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Bienni 2003-2005.
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En aquest moments és fàcil oblidar-se algú, ja que són moltes les persones amb les qui he

compartit aquests anys de tesi, i moltes les que han aportat d’una manera o d’una altra

alguna cosa durant aquest llarg viatge.
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Resum

Les veles solars són un nou concepte de propulsió espacial que mira d’aprofitar la pressió

de radiació solar per accelerar una nau. Una vela solar és, essencialment, una gran

superf́ıcie reflectant molt lleugera, de manera que l’impacte dels fotons que emet el sol

sobre aquesta impulsen la nau. En els últims anys les agències espacials han començat

a investigar aquesta nova tecnologia. Malauradament encara no s’ha desplegat amb èxit

cap vela solar a l’espai. Els dos intents més recents són Cosmos 1 i NanoSail. Totes

dues missions van fallar abans que la nau arribés a l’òrbita nominal, sense tenir opcions

de provar de desplegar la vela solar i estudiar-ne el seu comportament. Però tot sembla

indicar que algun dia les veles solar seran una realitat.

S’han fet molts estudis sobre veles solars i les seves aplicacions. El llibre de referència

en aquesta àrea és [McI99] on estan resumits la major part dels estudis fins el 1999. El

disseny d’una vela solar, models per a les forces, la dinàmica en òrbites al voltant del sol o

d’un planeta, són alguns dels temes que es tracten en aquest llibre. De totes maneres, les

eines de sistemes dinàmics no han tingut massa influència, de moment, en aquesta àrea.

L’ús de sistemes dinàmics en astrodinàmica no és nou pel grup de sistemes dinàmics de

la UB i UPC. A [GLMS01a, GLMS01b, GJMS01] trobem un recull de diversos problemes

d’astrodinàmica on s’han aplicat eines de sistemes dinàmics per a aplicacions concretes.

Nosaltres proposem usar idees similars per tal de navegar amb una vela solar en el sistema

Terra - Sol.

Un dels objectius principals d’aquesta tesi és estudiar, de manera extensa, la dinàmica

natural d’una vela solar en el sistema Terra - Sol. Aquest és un primer pas, per poder

dissenyar estratègies per a la navegació, com per exemple: estratègies de control al voltant

d’un punt d’equilibri, una òrbita periòdica o un tor invariant o bé usar les varietats

invariants per moure’ns per l’espai. En el caṕıtol 1 fem una descripció dels aspectes més

rellevants sobre veles solars i expliquem el model que usarem.

Hem usat com a model el Problema Restringit de Tres Cossos afegint l’efecte de

la pressió de radiació solar. És ben sabut [Sze67] que el Problema Restringit de Tres
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Cossos en coordenades sinòdiques té 5 punts d’equilibri, que corresponen a les posicions

on l’atracció gravitatòria dels dos primaris, la Terra i el Sol, es compensa. Quan afegim

l’efecte de la vela, tenim una força més amb la que jugar. En aquest cas tenim una

famı́lia 2D de punts d’equilibri parametritzada per l’orientació de la vela. Aquests nous

punts d’equilibri obren un ampli ventall de possibles missions que no poden ser assolides

usant un sistema de propulsió “tradicional”. Dos exemples són les missions “Geostorm” i

“Polar Observer” [McI99]. Totes dues missions requereixen mantenir un satèl·lit al voltant

d’un punt d’equilibri durant molt de temps, cosa que no es pot assolir amb un sistema

de propulsió tradicional, degut a les limitacions en el combustible. La missió Geostorm

pretén mantenir un satèl·lit prop d’un punt d’equilibri situat entre la Terra i el Sol,

lleugerament desplaçat cap al Sol respecte el clàssic L1, amb l’objectiu de monitoritzar

les tempestes electromagnètiques. D’altra banda Polar Observer vol mantenir una nau en

un punt d’equilibri situat sobre del pla de l’ecĺıptica, visualitzant de manera constant un

dels dos pols de la Terra.

La major part dels punts d’equilibri són inestables. Per tant necessitem una estratègia

de control per tal de mantenir la trajectòria d’una vela solar prop del punt. Hem dissenyat

una estratègia de control usant eines de sistemes dinàmics, en el caṕıtol 2 n’expliquem

els detalls. La idea rau en entendre la variació de l’espai de fase quan varia l’orientació

de la vela. Podem veure que prop del punt d’equilibri la dinàmica es pot aproximar

per un moviment del tipus sella × centre × centre. Per tant, quan la vela està prop

del punt d’equilibri, la trajectòria s’escapa al llarg de la direcció inestable. Si canviem

l’orientació de la vela, els punts d’equilibri varien lleugerament i el mateix passa amb les

direccions estables i inestables. Volem trobar un nou punt d’equilibri de manera que la

direcció inestable d’aquest nou punt porti la trajectòria de la vela prop del punt d’equilibri

inicial. Per altra banda, s’ha de tenir en compte la component central del moviment, ja

que aquesta podria créixer i fer escapar la trajectòria de la nau. Hem aplicat aquestes

estratègies per a les dues missions ja mencionades, per mantenir una vela solar prop

del punt d’equilibri durant 30 anys. També hem fet simulacions incloent errors en la

determinació de la posició i velocitat de la vela, i errors en l’orientació de la vela.

Més endavant ens agradaria estendre aquestes idees per a dissenyar estratègies de

control al voltant d’òrbites periòdiques. Per aquest motiu necessitem conèixer la dinàmica

no lineal al voltant d’un punt d’equilibri i veure com varia quan canviem l’orientació de

la vela. En aquesta ens hem fixat principalment en la regió de punts d’equilibri prop de

SL1 (SL1 és el punt d’equilibri L1 desplaçat degut a l’efecte de la vela quan aquesta està

orientada perpendicular a la direcció del sol).
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Hem desenvolupat eines numèriques per poder estudiar el moviment periòdic i quasi-

periòdic prop de SL1. Aquestes eines són generals i poden ser usades al voltant d’altres

punts d’equilibri.

Degut a la inestabilitat de la regió, no podem prendre condicions inicials arbitràries

i integrar-les numèricament, ja que les trajectòries s’escaparien ràpidament d’un entorn

del punt d’equilibri. Per aquest motiu, proposem fer la reducció a la varietat centre al

voltant dels diferents punts d’equilibri. Volem trobar una aproximació d’ordre alt de la

dinàmica a la varietat centre, i usar-la per descriure’n el seu comportament. Donat que

el sistema és Hamiltonià només per un conjunt petit de paràmetres, no ens en podem

aprofitar com a [Jor99, JM99] on es discuteix la dinàmica prop dels punts colineals del

RTBP. En aquest cas, calcularem la sèrie de potencies del graph de la varietat centre,

y = v(x), al voltant del punt d’equilibri a ordre alt [Sim90, Har08]. Estem interessats

en tenir un mètode eficient, ja que volem estudiar diversos casos per a l’orientació de la

vela. Al caṕıtol 3 descrivim el mètode i com implementar-lo per a tenir un codi eficient.

També hem comparat, en termes d’eficiència, aquest mètode amb el mètode de les sèries

de Lie, pel cas particular d’una vela perpendicular a la direcció del sol, i.e. on el sistema

śı que és Hamilitonià.

Finalment, en el caṕıtol 4 descrivim la dinàmica al voltant dels diferents punts d’equilibri

prop de SL1. Calculem famı́lies d’òrbites periòdiques usant mètodes de continuació, i us-

arem les aproximacions de la varietat centre trobades en el caṕıtol anterior per entendre

el moviment quasi-periòdic en un entorn del punt d’equilibri. Al voltant de cada un dels

punts d’equilibri hi trobem dues famı́lies d’òrbites periòdiques, cada una relacionada amb

una de les dues freqüències que defineixen el moviment central. La interacció entre les

dues freqüències dóna lloc a famı́lies de tors invariants. També hi trobem òrbites del tipus

Halo que apareixen després d’una bifurcació en la famı́lia plana d’òrbites periòdiques.

En acabar resumim els resultats més rellevants i puntualitzem algunes possibles direc-

cions de cara al futur.
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Introduction

Solar sails are a new concept of spacecraft propulsion that has more adepts everyday. The

idea is to provide a spacecraft with a large membrane mirror such that the impact of the

photons emitted by the Sun and their further reflection produce momentum on it. For the

moment there has yet not been a successful deployment of a solar sail in space, although

lately there have been a couple of attempts: Cosmos 1 and NanoSail. Both missions failed

before the spacecraft could get to the nominal orbit, not being able to deploy the solar

sail and test the technology. In the last years, space agencies have started to invest in

this technology and it seems that at some point solar sails will become a reality.

Studies on the use of a solar sails have been done in the past. One of the reference

books in the field is [McI99] where most of the studies on the subject up to 1999 are

summarised. The design of solar sails, the force models for the different structures, the

dynamics on heliocentric or geocentric orbits are some of the subjects covered in this

book. Nevertheless, dynamical system tools have had a small influence in this area.

The use of dynamical systems tools in astrodynamics is not new for the UB-UPC

Dynamical System group. Lots of studies have been made in the past applying this tools

to several astrodynamical problems [GLMS01a, GLMS01b, GJMS01]. We propose to use

similar ideas to navigate through the Earth - Sun system with a solar sail.

One of the goals of this thesis is to study, in an extended way, the natural dynamics

of a solar sail in the Earth - Sun system. This is a first step of a more ambitious project

of designing strategies for different kind of mission application such as, station keeping

strategies around equilibrium points, periodic orbits and invariant tori, or consider using

invariant manifold to go from one region on the phase space to the other in a natural way.

Either using solar sails or other type of low - thrust spacecraft propulsion, covering most

of this aspects within the framework of dynamical systems.

In Chapter 1 we review some of the known aspects on solar sails and explain the model

and problems that we want to face. We use the Restricted Three Body Problem (RTBP)

adding the solar radiation pressure on the solar sail as a model and study some of its most
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relevant dynamical properties.

It is well known [Sze67], that the Restricted Three Body Problem in synodical coordi-

nates has 5 equilibrium points, which correspond to the position where the gravitational

attraction of the two primaries, Earth and Sun, compensate. When we consider the ex-

tra effect of the solar sail, there is a 2D family of new equilibria parametrised by the

sail orientation. These artificially generated equilibrium points open a wide new range

of possible mission applications, the Geostorm mission and the Polar Observer are two

examples [McI99]. The Geostorm is a mission concept where a modest sail is placed Sun-

wards of the classical Earth - Sun L1 point. Then using a magnetometer to detect the

solar wind polarity enables to double the time of alert of a conventional L1 Halo orbiter

such as SOHO. The Polar Observer aims to use an artificial equilibrium point displaced

above the ecliptic plane, high above one of the Earth’s poles. This would provide constant

real-time views of the polar latitudes for studding, for instance, climate change.

Most of these equilibrium points are unstable, hence a station keeping strategy is

required if we want to maintain the solar sail close to equilibria for a long time. In

Chapter 2 we derive a station keeping strategy using dynamics system tools. The idea is

to understand the variation of the phase space when the sail orientation is changed. We

can see that the linear dynamics around these equilibrium points is closely approximated

by a saddle × centre × centre motion. Hence when the sail is close to the equilibrium point

its trajectory will escape along the unstable direction. If we change the sail orientation,

the fixed position varies slightly, and so do the stable and unstable directions. We want to

find a new sail orientation such that the unstable direction of the new equilibrium brings

the trajectory back to a vicinity of the initial position. Furthermore, one must take into

account the centre projection of the motion, as this one can result of an unbounded growth.

We have applied these strategies for the two missions mentioned before maintaining the

solar sail around the desired equilibrium point up to 30 years. We have also tested the

robustness of our strategies including errors in the position and velocity determination,

as well as errors on the orientation of the sail at each manoeuvre. We will discuss the

effect of these errors on the controllability of the solar sail.

Further on, we would like to extend these ideas to derive station keeping strategies

around periodic orbits. For this reason we need to have a more complete understanding

of the non-linear dynamics around an equilibrium point, and how it varies when the sail

orientation changes. In this thesis we have focused on the motion in a close neighbourhood

of the displaced L1 equilibrium point for a solar sail, called SL1.

We have developed numerical tools for the study of the bounded motion close to SL1.
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These techniques are very general and can be applied around other equilibrium points.

Due to the instability of the region, we cannot take arbitrary initial conditions and

integrate them numerically, as they would quickly escape from the vicinity of the fixed

point. For this reason, we propose to perform the reduction to the centre manifold around

the different equilibrium points. We want to find a high order approximation of the motion

on the centre manifold and use it to describe the motion on it. As the system is only

Hamiltonian for a small set of values of the sail orientation we cannot take advantage of

this as in [Jor99, JM99] where the motion around the collinear points of the RTBP is

discussed. Instead, we compute the power expansion of the graph, y = v(x), of the centre

manifold around an equilibrium point up to high order [Sim90, Har08]. We are interested

in an efficient algorithm as we want to do the reduction to the centre manifold for different

sail orientations. In Chapter 3 we describe this algorithm and also give some details on

the implementation of an efficient code. We also compare the efficiency of our algorithms

with the Lie series method, for the particular case of a sail oriented perpendicular to the

Sun - line, when the system is Hamiltonian.

Finally, in Chapter 4 we describe the dynamics around different equilibrium points

close to SL1. We have computed the families of periodic orbits by means of a continu-

ation method. We have also used the approximation to the centre manifold obtained in

the previous chapter to have a description of the periodic and quasi-periodic motion in

an extended neighbourhood of these equilibrium points. Around each of the equilibrium

points we find families of planar and vertical periodic orbits related to the two frequen-

cies defining the centre motion. Families of Halo - type orbits can also be found. The

interaction between the two frequencies gives rise to families of invariant tori.

At the end of this dissertation we summarise the main results and point out some

possible directions for future work.
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Chapter 1

Solar Sails in the RTBP

1.1 Solar Sails

A Solar Sail is a new concept of spacecraft propulsion. The idea is to take advantage of

the solar radiation pressure to produce momentum. We provide a small spacecraft with

a solar sail: a large membrane mirror, made of a very light material and highly reflecting,

so that the impact of the photons emitted by the Sun and its further reflection propel the

spacecraft. Although the acceleration experienced is much smaller than the one achieved

by a “traditional” thruster, this one acts in a continuous way, being able to continuously

accelerate the spacecraft.

Why we should consider Solar Sails as an option is clear, they open a wide new range

of possible mission applications that cannot be achieved by a conventional spacecraft.

First of all, the source of energy is unlimited, so we can consider long term missions like

exploring the Solar System. The further away the target planet is the more competitive

a solar sail becomes, due to its continuous acceleration. Several studies have been done

in this direction, some examples are [VdHM79, SRM04, HMM+04].

Second, one can use a solar sail to remain in fixed locations high over the ecliptic plane,

using the reflected sunlight to counteract the gravitational attraction of the Earth or any

other planet. This mission concept was first introduced by Robert L. Forward [For90]. He

proposes a mission to hover one of the Earth’s poles with what he calls “Statite”: a satellite

that does not orbit. In the Section 1.3 we will see that the effect of a solar sail creates in

the Earth - Sun system a family of artificial equilibria that can be used for very interesting

mission applications. Some examples are the Geostrom Warning Mission [Wes04, MM04,

Yen04], VIGIWING [PPP96] and the Polar Observer [McI03, MM04], all of them propose

to maintain a spacecraft in a fixed location using a solar sail.
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Finally, the cost of the spacecraft is low, giving the chance to small companies enter

in the space industry.

Unfortunately, to the date, there has not been a successful deployment of a solar sail

in space. Cosmos 1 was a project led by The Planetary Society and Cosmos Studios to

test the first solar sail in space. The main goal of the mission was to successfully deploy

a solar sail and raise its altitude through solar sailing. Any measurable increase in the

spacecraft’s orbit would have been considered a success. Cosmos 1 was launched in June

2005, but a rocket failure prevented it from reaching its intended orbit, and it was never

possible to test a solar sail in space. In August 2008, NASA’s Nano Sail followed the same

faith. It was launched as a piggy-back payload on the Falcon launch vehicle. The goal was

to deploy the sail and test the effect of the atmospheric drag on the sail, but the launch

vehicle experienced a problem during stage separation and was unable to achieve an Earth

orbit. Currently, The Planetary Society is working in collaboration with NASA and the

Russian Space Research Institute to put together a new solar sail mission (Cosmos 2).

For further details: http://www.planetary.org/programs/projects/solar sailing/

1.1.1 Solar radiation pressure

The solar radiation pressure is the force exerted by the solar radiation on an object within

its reach. It is of interest in astrodynamics, as it is a source of orbital perturbation. When

we consider a solar sail, we want to take advantage of the solar radiation pressure to

produce momentum on the spacecraft.

The pressure P exerted on the surface of the sail by the impact of the photons is

defined as the momentum per unit of area and time. One can see [McI99] that it can be

expressed in terms of the energy flux W divided by the speed of light c,

P =
W

c
. (1.1)

The energy flux, W , is the rate of transfer of energy per unit of area. At a certain

distance from the Sun, r, the energy flux can be written in term of the Sun’s luminosity

LS and the Sun - Earth distance RE = 1AU .

W = WE

(
RE

r

)2

, with WE =
LS

4πR2
E

. (1.2)

Where WE is the energy flux measured at the Earth’s distance from the Sun. As the orbit

of the Earth around the Sun is slightly elliptical, the energy flux received at the Earth
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varies approximately 3.5%. An accepted mean value for this constant is 1368 J/m2s.

Using equations (1.1) and (1.2) we have that the solar radiation pressure at 1AU from

the Sun is P = 4.56× 10−6N/m2. For a perfectly reflecting sail, the observed pressure is

twice this value, as the photons that impact on the surface of the sail are totally reflected.

When this is not the case, we must add a coefficient (η < 1) related to the sail’s reflectivity.

1.1.2 The force on a Solar Sail

A solar sail is an oriented surface, so the acceleration that it experiences is a function of

the sail’s area and orientation. The orientation is given by the normal direction to the

surface of the sail (~n).

If we consider a perfectly reflecting sail, the angle of the incident photons with the

surface of the sail is the same as the angle of the reflected photon with the surface of the

sail, and the magnitude of force due to the incident and reflected photons is the same, see

Figure 1.1. If the sail is not perfectly reflecting, the angles of the incident and reflected

photons with the surface of the sail vary slightly, as well as the magnitude of their forces.

~n

Sail

~ur ~ui

Figure 1.1: Schematic representation of the impact and reflection of photons emitted by the
Sun on the surface of a flat perfectly reflecting solar sail.

In this work we focus on a flat, perfectly reflecting solar sail. Let A be the area of the

sail. The force exerted on the surface of the sail due to incident photons from a direction

~ui is given by,

~Fi = PA〈~ui, ~n〉~ui, (1.3)
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where A〈~ui, ~n〉 is the projected area of the sail in the ~ui direction and P is the solar

radiation pressure. Similarly, the force due to the reflected photons in the direction −~ur
is,

~Fr = −PA〈~ur, ~n〉~ur. (1.4)

For a perfectly reflecting sail: ~ui − ~ur = 2〈~ui, ~n〉~n. Then the total force exerted on the

surface of the sail is,

~Fsail = ~Fi + ~Fr = 2PA〈~ui, ~n〉2~n. (1.5)

Finally, combining equations (1.1), (1.2) and (1.5) the total force can be written as:

~Fsail =
2AWER

2
E

cr2
〈~ui, ~n〉2~n. (1.6)

If we are moving on heliocentric orbits, the direction of the incident photons ~ui is given

by the radial vector from the Sun to the sail (~r). Furthermore, the solar sail acceleration

can be written in terms of the gravitational acceleration as:

~asail = β
Gms

r2
〈~r, ~n〉2 ~n, (1.7)

where ms is the mass of the Sun, G is the universal gravitational constant and β is a

dimensionless parameter known as the lightness number of the sail.

Sail lightness number

The sail lightness number, β, is defined as the ratio of the solar radiation pressure ac-

celeration to the solar gravitational acceleration, and it is usually used to describe the

performance of a solar sail. Notice that both quantities, the solar radiation acceleration

and the solar gravitational acceleration depend on the inverse square distance to the Sun.

If we consider β = 1 the solar sail’s force compensates the Sun’s gravitational attraction,

and if β > 1 the solar radiation pressure becomes the primary force and the Sun’s grav-

itational attraction acts as a perturbation force. With the current technology, values of

β ≈ 0.05 are considered reasonable for a first mission application [MM04].

From equations (1.2) and (1.6) we can see that

β =
σ∗

σ
, where σ∗ =

LS
2πGMsc

≈ 1.53g/m2. (1.8)

Where σ is commonly known as the sail loading parameter and is a key parameter on the

design of a solar sail. Now we can parametrise the performance of the solar sail by the
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total mass of the spacecraft per unit of area σ = m/A. In Table 1.1 we have the relation

between β and the sail loading parameter σ. As already mentioned, it is considered

reasonable to take β ≈ 0.05, which corresponds to a sail loading parameter σ ≈ 30g/m2.

Then, a 75m× 75m square sail is required for a total spacecraft mass of 170kg.

Characteristic acceleration

We define the characteristic acceleration, a0, of a solar sail as the acceleration that a

sail perpendicular to the Sun - sail line experiences at 1 AU from the Sun. Using equa-

tion (1.5), we have that the characteristic acceleration for a perfectly reflecting sail is:

a0 =
2PA

m
.

If we consider a non-perfectly reflecting solar sail, we must add a reflectivity coefficient

η < 1. In Section 1.1.1 we have seen that at 1AU from the Sun the solar radiation pressure

P = 4.56× 10−6 N/m2. Hence, the characteristic acceleration can be written as:

a0 =
9.17η

σ
mm/s2.

The characteristic acceleration is an equivalent design parameter to the sail loading σ,

and is also used to describe the performance of a solar sail. In Table 1.1 we can see the

relation between the parameters β, σ and a0. For instance, if we consider a sail loading

σ ≈ 30.6g/m2, we have a characteristic acceleration a0 ≈ 0.30mm/s2.

β 0.02 0.04 0.05 0.06 0.1 0.2

σ(g/m2) 76.50 38.25 30.6 25.50 15.30 7.65

a0(mm/s2) 0.12 0.24 0.30 0.36 0.59 1.19

Table 1.1: Relation between the sail’s lightness number (β), the sail loading parameter (σ) and
the characteristic acceleration (a0).

1.1.3 Sail orientation

As we know, a solar sail is an orientable surface. As one can imagine, the sail orientation

plays an important role in the spacecraft dynamics. Changes on the sail orientation

change the magnitude of the force exerted by the sail and also the direction of the thrust.
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Attitude techniques must be used to maintain a specific sail orientation [Wie04a,

Wie04b] but this is not the goal of this work. From now on we will assume that we can

maintain a given fixed sail orientation.

The orientation of the sail is defined in terms of the normal direction to the surface of

the sail, parametrised by two angles α and δ. There are several ways to define these two

angles [McI99, LP04, RRS05], and we can always find a change of variables to go from

one definition to the other. From a dynamical point of view, this has a impact if we study

the behaviour of the sail with a fixed orientation. Using one definition or the other the

final output can be different.

We define these two angles as follows.

• α is the angle between the projection of the Sun - sail line and the normal vector to

the sail (~n) on the ecliptic plane.

• δ is the difference between: a) the angle of the Sun - sail line with the ecliptic plane;

and b) the angle of the normal vector ~n with the ecliptic plane.

In Figure 1.2 we have a graphic representation of these angles.

α

δ Sun-line

~n

x

y

z

Ecliptic plane

Figure 1.2: Graphic description of the two angles (α, δ) that define the sail orientation.

Notice that there are some limitations on the values of the two angles (α and δ) as the

normal direction to the surface of the sail, ~n, cannot point towards the Sun. In particular,

if ~rs represents the Sun - sail direction, then:

〈~rs, ~n〉 ≥ 0. (1.9)



1.2. The Restricted Three Body Problem for a Solar Sail 11

1.2 The Restricted Three Body Problem for a Solar

Sail

To describe the motion of a Solar Sail on the Earth - Sun system, we use the Restricted

Three Body Problem for a Solar Sail (RTBPS). It is well known that the Restricted

Three Body Problem (RTBP) considers the motion of an infinitesimal small particle, m,

that is under the gravitational attraction of two bodies, m1,m2, called primaries [Sze67].

The two primaries orbit around their common centre of mass in a circular way and the

gravitational attraction of the small particle on the two primaries is discarded. We take

as the two primaries, Earth and Sun, and the small particle is a solar sail. Hence, we

must also take into account the solar radiation pressure.

