z = Z∗. We use the J̃C to determine x4, that is related to Ż. We now take different
initial conditions (x1, x2) and perform 500 iterates on the Poincaré section for different J̃C .
Figures 18 and 19 show, for δ = 0.005 and δ = 0.01 respectively, these Poincaré sections for
J̃C = −2.895937,−2.895920,−2.895904 and −2.895889. As before, we see that for small
energy levels the coupling between the two frequencies gives rise to families of invariant
tori around the equilibrium point. Now the central fixed points corresponds to the Vertical
Lyapunov periodic orbit, that crosses transversally this section, and the Planar Lyapunov
orbit bounds the motion on the section. As J̃C varies, one Halo orbit appears, seen as the
fixed point that appears on the right hand side of the Poincaré sections. If we remember
the behaviour of the P - Family of periodic orbits for δ 6= 0 in Section 3.1, this family starts
with a small Ż amplitude. There is a point close to the saddle node bifurcation where the Ż

17



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

x 1

x2

Jc = -2.895937

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

x 1

x2

Jc = -2.895920

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

x 1

x2

Jc = -2.895904

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

x 1

x2

Jc = -2.895889

Figure 18: For δ = 0.005; Poincaré section for x3 = 0 for different ĴC . From left to right,
top to bottom J̃C = −2.895937,−2.895920,−2.895904,−2.895889.

amplitude starts to grow significantly, having Halo - type type orbit. When the orbit gains
Z amplitude, it is transversal to this Poincaré section, and we see it appear as a new fixed
point. When the saddle - node bifurcation takes place, another Halo - type orbit appear,
as can be seen in Figure 18 and 19. We can see that the two Halo orbits are no longer
symmetric to each other, as well as the behaviour around them.

Now we take the Poincaré section x2 = 0, which is at first order equivalent to Y = 0, and
we fix J̃C to determine x1. As before we take several initial conditions (x3, x4) as perform 500

iterates on the Poincaré section for different J̃C . In Figures 20 and 21 show, for δ = 0.005
and δ = 0.01 respectively, the Poincaré section x2 = 0 for different values for J̃C .

Now the fixed point in the centre corresponds to an orbit of the P - Family, and the
motion is bounded by an orbit of the V - Family. For small values of J̃C level we just see the
families of invariant tori around the fixed point, due to the coupling between the two elliptic
frequencies. As this energy increases, we can see how the fixed point, i.e. Planar Lyapunov
Orbit, shifts to the left, and two new periodic orbits appear, one stable and one unstable,
giving rise to the new Halo - type orbit. Here we can clearly appreciate the saddle - node
bifurcation on the family of of periodic orbits that was seen in Section 3.1.

If we remember Figure 17, we saw that the planar family of periodic orbits experiences a
pitchfork bifurcation as the energy level increases, which gives rise to the Halo orbits. Now in
Figures 20 and 21 we can see how for δ 6= 0, due to the symmetry breaking on the equations
motion, this bifurcation is replaced by a saddle - node bifurcation.

The main different between the behaviour for δ = 0.005 or δ = 0.01 is that the phase
space is less symmetric as δ increases.
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Figure 19: For δ = 0.01; Poincaré sections for x3 = 0 for different ĴC . From left to right,
top to bottom J̃C = −2.895937,−2.895920,−2.895904,−2.895889.

5 Conclusion

In this paper we have focused on the understanding of the non - linear dynamics for different
equilibrium points close to the displaced collinear point L1. We have restricted to the
particular case α = 0 to take advantage of the reversible character of the system, as it
ensures us the existence of families of periodic orbits and invariant tori.

For this study we have computed the families of periodic orbits by means of a con-
tinuation method. Furthermore, we have performed the reduction to the centre manifold
using the graph transform method around the different equilibrium points to have a better
understanding of the bounded motion.

We find that when the sail is perpendicular to the Sun - line the system behaves qualita-
tively as the RTBP. The two frequencies defining the centre motion gives rise to two families
of periodic orbits, a planar and a vertical family, and we find families of invariant tori due to
the coupling of the two frequencies. As we move along the planar family of periodic orbits
a pitchfork bifurcation takes place, and two families of Halo - type orbits appear.

When the sail is no longer perpendicular to the (δ 6= 0) this behaviour varies slightly.
We still have two families of periodic orbits emanating from the two fixed points, each one
related to one of the two frequencies defining the centre motion. But we no longer have a
pitchfork bifurcation that gives rise to the Halo - type orbits, this one has been replaced by
a saddle - node bifurcation due to the symmetry breaking of the system. Finally, we also
find families of invariant tori due to the interaction between the two frequencies.
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Figure 20: For δ = 0.005; Poincaré sections for x2 = 0 for different ĴC . From left to right,
top to bottom J̃C = −2.895937,−2.895920,−2.895904,−2.895889.
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