To simplify, we normalised the units mass, distance and time so that the total mass

of the system is 1, the Sun - Earth distance is 1 and the period of their orbit is 2π. With

these units, the gravitational constant G is also 1. Furthermore, we use a synodical or

rotating reference system: the origin is taken at the centre of mass of both primaries,

the X axis is given by the direction that goes from the Earth to the Sun, the Z axis is

given by the direction of the angular variation of the primaries (i.e. perpendicular to the

ecliptic plane), and finally, the Y axis is chosen to have an orthogonal positively oriented

reference system. With this reference system the primaries remain fixed along time. The

small primary of mass µ, is located at (1 − µ, 0, 0) and the big primary of mass 1 − µ,

at (µ, 0, 0) (Figure 1.3). It is clear that the Earth is the small primary, and with this

normalised units we have,

µ = µSE ≈ 3.00348060100486× 10−6.

We consider the sail to be flat and perfectly reflecting. Thus, the force due to the solar

radiation pressure is in the normal direction to the surface of the sail (see Section 1.1.2).

Using equation (1.7) we have that the acceleration due to the sail is given by,

~asail = β
1− µ
r2
PS

〈~rs, ~n〉2~n. (1.10)

Where β is the sail’s lightness number, ~n is the normal direction to the surface to the sail,

~rs is the Sun - sail direction and rPS is the Sun - sail distance.

Using the same scheme as in [Sze67] for the RTBP, one can see that the equations of
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1− µ µ

~FEarth

~FSun

Sail~n

X

Y

Z

Earth
Sun

Figure 1.3: Schematic representation of the position of the two primaries and the solar sail in
the synodical reference system.

motion of the RTBPS for a flat and perfectly reflecting solar sail are,

Ẍ = 2Ẏ +X − (1− µ)
X − µ
r3
PS

− µX + 1− µ
r3
PE

+ β
1− µ
r2
PS

〈~rs, ~n〉2nX ,

Ÿ = −2Ẋ + Y −
(

1− µ
r3
PS

+
µ

r3
PE

)
Y + β

1− µ
r2
PS

〈~rs, ~n〉2nY , (1.11)

Z̈ = −
(

1− µ
r3
PS

+
µ

r3
PE

)
Z + β

1− µ
r2
PS

〈~rs, ~n〉2nZ ,

where rPS and rPE denote the distances to the Sun and Earth respectively:

r2
PS = (X − µ)2 + Y 2 + Z2,

r2
PE = (X − µ+ 1)2 + Y 2 + Z2,

and ~rs = [ X−µ , Y , Z ]/rPS is the Sun - line direction. We take φ(X, Y ) and ψ(X, Y, Z)

as

φ(X, Y ) = arctan

(
Y

X − µ

)
, ψ(X, Y, Z) = arctan

(
Z√

(X − µ)2 + Y 2

)
, (1.12)

the angles that define ~rs in spherical coordinates. Then,

~rs = [ cos(φ(X, Y )) cos(ψ(X, Y, Z)) , sin(φ(X, Y )) cos(ψ(X, Y, Z)) , sin(ψ(X, Y, Z)) ] .
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Now, taking the two angles α and δ as defined in Section 1.1.3, the normal vector to the

surface of the sail, ~n = [ nX , nY , nZ ], satisfies:

nX = cos(φ(X, Y ) + α) cos(ψ(X, Y, Z) + δ),

nY = sin(φ(X, Y ) + α) cos(ψ(X, Y, Z) + δ), (1.13)

nZ = sin(ψ(X, Y, Z) + δ).

One can check that here the projected area of the surface of the sail is:

〈~rs, ~n〉2 =

[
(r2

2 cosα + Z2) cos δ + Zr2(1− cosα) sin δ

r2
PS

]2

, (1.14)

with r2 =
√

(X − µ)2 + Y 2.

Hence, for a fixed sail orientation this quantity can vary with the position of the sail.

Notice, that it is always zero when ~rs ⊥ ~n (e.g. δ = π/2 and α = 0). So, if β = 0

or ~rs ⊥ ~n, the sail effect is discarded and we have the RTBP. If α = δ = 0, the sail is

perpendicular to the Sun - line and it takes its maximum value 〈~rs, ~n〉 = 1.

It is well know that the RTBP can be expressed as a Hamiltonian system by introducing

the momenta: PX = Ẋ − Y , PY = Ẏ + X, PZ = Ż. Unfortunately, when the solar

radiation pressure is added, this only holds for a small set of sail orientations: when the

sail is aligned with respect to the Sun - sail (~rs ⊥ ~n) and when the sail is perpendicular

to the Sun - sail (~rs ‖ ~n). In the first case the effect of the sail is discarded, and in

the second case, the system presents some similarities with the RTBP (essentially we are

slightly changing the Sun’s gravitational attraction). For further details see Appendix B.

For the other sail orientations, the system is no longer Hamiltonian, but it is still

conservative (in the sense that the Lebesgue measure is preserved by the flow). For the

particular case α = 0 and δ free (i.e. the sail only admits vertical oscillations with respect

to the Sun - sail line) the system is also time reversible by

R : (t,X, Y, Z, Ẋ, Ẏ , Ż) 7→ (−t,X,−Y, Z,−Ẋ, Ẏ ,−Ż).

Hence, under certain constraints on the equilibrium points the system behaves locally as

a Hamiltonian system [LR98]. In Chapter 4, we study in more detail this particular case.
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1.3 Family of Equilibrium Points

It is well known that the RTBP has 5 equilibrium points L1,...,5: three of them, L1,2,3,

lay on the X axis and are known as Euler points or collinear points; the other two, L4,5,

are the third vertex of two equilateral triangle on the plane using the two primaries as

vertices, and are known as Lagrangian points or triangular points.

When the effect due to the solar sail is introduced the system has new families of equi-

librium solutions, sometimes referred to as surfaces of “artificial” equilibria [MMSM94,

McI99]. The five equilibrium points on the RTBP are the positions in the phase space

where the gravitational attraction of both primaries compensates. When we add the effect

of the solar sail, we have an extra force that can be oriented freely (under certain con-

straints) and allows to have 2D families of new equilibrium points, parametrised by the

sail orientation. For example, we can find equilibria above the ecliptic plane by orienting

the sail so that it compensates the Earth’s gravitational attraction.

If we consider the particular case of a solar sail perpendicular to the Sun - sail direction,

the Sun gravitational attraction and the sail acceleration are in opposite directions. Hence,

we also have 5 equilibrium points: three of them lay on the X axis, we call them SL1,2,3,

and are displaced closer to the Sun than L1,2,3. The other two, that we call SL4,5, form a

triangle with the two primaries, defined by the constraint rPS = (1− β)1/3, rPE = 1. We

can see that the larger the sail performance is, the closer the equilibrium points are to

the Sun. When β → 1 the equilibrium points SL1, SL3, SL4 and SL5 tend to the Sun,

while SL2 moves towards the Earth. For further details see Appendix B.

As we know, the equilibrium solutions appear when the velocities and accelerations at

a certain position are zero. Taking equation (1.11) we have that these points must satisfy:

−X + (1− µ)
X − µ
r3
PS

+ µ
X + 1− µ

r3
PE

= β
1− µ
r2
PS

〈~rs, ~n〉2nX ,

−Y +

(
1− µ
r3
PS

+
µ

r3
PE

)
Y = β

1− µ
r2
PS

〈~rs, ~n〉2nY , (1.15)

(
1− µ
r3
PS

+
µ

r3
PE

)
Z = β

1− µ
r2
PS

〈~rs, ~n〉2nZ .

Notice that the left - hand side of the equality is the gradient of the potential of the

classical RTBP,

Ω(X, Y, Z) =
1

2
(X2 + Y 2) +

(1− µ)

rPS
+

µ

rPE
.
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So, the equilibrium points must satisfy:

−∇Ω = β
1− µ
r2
PS

〈~rs, ~n〉2~n.

Hence, we can have an equilibrium point at (X, Y, Z) if the sail orientation in this position

is parallel to ∇Ω and has the appropriate magnitude.

For a fixed small β there are 5 continuous families of equilibria, parametrised by the

sail orientation α and δ. Each one containing one of the 5 Lagrangian equilibrium points.

As β increases, these five families merge with each other, and the families of equilibria are

in 2 disconnected surfaces Σ1 and Σ2: the surface Σ1 is like a torus centred around the

Sun, containing L1, L3, L4 and L5; the surface Σ2 is like a sphere placed at the left - hand

side of Earth and contains L2. As β increases, the inner radius of the torus Σ1 decreases,

vanishing for β = 1. For β > 1, the surfaces Σ1 are like a cylinder [MMSM94, McI99].

Anyway, it is not realistic to consider β > 1 as we would mean we have a sail with a

force greater than the Sun’s gravitational attraction. For this reason, from now on we

will consider β ∈ [0, 1]. For an easy illustration, sections of these surfaces on the XY and

XZ planes are shown.
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Figure 1.4: Sections on the XY plane of the surfaces of equilibria for different fixed values of
β. In blue fixed points of class T1 and in red fixed points of class T2. From left to right, top to
bottom β = 10−6, 5× 10−6, 10−5, 0.02, 0.05, 0.1.

In Figure 1.4 we can see the evolution of these surfaces of equilibria on theXY plane for

β = 10−6, 5× 10−6, 10−5, 0.02, 0.05, 0.1. We can observe that as β increases, these families
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Figure 1.5: Sections on the XY plane of the surfaces of equilibria for different fixed values of
β. In blue fixed points of class T1 and in red fixed points of class T2. From left to right, top to
bottom β = 0.01, 0.025, 0.028, 0.029, 0.04, 0.05.

merge into each other. In Figure 1.5 we have a more detailed vision on the region close to

the Earth for β = 0.01, 0.025, 0.028, 0.029, 0.04, 0.05, where we can see when the surfaces

of equilibria merge into each other between β = 0.028 and β = 0.029. In Figure 1.6 we

have the {X,Z} section of these surfaces of equilibria for β = 0.02, 0.04, 0.06, 0.08, 0.1.

The colours in Figures 1.4, 1.5 and 1.6 are related to the stability properties of the

equilibrium point. The equilibrium points in blue (class T1) have three complex eigenval-

ues, and as we will discuss later on, most of them are practically stable, as the rate of

escape due to the real part of the eigenvalues is very small. The equilibrium points in red

(class T2) are unstable and have a pair of real eigenvalues and two pairs of complex ones.

This is discussed in more detail in Section 1.4.

In Section 1.1.3 we mentioned that there are some limitation on the sail orientation.

It is physically understood that the sail acceleration, and so the sail orientation (~n) can

never be directed towards the Sun, hence 〈~rs,−∇Ω〉 ≥ 0. This condition gives a boundary

for the existence of equilibria, given by the condition S(X, Y, Z) = 0, where

S(X, Y, Z) = X(X − µ) + Y 2 − 1− µ
rPS

− µ(X − µ)(X − µ+ 1) + Y 2 + Z2

r3
PE

. (1.16)

The function S = 0 has two topological disconnected surfaces S1 and S2, that define

the boundary of the existence of equilibrium solutions. The surface S1 is topologically
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Figure 1.6: Sections on the XZ plane of the surfaces of equilibria for different fixed values of
β. All the equilibrium points are of class T2. On the right a zoom close to the Earth. Here
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equivalent to a cylinder, separating on the plane the motion for X < L2 and X > L3.

The surface S2 is topologically equivalent to a sphere, and excludes the region between

L1 and the Earth. All of the five classical equilibrium points L1,...,5 lay on S1 ∪ S2, and

the rest of the equilibria lay in the interior of these surfaces. In general, the surfaces of

equilibria for a fixed β tend to these boundaries as β →∞ [MMSM94, McI99].
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Figure 1.7: Regions of the existence of equilibria on the XY plane. On the right a zoom close
the Earth. In black: the forbidden regions for equilibria. In red: families of equilibrium points
for different values of β. From 1 to 5: β = 0.05, 0.2, 0.4, 0.6, 0.8.

In Figures 1.7 and 1.8 we can see the surfaces of equilibria on a section in the XY

plane and the XZ plane respectively. In both figures we also show sections of the surfaces

of equilibria for different β. In both pictures we have β = 0.05, 0.2, 0.4, 0.6, 0.8.



18 Chapter 1. Solar Sails in the RTBP

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-1 -0.5  0  0.5  1

Z

X

12 3 4 5 12345

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

-1.015 -1.01 -1.005 -1 -0.995 -0.99 -0.985

Z

X

1 2 3
4 5

1

5
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the Earth. In black: the forbidden regions for equilibria. In red: families of equilibrium points
for different values of β. From 1 to 5: β = 0.05, 0.2, 0.4, 0.6, 0.8.

1.4 Stability of Equilibrium Points

Once we have discussed the existence of the artificial equilibria we want to examine their

stability. In general, the equilibrium points are unstable [MMSM94, McI99]. Nevertheless,

as we will see, in some cases the rate of escape is very mild, having regions of practical

stability.

We classify the equilibrium points (p0) by the eigenvalues of the linearisation of the

flow on the equilibrium points, DXf(p0). Here we can find three different classes of

equilibrium points:

• T1: DXf has three pairs of complex eigenvalues (ν1 ± iω1, ν2 ± iω2 and ν3 ± iω3).

• T2: DXf has one pair of real eigenvalues (λ1,2 ∈ R with λ1 > 0 and λ2 < 0) and two

pairs of complex eigenvalues (ν1 ± iω1 and ν2 ± iω2).

• T3: DXf has two pairs of real eigenvalues λ1,...,4 ∈ R with λ1, λ3 > 0 and λ2, λ4 < 0)

and one pair of complex eigenvalues (ν1 ± iω1).

Notice that as the flow has zero divergence, the sum of all the eigenvalues must be zero.

Then: 2(ν1 + ν2 + ν3) = 0 for the class T1 of fixed points; λ1 + λ2 + 2(ν1 + ν2) = 0 for the

class T2; and λ1 + λ2 + λ3 + λ4 + 2ν1 = 0 for the class T3.

For the particular cases of a perpendicular solar sail (α = δ = 0) the system is

Hamiltonian, then the eigenvalues must come in pairs: if λ is an eigenvalue, then so

are −λ and λ̄. Moreover, if α = 0 the system is time reversible and three of the five 1D

families of equilibrium points that appear share this same property due to the reversibility
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of the model [Sev86, LR98]. We discuss this particular case in more detail in Section 4.1.

For the rest of the cases (α 6= 0) this restriction on the eigenvalues does not apply.

In Figures 1.4, 1.5 and 1.6 the fixed points of class T1 are represented in blue and the

ones of class T2 are represented in red. The equilibrium points of class T3 are found above

the ecliptic plane for large values of β [WM07].

In what follows we discuss in more detail the stability in a small neighbourhood of SLi

for i = 1, . . . , 5 for β = 0.05. We have taken a set of fixed points close to each of them

and computed their stability. In Figures form 1.9 to 1.13 we plot the values of the 3 pairs

of eigenvalues for each of the equilibrium points in the region close to the SLi. If one of

the pairs is a complex eigenvalue (ν ± iω) we just represent ν + iω, and if we have a pair

of two real eigenvalues (λ1,2) we just represent λ1 > 0, as λ2 < 0 is close to −λ1. Finally,

Figure 1.14 shows the 2D surfaces of equilibria close to the different SLi that has been

studied. Where a colour is associated to each point depending on its linear dynamics.

In Figure 1.9 we show the eigenvalues of a 2D family of fixed points close to SL1. We

can see that there is always a pair of real eigenvalues, λ1 > 0, λ2 < 0, and two pairs of

complex eigenvalues ν1,2 ± iω1,2. Notice that, although in most cases ν1,2 6= 0, this one

is very small compared to |λ1,2|. In particular |ν1,2| < 0.0015 and |λ1,2| > 0.8. Hence,

close to SL1 the main instability is given by the real eigenvalues. On the top left corner

of Figure 1.14 we have the 3D representation of the surface of equilibria taken for the

previous plots. Each point is associated with a colour depending on the eigenvalues. Red

is for those equilibrium points where ν1,2 > 0, green for those where ν1,2 < 0 and blue for

those with ν1,2 = 0. Notice that the Y = 0 plane separates the two types of motions: at

Y > 0 the trajectories spiral inwards, while for Y < 0 the trajectories spiral outwards.

For Y = 0 we have ν1,2 = 0.
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Figure 1.9: Three of the six eigenvalues for different equilibrium points close to SL1 for β = 0.05:
λ1 > 0 (left), ν1 + iω1 (middle) and ν2 + iω2 (right).

In Figure 1.10 we have the eigenvalues of a 2D family of fixed points close to SL2. As

in the neighbourhood of SL1, we also find two real eigenvalues, λ1 > 0, λ2 < 0, and two



20 Chapter 1. Solar Sails in the RTBP

pair of complex eigenvalues ν1,2±iω1,2, with |ν1,2| < 8×10−5 and |λ1,2| > 4. The spiralling

effect is almost negligible for short times. On the top right corner of Figure 1.14 we have

the 3D representation of the surface of equilibria considered in the previous plots. The

same criteria as before has been applied to paint each of the equilibrium points. Again,

the Y = 0 plane separates the two different type of motions. For Y > 0 the trajectories

spiral inwards in the centre projection, while they spiral outwards for Y < 0. For Y = 0

we have ν1,2 = 0.
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Figure 1.10: Three of the six eigenvalues for different equilibrium points close to SL2 for
β = 0.05: λ1 > 0 (left), ν1 + iω1 (middle) and ν2 + iω2 (right).

In Figure 1.11 we find the eigenvalues for the fixed points close to SL3. Again, we

have two real eigenvalues, λ1 > 0, λ2 < 0, and two pair of complex eigenvalues ν1,2± iω1,2,

with |ν1,2| very small, less that 6 × 10−7. Notice that the instability given by the real

eigenvalues is very mild, as |λi| < 0.003. In the middle of Figure 1.14 we see the 3D

representation of equilibrium points considered here, following the same colour criteria as

before. We can also see that the Y = 0 plane separates the two types of motion.
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Figure 1.11: Three of the six eigenvalues for different equilibrium points close to SL3 for
β = 0.05: λ1 > 0 (left), ν1 + iω1 (middle) and ν2 + iω2 (right).

Finally Figures 1.12 and 1.13 show eigenvalues for families of equilibrium points close to

SL4 and SL5 respectively. Now there are three pair of complex eigenvalues ν1,2,3± iω1,2,3,



1.4. Stability of Equilibrium Points 21

with ν1,2,3 6= 0 but small. Notice that here |ν1,2,3| < 6 × 10−7, so the rate of escape is

extremely small (it would take the sail about 183863 years to double its distance to the

fixed point). So these regions are of practical stability for a probe. On the bottom of

Figure 1.14 we see the 3D representation of equilibrium points close to SL4 (left) and

SL5 (right). Here green is for those equilibrium points whose linear dynamics is a cross

product of two outwards spirals and one inwards, and the blue for those points with one

outward spiral and two inwards.

 0.0041

 0.0043

 0.0045

 0.0047

 0.0049

-6e-07 -4e-07 -2e-07  0  2e-07  4e-07  6e-07

Im

Re

ν1 + iω1

 0.9982

 0.9986

 0.999

 0.9994

 0.9998

-6e-07 -4e-07 -2e-07  0  2e-07  4e-07  6e-07

Im

Re

ν2 + iω2

 1

 1.0004

 1.0008

 1.0012

 1.0016

 1.002

-3e-07 -2e-07 -1e-07  0  1e-07  2e-07  3e-07

Im

Re

ν3 + iω3

Figure 1.12: Three of the six eigenvalues for different equilibrium points close to SL4 for
β = 0.05: ν1 + iω1 (left), ν2 + iω2 (middle) and ν3 + iω3 (right).
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Figure 1.13: Three of the six eigenvalues for different equilibrium points close to SL5 for
β = 0.05: ν1 + iω1 (left), ν2 + iω2 (middle) and ν3 + iω3 (right).
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Chapter 2

Station Keeping Strategies Around

Equilibria

In Chapter 1 we have seen that the effect of the solar radiation pressure on the Restricted

Three Body Problem adds to the model a 2D family of equilibria parametrised by the

sail orientation. These new equilibrium points open a wide range of possible mission

applications that cannot be achieved by a conventional spacecraft. For example, we can

place a spacecraft at an equilibrium point closer to the Sun than L1, or maintain a satellite

on a fixed location above the ecliptic plane.

We have also seen that most of these equilibrium points are unstable. According

to [McI99], although the equilibrium solutions are in general unstable, they are control-

lable using either a feedback control to the sail attitude or trims of the sail area. In

this Chapter we will discuss strategies for the station keeping of a solar sail around an

equilibrium point. To derive such strategies we will use Dynamical System tools instead

of Control Theory algorithms.

In Section 1.4 we have mentioned that the equilibrium points can be classified by

their linear stability. From now on, we focus on the motion close to a linearly unstable

equilibrium point of the class T2. We recall that these equilibrium points have two real

eigenvalues λ1 > 0, λ2 < 0, and two pair of complex eigenvalues ν1,2± iω1,2. We will focus

on those points where |ν1,2| << |λ1,2|, so the instability of the region is mainly given by

the real eigenvalues. As we have seen in Section 1.4 this holds for the equilibrium points

close to SL1 and SL2.

Our aim is to use the information of the local dynamics to design strategies that

maintain the trajectory of a sail close to an equilibrium point. We need to understand

how the phase space varies when the sail orientation changes and find a way to make the
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phase space act in our favour.

In Sections 2.1 we start by describing the local dynamics around an equilibrium point

and how it varies when the sail orientation is changed. In Section 2.2 we describe the sta-

tion keeping strategy that we have designed. We have tested our strategy on two different

missions: The Geostorm Warning mission and Polar Observer mission. In Section 2.3 we

discuss these results. Furthermore, in Section 2.4 we test the robustness of our strategies

by introducing systematic errors on the position and velocity determination of the probe’s

trajectory as well as on the accuracy of the sail’s orientation.

Finally, in Section 2.5 we present a way to move along a family of equilibrium points

in a controlled way, using the local information of the variation of the phase space.

2.1 Preliminaries

When we are close to an equilibrium point, the dynamics is approximated by the linearisa-

tion of the equations of motion at this point. In Section 1.4 we can see that close to SL1,2

the fixed points satisfy |ν1,2| << |λ1,2| and |λ1| ≈ |λ2|. So, the main instability of the

region is given by the positive real eigenvalue, and for short time spans, the rate of escape

due to the complex eigenvalues is negligible. As a first approximation, we assume that

ν1,2 = 0 and λ2 = −λ1. Hence, the linear dynamics is of the type saddle × centre × centre.

Note that, if ν1 or ν2 are negative, our assumption adds extra complexity to the

problem, as these directions are contracting. On the other hand, if ν1 or ν2 are positive,

the probe may escape due to the effect of this expansion. In any case, we also try to

decrease the centre behaviour. If this decreasing is bigger than the increasing factor due

to ν1 or ν2, then the sail will be able to keep its trajectory close to the desired fixed point.

Let us call p0 a fixed point for α = α0 and δ = δ0. From now on we describe the

trajectory of the probe by its projection on three different 2D planes centred on p0. The

first plane is generated by the two eigenvectors related to the real eigenvalues (~vλ, ~v−λ),

where the saddle behaviour is described. The other two planes are generated by the real

and imaginary part of the two pairs of complex eigenvectors (~vωi ± i ~uωi for i = 1, 2). The

projection of the orbit on these two planes describes the central behaviour of the motion.

Hence, we consider the reference system: { p0; ~vλ, ~v−λ, ~vω1 , ~uω1 , ~vω2 , ~uω2 } (see Figure 2.1).

In this reference system, when the sail is close to p0 it escapes along the unstable

direction (~vλ) and rotates around the fixed point in the two centre projections. If we

change the sail orientation then the fixed point, the eigenvalues and the eigenvectors vary.
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(x1, y1)

(x2, y2)

(x3, y3)

Figure 2.1: Schematic representation of the trajectory of the sail in the
{ p0; ~vλ, ~v−λ, ~vω1 , ~uω1 , ~vω2 , ~uω2 } reference system.

Now the trajectory escapes along the new unstable direction. We want to change the

sail orientation so that the unstable direction of this new fixed point sends the probe

back to the neighbourhood of p0. Once the probe is close to p0, we restore the initial sail

orientation and so on. This is graphically represented in Figure 2.2.

α = α0, δ = δ0

α = α0, δ = δ0

α = α1, δ = δ1

α = α2, δ = δ2

(1) (2)

(3) (4)

Figure 2.2: Scheme of the idea to control the saddle instability around an equilibrium point.

It is important to note that, during this process, the projection of the orbit on the

central part of the equilibria can grow as the central behaviour is a sequence of rotations

around each of the fixed points. The composition of central motions with different centre

of rotation can result in an unbounded growth of motion. For this reason we have to be

careful when we choose the new sail orientation. We have to control the instability given

by the unstable direction and make sure that the two central projections do not grow.
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Thus, we need to understand how the fixed points and eigenvectors change when we

change the sail orientation, and see if there exists a new sail orientation that makes the

sail’s trajectory come close to p0 and maintain the centre behaviour bounded. Notice that

it is not obvious that there will always be an appropriate change of the sail orientation,

as there are more unknowns than parameters to play with.

From now on, to simplify further formulations we consider ~v1 = ~vλ, ~v2 = ~v−λ, ~v3 = ~vω1 ,

~v4 = ~uωi , ~v5 = ~vω2 and ~v6 = ~uω2 .

2.1.1 Variation of the phase space

We recall that we do not have an explicit expression for the position of an equilibrium

point p(α, δ). Nevertheless, as we deal with small changes on the sail’s orientation, the

linear approximation of these surfaces around a fixed point is enough. The same applies

for the variation of the eigenvalues λi(α, δ) and the eigenvectors ~vi(α, δ).

Let us define p0 = p(α0, δ0) as the coordinates of the equilibrium point of ẋ =

f(x, α, δ), and let λi0 = λi(α0, δ0), ~vi0 = ~vi(α0, δ0) the eigenvalues and eigenvectors of

A0 = Dxf(p0, α0, δ0). Then,

p(α, δ) = p0 + Dp · h + o(||h||2), (2.1)

λi(α, δ) = λi0 + Dλi · h + o(||h||2), (2.2)

~vi(α, δ) = ~vi0 + D~vi · h + o(||h||2), (2.3)

where,

Dp =

[
∂p

∂α
(α0, δ0)

∂p

∂δ
(α0, δ0)

]
, Dvi =

[
∂~vi
∂α

(α0, δ0)
∂~vi
∂δ

(α0, δ0)

]
,

Dλi =

[
∂λi
∂α

(α0, δ0)
∂λi
∂δ

(α0, δ0)

]
and h = [α− α0 δ − δ0]T .

If |α−α0| < ε1 and |δ−δ0| < ε2, with ε1, ε2 small enough, we can neglect the second order

terms and just consider the linear approximation. Although we do not know explicitly

these expressions, as we will see, it is not difficult to compute numerically Dp, Dλ, D~v

for a given fixed point.

As we know, if p0 are the coordinates of a fixed point for α = α0, δ = δ0, then
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f(p0, α0, δ0) = 0. By the Implicit Function Theorem, if A0 = Dxf(p0, α0, δ0) is not

singular, there exists a local expression for p(α, δ) close to (p0, α0, δ0).

If we derive the equality, f(p(α0, δ0), α0, δ0) = 0 with respect to α and δ, then Dp

satisfies:

A0
∂p

∂α
(α0, δ0) +

∂f

∂α
(p0, α0, δ0) = 0,

(2.4)

A0
∂p

∂δ
(α0, δ0) +

∂f

∂δ
(p0, α0, δ0) = 0.

Notice that as A0 is not singular we can solve these linear systems. Hence, we have an easy

way to compute the linear variation of the fixed points with respect to the sail orientation

(Dp).

The dependence of the eigenvalues and eigenvectors of a matrix with respect to pa-

rameters is a known topic that can be found in many places (for example, Chapter 2

of [Wil65]). Here we announce the main results we need to compute Dλi and D~vi, for

further details on the subject see [Wil65, Nel76, Lan64].

To fix notation: let us consider A(ξ) an n× n matrix where its coefficients depend on

a parameter ξ ∈ R. In what follows, we assume that the elements of A(ξ) are smooth in

a neighbourhood of ξ = ξ0. We call λi0 = λi(ξ0) to the eigenvalues of A0 = A(ξ0), ~vi0 =

~vi(ξ0) to the right eigenvectors (A0~v0i = λi0~vi0) and ~ui0 = ~ui(ξ0) to the left eigenvectors

(~uTi0A0 = λi0~u
T
i0) for i = 1, . . . , n. Finally, let DξA(ξ) be the n × n matrix that have as

elements the derivatives of the elements of A(ξ) with respect to ξ.

Theorem 2.1.1 Assume that λi0 = λi(ξ0) is a simple eigenvalue with eigenvector ~vi0 =

~vi(ξ0) of A0 = A(ξ0); that A0 diagonalises and that the elements of A(ξ) are smooth in a

neighbourhood of ξ = ξ0.

Then:

dλi
dξ

(ξ0) =
uTi0DξA(ξ0)vi0

uTi0vi0
, (2.5)

d~vi
dξ

(ξ0) =
n∑
k=0

ck~vk(ξ0), (2.6)

where the constants ck =
ukDξA(ξ0)vi
(λk − λi)uTk

for k 6= i and ck = 1 for k = i.

Notice that the coefficients ck on equations (2.6) give the rate of variation of the eigen-
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vectors in the eigenvector base. The details on the proof of this theorem can be derived

from the explanations in [Wil65] or from the different results in [Nel76, Lan64].

Now taking ξ = (α, δ) we can extend in an easy way equations (2.5) and (2.6) to

compute Dλi(α0, δ0) and D~vi(α0, δ0).

2.1.2 An example

Let us consider one of the fixed points for β = 0.05 for a perpendicular sail orientation

(α = 0, δ = 0); SL1 = p0 = ( −0.9804352, 0, 0, 0, 0, 0 ). We want to see how the phase

space properties vary for small variations on the sail orientation.

Using equations (2.4) we compute Dp:

∂p

∂α
(0, 0) = [ 0.0, −0.0127102, 0.0, 0.0, 0.0, 0.0 ],

∂p

∂δ
(0, 0) = [ 0.0, 0.0, 0.0036909, 0.0, 0.0, 0.0 ].

(2.7)

Notice that up to first order, variations on α imply variations in the Y direction and

variations on δ imply variations in the Z direction.

If we think of a station keeping strategy, our aim is to maintain the trajectory as close

as possible to a given fixed point. We know that SL1 is at a distance of ≈ 0.02AU from

the Earth. From equality (2.7), one can check that at that distance an angular variation

of 1.5◦ with respect to the Earth - SL1 line give a variation of about 5.12 × 10−4 AU =

76630.44 km in position. Around SL1 a variation on the sail orientation of about 0.23◦ in

α or 0.79◦ in δ give variations of order 5× 10−4 in the position of the fixed points. This

is the magnitude of the maximum variation on the sail orientation that we should do to

if we want to maintain an angular variation of the solar sail’s trajectory less than 1.5◦.

Let us now check the linear dependence of the phase space properties around SL1.

Using equations (2.5) and (2.6) we have computed Dλi and D~vi for i = 1, . . . , 6. In

Table 2.1 we see the values of the eigenvalues and their variation with respect to the sail

orientation. In Table 2.3 we see the eigenvectors and their variation with respect to the

sail orientation expressed in the eigenvector base (i.e. ∂~vi/∂α =
∑6

j=1 cαj~vj, ∂~vi/∂δ =∑6
j=1 cδj~vj).

As we can see, the first order variation of the eigenvalues and eigenvectors is small.

To get a better idea of the variation on the eigenvectors, we have computed the angles

between ~vi and ∂~vi/∂α, and between ~vi and ∂~vi/∂δ for i = 1, . . . , 6, see Table 2.2. There

we can see that the maximum variation is of the order of 0.03113684 rad. This behaviour
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i λi ∂λi/∂α ∂λi/∂δ

0 9.945411e-01 -2.065125e-02 + 0.000000e+00 i 0.000000e+00
1 -9.945411e-01 -2.065125e-02 + 0.000000e+00 i 0.000000e+00
2 1.256930e+00 i 2.065125e-02 - 2.773690e-18 i 0.000000e+00
3 -1.256930e+00 i 2.065125e-02 + 2.773690e-18 i 0.000000e+00
4 1.187114e+00 i 0.000000e+00 + 0.000000e+00 i 0.000000e+00
5 -1.187114e+00 i 0.000000e+00 + 0.000000e+00 i 0.000000e+00

Table 2.1: For SL1 and β = 0.05, the eigenvalues (λi) and their variation w.r.t. α (∂λi/∂α)
and δ (∂λi/∂δ).

i 〈~vi, ∂~vi/∂α〉 angle 〈~vi, ∂~vi/∂δ〉 angle
1 9.9951528761e-01 3.113684e-02 1.0000000000e+00 0.000000e+00
2 9.9951528761e-01 3.113684e-02 1.0000000000e+00 0.000000e+00
3 9.9969645328e-01 2.463989e-02 1.0000000000e+00 0.000000e+00
4 9.9969645328e-01 2.463989e-02 1.0000000000e+00 0.000000e+00
5 1.0000000000e+00 0.000000e+00 1.0000000000e+00 0.000000e+00
6 1.0000000000e+00 0.000000e+00 1.0000000000e+00 0.000000e+00

Table 2.2: For SL1 and β = 0.05, the scalar product and angles (in rad) between ~vi and ∂~vi/∂α
and between ~vi and ∂~vi/∂δ for i = 1, . . . , 6.

also holds for most of the equilibrium points close to SL1. For this reason, during the

design of the control strategy, it will be enough to assume that there is no variation on

the eigenvectors when we change the sail orientation, since this simplifies the algorithm.

We will see that this assumption does not affect the controllability of the trajectory and

that there are other more relevant effects.

Finally, we want to see how the fixed points vary on the {p0;~v1, . . . , ~v6} reference

system. We express the variations ∂p/∂α and ∂p/∂δ in this reference system:

∂p/∂α = [ −0.0499250, −0.0499250, 0.0, 0.0801638, 0.0, 0.0 ],

∂p/∂δ = [ 0.0, 0.0, 0.0, 0.0, 0.0, −0.0369099 ].

Hence, variations in α give variations of the fixed points position on the saddle projection

close to the y = x line, and on the first centre projection close to the y axis. Variations

in δ are only seen at first order on the second centre projections following the y axis.

This can be graphically seen in Figure 2.3 where the projections of ∂p/∂α and ∂p/∂δ are

plotted.

From these results we see that there are fixed points in both sides of the saddle plane

if we change the sail orientation. Furthermore, the unstable directions of these new fixed

points can bring the trajectory back to a neighbourhood of p0 and control the saddle
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Figure 2.3: Variation of the linear approximation of the fixed points ∂p/∂α and ∂p/∂δ on
the reference system {p0;~v1, . . . , ~v6}. From left to right: saddle projection {~v1, ~v2}, first centre
projection {~v3, ~v4} and second centre projection {~v5, ~v6}.

instability (see Figure 2.2). For instance, if the variation of the new fixed points on the

saddle projection is far from the unstable direction (~vλ) then it will not be possible to

find a new fixed point to bring the trajectory back.

2.2 Station Keeping

In this section we give the details on the station keeping algorithm that we have designed.

We will describe the effects on the linear dynamics when the sail orientation is changed

and how to take advantage of this. At the end we will apply these strategies on the

previous example.

2.2.1 Dynamics near an equilibrium point

We describe the trajectory of the probe by its projection on three different planes centred

on p0. The first plane describes the saddle behaviour and the other two describe the

central behaviour of the motion. Using the reference system R = { p0; ~v1, . . . , ~v6 }, we

express the probe’s trajectory as ( x1(t), y1(t), x2(t), y2(t), x3(t), y3(t) ).

When we are close to the equilibrium point, the sail escapes along the unstable di-

rection. We want to obtain a sail orientation such that the unstable direction of the

new fixed point brings the probe back to the proximity of the initial fixed point p0 (Fig-

ure 2.2). Moreover, we want to maintain the centre behaviour bounded. As we know

the fixed points live in a 2D surface and we have a 6D phase space, so we have some

limitations in the positions of the new fixed point.

To begin, we assume that we are free to choose the fixed points position. First we

describe the saddle and centre behaviour of the trajectory when the sail orientation is
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changed and where should the new fixed point be placed in order to deal with the insta-

bility. Latter on, we will show how to choose an appropriate sail orientation taking into

account the limitations on the fixed points position.

Saddle behaviour

Suppose that for α = α0 and δ = δ0 the fixed point is at the origin. Hence, the motion

on the saddle projection is,

x1(t) = x10e
λ(t−t0)

y1(t) = y10e
−λ(t−t0)

}
, (2.8)

where (x10, y10) is the initial condition.

When the sail orientation is changed, α = α0 + εα and δ = δ0 + εδ, the fixed point

and the eigenvalues and eigenvectors change slightly. From now on, we consider that

the eigenvectors are the same as the ones at the origin. Later on we will see that this

approximation is good enough as the variations on the eigenvectors are very small. If

(ξ1, η1) are the coordinates of the new fixed point on this projection and ±λ̄ are the real

eigenvalues for (ξ1, η1), then the motion of the probe is given by,

x̄1(t) = ξ1 + (x̄10 − ξ1)eλ̄(t−t0)

ȳ1(t) = η1 + (ȳ10 − η1)e−λ̄(t−t0)

}
, (2.9)

where (x̄10, ȳ10) is the initial condition.

To control the saddle behaviour we define two bounds B1 = {x1 = εmin} (the minimal

distance to the stable direction) and B2 = {x1 = εmax} (the maximal distance to the stable

direction), that define the region of movement (between B1 and B2), see Figure 2.4. When

the trajectory reaches one of these two bounds the sail orientation is changed. We will

determine εmin and εmax depending on the mission interest and the phase space properties.

If the sail orientation is fixed to α = α0 and δ = δ0 the trajectory is given by equation

(2.8) and goes from B1 to B2. When the sail orientation is changed to α = α1 and δ = δ1

the trajectory is given by equation (2.9). The initial condition of one movement is the

end condition of the previous movement. From now on we refer to the points where we

change the sail orientation as change points.

In order to control the instability the new fixed point (ξ1, η1) must be chosen so that

ξ1 > εmax (see Figure 2.4). As we are supposing that the eigenvectors do not depend on

(ξ, η), then the unstable direction of the new fixed point will bring the probe back to B1.
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Figure 2.4: Graphic representation of the relevant parameters to control the saddle projection.

Notice that we can estimate the time (∆ti) it takes to go from one bound to the other.

From B1 to B2, the trajectories follow equation (2.8), with x10 = εmin and x1(tf ) = εmax.

So εmax = εmine
λ∆t1 and we have that,

∆t1 =
1

λ
log

(
εmax
εmin

)
. (2.10)

From B2 to B1, the trajectories follow equation (2.9), with x̄10 = εmax and x̄1(tf ) = εmin.

So εmin = ξ1 + (εmax − ξ1)eλ̄∆t2 and we have that,

∆t2 =
1

λ̄
log

(
ξ1 − εmin
ξ1 − εmax

)
. (2.11)

Notice that ∆t2 varies with the fixed point as it also depends on λ̄ and ξ1.

Let ti for i ∈ N be the instant of time when the probe is at one of the bounds B1,2.

We can assume that t0 = 0 and that the probe is initially placed in B1. Then,

t2i+1 = t2i + ∆t1,

t2i+2 = t2i+1 + ∆t2,

for i ∈ N, where t2i is the time when the probe is placed at B1 and t2i+1 when it is placed

at B2.
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Let (ζ
(i)
1 , ν

(i)
1 ) be the sequence of change points, where for i even the change points are

in B1 (ζ
(i)
1 = εmin) and for i odd they are in B2 (ζ

(i)
1 = εmax). The following lemma shows

a sequence of new fixed points (ξ
(i)
1 , η

(i)
1 ) that control the saddle instability.

Lemma 2.2.1 Let (ξ
(i)
1 , η

(i)
1 ) be the sequence of new fixed points for the control strategy

and (ζ
(i)
1 , ν

(i)
1 ) the sequence of change points. If we choose η

(i)
1 = ν

(2i+1)
1 and ξ

(i)
1 = ξ∗ with

ξ∗ > εmax, then

lim
i→∞

η
(i)
1 = 0,

so the control strategy new fixed points tend to (ξ∗, 0) and the saddle behaviour is stabilised.

Proof We will see by induction that ν
(2n+1)
1 = ν

(0)
1

(
εmin
εmax

)n
.

For n = 1,

ν
(1)
1 = y1(t0 + ∆t1) = ν

(0)
1 e−λ∆t1 = ν

(0)
1

(
εmin
εmax

)
.

We suppose it is true for n = i, and we see it holds for n = i+ 1.

ν
(2i+3)
1 = y1(t2i+2 + ∆t1) = ν

(2i+2)
1 e−λ∆t1 = ν

(2i+2)
1

(
εmin
εmax

)
, (2.12)

where

ν
(2i+2)
1 = ȳ1(t2i+1 + ∆t2) = η

(i)
1 + (ν

(2i+1)
1 − η(i)

1 )e−λ∆t2 ,

as we are considering η
(i)
1 = ν

(2i+1)
1 ⇒ ν

(2i+2)
1 = ν

(2i+1)
1 . Then by the induction hypothesis

equation (2.12) becomes,

ν
(2i+3)
1 = ν

(0)
1

(
εmin
εmax

)i+1

. (2.13)

As εmax > εmin,

lim
n→∞

η
(n)
1 = lim

n→∞
ν

(0)
1

(
εmin
εmax

)n
= 0.

�

In Figure 2.5 we have a graphical representation of the trajectory that the sail would

follow if we chose the sequence of new fixed points satisfying the hypothesis on lemma 2.2.1.

Notice that if the sequence of new fixed points are as in lemma 2.2.1 but taking η
(i)
1

close to ν(2i+1), then the saddle behaviour is also controlled, although the sequence of

fixed points may not converge.
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Figure 2.5: Sequence of ideal fixed points and the projection of the probe’s trajectory in the
saddle plane.

Centre behaviour

Suppose that for α = α0, δ = δ0 the fixed point is at the origin and let (x20, y20) be the

initial condition. Then the motion on one of the centre projection is

x2(t) = r0 cos(ω(t− t0) + τ0)

y2(t) = r0 sin(ω(t− t0) + τ0)

}
, (2.14)

where r0 =
√
x2

20 + y2
20 and τ0 = arctan

(
y20

x20

)
.

When the sail orientation is changed to α = α0 + εα and δ = δ0 + εδ, the fixed

point changes as well as the eigenvalues and eigenvectors. As before we consider that the

eigenvectors are the same as the ones at the origin. If (ξ2, η2) is the new fixed point and

±iω̄ are the pair of complex eigenvalues for (ξ2, η2), then the motion of the probe is given

by

x̄2(t) = ξ2 + r̄0 cos(ω̄(t− t0) + τ̄0)

ȳ2(t) = η2 + r̄0 sin(ω̄(t− t0) + τ̄0)

}
, (2.15)

where r̄0 =
√

(ξ2 − x̄20)2 + (η2 − ȳ20)2, τ̄0 = arctan

(
η2 − ȳ20

ξ2 − x̄20

)
and (x̄20, ȳ20) is the initial

condition.

The control on the saddle part fixes the time between manoeuvres, previously we have

seen how to estimate ∆t1 and ∆t2 (remember ∆t2 varies with the fixed point). So the

movement in the centre part are a sequence of rotations around each of the fixed points.
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The rotations around the origin are of angle θ1 = ω1∆t1 and the rotations around the

different fixed points are of angle θ2 = ω̄∆t2, where θ2 varies with the fixed point.

The composition of rotations around different fixed points does not need to be bounded.

We would like to place the fixed points so that this movement does not grow. In fact we

will show a sequence of fixed points where the trajectory tends to the equilibrium point.

Let us assume that, for α = α0, δ = δ0 the fixed point is at the origin and the

trajectory is an arc starting at the initial condition (x20, y20) and radius r0 =
√
x2

20 + y2
20.

Let (ζ2, ν2) be the change point, we want to find a fixed point (ξ2, η2) so that the arc

described around this new fixed point ends closer to the origin than (x20, y20).

Depending on the position of (ξ2, η2) with respect to the (ζ2, ν2) the arc may or may

not be totally included in the disk, D0, centred at the origin and radius r0. We are

interested in choosing a fixed point so that the arc described by the probe is completely

included in D0 (see Figure 2.6).

θ1

θ2

(0, 0)

(x̄2, ȳ2)
(x̄20, ȳ20)

(ζ2, η2)

D0

θ1

θ2

(0, 0)

(x̄2, ȳ2)

(x̄20, ȳ20)

(ζ2, η2)

D0

Figure 2.6: Relative position of a fixed point where the arc described by the probe is not
included in D0 (right) and where it is included in D0 (left).

It is true that knowing the arc of rotation θ2 there are lots of fixed points that can

describe an arc completely included in D0, however, we do not know θ2 in advance, as

it depends on the fixed point. Although we can have it bounded. Therefore, we need to

find fixed points so that ∀ θ2 ∈ [0, 2π] the arc described is included in D0.

Lemma 2.2.2 Let D0 be the disk centred at the origin and of radius r0 =
√
x2

20 + y2
20 and

(ζ2, ν2) the change point on ∂D0. Then all the fixed points (ξ2, η2) such that ξ2 = s · ζ2,

η2 = s · ν2 and s ∈ [0, 1) describe an arc included in D0 ∀ θ2 ∈ [0, 2π). If s = 1/2 the

distance to the origin of the end point of the arc is minimal.

Proof If two disks coincide in one point, one is included in the other if and only if these

two disks are tangential and the centres are included in the biggest disk. So we are looking

for arcs tangent to D0 and with the centre included in D0.
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If (ζ2, ν2) is the change point and (ξ2, η2) is the fixed point, the arc will be tangential

if only if (ξ2, η2) = (s · ζ2, s · ν2). If the centre has to be included in D0 then s ∈ (−1, 1).

Then the arc described by the probe is given by,

ξ2(T ) = sr0 cos(θ1 + τ) + (s− 1)r0 cos(T + τ̄), (2.16)

η2(T ) = sr0 sin(θ1 + τ) + (s− 1)r0 sin(T + τ̄), (2.17)

which depends on the time T ∈ [0, θ2].

We want,

ξ2(θ2)2 + η2(θ2)2 = r2
0(2s2 + 2s− 1 + 2s(s− 1) cos(θ1 − θ2 + τ − τ̄)) < r2

0 (2.18)

Let us consider f(s) = 2s(s− 1)(1 + cos(θ1 − θ2 + τ − τ̄)). Solving equation (2.18) is

equivalent to finding s such that f(s) < 0. It is easy to see that f(s) < 0 for s ∈ (0, 1)

independent to the value of θ2.

Notice that if f(s) is minimal the distance to the origin is also minimal. It is easy to

see that this is achieved when s = 1/2.

�

As before, let us define (ζ
(i)
2 , ν

(i)
2 ) as the change points, having for i odd change points

from equation (2.14) to equation (2.15) and for i even change points from equation (2.15)

to equation (2.14). As we have already said we want to find a sequence of fixed points

(ξ
(i)
2 , η

(i)
2 ) that makes the trajectory tend to the origin.

Lemma 2.2.3 Let (ξ
(i)
2 , η

(i)
2 ) be the sequence of new fixed points for the control strategy

and (ζ
(i)
2 , ν

(i)
2 ) the sequence of fixed points. If we choose ξ

(i)
2 = ζ

(2i+1)
2 /2 and η

(i)
2 = ν

(2i+1)
2 /2

then the sequence of change points (ζ
(i)
2 , ν

(i)
2 ) tend to the origin and so does the trajectory.

Proof Let us consider r(i) =
√

(ζ(i))2 + (ν(i))2. It is easy to see that r2i = r(2i+1) as the

change points (ζ2i, ν2i) and (ζ2i+1, ν2i+1) belong to the same arc centred on the origin.

Using Lemma 2.2.2 we can see that taking (ξ
(i)
2 , η

(i)
2 ) = (ζ(2i+1)/2, ν(2i+1)/2) we get,

r2i+1 > r2i+2. Then r2i > r2i+2 and the sequence for change points tend to the origin and

so does the projection of the trajectory.

�
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Figure 2.7: Sequence of ideal fixed points to minimise the centre projection and the projection
of the probe’s trajectory in the centre plane.

In Figure 2.7 we have a graphical representation of the trajectory that the sail would

follow if we take the sequence of new fixed points (ξ
(i)
2 , η

(i)
2 ) = (ζ

(2i+1)
2 /2, ν

(2i+1)
2 /2). As we

see, the trajectory tends to the origin.

Notice that if (ξ
(i)
2 , η

(i)
2 ) = (s · ζ(2i+1)

2 , s · ν(2i+1)
2 ) with s ∈ [0, 1) the trajectory also

decreases. There are also other choices, close to these ones, that make the centre behaviour

decrease or at least keep it bounded.

2.2.2 Choosing the new sail orientation (α, δ)

We have just seen an ideal sequence of fixed points to control the instability of p0. As

we have already said the fixed points live on a 2D surface parametrised by α and δ in a

6D phase space. So we might not be able to find a sail orientation α1 and δ1 where the

fixed point is one of the ideal positions described before. Nevertheless, we have also seen

that if the new fixed point is close enough to this ideal new equilibria, we are also able to

maintain the trajectory close to the desired fixed point.

We use the linear approximation of the 2D surface of fixed points, p(α, δ), seen in

Section 2.1.1. We want to find h = (α− α0, δ − δ0)T such that,

p̄− p0 = Dp · h, (2.19)
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where p̄ is the desired new fixed point, described above. Note that although equation

(2.19) has 6 equations and 2 unknowns, under general conditions we can still find α1, δ1

such that ‖p̄− p(α1, δ1)‖ is small enough.

Notice that although ‖p̄− p(α1, δ1)‖ is small, p(α1, δ1) may not be able to control the

instability due to the saddle part. If the projection of p(α1, δ1) on the saddle plane is on

the left hand side of B2 then the unstable direction of p(α1, δ1) will not bring the probe

back (see Figure 2.8). To avoid this we fix one of the components of the fixed point p̄ on

the saddle projection. Now we have to find the fixed points in a 1D surface.

(0, 0)

(x̄1, ȳ1)

B1 B2

Figure 2.8: Position of the new fixed point p(α1, δ1) in the saddle projection that will not
control the unstable behaviour.

We now give more details of the process described above. Let p̄ be the the ideal

position for the new fixed point. The coordinates of p̄ are given in a certain reference

system {p0;~v1, . . . , ~v6} (Section 2.2.1) and equation (2.19) is in synodical coordinates. So

we first have to change coordinates. Let Mv be the matrix that has ~vi for i = 1, . . . , 6 as

columns and s = (s1, . . . , s6) are the coordinates of the desired new fixed point (p̄) in this

coordinate system. Then if A = M−1
v Dp equation (2.19) becomes,

sT = A · h. (2.20)

To assure the controllability of the saddle behaviour we fix s1:

1. If a11 = a12 = 0 (i.e.
∂p

∂α
,
∂p

∂δ
⊥ ~v1):
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In this case there are no fixed points using the linear approximation for which its

saddle behaviour brings the sail back.

2. If a11 = max(|a11|, |a12|):

s1 = a11h1 + a12h2 ⇒ h1 =
s1 − a12h2

a11

, (2.21)

3. If a12 = max(|a11|, |a12|):

s1 = a11h1 + a12h2 ⇒ h2 =
s1 − a11h1

a12

, (2.22)

This reduces equation (2.20) into ŝ = Â · ĥ (5 equations and 1 unknown). Then the ĥ

so that ‖ŝ− Â · ĥ‖ is minimal is,

ĥ = (ÂT Â)−1ÂT s. (2.23)

Hence, we have the variation that must be done to the sail orientation.

2.2.3 Summary of the station keeping algorithm

Let p0 be a fixed point for α = α0, δ = δ0, that is linearly unstable. We assume that

the eigenvalues are ±λ,±iω1,±iω2, and take the reference system, R = {p0;~v1, . . . , ~v6}
where,

• p0 is the fixed point.

• ~v1, ~v2 are the unstable and stable eigenvector respectively (±λ).

• ~v3, ~v4 is a couple of real vectors that define the first central motion (±iω1).

• ~v5, ~v6 is a couple of real vectors that define the second central motion (±iω2).

During the station keeping algorithm the trajectories in this reference system is Φ(t) =∑
si(t) ~vi, where (s1(t), . . . , s6(t)) are the coordinates of the trajectory.

We start with the probe close to the fixed point p0 with α = α0, δ = δ0. Due to the

unstable character of the equilibrium point the trajectory escapes from its vicinity. When

|s1(t∗)| > εmax the probe is considered to be far from p0 and we choose the appropriate

α1, δ1 that brings the probe back to a neighbourhood of p0 and change the sail orientation
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(α = α1, δ = δ1). When |s1(t∗)| < εmin, the sail is close to p0 and we change the sail

orientation back to α = α0, δ = δ0. This process is then restarted.

Notice that we have to fix εmax and εmin, the maximal and minimal distance to the fixed

point respectively. These constants depend on the mission objectives and the dynamical

properties around the equilibrium point.

On the one hand, εmax is the maximum distance to the fixed point allowed and should

be chosen within a range where the linear approximation of the flow gives is accurate

description of the motion. And εmin is the minimal distance used to determine when

the probe is close enough to the stable direction of the target fixed point. On the other

hand, these two quantities determine the time between manoeuvres, and as a consequence

determine the angles of rotation on the centre projections. We can play with these two

constants and find ranges where we are able to control the trajectory of the sail. Although

in some case the time between manoeuvres might not be feasible. We always need to taking

into account the nature of the fixed point: instability rate, frequency of the rotations,

position of the new fixed points, etc.

We remark that we only use the linear approximation of the set of equations to find the

appropriate change on the sail’s orientation. During the simulations, we use the whole set

of equations. In Section 2.3 we show how this algorithm works for two particular missions,

but let us first illustrate how it works with an example.

2.2.4 An example

We take the same equilibrium point as the example in Section 2.1.2. Hence, β = 0.05

and SL1 is the fixed point for α = δ = 0. We will take an arbitrary initial condition and

apply the station keeping strategy described in the previous sections for at least 15 years.

As we know to start the algorithm we need to fix the parameters εmax (the maximum

distance to the fixed point allowed), εmin (the distance to return) and x̄1 (the distance

on the saddle plane where we want to fix the new sail orientation), see Figure 2.4 for a

graphical representation of these parameters. In our programs we define x̄1 = d · εmax and

ask the user to enter the parameters εmax, εmin and d.

For a first simulation we take εmax = 10−4, εmin = 5× 10−6 and d = 1.5. In Figure 2.9

we have the projection on the trajectory on the XY , XZ planes and its XY Z projection.

We can see how the trajectory remains close to the desired equilibria. Moreover, we can

see that the station keeping strategy decrease the Z oscillation.

In Figure 2.10 we have the projection of the trajectory on the planes defining the

saddle and the two centre directions. Notice that the behaviour on the saddle projection
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is a sequence of arcs between two saddles. The first centre plane corresponds to the planar

oscillation and the second centre is related to the vertical oscillation. In both centres the

projection of the trajectory remains bounded. Moreover, the vertical oscillation decreases

quickly. Finally, in Figure 2.11 we can see the variation on the sail orientation along time.
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Figure 2.9: For simulation 1: projections of the trajectory on the position space. From left to
right: XY projection, XZ projection and XY Z projection.
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Figure 2.10: For simulation 1: projections of the trajectory on the three reference planes
used on the station keeping strategy. From left to right: saddle projection and the two centre
projections.

For a second simulation we take εmax = 5 × 10−4, εmin = 5 × 10−6 and d = 1.5. As

before, in Figure 2.12 we have the projection on the trajectory on the XY and XZ planes

and its XY Z projection. In Figure 2.13 we find the projection of the trajectory on the

saddle plane and the two centre directions, and Figure 2.14 shows the variation on the

sail orientation along time.

Now the trajectory escapes after 4360.93 days, the station keeping algorithm has failed.

Notice that before the escape time the trajectory on the saddle projection has a fuzzy

aspect. If we look at the projection of the trajectory on the first centre direction, we

see the rotations have a high amplitude. Hence, the linear approximation in not good

enough, what brings the algorithm to fail.
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Figure 2.11: For simulation 1: variation on the sail orientation along time. From left to right
variation of α and δ.
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Figure 2.12: For simulation 2: projections of the trajectory on the position space. From left to
right: XY projection, XZ projection and XY Z projection.

The only difference between the first simulation and the second one is εmax, which is

larger in the second simulation. Apart from letting the trajectory get further away from

the fixed point p0, taking a larger εmax increases the time between manoeuvres and also

the angles of rotation on the centre behaviour. Having large rotation angles makes it

harder for the algorithm to control the centre projection. In the second simulation, if we

increased εmin, we would decrease the time between manoeuvres and the rotation angle,

managing to control the probe’s trajectory.

We want to make clear that as long as variation of the fixed points on the saddle

projection allow us to find new fixed points whose unstable manifold bring the probe

close to the target fixed point, we can find ranges of values for εmax and εmin where the

rotations on the keep the centre projection bounded. Nevertheless, the time between

manoeuvres might not be feasible for a real mission.

On the other hand, notice that in order to control the saddle projection we have two

parameters to play with, εmax and x̄1 (the x coordinate of the fixed point on the saddle

direction). In our strategies this ones have to be chosen in advance and remains fixed

during all the simulation. Hence, the place where the manoeuvre takes place is fixed. We

could consider these variables within a certain range and choose at each step the best place
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Figure 2.13: For simulation 2: projections of the trajectory on the three reference planes
used on the station keeping strategy. From left to right: saddle projection and the two centre
projections.
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Figure 2.14: For simulation 2: variation on the sail orientation along time. From left to right
variation of α and δ.

to change, in order to maintain the central projection small. This makes the algorithm

a little more complex and we have not considered it as an option for the moment, but it

could be a possibility if we had problems maintaining the centre projection bounded.

Now we want to test our station keeping strategies in regions of equilibria that have

been considered for possible mission applications. If the natural behaviour around these

equilibrium points is similar to the behaviour around SL1 we will not have problems

controlling the trajectory.

2.3 Mission Application

Now we would like to see how the station keeping technique described in the previous

section behaves with two proposed missions the Geostorm Warning and the Polar Observer

Missions. For each mission we start giving a brief introduction on the mission scenario and

its main goal. Then we give some details on the variation of the phase space properties of

the region where the mission is applied. Finally, several simulations have been done and

the results are discussed.
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2.3.1 Geostorm Mission

Its primary goal is to provide enhanced warning of geomagnetic storms to allow operation

teams to take preventive actions to protect vulnerable systems. Geomagnetic storms are

principally the result of Coronal Mass Ejections (CME), the violent release of large vol-

umes of plasma from the solar corona. The impact of CME on the Earth’s magnetosphere

can change its magnetic field and produce electromagnetic storms.

Currently predictions of future activity are made by the National Oceanic Atmospheric

Administration (NOAA) Space Environment Centre in Colorado using terrestrial data

and real-time solar wind data obtained from the Advanced Compositions Explorer (ACE)

spacecraft. The ACE spacecraft is stationed on a halo orbit near L1, at about 0.01 AU

from the Earth. From this position the spacecraft has continuous view of the Sun and

communication with the Earth. Since the spacecraft is located towards the Sun, the

solar wind disturbances sensed by the instruments on board the ACE spacecraft are used

to provide early warning of the impinging geomagnetic storms. Typically predictions of

order 1 hour can be made from the L1 Lagrange point.

The enhanced storm warning provided by ACE is limited by the need to orbit the

L1 point. However, since solar sails add an extra force to the dynamics of the orbit, the

location of L1 can be artificially displaced, as it has been shown. The goal of Geostorm

is to station a solar sail twice as far from the Earth than L1 while remaining close to the

Earth-Sun line as can be seen in Figure 2.15. Since the CME will be detected earlier than

by ACE the warning times and alerts will be at least doubled.

For this mission the solar sail is firstly transfered to a conventional halo orbit at L1.

There the sail would be deployed and transfered to its location at 0.98 AU from the Sun.

Once we arrive near close to SL1 a control strategy must be applied to deal with the

instability of the region.

Several studies on this mission have been made [McI99, MM04, Yen04, Lis05, Wes04]

Where we can see that a characteristic acceleration of at least a0 = 0.3mm/s2 is required

so that the spacecraft is placed at a double distance from the Earth-Sun L1 point. A a

total solar sail loading of order 29.6 g/m2 is considered. To achieve this a 67m × 67m

square solar sail is required for a total spacecraft mass of order 130kg.

Mission orbit

We want to displace the spacecraft at a double distance from the Earth-Sun L1 point. To

avoid interferences with the solar disc, the solar sail will be displaced away from the Sun -
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Figure 2.15: Schematic representation of the position of the Geostorm Mission (not to scale).

Earth line. A variation of 5◦ from this line is considered to be enough [McI99, MM04].

Taking into account that we want to be at a distance of 0.02AU from the Earth and

displaced about 5◦ from the Sun - Earth line, we required β = 0.051689, see [McI99,

Yen04, MM04]. In Figure 2.16 we have plotted the position of the equilibrium points for

different sail orientations and sail lightness numbers close to the Sun - Earth line.
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Figure 2.16: Relation of the fixed point for different sail lightness numbers: β1 = 0.03, β2 =
0.051689, β3 = 0.0786 and β4 = 0.1055

We have considered p0 = (−0.9800028, 0, 0, 0, 0, 0) with an initial sail orientation of

α = 0.0137829 rad and δ = 0 rad. In Table 2.4 we have the linear variation of the fixed

point with respect to α and δ in the synodical reference system and in the eigenvector

reference system.
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p?α -4.610276e-03 -1.450990e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

p†α -5.480083e-02 -6.003004e-02 -2.026453e-03 8.797829e-02 0.000000e+00 0.000000e+00

p?δ 0.000000e+00 0.000000e+00 3.905014e-02 0.00000e+00 0.000000e+00 0.000000e+00

p†δ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 -3.905014e-02

Table 2.4: For the Geostorm mission: linear variation of the position of the fixed point p0 w.r.t.
α and δ, in the synodical reference system (?) and in the eigenvector reference system (†). Where
pα stands for ∂p/∂α and pδ stands for ∂p/∂δ.

Notice that, at first order, variations on α imply variations on the XY plane, and

variations on δ imply variations on the Z direction. In both cases, these variations are

small. Regarding the saddle projection we can see that by varying α we have fixed

points at both sides of the saddle projection. Hence, there will be no problem in finding

appropriate equilibrium point.

We have also computed the linear variation of the eigenvalues and eigenvectors around

p0. In Table 2.5 we have the variation of the eigenvalues. We can see that although one

of the complex eigenvalues has a positive real part, the main instability is given by the

positive real eigenvalue. Notice that at first order the eigenvalues do not vary with δ and

the variations with respect to α are small enough not to vary the nature of the fixed points.

In Table 2.6 we have the angles between the eigenvectors and their linear variation with

respect to α and δ (∂~vi/∂α, ∂~vi/∂δ). We can see that the maximum is around 0.00344

radians, almost negligible for small variations on the sail orientation.

i λi ∂λi/∂α ∂λi/∂δ
0 9.519682e-01 + 0.000000e+00 i -5.780020e-05 - 0.000000e+00 i 0.000000e+00
1 -9.525896e-01 + 0.000000e+00 i -1.054805e-04 + 0.000000e+00 i 0.000000e+00
2 3.106890e-04 + 1.236480e+00 i 8.164037e-05 + 1.507482e-05 i 0.000000e+00
3 3.106890e-04 - 1.236480e+00 i 8.164037e-05 - 1.507482e-05 i 0.000000e+00
4 0.000000e+00 + 1.173860e+00 i -0.000000e+00 + 2.336396e-06 i 0.000000e+00
5 0.000000e+00 - 1.173860e+00 i 0.000000e+00 - 2.336396e-06 i 0.000000e+00

Table 2.5: For the Geostorm mission, the eigenvalues (λi) and their variation w.r.t. α (∂λi/∂α)
and δ (∂λi/∂δ).

Results

We have done a Monte Carlo simulation, using 1000 initial conditions chosen in a random

way. The control strategy has been applied up to 30 years and we have measured for each

simulation the time between manoeuvres, the variation of the sail orientation (α, δ) and

the variation of the trajectory with respect to p0.
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i 〈~vi, ∂~vi/∂α〉 angle 〈~vi, ∂~vi/∂δ〉 angle
1 9.9940579569e-01 3.447501e-02 1.0000000000e+00 0.000000e+00
2 9.9934429451e-01 3.621539e-02 1.0000000000e+00 0.000000e+00
3 9.9962467659e-01 2.739879e-02 1.0000000000e+00 0.000000e+00
4 9.9962467659e-01 2.739879e-02 1.0000000000e+00 0.000000e+00
5 9.9999996229e-01 2.746195e-04 1.0000000000e+00 0.000000e+00
6 9.9999996229e-01 2.746195e-04 1.0000000000e+00 0.000000e+00

Table 2.6: For the Geostorm mission: the scalar product and the angle (in rad) between ~vi and
∂~vi/∂α and between ~vi and ∂~vi/∂δ for i = 1, . . . , 6.

In Figure 2.17 (left) we can see for each simulation the maximum and minimum time

between manoeuvres. As we can see the mean value of the minimum time between

manoeuvres is around 24 days and the maximum time between manoeuvres is around 45

days. In Figure 2.17 (right) we have the maximum angular variation between the fixed

point (p0) and the probe’s trajectory seen from the Earth for each simulation. The mean

value of the angular variation of the probe is ≈ 1.43◦, this corresponds to a variation

in position of 75399.97km. The mean valued for the maximum variation in the sail

orientation is around 0.27◦ for α and 0.03◦ for δ.
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Figure 2.17: For the Geostorm mission: maximum and minimum time between manoeuvres vs
number of simulation (left). Maximum angular variation between p0 and the probe’s trajectory
vs number of simulation (right).

In Figure 2.18 we have different projections of the trajectory given by an arbitrary

initial condition after applying the control strategy scheme. Figure 2.19 shows the pro-

jection of the orbit on the saddle plane and the two central planes. Finally in Figure 2.20

we see the variation of the sail orientation along time.
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Figure 2.18: For the Geostorm mission: projections of the probe’s trajectory for 30 years on
the position space. From left to right: XY projection, XZ projection and XY Z projection.
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Figure 2.20: For the Geostorm mission: variation of the sail orientation along time. From left
to right variation of α and δ.

2.3.2 Polar Observer

High latitude regions are of importance for a number of commercial and environmental

interests. During the cold war the Arctic was a strategically important region, also the

growing interest for the oil and mineral extraction of these regions may lead to a growing

demand for communication services. The Arctic and Antarctic are also of great envi-

ronmental importance and there is a requirement for relaying data from remote weather
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stations and automated monitoring platforms. Additional environmental requirements

for polar services include continuous imaging of polar weather systems and monitoring of

polar ice coverage for climate studies between others.

The limitation of geostationary orbits for such applications may overcome to some

extent using satellites in polar orbits. These orbits require the use of various satellites for a

complete mapping or having to wait between imaging. Similarly communications services

can be provided using high inclination Molniya orbits or through constellation satellites

in low Earth orbits. While such systems are well suited for infrequent communications,

they are too expensive for real-time relaying data.

In Chapter 1, we have seen that when the effect of the solar radiation pressure is

include, there are families of equilibrium points above the ecliptic plane. Placing a solar

sail close to one of this points would enable to have constant viewing of the Polar regions

of the Earth. As the Earth’s inclination is of about 23.4o we must place the solar sail at

66.6o from the ecliptic plane. Notice that as the Earth orbits around the Sun, the sail will

maintain its fixed position with respect to the Earth but it will not always have the same

view at the pole due to the Earth’s inclination, see Figure 2.21. Having the sail perfectly

situated on the north pole during the summer solstice, and during the winter solstice the

sail will appear displaced over the horizon, having still some imaging of the north pole.
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Figure 2.21: Schematic representation of the Polar Observer Mission (not to scale).

More details on the Polar Observer can be found in [McI99, McI03, MM04]. Never-

theless, this mission has not been as studied as the Geostorm mission, probably because

that the sail must be displaced at about 3.9 million km from the Earth, having then low

resolution imaging of the Poles. High performance solar sails are required to reduce this

distance, not available for a near - term solar sail mission.
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Mission orbit

In Figure 2.22 we have the position of the fixed points on the Y = 0 plane for different

sail lightness numbers β. Notice that as the sail performance increases the equilibrium

points come closer to the Earth. For our simulations we have considered β = 0.14.
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Figure 2.22: Relation of the fixed point for different sail lightness numbers: β1 = 0.052, β2 =
0.072, β3 = 0.12, β4 = 0.14, β5 = 0.16.

We consider the fixed point p0 = (−0.9939071, 0, 0.01385977, 0, 0, 0) for α = 0 and

δ = 1.100593 radians. In Table 2.7 we have the variation of the fixed point with respect

to α and δ in the synodical reference system and in the eigenvector reference system.

We can see that at first order, variations on α imply variations on the Y direction, while

p?α 0.000000e+00 -1.471302e-02 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

p†α -5.154633e-03 5.154633e-03 -1.228042e-19 8.647821e-03 -3.134312e-19 -8.373897e-03

p?δ 8.685808e-01 -0.000000e+00 -2.450515e+00 0.000000e+00 0.000000e+00 0.000000e+00

p†δ -6.135351e-03 -6.135351e-03 -5.413341e-02 3.816095e-17 -2.592667e+00 -1.145288e-16

Table 2.7: For the Polar Observer: linear variation of the position of the fixed point p0 w.r.t. α
and δ, in the synodical reference system (?) and in the eigenvector reference system (†). Where
pα stands for ∂p/∂α and pδ stands for ∂p/∂δ.

variations in δ imply variation on X and Z. Notice that the variation on the Z direction is

big, i.e. small variations on δ imply big variations on the vertical displacement of the fixed

points. This can affect the controllability of the trajectory. If we look at the variation on

the saddle projection, now variations on α and δ give variations on the 4 quadrants of this
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plane, hence we have more choices to find appropriate equilibrium points by varying the

sails orientation (remember that in the Geostorm Mission variation on the saddle plane

where only given by variations in α). On the other hand, notice that on the second centre

plane, the position of the fixed points is very sensitive to small changes on δ. This needs

to be taken into account to maintain this centre projection small.

In Table 2.8 we have the eigenvalues and their variation w.r.t. α and δ. We can see that

for small variations on the sail orientation the main instability of the region is given by the

positive real eigenvalue. In Table 2.9 we can find the angles between the eigenvectors ~vi

and their linear variations ∂~vi/∂α and ∂~vi/∂δ. We can see that the maximum variations

are of order 0.01 radians, negligible for small variations on the sail orientation. Hence,

the assumptions made on the control strategy also hold in this region.

i λi ∂λi/∂α ∂λi/∂δ
0 1.105381e+00 6.962362e-05 - 0.000000e+00 i -3.032041e-06 - 0.000000e+00 i
1 -1.105381e+00 6.962362e-05 - 0.000000e+00 i 3.032041e-06 - 0.000000e+00 i
2 1.787265e+00 i 1.340332e-04 + 0.000000e+00 i 0.000000e+00 - 9.773455e-07 i
3 -1.787265e+00 i 1.340332e-04 + 0.000000e+00 i 0.000000e+00 + 9.773455e-07 i
4 1.670802e-01 i -2.036569e-04 + 5.221389e-20 i -1.482689e-21 - 1.017370e-05 i
5 -1.670802e-01 i -2.036569e-04 - 5.221389e-20 i -1.482689e-21 + 1.017370e-05 i

Table 2.8: For the Polar Observer: the eigenvalues (λi) and their variation w.r.t. α (∂λi/∂α)
and δ (∂λi/∂δ).

i 〈~vi, ∂~vi/∂α〉 angle 〈~vi, ∂~vi/∂δ〉 angle
1 9.9999970553e-01 7.674266e-04 9.9977511466e-01 2.120820e-02
2 9.9999970553e-01 7.674266e-04 9.9977511466e-01 2.120820e-02
3 9.9999488867e-01 3.197290e-03 9.9983102602e-01 1.838362e-02
4 9.9999488867e-01 3.197290e-03 9.9983102602e-01 1.838362e-02
5 9.9957615184e-01 2.911625e-02 9.7764425730e-01 2.118468e-01
6 9.9957615184e-01 2.911625e-02 9.7764425730e-01 2.118468e-01

Table 2.9: For the Polar Observer: the scalar product and the angle (in rad) between ~vi and
∂~vi/∂α and between ~vi and ∂~vi/∂δ for i = 1, . . . , 6.

Results

We have done a Monte Carlo simulation using 1000 initial conditions chosen in a random

way. For each simulations we have applied the control strategy up to 30 years and mea-

sured the time between manoeuvres, the variation of the sail orientation (α, δ) and the

angular variation of the trajectory with respect to p0.
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On Figure 2.23 (left) we can see for each simulation the maximum and minimum time

between manoeuvres. The mean minimum time between manoeuvres is always around 30

days and the mean maximum time is around 91 days. On Figure 2.23 (right) we have the

maximum angular variation between the fixed point (p0) and the probe’s trajectory for

each simulation, where the maximum variation experienced is around 0.51 degrees, that

corresponds to a variation of 25209.69km. In these simulations we have seen that, at each

manoeuvre, the maximum variation of α is of 0.56◦ and for δ it is of 0.0016◦.
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Figure 2.23: For the Polar Observer: maximum and minimum time between manoeuvres vs
number of simulation (left). Maximum angular variation between p0 and the probe trajectory
vs number of simulation (right).

In Figure 2.24 we can see different projections of the trajectory of the probe for

an arbitrary initial condition after applying the station keeping strategy for 30 years.

Figure 2.25 we have the projection of the orbit on the saddle plane and the two centre

directions. Finally, Figure 2.26 shows the variation of the sail orientation along time.
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Figure 2.24: For the Polar Observer: projections of the probe’s trajectory for 30 years on the
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Figure 2.26: For the Polar Observer: variation of the sail orientation along time. From left to
right: variation of α and δ.

2.4 Sensitivity to Errors

It is a known fact that during a mission the position and velocity of the probe will not

be determined exactly, this has an effect on the decisions taken by the control algorithm.

Errors on the sail orientation will also be made and have an important effect in the probe’s

trajectory. We will see the effect of these errors in our control strategy.

Let us start by only considering errors on the position and velocity determination of

the probe. As we have seen in previous sections the sail orientation is changed when the

probe is at a certain distance of the fixed point in the saddle plane projection. Each time

the algorithm asks itself if the sail orientation has to be changed, the probe’s position

in the phase space has some small error. So errors on the measurement of the probe’s

position can make the algorithm change the sail orientation when not desired and the new

fixed points position can also be modified. If this errors are not very big the difference

between changing the sail orientation a little earlier or latter in time will not affect the

control of the probe.

We have considered that all the errors follow a normal distribution with zero mean.
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We have considered a precision on the position of the probe of ≈ 1m in the space slant

and ≈ 2 − 3milli-arc-seconds in the angle determination of the probe. The precision

in speed is around 20 − 30microns/seconds. These errors are introduced every time the

control algorithm asks for the position of the probe to decide if a manoeuvre should be

done or not. The effect of these errors turns out to be almost negligible.

We have performed more Monte Carlo simulations, using the same initial conditions

as before but adding the uncertainty in the position and velocity. The results obtained

are similar. For all the simulations (in both missions) the probe’s trajectory does not

escape after 30 years. The average time between manoeuvres is slightly changed and so

are the angular variation in the trajectories position with respect to the initial fixed point

(see Table 2.10 and 2.11).

Let us now consider errors on the sail orientation. Each time the sail orientation is

changed an error in its orientation is made (α = α1 + εα, δ = δ1 + εδ). Then the new fixed

point p1 is shifted p(α, δ) = p(α1, δ1) + εp and so do the stable and unstable directions

~v1,2(α, δ) = ~v1,2(α1, δ1) + εv. These variations can make the probe’s trajectory not come

close to p0, as p(α, δ) can be placed on the incorrect side of the saddle or the central

behaviour can blow up. These errors have an important effect on the sail trajectory and

on the controllability of the probe. Depending on the nature of the region close to the fixed

point the control strategy will be able to deal with bigger errors in the sail orientation.

It will all depend on the variation of the fixed point and the eigenvectors with respect to

the sail orientation.

We have performed Monte Carlo simulations, taking the same initial conditions as

before and introducing the uncertainties on sail orientation and the probe’s position and

velocity determination (see Table 2.10 and 2.11). We have considered that the errors on

the sail orientation also follow a normal distribution with zero mean. For each mission

we have taken different values for the sail orientation precision to check the robustness of

our algorithm.

In Tables 2.10 and 2.11 we find the results of all these simulations for the Geostorm

and Polar Observer missions respectively. In each table: the first line has the results

for the simulations when no errors are taken into account; the second line has the results

when only error on the position and velocity determination are made; the third and fourth

line contains the results when all the errors are taken into account (sail orientation and

position + velocity determination). Column 2 shows the % of simulations that succeed

to control the probe; columns 3 and 4 have the average maximum and minimum time

between manoeuvres respectively and column 5 has the average angular variation of the
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trajectory seen from the Earth.

% Success Max. Time Min. Time Ang. Vari.

No Error 100 % 45.87 days 24.13 days 1.43◦

Error Pos. 100 % 45.85 days 24.13 days 1.43◦

Error Pos. & Orient. ? 100 % 53.90 days 21.59 days 1.42◦

Error Pos. & Orient. † 97 % 216.47 days 15.54 days 1.67◦

Table 2.10: Statistics for the Geostorm mission taking 1000 simulations. Considering errors on
the sail orientation of order 0.5◦ (?) and 2.2◦ (†).

% Success Max. Time Min. Time Ang. Vari.

No Error 100 % 91.10 days 30.61 days 0.51◦

Error Pos. 100 % 91.12 days 30.60 days 0.51◦

Error Pos. & Orient. ? 100 % 94.03 days 30.04 days 0.56◦

Error Pos. & Orient. † 93.1 % 152.32 days 28.61 days 1.32◦

Table 2.11: Statistics for the Polar Observer mission taking 1000 simulations. Considering
errors on the sail orientation of order 0.05◦ (?) and 0.28◦ (†).

In Table 2.10 we have the results for the Geostorm mission. We see that we have a

100 % of success on the 1000 simulations as long as the error on the sail orientation are less

than 1.5◦. We can also check that the errors on the position and velocity determination

are negligible, and there is hardly any change on the final result if we only consider

this sources of error. When we include larger errors on the sail orientation, we have no

indicator if our station keeping algorithm will be able to maintain the probe close to the

equilibrium point. Taking errors of 2.2◦ on the sail orientation we have a 97% percent of

success.

Figures 2.27 and 2.28 show different projections of the trajectory of the probe when

all the errors are considered, and Figure 2.29 shows the variation of the sail orientation

along time. For this simulation we have considered errors on the sail orientation of order

0.5◦.

For the Polar Observer mission, Table 2.11 shows that we have a 100% of success as

long as the error on the sail orientation are less than 0.05◦. A 6.9% of the 1000 simulations

fail if we consider the errors on the sail orientation of order 0.28◦. Again we can see that

if we only consider errors on the position and velocity determination, the results are

practically the same, only small changes on the time between manoeuvres.

Notice that the precision on the sail orientation required to have a 100% of success for

the Geostorm Mission is less that the precision for the Polar Observer. This is due to the
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Figure 2.27: For the Geostorm mission including all sources of error: projections on the position
space of the probe’s trajectory. From left to right: XY projection, XZ projection and XY Z
projection.
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Figure 2.29: For the Geostorm mission including all sources of error: variation of the sail
orientation along time. From left to right: variation of α and δ.

variation of the phase space properties when the sail orientation changes. As we have seen

in the previous section, for the Polar Observer, small variations on δ give large vertical

variation of the fixed points position. This makes it harder to deal with poor precision

on the sail orientation as one of the centre projections will quickly grow. This is not the

case for the Geostorm mission, where the variations on δ produce a better behaviour.

Finally, Figures 2.30 and 2.31 show different projections of the trajectory of the probe
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when all the errors are considered, and in Figure 2.32 we have the variation of the sail ori-

entation along time. For this simulation we have considered errors on the sail orientation

of order 0.05◦.
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Figure 2.30: For the Polar Observer including all sources of error: projections on the position
space of the probe’s trajectory. From left to right: XY projection, XZ projection and XY Z
projection.
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Figure 2.31: For the Polar Observer including all sources of error: projections on the three
reference planes of the probe’s trajectory. From left to right: the saddle projection, the centre
projection defined by (~v3, ~v4) and the centre projection defined by (~v5, ~v6).

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0  5  10  15  20  25  30  35

α (
de

gr
ee

s)

time (year)

 1.10055

 1.10056

 1.10057

 1.10058

 1.10059

 1.1006

 1.10061

 1.10062

 1.10063

 1.10064

 1.10065

 0  5  10  15  20  25  30  35

α (
de

gr
ee

s)

time (year)

Figure 2.32: For the Polar Observer including all sources of error: variation of the sail orienta-
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2.5 Surfing Along the Families of Equilibria

Using the same ideas, we can derive strategies to drift along the families of equilibria in a

controlled way. In the same philosophy as before, we use the invariant manifolds to move

in the phase space. In this section we discuss how this can be done and we apply it to a

couple of examples.

2.5.1 Surfing strategy

Let us assume that we are close to an equilibrium point p0 and we want to reach the

vicinity of another equilibrium point pf . When we reach the final point pf , we want to

be able to remain there for a long time, i.e. to be able to apply a station keeping strategy

with success.

As we know, when the probe is close to p0 the trajectory escapes along the unstable

direction. We want to find a sequence of changes on the sail orientation (αi, δi) (i.e. a

sequence of fixed points pi) so that the sequence of stable/unstable directions of pi guide

the probe to the final point (see Figure 2.33).

Sadd–1

Sadd–2

Sadd–3

Trajectory

Fixed Points

Figure 2.33: Scheme of the idea to surf along the family of equilibria using the stable and
unstable directions.

It is not trivial to determine that given two equilibrium points, p0 and pf there will

always be a sequence of changes on the sail orientation that can take us there. We need to

have a connecting path between the stable and unstable direction of the sequence of fixed

points, that take us to the final point pf . Hence, we need to understand the dynamics

of the region. Once we have the sequence of points, we can “surf” along the unstable

manifolds, jumping from one equilibrium point to the other. We must never forget that
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we need to take into account the centre behaviour, otherwise it may grow in an unbounded

way.

We can define similar parameters as for the station keeping strategies to decide where

we have to change to the new sail orientation. We will change the sail orientation once we

reach the vicinity of the new equilibrium point in the sequence, or when we are escaping

from the equilibrium point pi. Using similar ideas as in Section 2.2.1 we find ideal positions

for the new equilibrium point whose stable/unstable direction allows to move along the

family.

We must not forget the centre behaviour of the trajectory. When the sail orientation

varies, on the centre projection we have rotations around the different equilibrium points.

These rotations can also produce an unbounded trajectory. Notice that if the changes

on the sail orientation are small, the changes on the fixed point are also small, and the

projection of the trajectory on a centre direction will be a spiral along the family of fixed

points (see Figure 2.34). Nevertheless, we can use similar ideas as in Section 2.2.1 to

find new sail orientations that minimise the centre oscillation. In any case, if the central

behaviour starts to grow we could stop the “surfing” along the family of equilibrium points

and perform a control strategy around the equilibrium point to try to reduce the central

projection, and continue once this has been achieved.

x0

x1

x2

x3 x8
. . .

trajectory

Figure 2.34: Scheme of the centre projection of the trajectory when small changes in the sail
orientation are made.

2.5.2 Applications

Let us take the Geostorm scenario: a solar sail with a lightness number β = 0.051689

placed close to an equilibrium point displaced 5◦ from the Earth - Sun line at about

0.02AU from the Earth.

We propose two applications:
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- Mission 1: Lets suppose that there has been a problem during the mission and

that the sail is only displaced 2.5◦ from the Earth - Sun line. We want to surf

along the family of equilibria to get close to an equilibrium point displaced 5◦ from

the Earth - Sun line. On the left - hand side of Figure 2.35 we have a schematic

representation of the main goal.

- Mission 2: Let us suppose that we have the sail close to an equilibrium point at

about 0.02AU from the Earth displaced 5◦ from the Earth - Sun line on the ecliptic

plane. We want to surf along the family to get close to a final point placed 5◦ above

the ecliptic plane. On the right - hand side of Figure 2.35 we have a schematic

representation of the main goal.

X

Y

Family Equilibra

L1Earth

X

Y

Z

Earth - Sun line

L1

SL1

Earth

Figure 2.35: Schematic representation of the two surfing mission applications. Mission 1 (right)
and Mission 2 (left).

Mission 1

We consider as initial and final equilibrium points, p0 = (−0.9799771, 0.0008283, 0, 0, 0, 0)

and pf = (−0.9799984, 0.0018189, 0, 0, 0, 0) respectively. That are equilibrium points for

a sail orientation α0 = −0.335◦, δ0 = 0◦ and αf = −0.733◦, δf = 0◦. We have taken an

arbitrary initial condition close to p0 and applied the surfing strategy explained above,

jumping from the vicinity of one equilibrium point to the other, until we get close to pf .

It takes around 548 days to get to a close neighbourhood of pf . Changes on the sail

orientation have been done approximately every 145 days. In Figure 2.36 we show the

variation of the sail orientation along time.

In Figures 2.37 we have different projections of the trajectory followed by the sail on

the synodical reference system. Notice how the trajectory is always close to the family of

equilibria, presenting small Z oscillations. In Figure 2.38 we have the projection of the

trajectory on the reference system {p0; ~v1, · · · , v6}. In the saddle projection (~v1, ~v2) we
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Figure 2.36: For mission 1: variation of the sail orientation along time. From left to right:
variation of α and δ.

see the sequence of saddles that guide the trajectory along the family of equilibria. In

the first centre projection (~v3, ~v4) we see that the trajectory rotates around the different

equilibrium points and that it does not grow significantly along time.
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Figure 2.37: For mission 1: projection of the trajectory on the position space. From left to
right: XY projection, Y Z projection and XY Z projection.

Mission 2

Here we consider as initial equilibrium point p0 = (−0.9799984, 0.0018189, 0, 0, 0, 0) for

α0 = −0.733◦ and δ0 = 0◦ on the ecliptic plane. We want to get to a final point above

the ecliptic plane pf = (−0.9800368, 0, 0.0017395, 0, 0, 0) for αf = 0◦ and δf = 2.564◦.

As in mission 1 we have taken an arbitrary initial condition and applied the surf-

ing strategy to move along the family from the neighbourhood of p0 until we get to a

neighbourhood of pf .

For this mission, it takes around 764 days to get from p0 to pf , having to change

the sail orientation every 105 − 120 days. In Figure 2.39 we see the variation of the

sail orientation along time. In Figure 2.40 we have different projections of the trajectory

followed by the sail on the synodical reference system. Notice how the trajectory increases

the Z coordinate as the sail orientation is changed, which is mainly affected by the changes
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in the angle δ. Finally, in Figure 2.41 we have the projection of the sail trajectory on

the eigenvector reference system close to p0. Here we can also observe how the unstable

directions guide the trajectory along the family of equilibria and the centre projections of

the trajectory remains close to sequence of equilibrium points pi at all time.

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  100  200  300  400  500  600  700  800

α (
de

gr
ee

s)

time (days)

 0

 0.5

 1

 1.5

 2

 2.5

 0  100  200  300  400  500  600  700  800

δ (
de

gr
ee

s)

time (days)

Figure 2.39: For mission 2: variation of the sail orientation along time. From left to right:
variation of α and δ.

2.6 Conclusions

In this Chapter we have presented a station keeping technique for a solar sail close to an

unstable equilibrium point using dynamical system tools. We have studied the natural

dynamics of the system close to an equilibrium point and its variation when the sail

orientation (α, δ) is changed. This knowledge has permitted us to derive a station keeping

strategy to maintain a probe’s trajectory close to an unstable equilibrium.

We have tested this strategy with two different missions, the ‘Geostorm Warning

Mission’ and the ‘Polar Observer’. In both cases the probe manages to stay close to the

fixed point for at least 30 years. We have also tested the controllability of the algorithm

including systematic errors in the prediction of the sail’s position and velocity, and errors
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in the sail orientation angles (α, δ). We have seen that the errors on the position and

velocity do not produce important changes in the sail’s trajectory and its controllability.

On the other hand, errors on the sail’s orientation are more relevant and give more

variations on the final probe’s trajectory.

In the literature we find studies related with the controllability of the sail close to SL1,

specially for the Geostorm mission application. All these station keeping strategies use

optimisation techniques. The main difference appears in the final result, the steering law

obtained. With our strategies we find discrete changes on the sail orientation, while using

optimisation tools one usually finds a continuous function for the variation of the sail

orientation. But the magnitude of variation on the sail orientation is essentially the same.

It is yet to decide which kind of strategy is more feasible from a practical point of view.

On the other hand, we have not found studies on the robustness of these strategies with

different sources of errors. Hence we have not been able to compare our results. Further

studies should be done if we want to deal with more imprecision on the sails orientation.

We have seen that the controllability of the sail is strictly related to the nature of

the neighbourhood of the fixed point where we want to keep the sail. If the variations
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of the fixed points and the eigenvectors are understood, we can understand the dynamics

and, therefore, the reasons that make the control more or less difficult to implement. For

instance, in the Polar Observer Mission, more precision on the sail orientation is required

to be able to control the probe, as the position of the fixed points is very sensitive to varia-

tions in one of the angles. Further studies should be done to modify our control algorithm

to deal with larger errors. Second order approximations of the invariant manifolds and

fixed point surfaces could be considered.

Let us mention that the strategy proposed here does not require previous planning,

the decisions taken by the probe depend only on its position in phase space, that is known

at each moment. In this way, it is not necessary to have to plan the control strategy in

advance and errors made during the manoeuvres can be rectified easily.

Finally, we have used these ideas to derive a way to move along the family of unstable

equilibrium points. As a particular case we have chosen to go from a fixed point displaced

5o on the Sun - Earth line to a fixed point at 10o of this line. Nevertheless, the same

techniques are valid to move along the family of unstable equilibrium points, as long as

there is a path of stable and unstable manifolds that leads us from one place to the other.

All the strategies presented here are based on the knowledge of the natural dynamics

of the system. Understanding how the invariant manifolds vary as the sail orientation is

changed has been the key of to this work. In this work we have only used the information

given by linear dynamics. This is useful if we want to be close to the equilibrium points,

but might be a constraint in some cases. We should use higher order terms to go further

away of the equilibrium point.
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Chapter 3

Reduction to the Centre Manifold

In this Chapter, we will focus on the equilibrium points whose linear dynamics is of the

type centre × centre × saddle. Most of these points are found close to the Earth - Sun

line. Our aim is to have a complete understanding of the dynamics on an extended

neighbourhood of them. We are interested in finding trajectories that remain close to

the equilibrium point. It is a known fact that if we take arbitrary initial conditions

and just integrate them numerically, the solution will escape from a vicinity of the point

with probability one, due to the unstable character of the fixed point. For this reason,

we propose to do the reduction to the centre manifold around one of these equilibrium

points. The centre manifold is an invariant manifold tangent, at the equilibrium point,

to the two centre directions. In general, the centre manifold is not unique, but its Taylor

series at the equilibrium point is, for further details see [Car81, Sij85, Van89].

To approximate the centre manifold, we expand the equations of motion around the

equilibrium point and uncouple up to high order the hyperbolic directions from the elliptic

ones. Then, neglecting the reminder we have a high order approximation of the centre

manifold. We use this approximation for numerical integrations and to have a good

understanding of the bounded motions.

Classically, in celestial mechanics, e.g. the RTBP, the system is Hamiltonian. Hence,

one can take advantage of the Hamiltonian character of the system to compute the re-

duction to the centre manifold. This is usually done expanding the Hamiltonian around

the equilibrium point and performing canonical transformations on the Hamiltonian to

uncouple the two behaviours. This procedure is similar to the computation of the normal

form, but here we suppress less monomials. In [GJMS01, Jor99, JM99] one can find the

methodology to compute the reduction to the centre manifold for a collinear point of

the RTBP. Moreover, in [Jor] we can find a public domain library that deals with this
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problem.

Nevertheless, in Chapter 1 we have seen that when the sail is not perpendicular to the

Sun - line, the system is no longer Hamiltonian, but there are still centre × centre × saddle

equilibrium points. Hence, we need to develop a tool that is also useful for these other

cases.

In this Chapter we use an alternative way to do the reduction to the centre manifold,

that does not take into account the Hamiltonian character of the system. We will take

the whole set of equations and compute, formally, the power series representation of the

graph of the centre manifold at the equilibrium point. This is called the graph transform

method and it is a more general procedure that can be used for a more general set of

equations [Sim90]. Moreover, we compare the efficiency of our method with the classical

approach for Hamiltonian systems [Jor99]. We have considered the problem when the

sail is perpendicular to the Sun - line, i.e the system is Hamiltonian, and computed the

reduction to the centre manifold using both methods.

In Section 3.1 we give the details for the computation of the centre manifold using

the graph transform method. We also discuss some tricks that we have implemented to

have an efficient algorithm. In Section 3.2 we give the main ideas for the reduction to

the centre manifold using a Lie series approach. Here we have taken the software in [Jor]

and modified it to deal with our problem. Finally, we test and compare both methods.

Surprisingly as it might seem, as we will see in Section 3.3, the direct application of

the graph transform method is more efficient than taking into account the Hamiltonian

structure of the system. In Chapter 4 we will use the reduction to the centre manifold to

understand the non - linear dynamics close to equilibria.

For the sake of simplicity, we always consider that we have a fixed point of the type

centre × centre × saddle, as this is the case for the displaced collinear points SL1,2,3.

However, the same techniques can be extended in an easy way for a more general case

when the system has several “centres” and “saddles” [Sim90].

As the commercial algebraic manipulators are not efficient enough to deal with big

expansions, we have written our own software from scratch, using ANSI C language. The

algebraic manipulator used here is explained in full detail in [Jor99]. The programs are

built in different layers. In the bottom layer we have the routines to handle polynomials.

Built on top, are the routines using the algorithms for the actual reduction to the centre

manifold that we will explain in what follows.

To fix notation, if z = (z1, . . . , z`) is a vector of complex numbers and k = (k1, . . . , k`)

a vector of natural numbers, we denote zk = zk11 · · · z
k`
` (here, 00 = 1). Moreover, we
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define |k| = k1 + · · ·+ k`.

3.1 Graph Transform

Let ż = F (z), z ∈ R6 be an ordinary differential equation with a fixed point of the type

centre × centre × saddle. Without loss of generality we can assume that the fixed point

is at the origin. It is well known that with an appropriate linear transformation, the

equations of motion can be written as:

ẋ = Ax+ f(x, y),

ẏ = By + g(x, y),
(3.1)

where x ∈ R4, y ∈ R2, all the eigenvalues of the matrix A have zero real part and all the

eigenvalues of the matrix B are real. The functions f and g are sufficiently smooth and

satisfy,

f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0.

Note that y = 0 is the linear approximation to the centre manifold. We want to find

y = v(x) with v(0) = 0 and Dv(0) = 0, the local expression of the centre manifold. If we

substitute this on equations (3.1), we have that v(x) must satisfy:

Bv(x) + g(x, v(x)) = Dv(x)[Ax+ f(x, v(x))], (3.2)

and the flow restricted to the manifold is given by,

ẋ = Ax+ f(x, v(x)). (3.3)

For more details see for instance [Car81]. Although the centre manifold might not be

unique, its Taylor expansion at the equilibrium point is.

We want to find the Taylor expansion of the graph of the centre manifold at the

equilibrium point, v(x), truncated at high order. We call this high order approximation

v̂(x). Then we can take,

ẋ = Ax+ f(x, v̂(x)), (3.4)

to have a high order approximation of the motion on the centre manifold.
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3.1.1 Scheme of the computation

Let us assume that we have already made a linear change of variables and set the equations

as in (3.1) and let±λ, ±iω1 and±iω2 be the eigenvalues ofDxF . We want to find y = v(x)

that satisfies equation (3.2).

We take v(x) =
∑
|k|≥2 vkx

k, with vk ∈ R2, the formal power expansion of v(x) around

the origin. We are interested in knowing the values vk = (v1
k, v

2
k) up to high order to have

a good approximation of the centre manifold near the point. For instance, if we have

v̂(x) =
∑N
|k|=2 vkx

k that satisfies equation (3.2) up to order N , then v̂(x) approximates

the graph of the centre manifold up to the same order, i.e. ||v(x)− v̂(x)|| = O(||x||N).

Notice that equation (3.2) can be rewritten as,

Dv(x)Ax−Bv(x) = g(x, v(x))−Dv(x)f(x, v(x)), (3.5)

where, the left - hand side of this equation is a linear operator w.r.t. v(x) and the right -

hand side a non linear one.

If we assume A and B to be in diagonal form, A = diag(iω1,−iω1, iω2,−iω2) and

B = diag(λ,−λ), then the left - hand side of equation (3.5) also takes a diagonal form,

Dv(x)Ax−Bv(x) =



∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ) v1,k x
k

∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ) v2,k x
k

 . (3.6)

Let h(x) = g(x, v(x)) − Dv(x)f(x, v(x)) be the right hand side of equation (3.5).

We take its expansion h(x) =
∑
|k|≥2 hkx

k around the origin (hk = (h1
k, h

2
k)), where the

coefficients hk depend on the coefficients vk in a known way. As we will see in Lemma 3.1.2

the coefficients hk for |k| = n depend on vk with |k| < n. This allows us to find the vk in

an iterative way.

Let us see how to arrange the terms vk of degree 2. We take the power expansion of

f(x, y) and g(x, y) around the origin,

f(x, y) =
∑

|k1|+|k2|≥2

fk1,k2x
k1yk2 , g(x, y) =

∑
|k1|+|k2|≥2

gk1,k2x
k1yk2 ,
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where the fk1,k2 ∈ R4 and gk1,k2 ∈ R2 are known. Now we take v(x) up to degree 2,

v(x) =
∑
|k|=2

vkx
k,

and we substitute this on equation (3.5) and equalise the terms of degree 2. As Dv(x) and

f(x, v(x)) start with monomials of degree 1 and 2 respectively, their productDv(x)f(x, v(x))

starts with monomials of degree 3. Hence, for |k| = 2, hk = gk,0. Then the degree 2 terms

on equation (3.5) satisfy,∑
|k|=2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 ∓ λ)vkx
k =

∑
|k|=2

gk,0x
k,

as λ 6= 0, we can find all the coefficients vk, by equalising each of the monomials with

|k| = 2. Having:

v1
k =

g1
k,0

iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ
, v2

k =
g2
k,0

iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ
.

To arrange the higher order terms we proceed in the same way. For a given degree

` > 2, we:

1. Take v(x) up to degree `,
(∑`

|k|≥2 vkx
k
)

.

2. Substitute it on equation (3.5) and find the values of the coefficients hk for |k| = `.

Notice that the coefficients hk depend on the coefficients fk1,k2 , gk1,k2 with |k1|+|k2| ≤
` and vk with |k| < `.

3. Finally, we equalise the degree ` terms on equation (3.5), and solve the diagonal

system to find the coefficients vk for |k| = `.

This process is carried out for ` = 3, 4, . . . , up to a sufficiently high order N . In the end

we have the expansion v̂(x) up to degree N , a high order approximation of the centre

manifold (||v(x)− v̂(x)|| = O(xN)):

v̂(x) =
N∑
|k|≥2

vkx
k. (3.7)

Once we have v̂(x), we are ready to explore the phase space. We will use equation (3.4)

to integrate the flow, as it gives a high order approximation of the motion on the centre
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manifold. Notice that during the reduction process we also compute f(x, v̂(x)), so we can

store it while we are computing it.

We must recall, that we can find the coefficients vk in an iterative way solving a

diagonal linear system degree by degree, because the coefficients hk for |k| = `, depend on

the coefficient of vk with |k| < ` (Lemma 3.1.2) and the matrices A and B are in diagonal

form.

Remark The linear system can be solved if and only if

iω1k1 − iω1k2 + iω2k3 − iω2k4 ∓ λ 6= 0.

Which is always true as λ ∈ R\{0} and iω1, iω2 are pure imaginary numbers.

Remark It is not necessary to have A and B in their diagonal form, but then the linear

part of equation (3.5) will not take a diagonal form. Then, as we increase the degree, the

dimension of the linear system we have to solve increases and so does the computational

cost and error propagation to solve it.

Remark To have A in its diagonal form, we need to take an initial complex change of

variables. Hence, we need to apply the inverse of this change to the final representation

v̂(x) in the real set of coordinates.

Remark To have an efficient algorithm, we need to find an efficient way to compute the

coefficients hk. These coefficients come from the expansion around the origin of

h(x) = g(x, v(x))−Dv(x)f(x, v(x)).

Expanding g(x, y) and f(x, y) and then composing with v(x) is NOT an option, the com-

position of multivariate series is very expensive in terms of computational time. Instead,

we propose to find recurrent expressions for the expansion of these functions and use them

to obtain a more efficient algorithm. See the next section for further details.

3.1.2 Efficiency considerations

Let us see how to use recurrent expressions for the expansion of functions f(x, y) and

g(x, y) around the origin to derive an efficient algorithm to compute the coefficients hk of

the Taylor expansion of h(x) = g(x, v(x)) +Dv(x)f(x, v(x)).
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Let us assume, that we have:

f(x, y) =
∑
n≥2

Fn(x, y), g(x, y) =
∑
n≥2

Gn(x, y),

where Fn(x, y) and Gn(x, y) are homogeneous polynomials of degree n that are found in a

recurrent way. This means, that there exist two functions R1(ζ1, . . . , ζj) and R2(ζ1, . . . , ζj)

such that,

Fn+1 = R1(Fn, . . . , Fn−j), Gn+1 = R2(Gn, . . . , Gn−j), (3.8)

where the F2, . . . , Fj and G2, . . . , Gj are known, and R1 and R2 only contain simple

arithmetic operations between polynomials (+/− /×).

Let us start with a couple of lemmas on these recurrences and polynomial expressions.

Lemma 3.1.1 Let f : U1 =
◦
U1⊂ R4 × R2 7→ Rm, with 0 ∈ U1, m > 0, and v : U2 =

◦
U2⊂ R4 7→ R2, with 0 ∈ U2 be two C∞ functions, such that,

f(x, y) =
∑
n≥2

Fn(x, y), v(x) =
∑
n≥2

Vn(x), on a neighbourhood of 0,

where Fn(x, y) and Vn(x) are homogeneous polynomials of degree n. Then,

(a) Fn(x, v(x)) is a polynomial that starts at degree n.

(b) the coefficients of Fn(x, v(x)) that depend on the coefficients of v(x) are of degree

r ≥ n+ 1.

(c) the coefficients of Fn(x, v(x)) of degree r depend on the coefficients of v(x) of degree

k < r.

It immediately follows that the coefficients of f(x, v(x)) of degree r depend on the coeffi-

cients of v(x) of degree k < r.

Proof Let us start by taking a homogeneous polynomial of f(x, y) of degree n. It is clear

that Fn(x, y) can be expressed as,

Fn(x, y) =
∑

|k1|+|k2|=n

fk1,k2x
k1yk2 , k1 ∈ (N ∪ {0})4, k2 ∈ (N ∪ {0})2
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where fk1,k2 are the coefficients of the homogeneous polynomial. Then,

Fn(x, v(x)) =
∑

|k1|+|k2|=n

fk1,k2x
k1

(∑
i≥2

Vi(x)

)k2

.

Notice that
(∑

i≥2 Vi(x)
)k2 is a polynomial that starts at degree 2|k2|. Hence, the coeffi-

cients of Fn(x, v(x)) have at least degrees |k1|+ 2|k2|. Assuming that |k1|+ |k2| = n, the

minimum takes place for |k2| = 0, hence Fn(x, v(x)) is a homogeneous polynomial that

starts at degree n.

Let us now take a look on which coefficients of Fn(x, v(x)) depend on the coefficients

of v(x). It is clear that the monomials that depend on the coefficient of v(x) come from

the terms fk1,k2x
k1
(∑

i≥2 Vi(x)
)k2 with |k2| 6= 0. As we have already seen, these terms

have degree at least |k1| + 2|k2|. As |k1| + |k2| = n, then |k1| + 2|k2| = n + |k2|. Hence,

the terms fk1,k2x
k1
(∑

i≥2 Vi(x)
)k2 that depend on the coefficients of v(x) are of degree at

least n+ 1.

Let f̃kx
k be a monomial of Fn(x, v(x)) of degree |k| = r ≥ n + 1. Hence, as already

seen, it depends on the coefficients of v(x). We want to see that f̃k depends on coefficient

of v(x) of degree less that r.

Let us take a coefficient vk of degree |k| = s on v(x), and see to what degree it

corresponds after the composition. Notice that if we take a coefficient of degree s on

(
∑

i≥2 Vi(x))k2 , it ends up appearing in different monomials. As 1 ≤ |k2| ≤ n, we can say

that the monomials of minimum degree in which it will appear are of degree s for |k2| = 1

and s+ 1 for |k2| > 1.

We take fk1,k2x
k1
(∑

i≥2 Vi(x)
)k2 . Now the coefficients of v(x) are being multiplied by

xk1 , hence the minimal degrees s for |k2| = 1 and s + 1 for |k2| > 1, are now, s + |k1|
for |k2| = 1 and s + 1 + |k1| for |k2| > 1. Finally, as |k1| + |k2| ≥ 2 we can assure that

a coefficient of degree s on v(x) will end up appearing on a coefficient of degree s + 1

on Fn(x, v(x)). Hence, if f̃k is a coefficient of degree |k| = r on Fn(x, v(x)), it can only

depend on coefficients of v(x) of degree at most r − 1.

�

Lemma 3.1.2 Let h : U =
◦
U⊂ R4 7→ R2, with 0 ∈ U be a C∞ function defined as:

h(x) = g(x, v(x))−Dv(x)f(x, v(x)),

where f : U1 =
◦
U1⊂ R4 × R2 7→ R4, g : U2 =

◦
U2⊂ R4 × R2 7→ R2, v : U3 =

◦
U3⊂ R4 7→ R2,
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with 0 ∈ Ui for i = 1, 2, 3, f, g, v ∈ C∞ and that satisfy,

f(0, 0) = 0, Df(0, 0) = 0; g(0, 0) = 0, Dg(0, 0) = 0; v(0) = 0, Dv(0) = 0.

Then, the coefficients of the Taylor expansion of h(x), of degree n depend on the Taylor

coefficients of v(x) of degree k < n.

Proof It is clear that the Taylor expansions of f(x, y), g(x, y) and v(x) around the origin

can be written as:

g(x, y) =
∑
n≥2

Gn(x, y), f(x, y) =
∑
n≥2

Fn(x, y), v(x) =
∑
n≥2

vn(x),

where Gn(x, y), Fn(x, y) and Vn(x) are homogeneous polynomials of degree n. From

Lemma 3.1.1 we have that the coefficients of the Taylor expansion of g(x, v(x)) and

f(x, v(x)) of degree n depend only on the coefficients of the Taylor expansion of v(x) of

degree r < n.

It is also clear that the coefficients on the Taylor expansion of Dv(x) of degree n now

depend on the coefficients of v(x) of degree n + 1. To prove the lemma we just need to

see that the coefficients of degree n of Dv(x)f(x, v(x)) depend only on the coefficients of

v(x) of degree k < n.

Notice that f(x, v(x)) starts at degree 2, then if you take an element of degree s on

Dv(x), it will be of degree at least s+ 2 on Dv(x)f(x, v(x)). Hence, the coefficients of n

on v(x), will appear only on the coefficients of degree at least n+ 1 on Dv(x)f(x, v(x)).

�

Lemma 3.1.2 assures that the algorithm for the reduction to the centre manifold,

explained above, can be applied in an iterative way.

Now, let us focus on the efficient computation of the coefficients of h(x). We recall

that

h(x) = g(x, v(x)) +Dv(x)f(x, v(x)). (3.9)

We will use the recurrent expressions (3.8) for the coefficients of g(x, y) and f(x, y).

Let us assume that we know v(x) up to degree r and we want to find the coefficients

of degree r+ 1. Hence, as mentioned in Section 3.1.1 we first need to find the coefficients

of h(x) of degree r + 1 and then solve the diagonal linear system (3.5). We start by

finding the coefficients of f(x, v(x)) and g(x, v(x)) of degree r + 1. Once this is done, we
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can compute the coefficients of degree r + 1 of h(x) using equation(3.9). Let us focus on

f(x, v(x)), the same ideas apply for g(x, v(x)).

We recall that f(x, y) =
∑

n≥2 Fn(x, y), where the Fn(x, y) are homogeneous polyno-

mials of degree n. From lemma 3.1.1 we have that Fn(x, v(x)) is a polynomial that starts

at degree n, hence, if we want the coefficients of f(x, v(x)) of degree r + 1, we just need

to find, F2(x, v(x)), . . . , Fr+1(x, v(x)). Here is where the recurrent expressions for Fj play

an important role.

For the sake of simplicity, let us assume that F2(x, y) and F3(x, y) are known, and

that

Fn(x, y) = R1(Fn−1(x, y), Fn−2(x, y)), for n > 3,

where R1 are basic arithmetic operation between polynomials. We use this expression

to find the polynomials, F2(x, v(x)), . . . , Fr+1(x, v(x)) and then add them up to have

f(x, v(x)) up to degree r + 1.

Once we have f(x, v(x)) and g(x, v(x)) up to degree r+ 1, we easily compute h(x) up

to degree r + 1 using equation (3.9) and operating with the full polynomials.

This process will be repeated up to the desired final degree N . At each step we need

to run this recurrent scheme up to the desired degree. For some particular recurrences

one can take advantage of its properties to save computational time. Notice that for each

degree r we are recomputing the terms of degree s < r that we already have.

In Appendix A we show how to expand the RTBPS equations in a recurrent way. We

have used the Legendre polynomial recurrences to find such expressions. Nevertheless,

there are other ways of expanding the equations in a recurrent way, one can considered,

for instance, automatic differentiation tools [Knu81, Har08].

3.1.3 Results

We have applied these algorithms to the collinear points SL1 and SL2, taking β =

0.051689. This value of β corresponds to a solar sail with loading parameter of 30g/m2,

and is considered to be realistic for a short term mission application, as the Geostorm

Mission. We recall that SL1 and SL2 are the displaced collinear points when the sail is

perpendicular to the Sun - line direction (see Appendix B).

We have computed the reduction to the centre manifold, finding y = v̂(x) up to degree

N = 32. In Tables 3.1 and 3.2 we can find the first terms of the expansion around SL1

and SL2 respectively.

To have an approximate idea of the radius of convergence of these series, we have
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computed numerically the values,

ri,n = n
√
||vin||1, where ||vin||1 =

∑
|k|=n

|vik|, for 3 ≤ n ≤ N, i = 1, 2, (3.10)

where the vik are the coefficients of the monomials of exponent xk. In Figure 3.1 we can

see how these values behave for SL1 (left) and SL2 (right). They give an idea of the

radius of convergence of the series, we can appreciate that the divergence is very mild.

We can see that the radius of convergence around SL2 is larger than for SL1, but in both

cases, for N = 32, we have a big neighbourhood where v̂(x) gives a good approximation

of the centre manifold.
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Figure 3.1: In both pictures, the horizontal axis corresponds to the value of n and the vertical
axis the values of ri,n (note that due to the symmetries r1,n = r2,n). From left to right: SL1

and SL2.

3.2 A Lie Series Approach

Let H be a real analytic Hamiltonian of 3 degrees of freedom, that has an equilibrium

point of the type centre × centre × saddle. Without loss of generality we can assume

that the fixed point is at the origin. We start by expanding H as a power series around

the origin,

H(q, p) = H2(q, p) +H3(q, p) +H4(q, p) + · · · , (3.11)

where Hj(q, p) are homogeneous polynomials of degree j in the variables (q, p) (q corre-

sponds to the position and p to the momentum).

To save computational effort, we perform the changes of variables on the Hamiltonian

(one equation) instead of doing it to the whole set of equations. To do this, we need the



78 Chapter 3. Reduction to the Centre Manifold

k1 k2 k3 k4 v1 v2

2 0 0 0 3.5503156002936700e-02 -3.5503156002936700e-02
1 1 0 0 1.7843417171635231e-02 1.7843417171635231e-02
0 2 0 0 -2.6573244051375060e-03 2.6573244051375060e-03
0 0 2 0 3.8147437616048621e-02 -3.8147437616048621e-02
0 0 1 1 2.3407017142791586e-02 2.3407017142791586e-02
0 0 0 2 2.8553303366754226e-02 -2.8553303366754226e-02
3 0 0 0 5.4460164162132164e-03 5.4460164162132164e-03
2 1 0 0 5.6846959570042113e-02 -5.6846959570042113e-02
1 2 0 0 2.0967349558704437e-02 2.0967349558704437e-02
0 3 0 0 1.0668187765301932e-02 -1.0668187765301932e-02
1 0 2 0 7.8717031446172217e-03 7.8717031446172217e-03
0 1 2 0 4.3276556790009330e-02 -4.3276556790009330e-02
1 0 1 1 2.2839087896562357e-02 -2.2839087896562357e-02
0 1 1 1 5.0473597730196974e-02 5.0473597730196974e-02
1 0 0 2 -2.0822825309227966e-02 -2.0822825309227966e-02
0 1 0 2 2.0724575602143303e-02 -2.0724575602143303e-02

Table 3.1: Coefficients of the series y = v(x) truncated at degree 3 at SL1 for β = 0.051689.
The exponents (k1, k2, k3, k4) refer to the variables (x1, x2, x3, x4).

k1 k2 k3 k4 v1 v2

2 0 0 0 -1.7506883374566809e-02 1.7506883374566816e-02
1 1 0 0 -1.2343035113662425e-02 -1.2343035113662429e-02
0 2 0 0 -7.2504422613208584e-03 7.2504422613208618e-03
0 0 2 0 -7.3684573354681898e-03 7.3684573354681907e-03
0 0 1 1 -5.2066907353733706e-03 -5.2066907353733715e-03
0 0 0 2 -3.8210740887108276e-03 3.8210740887108284e-03
3 0 0 0 9.3579427535247063e-04 9.3579427535247226e-04
2 1 0 0 7.3357172296303003e-03 -7.3357172296303046e-03
1 2 0 0 3.9348506952868612e-03 3.9348506952868630e-03
0 3 0 0 -9.2663856231447583e-04 9.2663856231447615e-04
1 0 2 0 3.9174272108506583e-04 3.9174272108506638e-04
0 1 2 0 1.9200159376202099e-03 -1.9200159376202108e-03
1 0 1 1 1.1589233890467723e-03 -1.1589233890467725e-03
0 1 1 1 1.8215774769214797e-03 1.8215774769214806e-03
1 0 0 2 -1.0501465169187070e-04 -1.0501465169187056e-04
0 1 0 2 -4.7627117583130449e-04 4.7627117583130439e-04

Table 3.2: Coefficients of the series y = v(x) truncated at degree 3 at SL2 for β = 0.051689.
The exponents (k1, k2, k3, k4) refer to the variables (x1, x2, x3, x4).

changes of variables to be canonical as we need to preserve the Hamiltonian form.

In [GJMS01, Jor99, JM99] this procedure is applied to the RTBP around the collinear

points L1,2,3, and [Rol07] shows how to implement these algorithms using parallel compu-

tation. For this problem we have adapted the public software in [Jor] to our model. Let us
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explain the main ideas of this algorithm, for further details on the algorithm see [Jor99].

3.2.1 Canonical transformations

LetH(p, q) be a Hamiltonian function, and let us consider a change of variables (p, q) = Ψ(x, y).

Notice that the Hamilton equation obtained from H ◦Ψ can be different from the ones

obtained by applying directly the transformation Ψ to the Hamilton equation related to

H. When these ones coincide we say that the transformation preserves the Hamiltonian

form.

A change of variables is called canonical when it preserves the Hamilton form for any

Hamiltonian function. It is known that a transformation is canonical if and only if the

differential of the change of variables (DΨ) is symplectic on any point.

To produce canonical transformations is not an easy task, since we need to impose

the differential to be a symplectic matrix. Nevertheless, there are several techniques to

produce such transformations. Here we use one that is based on several properties of

Hamiltonian flows:

1. Let Φt(x, y) be the time t flow of a Hamiltonian system, then (p, q) = Φt(x, y) is a

canonical transformation.

2. Let G(q, p) be a Hamiltonian system, and let (q0(t), p0(t)) be a solution of G. Then

d

dt
f(q0(t), p0(t)) = {f,G}(q0(t), p0(t)), (3.12)

for any smooth function f . Where {f,G} is the Poisson bracket between the two

functions f and G. We remind that the Poisson bracket between the functions

f(q, p), g(q, p) is defined as:

{f, g} = ∇fTJ∇g =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

From these two affirmations one can see that: if H is a Hamiltonian and G(q, p) is the

time 1 flow of a Hamiltonian, the result of applying this transformation on H is,

Ĥ = H + {H,G}+
1

2!
{{H,G}, G}+

1

3!
{{{H,G}, G}, G}+ · · · . (3.13)

G is usually called the generating function of the transformation (3.13).
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3.2.2 Scheme of the computation

Let us assume that we have already expanded the Hamiltonian around the origin as in

equation (3.11). In order to simplify the following steps, it is convenient to have H2(p, q)

in a canonical form.

Let A be the linearisation of the Hamiltonian flow around the origin (A = J∇H2(0, 0)).

Let ±λ, ±iω1, ±iω2 be the eigenvalues of A. We reduce A to its canonical form

Ã = C−1AC, where C is a real matrix and Ã = diag(A1, A2, A3) with,

A1 =

(
−λ 0

0 λ

)
, A2 =

(
0 ω1

−ω1 0

)
, A3 =

(
0 ω2

−ω2 0

)
.

It is not difficult to check that this change can be taken canonical by introducing some

scaling. If we call (x, y) the new set of coordinates, x for the positions and y for the

momenta, H2 takes the form,

H2(x, y) = λx1y1 +
ω1

2
(x2

2 + y2
2) +

ω2

2
(x2

3 + y2
3). (3.14)

In order to simplify the computations during the centre manifold calculation (mainly,

the computation of the generating functions) we perform a symplectic linear change of

variables that takes the system to its diagonal form. Notice that x1, y1 are already in

their diagonal form, so we just need to change the other 4 variables. Taking,

x1 = q1, x2 =
q2 + i p2√

2
, x3 =

q3 + i p3√
2

,

y1 = p1, y2 =
p2 + i q2√

2
, y3 =

p3 + i q3√
2

,
(3.15)

H2 now writes as,

H2(p, q) = λp1q1 + iω1p2q2 + iω2p3q3. (3.16)

Notice that the linear hyperbolic character is given by the couple (p1, q1) while the

other variables define the centre behaviour. In order to decouple the hyperbolic direction

from the elliptic one up to high order, we do not need to kill all the possible monomials,

just the ones such that the exponent of p1 is different from the one of q1. There are other

killing criteria that can be considered, (see [GJMS01, JL]), but this one also allows us to

end up having a first integral.

Now we can start the reduction to the centre manifold. The main idea is to perform

a sequence of transformations like (3.13) in order to kill degree by degree the desired
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monomials of H. To see how this is done, let us show how to arrange degree three.

Let us select as a generating function G3(q, p), a homogeneous polynomial of degree

three. The result of transforming H by the time 1 flow of G3,

Ĥ = H + {H,G3}+
1

2!
{{H,G3}, G3}+ · · · .

It is not difficult to see that if P and Q are two homogeneous polynomials of degree r and

s respectively, then {P,Q} is also a homogeneous polynomial of degree r + s− 2. Hence,

the terms of Ĥ satisfy

degree 2: Ĥ2 = H2,

degree 3: Ĥ3 = H3 + {H2, G3},

degree 4: Ĥ4 = H4 + {H3, G3}+
1

2!
{{H2, G3}, G3},

...

Therefore, to kill the desired monomials of degree 3 one has to look for a G3 such that

{H2, G3}+H3 has these monomials equal to zero. The terms G3 and H3 can be expressed

as,

G3(q, p) =
∑

|kq |+|kp|=3

gkq ,kpq
kqpkp , H3(q, p) =

∑
|kq |+|kp|=3

hkq ,kpq
kqpkp .

If we take η1 = λ, η2 = iω1 and η3 = iω2, then H2(q, p) =
3∑
i=1

ηiqipi. As,

{H2, G3} =
∑

|kp|+|kq |=3

〈kp − kq, η〉gkq ,kpqkqpkp , η = (η1, η2, η3),

it is immediate to obtain that,

G3(q, p) =
∑

|kq |+|kp|=3

−hkq ,kp
〈kp − kq, η〉

qkqpkp ,

that is well defined because the condition |kp|+ |kq| = 3 implies that 〈kp − kq, η〉 6= 0.

As we have already said, we do not want to kill all the monomials of degree three, just

the ones where the exponents on p1 and q1 are different. So for the coefficients that we
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do not want to kill we take the coefficient gkp,kq = 0. Having,

G3(q, p) =
∑

(kp,kq)∈S3

−hkq ,kp
〈kp − kq, η〉

qkqpkp ,

where Sn, n ≥ 3 is the set of indexes (kp, kq) such that |kp| + |kq| = n and have the first

component of kp different from the first component of kq.

We end up having,

Ĥ(q, p) = H2(q, p) + Ĥ3(q, p) + Ĥ4(q, p) + · · · ,

where Ĥ3(q, p) has the prescribed form. Now we proceed in an iterative way, killing the

monomials qkqpkp with (kq, kp) ∈ Sn, for n = 4, 5, . . . . This process is carried up to

sufficiently high order N . Hence, the transformed Hamiltonian Ĥ(q, p) for n = 3, . . . , N

has all its monomials in the desired form.

We must mention that as λ ∈ R \ {0}, if (kp, kq) ∈ Sn then |〈kq − kp, ν〉| ≥ 1|λ|. This

also assures us that we do not have small divisors in Gn.

After all the transformations the Hamiltonian takes the form,

Ĥ = H(N)(q1p1, q2, p2, q3, p3) +R(q1, p1, q2, p2, q3, p3),

where H(N) is the part of the Hamiltonian that we have arranged and R denotes the

remainder. If we neglect the remainder and take q1p1 = 0, we are skipping the hyperbolic

part of H(N). The resulting Hamiltonian represents the flow inside an approximation of

the centre manifold. So near the origin the phase space of the original Hamiltonian must

be the phase space of H(N)(0, q2, p2, q3, p3) times a hyperbolic direction. To visualise the

phase space on the centre manifold, one can fix the value of the Hamiltonian and then

use a suitable Poincaré section.

It is important to notice the absence of small divisors in all the process. The divergence

of this process is very mild (for a discussion of this process see [JL]), this makes the

remainder to be small in a sufficiently large neighbourhood of the equilibrium point when

this process is stopped for a certain N .

We recall that to have H2 in a diagonal form we entered the complex phase space.

So once we have finished the reduction process we need to apply the inverse change of

variables given by equation (3.15) to the modified Hamiltonian H(N) to have this one

in the real phase space. Notice that this is not necessary to do numerical integrations
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and understand the dynamics, but it is useful, as the operations using real arithmetic are

faster than using a complex arithmetic.

3.2.3 Results

We have adapted the public domain library in [Jor] to the RTBPS for a perpendicular

Solar Sail, and considered β = 0.051689 as in Section 3.1.3.

We have computed the expansion of the Hamiltonian restricted to the centre manifold

up to degree N = 32 at the collinear equilibrium points SL1 and SL2 respectively. In

Tables 3.3 and 3.4 we can find the first terms of these expansions.

To have an idea of the radius of convergence of the series we have computed numerically

the values,

rn = n
√
||Hn||1, where ||Hn||1 =

∑
|k|=n

|hk|, for 3 ≤ n ≤ N, (3.17)

where the hk are the coefficients of the monomials of exponent xk. In Figure 3.2 we can see

these values for SL1 (left) and SL2 (right). They give an idea of the radius of convergence

of the series, we can appreciate that the divergence is very mild. Notice that for SL2 the

radius of convergence is larger than for SL1, but in both cases for N = 32 we have a big

neighbourhood where the modified Ĥ gives a good approximation of the dynamics.
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Figure 3.2: In both pictures, the horizontal axis corresponds to the value of n and the vertical
axis the values of rn. From left to right: SL1 and SL2.
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k1 k2 k3 k4 hk k1 k2 k3 k4 hk
2 0 0 0 6.2265667517669143e-01 0 0 2 2 2.5079559432629472e-02
0 2 0 0 6.2265667517669143e-01 4 1 0 0 -9.5850794092866431e-01
0 0 2 0 5.8841603727373581e-01 2 3 0 0 8.9664076808524873e-01
0 0 0 2 5.8841603727373581e-01 0 5 0 0 -2.4981368648887291e-02
2 1 0 0 5.6396639629808476e-01 2 1 2 0 -7.9713058687831795e-01
0 3 0 0 -8.2384619895258443e-02 0 3 2 0 2.9651411265486743e-01
0 1 2 0 2.7889905508879165e-01 3 0 1 1 -1.4808514924214936e-01
4 0 0 0 -2.7269463441025565e-01 1 2 1 1 1.9692859885303951e-01
2 2 0 0 7.5895544668314852e-01 2 1 0 2 2.0424400532712889e-01
0 4 0 0 -4.8826949550717223e-02 0 3 0 2 -3.5255336989995716e-02
2 0 2 0 -2.7377958223456894e-01 0 1 4 0 -1.5996695825115495e-01
0 2 2 0 3.2741624078653092e-01 1 0 3 1 -7.4332299532813700e-02
1 1 1 1 5.7170659054552292e-02 0 1 2 2 1.1973274094713404e-01
2 0 0 2 5.0713792305465924e-02 1 0 1 3 1.3709284563953436e-02
0 2 0 2 -2.2224922601547636e-02 0 1 0 4 -8.0914094767427763e-03
0 0 4 0 -6.8702044013507921e-02

Table 3.3: Coefficients up to degree 5, of the Hamiltonian restricted to the centre manifold at
SL1 for β = 0.051689. The exponents (k1, k2, k3, k4) refer to the variables (q2, p2, q3, p3).

k1 k2 k3 k4 hk k1 k2 k3 k4 hk
2 0 0 0 1.7322989883542399e+00 0 0 2 2 1.6866624170049516e-01
0 2 0 0 1.7322989883542399e+00 4 1 0 0 6.0646742774657904e-02
0 0 2 0 1.7090415995033998e+00 2 3 0 0 -1.4911538654097725e-01
0 0 0 2 1.7090415995033998e+00 0 5 0 0 1.3665081880113589e-02
2 1 0 0 -5.3481429234647238e-01 2 1 2 0 5.5825772462267019e-02
0 3 0 0 1.2941667603118245e-02 0 3 2 0 -6.9102572140442006e-02
0 1 2 0 -5.0214927846709145e-01 3 0 1 1 5.3708550049071303e-02
4 0 0 0 -2.4049000215462642e-02 1 2 1 1 -1.1553805534006134e-01
2 2 0 0 2.6749334664134067e-01 2 1 0 2 -9.5244592428503097e-02
0 4 0 0 -1.2415552501629217e-02 0 3 0 2 2.8431961390884643e-02
2 0 2 0 -4.3825787410913676e-02 0 1 4 0 -8.8476587697261728e-04
0 2 2 0 2.2438948116603341e-01 1 0 3 1 5.0249628386339631e-02
1 1 1 1 2.6832801596053099e-02 0 1 2 2 -1.0765378366189296e-01
2 0 0 2 1.7963804901434496e-01 1 0 1 3 -2.4034222457073172e-02
0 2 0 2 -1.3040877660634168e-02 0 1 0 4 1.4721820971207975e-02
0 0 4 0 -1.9948009163984572e-02

Table 3.4: Coefficients up to degree 5, of the Hamiltonian restricted to the centre manifold at
SL2 for β = 0.051689. The exponents (k1, k2, k3, k4) refer to the variables (q2, p2, q3, p3).

3.3 Tests and Comparisons

First, we have done some checks on our programs, then we have compared the efficiency

of both algorithms in terms of computational time.

Let us take an initial condition u0 on the centre manifold and let u1 be the result of

integrating u0 on the centre manifold up to time t1. We send these points through the

change of variables to the complete system. Let v0 and v1 be these points. Now we take
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v0 and integrate it up to time t1 on the full system, let us call this point w1.

Ideally, if the centre manifold, the change of variables and the numerical integrations

were all exact, the difference between w1 and v1 would be zero. As we know, this will not

be true due to the several sources of errors.

Let us define h0 = ||u0||, and compute ||v1 − w1||2. This quantity is affected by the

truncation order of the reduction to the centre manifold process, the truncation error

of the integrating method and the roundoff error due to the operations. We can choose

the integration time t1 and the distance to the origin h0, in a way that ||v1 − w1||2 is

mainly affected by the truncation order of the centre manifold. Then this quantity should

behave as ξh
(N+1)
0 where N is the last order that we have taken into account in the centre

manifold. We can take two different initial conditions, u
(1)
0 and u

(2)
0 , and estimate N by,

N + 1 ≈
log

(
er1

er2

)
log

(
h

(1)
0

h
(2)
0

) , (3.18)

where eri = ||v(i)
1 − w

(i)
1 || and h(i) = ||u(i)

0 || for i = 1, 2.

We have taken the centre manifold around SL1 and SL2 computed in Section 3.1.3

using the Graph Transform method and used it to integrate on the centre manifold. We

have taken an initial condition on the centre manifold u0 = (h0, h0, h0, h0) and computed

v1 and w1 for t1 = 0.01. In Table 3.5 we can see the local error of the numerical integration

truncating the series at degree 8. It illustrates the good approximation of the dynamics

on the centre manifold that this gives. In Table 3.6 we see the estimates of the truncation

error.

We have done the same taking the transformed Hamiltonian around SL1 and SL2

computed using the Lie Series method explained in Section 3.2.3. In Table 3.7 we can see

the local error of the numerical integration taking the truncated Hamiltonian up to degree

8 and in Table 3.8 we see the estimates of the truncation error using equation (3.18).

Notice that we truncate the Hamiltonian up to degree 8, hence the estimation of the

truncation error will be 8 as the set of equations that we are integrating are taken up to

degree 7.

As we have already mentioned, the graph transform method is a more general ap-

proach, as it does not use any assumption on the set of equations, while the Lie series

method can only be applied to Hamiltonian systems.

In Table 3.9 we see the CPU time needed to compute the reduction to the centre



86 Chapter 3. Reduction to the Centre Manifold

h0 ||v1 − w1||
0.02 1.2139221824443741e-17
0.04 2.3643249923959272e-15
0.08 1.2618898774811476e-12
0.16 6.9534006796827247e-10
0.32 3.9879163406944996e-07

h0 ||v1 − w1||
0.02 2.5146775308808859e-17
0.04 1.8662949690767610e-16
0.08 9.6561350589145246e-14
0.16 4.8655084457371298e-11
0.32 2.4673928463137270e-08

Table 3.5: For the graph transform method: difference between the numerical integration on
the centre manifold and on the RTBPS taking initial conditions at a distance h0 from the
origin. Taking the series y = v(x) truncated at degree 8 at SL1 (left) and at SL2 (right) for
β = 0.051689.

h
(1)
0 h

(2)
0 N + 1

0.02 0.04 4.44043
0.04 0.08 9.02389
0.08 0.16 9.10595
0.16 0.32 9.16370

h
(1)
0 h

(2)
0 N + 1

0.02 0.04 2.629343
0.04 0.08 8.764844
0.08 0.16 8.976466
0.16 0.32 8.986181

Table 3.6: For the graph transform method: estimations of the truncation order for v̂(x). For
β = 0.051689 at SL1 (left) and at SL2 (right).

manifold up to degree N = 8, 16, 24, 32, using the two different approaches. There, we

can see that the graph transform algorithm is more efficient, in terms of computational

time, than the Lie series approach. For instance, if we compute the centre manifold

up to degree 32, it takes around 14min of CPU time to complete the whole process

using the graph transform, and around 33min using the the Lie series approach. All the

computations have been done on the same computer, with an Intel(R) Core(TM)2 Quad

CPU at 2.83GHz.

Notice, that with the Lie series approach, we take the Hamiltonian equation, expand

it around the fixed point, and by means of canonical transformation decouple up to high

order the hyperbolic directions from the elliptic ones. Hence, during the whole process

we deal with homogeneous polynomials with 6 variables and at the end of the process we

set two of the variables to zero, to end on a 4D phase space.

On the other hand, with the graph transform method, we compute the power expansion

of the local centre manifold (y = v(x)). We see that v(x) must satisfy an invariant

equation, that we solve equalising degree by degree. Now, during the whole process we

deal with homogeneous polynomials with 4 variables, which coincides with the dimension

of the final phase space. Under general conditions, the cost of operating with polynomials

of 4 variables is much less than the cost of operating with polynomials of 6 variables.

Although it is less efficient, the Lie series approach is convenient when we have a



3.4. Conclusions 87

h0 ||v1 − w1||
0.02 3.6920450235560199e-15
0.04 9.4549612587473395e-13
0.08 2.4173024466492310e-10
0.16 6.4090169252390676e-08
0.32 2.1474173035560701e-05

h0 ||v1 − w1||
0.02 3.9057253333709475e-15
0.04 1.8756915513177915e-14
0.08 9.7024896946065764e-13
0.16 2.2668434557013075e-10
0.32 5.4714331083417134e-08

Table 3.7: For the Lie series method: difference between the numerical integration on the centre
manifold and on the RTBPS taking initial conditions at a distance h0 from the origin. Taking
the series HN truncated at degree 8 at SL1 (left) and at SL2 (right) for β = 0.051689.

h
(1)
0 h

(2)
0 N

0.02 0.04 8.001
0.04 0.08 7.998
0.08 0.16 8.051
0.16 0.32 8.388

h
(1)
0 h

(2)
0 N

0.02 0.04 2.263
0.04 0.08 5.692
0.08 0.16 7.868
0.16 0.32 7.915

Table 3.8: For the Lie series method: estimations of the truncation order for the reduction to
the centre manifold for H8. For β = 0.051689 at SL1 (left) and at SL2 (right).

N Lie Series Graph Transform

8 0m 0.085s 0m 0.057s

16 0m 3.876s 0m 2.943s

24 2m 10.251s 1m 13.965s

32 33m 22.000s 14m 35.475s

Table 3.9: Computational time for Lie Series vs the Graph Transform method to compute the
reduction to the centre manifold up to degree N .

Hamiltonian system, as we end up with a very good approximation of the Hamilton

equation on the centre manifold, and we preserve most of the interesting properties of the

system. The Hamilton equation will be very useful to study the phase space, we use this

first integral to reduce the phase space dimension (see Section 4.3).

3.4 Conclusions

Our aim has been to develop a tool to understand the non - linear dynamics close to

unstable equilibrium point. Moreover, we are interested in a general procedure that can

be applied to a non Hamiltonian systems. To this end, we use the graph transform method.

The idea is to compute, formally, the power expansion of the graph of the local centre

manifold (y = v(x)). In Section 3.1 we have described the main details of this algorithm
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and discuss some tricks that can be implemented to reduce the computational effort.

We have compared this method with a more classical approach to this problem. If

the system is Hamiltonian one can use a Lie series method, taking advantage of the

Hamiltonian structure of the system. In Section 3.2 we summarise the main ideas of this

method. We have taken the public software in [Jor], that deals with the reduction to the

centre manifold around a collinear equilibrium point for the RTBP, and adapted it to our

model.

In Section 3.3 we have seen that the graph transform method is more efficient in

terms of computational time than the Lie series method. Moreover, this method gives a

more general approach to the problem and will be very useful to study the non - linear

dynamics around the equilibrium points when the sail is not orientated perpendicular to

the Sun - line, as we will see in the next chapter.
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Chapter 4

Periodic and Quasi - Periodic motion

around equilibria

In this Chapter we describe the periodic and quasi - periodic motions around some of these

equilibrium points, and show how the phase space portrait varies when the sail orientation

changes. In the near future we want to use this information, to derive strategies in the

philosophy of Chapter 2 for the station keeping of a solar sail close to these invariant

objects.

From now on, we always consider the sail orientation to be fixed along time, and

study what is the dynamics for several fixed sail orientations. We show how the dynamics

varies for different sail orientations close to perpendicular. We study the particular case

of α = 0, and δ close to 0.

In Section 4.1 we describe some of the properties of the system when we set α = 0.

Here the system is time reversible, and has 5 families of equilibrium parametrised by δ.

We will see that for three of these families, the local behaviour around an equilibrium

point is as a Hamiltonian system.

In Section 4.2 we describe the families of periodic orbits that emanate from an equi-

librium point for different sail orientations (δ). Finally, in Section 4.3 we have performed

the reduction of the centre manifold around different equilibrium points up to degree 16,

using the graph transform algorithm explained in the previous Chapter. In both sections

we start by analysing what happens when the sail is perpendicular to the Sun - line and

then see how the pattern varies when it is no longer perpendicular.
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4.1 Particular Case

From now on, we focus on the particular case of a perfectly reflecting solar sail, when

one of the two angles, α, is zero. In this way, we only allow the sail orientation to vary

vertically with respect to the Sun - line.

When α = 0, the normal direction to the sail, ~n, is simplified:

~n =

[
X − µ
rps

cos δ − Z(X − µ)

rpsr2

sin δ ,
Y

rps
cos δ − Y Z

rpsr2

sin δ ,
Z

rps
cos δ +

r2

rps
sin δ

]
,

and the projected sail area 〈~rs, ~n〉 = cos δ is constant in time. The equations of motion

can be expressed as,

Ẍ − 2Ẏ =
∂Ω̃

∂X
− β (1− µ)

r3
PS

(X − µ)Z

r2

cos2 δ sin δ,

Ÿ + 2Ẋ =
∂Ω̃

∂Y
− β (1− µ)

r3
PS

Y Z

r2

cos2 δ sin δ,

Z̈ =
∂Ω̃

∂Z
+ β

(1− µ)

r3
PS

r2 cos2 δ sin δ,

(4.1)

where,

Ω̃(X, Y, Z) =
1

2

(
X2 + Y 2

)
+

(1− µ)(1− β cos3 δ)

rPS
+

µ

rPE
.

In Chapter 1 we mentioned that the RTBPS has zero divergence. In addition, for

α = 0 the system is also time reversible by:

R : (X, Y, Z, Ẋ, Ẏ , Ż)→ (X,−Y, Z,−Ẋ, Ẏ ,−Ż),

for all fixed δ. We recall, that for the particular cases δ = 0 and δ = ±π/2 it is also Hamil-

tonian. (These cases correspond to a the sail perpendicular to the Sun - line direction

(δ = 0) or to neglect the sail’s effect by aligning it to the Sun - line (δ = ±π/2)).

For α = 0 the system has 5 families of equilibria parametrised by the angle δ. Each

of families contains one of the classical Lagrangian equilibrium points Li and its related

displaced equilibrium point SLi, we call each of these families FLi for i = 1, . . . , 5. In

Figures 4.1 and 4.2 we can see these families for different values of β. Notice that as β

increases these families get “larger”, having fixed points higher above the ecliptic plane

and closer to the Sun.
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In Figure 4.1 we have the families FL1 (left), FL2 (centre) and FL3 (right), all of

them are on the Y = 0 plane. All of these equilibrium points are unstable, for small

values of β, the spectrum of the equilibrium point is {±λ,±iω1,±iω2}. In Figure 4.3 we

show the spectrum of the fixed points for β = 0.051689. For large β this changes, and for

some of the equilibrium points, the spectrum is {±λ1,±λ2,±iω1} [WM07, WM08].

In Figure 4.2 we have the family FL4, which no longer lies on the Y = 0 plane. The

FL5 family is symmetric to FL4 with respect to Y = 0. The spectrum for all these points

is {γ1 ± iω1, γ2 ± iω2, γ3 ± iω3}, where γi 6= 0 with γ1 > 0, γ2 < 0 and γ3 positive on

FL4 and negative on FL5. In Figure 4.4 we see the spectrum for β = 0.051689 for FL4

and FL5. Notice that although γi 6= 0, it is very small. Hence, they present a very mild

instability, we can think of fixed points that are practically stable.
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Figure 4.1: Families of equilibrium points for β1 = 0.01, β2 = 0.05, β3 = 0.1, β4 = 0.15 and
β5 = 0.2. From left to right: FL1, FL2 and FL3 families of equilibria.
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Our aim is to describe the natural dynamics around different unstable equilibrium of

these families. We focus on the FL1 family, which we consider a more relevant region for

possible mission applications. Although, the same techniques presented here can be used

to understand the motion around the FL2,3 families. We will show how the dynamics

varies for different sail orientations close to δ = 0.
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Figure 4.4: Spectrum of the equilibrium points on the FL4 and FL5 families for β = 0.051689.

In Section 4.2 we describe the families of periodic orbits around an equilibrium point

and in Section 4.3, using the reduction to the centre manifold we describe the bounded

motion around equilibria.

4.1.1 Linearisation around equilibria

The equilibrium points on the FL1 family for a given δ ∈ [−π/2, π/2] are of the type

p0 = (X∗, 0, Z∗), with µ − 1 < X∗ < 0. The linearised system around an equilibrium

point is given by Φ̇ = MΦ, where M = Df(p0) is of the form,

M =

(
0 Id

A B

)
, A =

 axx 0 axz

0 ayy 0

azx 0 azz

 , B =

 0 2 0

−2 0 0

0 0 0

 .

It can be seen that if δ = −π/2, 0, π/2, then axz = azx = 0. Hence the Z oscillation is

decoupled from the planar motion. For the other values of δ, axz 6= azx, as Z∗ 6= 0, so

the vertical oscillation is not decoupled. As we will see further on, for δ = 0, the periodic

motion is equivalent to the periodic motion on the RTBP.
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The characteristic polynomial of M is p(η) = η6 + C1η
4 + C2η

2 + C3. Calling ν = η2,

one can see that p(ν) has always three real roots [WM07]. Depending on the values of

β and δ, there will be two positive roots and one negative one, or one positive root and

two negative ones. For β = 0.051689 we always have one positive and two negative roots

(ν1 > 0 and ν2, ν3 < 0). Hence, if we define λ =
√
ν1 and ω1 =

√
−ν2, ω2 =

√
−ν3, then

±λ, ±iω1 and ±iω2 are the eigenvalues. This shows that the linear dynamics around

each equilibrium point is of the type centre × centre × saddle.

To find the eigenvectors we will take advantage of the form of the matrixMη = M−ηI6.

We denote by (vT1 , v
T
2 )T to the elements of the kernel of Mη. It is easy to check that they

must satisfy v2 = ηv1 and Av1 + (B − ηId)v2 = 0. Then we need to solve a 3×3 linear

system. We will treat separately two cases δ = −π/2, 0, π/2 and the rest of the possible

values for δ.

It is known [Sze67] that for δ = −π/2, 0, π/2, i.e. axz = azx = 0, the eigenvectors

related to ν = ±λ are,

~v+λ = [ 2λ , λ2 − axx , 0 , 2λ2 , λ(λ2 − axx) , 0 ]T ,

~v−λ = [−2λ , λ2 − axx , 0 , 2λ2 , −λ(λ2 − axx) , 0 ]T .

The eigenvectors related to ν = iω1 are ~vω1 ± i~uω1 with,

~vω1 = [ 2ω1 , 0 , 0 , 0 , ω1(ω2
1 − axx) , 0 ]T ,

~uω1 = [ 0 , ω2
1 − axx , 0 , 2ω2

1 , 0 , 0 ]T ,

and the eigenvectors related to ν = iω2 are ~vω2 ± i~uω2 with,

~vω2 = [ 0 , 0 , 1 , 0 , 0 , 0 ]T ,

~uω2 = [ 0 , 0 , 0 , 0 , 0 , ω2 ]T .

For the other values of δ it can be seen that the elements of the kernel of Mη are of

the form

~v = [ (azz − η2)(ayy − η2), 2η(azz − η2), −azx(ayy − η2),

η(azz − η2)(ayy − η2), 2η2(azz − η2),−azxη(ayy − η2) ]
T
.
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Then the eigenvectors related to η = ±λ are,

~v+λ = [ (azz − λ2)(ayy − λ2) , 2λ(azz − λ2) , −azx(ayy − λ2) ,

λ(azz − λ2)(ayy − λ2) , 2λ2(azz − λ2) , −azxλ(ayy − λ2) ]T ,

~v−λ = [ (azz − λ2)(ayy − λ2) , −2λ(azz − λ2) , −azx(ayy − λ2) ,

−λ(azz − λ2)(ayy − λ2) , 2λ2(azz − λ2) ,−azxλ(ayy − λ2) ]T .

We can do the same for η = ±iω1, ±iω2, having the expression ~v for the eigenvector.

Separating real and imaginary parts as ~uωi + i~vωi , we obtain,

~uωi = [ (azz + ω2
i )(ayy + ω2

i ) , 0, −azx(ayy + ω2
i ) , 0 , −2ω2

i (azz + ω2
i ) , 0 ]T ,

~vωi = [ 0 , 2ωi(azz + ω2
i ) , 0 , ωi(azz + ω2

i )(ayy + ω2
i ) , 0 , −azxωi(ayy + ω2

i ) ]T ,

for i = 1, 2. Now the Z, Ż motion is no longer decoupled from the planar motion, due to

the loss of symmetry when we change δ. But it can be seen, that for small δ’s, one of the

two oscillations has a larger Z oscillation than the other. For the sake of simplicity, from

now on we assume this one to be ω2.

Finally, the linearised motion around an equilibrium point p0 is given by,

Φ(t) = p0 + A0 [cos(ω1t+ ψ1)~vω1 + sin(ω1t+ ψ1)~uω1 ]

+ B0 [cos(ω2t+ ψ2)~vω2 + sin(ω2t+ ψ2)~uω2 ]

+ C0e
λt~v+λ + D0e

−λt~v−λ.

(4.2)

We will use this linear approximation to find periodic orbits close to the equilibrium point,

by setting C0 = D0 = 0, and A0 = 0 or B0 = 0, depending on which type of orbits we

are more interested. These small orbits can the be used as initial guess for a continuation

method to compute the whole family of periodic orbits, as we will see in Section 4.2.

4.2 Periodic Motion

It is well known that if we have a fixed point p0 on a Hamiltonian system, with ±iω

as an eigenvalue, then under suitable non-resonance conditions with respect to the re-

maining eigenvalues λi, the Lyapunov Centre Theorem [MH91] ensures that there exist a

one - parametric family of periodic orbits emanating from p0, with limiting period 2π/ω.



4.2. Periodic Motion 95

Unfortunately, as we have already mentioned, the Hamiltonian character of the set of

equations is only true for 3 values of δ.

In any case, in the previous section we saw that for α = 0 the RTBPS is time R -

reversible by

R : (t,X, Y, Z, Ẋ, Ẏ , Ż)→ (−t,X,−Y, Z,−Ẋ, Ẏ ,−Ż).

It is known [Sev86, LR98], that under certain constraints a time reversible system be-

have locally as Hamiltonian systems around an equilibrium point. In particular, around

this point the Lyapunov’s Centre Theorem [Dev76, Mos58, Sev86, LR98] and KAM The-

ory [Sev98, LR98] also apply.

Theorem 4.2.1 [Dev76] Let ẋ = f(x), with f ∈ C2 and x ∈ R2n be an autonomous

R - reversible dynamical system, where dim(Fix(R)) = n. Let p0 be a fixed point such

that R(p0) = p0, and with ±iω, ±λ2, . . . , ±λn as eigenvalues.

Then, if ∀λi we have that iω/λi /∈ Z, there exists a one-parametric family of periodic

orbits emanating from p0, where the period of these orbits tends to 2π/ω when approaching

p0.

This Theorem is commonly known as Devaney - Lyapunov’s Centre Theorem, for further

details and its proof see [Dev76, Sev86].

One can check that the only equilibrium points that remain fixed by R are the ones

on the FL1, FL2 and FL3 families. Hence, the local behaviour around these equilibria

will be Hamiltonian. Theorem 4.2.1 [Dev76] assures that under non - resonant conditions

between ω1, ω2 we have two families of periodic orbits emanating from the fixed point.

In this section we want to describe the two families of periodic orbits that appear

around an equilibrium point of the FL1 family. We distinguish the two families by their

vertical oscillation. In Section 4.1.1 we already mentioned that, for small δ, one of the

two eigendirections has a wider vertical oscillation than the other, and we assume this

one to be ω2. Then, we call the P - Lyapunov Family to the family of periodic orbits

emanating from p0 related to ω1 and the V - Lyapunov Family to the family emanating

from p0 related to ω2.

Due to the symmetric reversibility properties of the system, all these families of peri-

odic orbits are symmetric with respect to Y = 0. Furthermore, for small δ, the P - Lya-

punov Family cross transversally Y = 0 and the V - Lyapunov Family cross transversally

Z = Z∗ just two times. From now on, we will only consider δ > 0, as the systems is also

symmetric by

S : (X, Y, Z, Ẋ, Ẏ , Ż, δ)→ (X, Y,−Z, Ẋ, Ẏ , Ż,−δ).
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We start by taking δ = 0, and study how the family of periodic orbits behave. Then, we

see how these families vary for different sail orientations.

To compute the families of periodic orbits, we have designed our own routines for

the numerical refinement and continuation of periodic orbits. For each of the families we

have taken into account the transversality properties mentioned before. We have used

a multiple shooting method [SB02] using two spatial sections, to avoid difficulties in the

integration of the periodic orbits, as they are very unstable. For the P - Family we have

taken the sections Γ1 = {Y = 0, Ẏ > 0} and Γ2 = {Y = 0, Ẏ > 0}, and for the V - Family

we have taken Σ1 = {Z = Z∗, Ż > 0} and Σ2 = {Z = Z∗, Ż > 0}. As an initial guess for

the continuation we can take the linear approximation of the solutions for the flow from

equation (4.2). We must also mention that due to the symmetries on the equations, if we

take the cross section Γ1 and Γ2 we can save time by just integrating half of the period.

We have also computed the stability of the periodic orbits on each family. It is well

known that, if φt(x) is the flow associated to an ODE, the normal behaviour around a

T - periodic orbit through x0 is given by the monodromy matrix M = DφT (x0). As we

are in a reversible system, the eigenvalues come in pairs, so

spect(M) = {1, 1, λ1, λ
−1
1 , λ2, λ

−1
2 }.

We define the stability parameters of the periodic orbit as si = λi + λ−1
i for i = 1, 2.

These parameters will help us to describe the stability of the periodic orbit. The Si can

be of the kind:

• Hyperbolic: if si ∈ R with |si| > 2. It is equivalent to λi ∈ R \ {−1, 1}.

• Elliptic: if si ∈ R with |si| < 2. It is equivalent to λi = ei ρ with ρ ∈ R.

• Parabolic: if si ∈ R with |si| = 2. It is equivalent to λi = ±1.

• Complex unstable: if λi ∈ C \ R. It is equivalent to λi ∈ C \ R, |λi| 6= 1.

In what follows, we will say that the periodic orbit has an hyperbolic direction if

|si| > 2, and we say it has an elliptic direction if |si| < 2. Notice that if s1 is complex

unstable, then s2 is also complex unstable, in fact s2 = s1.

4.2.1 P - Family of periodic orbits

We have taken the linear approximation given by equation (4.2) as an initial guess, and we

have considered the X coordinate of the point where the orbit crosses Γ1 as the parameter
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of continuation.

Let us start by taking δ = 0, where the periodic orbits that are born close to the

equilibrium point are totally contained on the Z = 0 plane. In Figure 4.5 we can see the

continuation scheme, on the x - axis we have the continuation parameter (X) and on the

y - axis the Z component of the point of the orbit on the section Γ1. At a certain time, a

pitchfork bifurcation takes place, and two new periodic orbits are born, commonly known

as Halo orbits.

On the left - hand side of Figure 4.5 we can see this bifurcation, in red we have plotted

those periodic orbits with one elliptic and an hyperbolic direction, and in blue those

orbits with two hyperbolic directions. On the right - hand side of Figure 4.5 we have the

evolution on the stability parameters along the family.
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Figure 4.5: P - family of periodic orbits for δ = 0. Left: bifurcations diagram for the contin-
uation of periodic orbits w.r.t. X, centre×saddle orbits in red, saddle×saddle orbits in blue.
Right: evolution of the stability parameters s1 and s2 along the family of periodic orbits.

On the left hand side of Figure 4.6 we see the planar periodic orbits on the P - Family,

before and after the bifurcation point, and on the left hand side we see the evolution of

the stability parameters along the family. In Figure 4.7 we see different projections of

one of the two families of Halo orbits. The other family is symmetric to this one w.r.t.

Z = 0. Finally, in Figure 4.8 we have two different 3D projections on the X, Y, Z space

of the three branches of the periodic orbits on the family.

Now we consider δ 6= 0, and again continue the P - Family of periodic orbits emanating

from the equilibrium point. We see that there is no longer a pitchfork bifurcation as it

happened for δ = 0. Now, two of the branches split, leaving a family of periodic orbits

with no change in the stability and another family with a saddle - node bifurcation, as can

be seen in on the left hand side of Figure 4.9. This is due to what is known as symmetry
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breaking [GSS85, Cra91]. It is well known that the pitchfork bifurcations are a degenerate

type of bifurcations, that usually appear when the system has some symmetries, as it

happens when δ = 0. But for δ 6= 0 this symmetry breaks, and a saddle - node bifurcation

appears instead (the saddle - node bifurcations are more common, and do not require

symmetries). On the right hand side of Figure 4.9, we can see the evolution of separation

between the two branches as δ increases.

In Figures 4.10 and 4.11 we can see different projections of these two families for

δ = 0.01. In Figure 4.10 we have the family that emanates from the equilibrium point.

We can see how, as the orbits amplitude increases they gain Z amplitude, ending up

looking like Halo type orbits. Here all the periodic orbits have one hyperbolic and one

elliptic direction. In Figure 4.10 we see the family of periodic orbits that appears after the

saddle - node bifurcation. The orbits on the second component of the family that have

less Z oscillation have two hyperbolic directions, while the other ones have one hyperbolic

and one elliptic direction. Finally, in Figure 4.12 we have different 3D projections, on the
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X, Y, Z space, of the two disconnected branches of the P - Family of periodic orbits for

δ = 0.01. We can see that qualitatively it does not differ that much from the particular

case δ = 0. We still have Halo - type orbits and planar motion.

4.2.2 V - Family of periodic orbits

Here we have also taken the linear approximation in equation (4.2) as initial guess, and we

have considered the Ż coordinate of the point where the orbit crosses Σ1 as the parameter

of continuation.

We start by taking δ = 0, here the periodic orbits are symmetric with respect to the
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projection.
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Figure 4.11: For δ = 0.01. Different projection of the periodic orbits on P - Family that appear
after a saddle node bifurcation. From left to right: XY projection, XZ projection and Y Z
projection.

planes Z = 0 and Y = 0. In Figure 4.13 we have different projections of this family of

periodic orbits. We can see that these orbits have a bow tie shape. All them have one

hyperbolic and one elliptic direction.

For δ 6= 0 the family of periodic orbits is only symmetric with respect to the Y = 0

plane. The periodic orbits that are born near the equilibrium point are seen as circles

on the XZ projection. As we move along the family, their shape changes and they again

look like a bow tie, although it is no longer symmetric. For small δ, the shape of most of

the orbits in the family still looks like a bow tie. We can see that as δ increases there is

more difference between the two loops on the bow tie. In Figure 4.14 we have different

projections of this family for δ = 0.01. Again, all these periodic orbits have one hyperbolic

and one elliptic direction. Finally, Figure 4.15 shows 3D projections, on the X, Y, Z space,

of these families for different values of δ. We can see clearly, how these families get more

asymmetric as δ increases. In the picture we have δ = 0, 0.005, 0.01 and 0.03.
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Figure 4.12: Different projections on the XY Z space of the 2 disconnected branches of periodic
orbits for δ = 0.01.
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Figure 4.13: For δ = 0. Different projections of the periodic orbits on the V - family. From left
to right: XY projection, XZ projection and Y Z projection.

4.3 Dynamics on the Centre Manifold

Using the algorithm explained in Chapter 3 we have computed the centre manifold around

several equilibrium points of the FL1 family, i.e different sail orientations. For each each

fixed point we have computed the approximation y = v̂(x) of the centre manifold up

to degree 16. Here we want to describe the dynamics around an equilibrium point for
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Figure 4.14: For δ = 0.01. Different projections of the periodic orbits on the V - family. From
left to right: XY projection, XZ projection and Y Z projection.
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Figure 4.15: Projections on the XY Z space of the V - Family of periodic orbits for different
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different values of δ.

We start by considering δ = 0, where the system is Hamiltonian. We take advantage

of this to visualise the phase space. Once we have described the non - linear dynamics

for this particular case, we will discuss how the phase space varies when we change the

sail orientation (δ).
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Once we have reduced to the centre manifold, we are on a 4D phase space. Let

(x1, x2, x3, x4) be the local coordinates on the centre manifold. A 4D phase space is

difficult to visualise, so we need to perform suitable Poincaré sections to reduce the phase

space dimension.

4.3.1 When the sail is perpendicular to the Sun - sail line

As we have mentioned several times, here the system is Hamiltonian. We take advantage

of this to visualise the phase space. The Jacobi constant,

JC = Ẋ2 + Ẏ 2 + Ż2 − 2Ω(X, Y, Z),

with Ω(X, Y, Z) = (X2 + Y 2)/2 + (1 − µ)(1 − β)/rPS + µ/rPE, is a first integral of the

system. Hence, it remains constant along time for a given trajectory. We group the

trajectories on the phase space by their energy level, i.e. the value of the Jacobi constant

(JC).

To visualise the dynamics on the centre manifold, we take the Poincaré section x3 = 0

and fix JC to determine x4. Notice that taking x3 = 0 is the same as taking Z = 0 and x4 is

related to Ż. Hence, x1, x2 are a linear transformation of the XY plane. For each energy

level we take several initial conditions and compute 500 iterates of the Poincaré map.

Figure 4.16 shows the results for JC = −2.895937,−2.895920,−2.895904 and −2.895889.

We can see that for a fixed energy level, the motion on the section is bounded by the

planar Lyapunov orbit, which is fully contained on this section. The vertical Lyapunov

orbit is the fixed point in the middle, as it crosses transversally this section close to the

origin.

For small values of the energy, the coupling of the two frequencies, ω1 and ω2, give

rise to a family of invariant tori. As the JC varies, the planar Lyapunov orbit changes

its stability and the Halo orbits appear (see Section 4.2.1). These orbits are the two new

fixed points on the section, as the Halo orbits also cross transversally this section. We

still see families of invariant tori around the fixed point and around the two Halo orbits.

Notice that x3 = 0 is not the only Poincaré section that we can do. We have taken

this one for classical reasons, and because we know that Z = 0 is a cross section and the

motion is symmetric with respect to this plane. But we could choose another one, for

instance Y = 0 is also a cross section and a symmetry plane.

So we take x2 = 0 and determine x1 from the JC . We repeat the same process as

before, for each JC we take several initial conditions x3, x4 and compute 500 iterates of
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Figure 4.16: For δ = 0. Poincaré section for x3 = 0 for different energy levels. From left to
right, top to bottom: JC = −2.895937,−2.895920,−2.895904,−2.895889.

the Poincaré map. Figure 4.17 shows the results for the same energy levels as before.

Now the planar Lyapunov orbit is the central fixed point. As before, we can see that

for small values of the energies, we have a family of invariant tori due to the coupling of

the two frequencies. As the energy level increases the planar Lyapunov orbit changes its

stability and the two Halo orbits appear. Here we can clearly appreciate the pitchfork

bifurcation of the planar Lyapunov orbit that gives rise to the Halo orbits that was

mentioned in Section 4.2.

We note that the behaviour here is qualitatively the same as for the RTBP close to

the collinear points. Now we want to see how this is perturbed when the sail is no longer

perpendicular to the Sun - line (i.e. δ 6= 0).

4.3.2 When the sail is not perpendicular to the Sun - sail line.

Now we take different values for the sail orientation δ1 = 0.005 and δ2 = 0.01 and we

perform the same analysis. The main difference is that now the system is not Hamilto-
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Figure 4.17: For δ = 0. Poincaré section for x2 = 0 for different energy levels. From left to
right, top to bottom: JC = −2.895937,−2.895920,−2.895904,−2.895889.

nian, hence we do not have a first integral to help us reduce the phase space dimension.

Nevertheless, we use the quantity,

J̃C = Ẋ2 + Ẏ 2 + Ż2 − 2Ω̃(X, Y, Z) + 2β(1− µ)
Zr2

r3
PS

cos2 δ sin2 δ.

We recall that Ω̃(X, Y, Z) = (X2 + Y 2)/2 + (1 − µ)(1 − β cos2 δ)/rPS + µ/rPE. Notice

that for δ = 0, J̃C is the Jacobi constant used before. This value varies little along the

trajectories, we observe variations of less than 10−8 in the cases that we have studied. We

will use it as an “approximated energy level” and will allow us to classify the trajectories

and compare the Hamiltonian behaviour with the non - Hamiltonian one.

When the system is Hamiltonian and we take several initial conditions with the same

energy level, their trajectories are in the same surface of fixed energy. Hence, we are

reducing in one the phase space dimension. When the system is not Hamiltonian and we

take several initial conditions with the same J̃C , the “approximated energy level”, this one

does not remain fixed for all of the points on the trajectories. But close to the equilibrium
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point, J̃C has a small variation. The projection of the trajectories on a fixed surface of

fixed J̃C will be good enough to produce meaningful plots.

As for the Hamiltonian case, we first perform the Poincaré section x3 = 0. This is

like taking the cross section Z = Z∗. We use J̃C to determine x4, that is related to Ż.

Now we take different initial conditions (x1, x2) and perform 500 iterates of the Poincaré

map for different J̃C . Figures 4.18 and 4.19 show, for δ = 0.005 and δ = 0.01 respectively,

these iterates on the Poincaré sections for J̃C = −2.895937,−2.895920,−2.895904 and

−2.895889.
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Figure 4.18: For δ = 0.005. Poincaré section for x3 = 0 for different J̃C . From left to right, top
to bottom: J̃C = −2.895937,−2.895920,−2.895904,−2.895889.

As before, we see that for small energy levels the coupling between the two frequencies

gives rise to families of invariant tori around the equilibrium point. The fixed points in the

centre corresponds to an orbit of the V - Family that cross transversally this section, and

an orbit of the P - Family is close to the boundary of the motion on the section. As J̃C

varies, one Halo-type orbit appears, seen as the new fixed point that appears on the right

hand side of the Poincaré sections. We recall the behaviour of the P - Family of periodic

orbits for δ 6= 0 discussed in Section 4.2.1. This family starts with a small Ż amplitude
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Figure 4.19: For δ = 0.01. Poincaré section for x3 = 0 for different J̃C . From left to right, top
to bottom: J̃C = −2.895937,−2.895920,−2.895904,−2.895889.

and there is a point close to the saddle - node bifurcation where the Ż amplitude starts

to grow significantly, having Halo - type orbits. When the orbit gains Z amplitude, it is

transversal to this Poincaré section, and we see it appear in the Poincaré section. When

the saddle - node bifurcation takes place, another Halo - type orbit appears, as can be

seen in Figure 4.18 and 4.19. We can see that the two Halo orbits are no longer symmetric

to each other, as well as the behaviour around them.

Let us now take the Poincaré section x2 = 0 and we fix J̃C to determine x1. As before

we take several initial conditions (x3, x4) as perform 500 iterates on the Poincaré section

for different J̃C . In Figures 4.20 and 4.21 show, for δ = 0.005 and δ = 0.01 respectively,

the Poincaré section x2 = 0 for different values for J̃C .

Now the fixed point in the centre corresponds to an orbit of the P - Family. For small

values of J̃C we just see the families of invariant tori around the fixed point, due to the

coupling between the two elliptic frequencies. As this energy increases, we can see how

the fixed point shifts to the left and two new periodic orbits appear, one stable and the

other unstable, giving rise to the second family of Halo - type orbit. Here we can clearly
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Figure 4.20: For δ = 0.005. Poincaré section for x2 = 0 for different J̃C . From left to right, top
to bottom: J̃C = −2.895937,−2.895920,−2.895904,−2.895889.

appreciate the saddle - node bifurcation on the family of periodic orbits that was seen in

Section 4.2.1.

If we remember Figure 4.17, we saw that the planar family of periodic orbits experi-

ences a pitchfork bifurcation as the energy level increases, which gives rise to the Halo

orbits. Now in Figures 4.20 and 4.21 we can see how for δ 6= 0, due to the symme-

try breaking on the equations motion, this bifurcation is replaced by a saddle - node

bifurcation.

The main difference between the behaviour for δ = 0.005 or δ = 0.01 is that the phase

space becomes “less symmetric” as δ increases.

4.4 Conclusions

In this Chapter we have focused on the understanding of the non - linear dynamics for

a family of fixed points close to SL1. We have restricted to the particular case α = 0 to

take advantage of the reversible character of the system, as it ensures us the existence of
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Figure 4.21: For δ = 0.01. Poincaré section for x2 = 0 for different J̃C . From left to right, top
to bottom: J̃C = −2.895937,−2.895920,−2.895904,−2.895889.

families of periodic orbits and invariant tori.

For this study we have computed the families of periodic orbits by means of a con-

tinuation method. Furthermore, we have performed the reduction to the centre manifold

using the graph transform method (Chapter 3) around the different equilibrium points to

have a better understanding of the bounded motion.

We find that when the sail is perpendicular to the Sun - line the system behaves

qualitatively as the RTBP. The two frequencies defining the centre motion give rise to

two families of periodic orbits, a planar and a vertical family, and we find families of

invariant tori due to the interaction between the two frequencies. As we move along the

planar family of periodic orbits a pitchfork bifurcation takes place, and two families of

Halo - type orbits appear.

When the sail is no longer perpendicular to the (δ 6= 0) this behaviour varies slightly.

We still have two families of periodic orbits emanating from the two fixed points, each one

related to one of the two frequencies defining the centre motion. But we no longer have a

pitchfork bifurcation that gives rise to the Halo - type orbits, this one has been replaced
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by a saddle - node bifurcation due to the symmetry breaking of the system. Finally, we

also find families of invariant tori due to the interaction between the two frequencies.



111

Summary & Future Work

In this thesis we have studied the natural dynamics of a solar sail in the Earth - Sun

system and derived station keeping strategies using Dynamical System tools.

We have used the Restricted Three Body Problem including the solar radiation pres-

sure as a model. It is known that the extra effect of the solar sail on the RTBP adds to the

system a 2D family of equilibria parametrised by the sail orientation. These artificial new

equilibria open a wide new range of possible mission applications that cannot be achieved

by a conventional spacecraft. Moreover, these new equilibria are in general unstable but

controllable by means of a feedback control strategy.

We have derived a station keeping strategy for a Solar Sail using dynamical systems

tools. In Chapter 2 we described the details of these strategies. We recall that the main

idea relies in understanding the variation of the dynamics close to an equilibrium point

when the sail orientation is changed. Then try to find an appropriate sequence of changes

in the sail orientation so that the phase space acts in our favour. We have used the same

ideas to derive a strategy to move along the family of equilibrium points in a controlled

way.

We find a sequence of changes in the sail orientation, discrete in time, that manage

to maintain the sail in a close neighbourhood of a given fixed point. This differs from

the solutions seen in the literature where, using optimisation techniques, they find a

continuous change on the sail orientation to keep the sails trajectory close to equilibria.

We have tested our strategies in two particular missions: the Geostorm Warning

Mission and the Polar Observer. We have also tested the robustness of our algorithms

including errors on the sail orientation at each manoeuvre and errors on the position and

velocity determination. Several Monte Carlo simulations have been done considering the

different sources of errors. We see that the errors on the sail’s orientations have a bigger

impact on the final result than the errors on position and velocity determination.

An advantage of our strategies is that the mission does not require previous planning

as the decisions taken by the probe only depend on its position in the phase space. In
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this way, one can deal with errors during the mission in a more flexible way.

In the near future, we would like to extend these ideas to derive strategies to maintain

the trajectory of a solar sail around an unstable periodic orbit. For instance, we could

consider the Halo - type orbits about SL1 and SL2 or periodic orbits above the ecliptic

plane. They all offer interesting mission applications.

Moreover, we would also like to use these ideas to derive station keeping strategies

around a fixed point for a low - thrust satellite. Here the system has an extra parameter,

as we can turn on and off the thrust or we can choose, within some range, the thrust

magnitude, something that is not possible with a solar sail. This adds an extra dimension

to the surfaces of artificial equilibria. Furthermore, we have more freedom in the thrust

direction than with a solar sail. To this end, it seems that the same ideas are applicable

and that we would also be able to control the trajectories of a low - thrust probe.

In the second part of this thesis we have studied the dynamics of the system close to

SL1. Most of these equilibrium points are of the type centre × centre × saddle. We have

developed numerical tools to understand the periodic and quasi-periodic motion around

these type of points. In Chapter 3 we describe the main details on the implementation

of the Graph Transform method for the reduction to the centre manifold. We have also

compared it with the Lie series method by taking the public software [Jor] and adapting

it to our model. It turns out that the graph transform method is more efficient than the

Lie series method in terms of computational time.

In Chapter 4 we have used these method to describe the non linear dynamics in an

extended neighbourhood of the equilibrium points close to SL1. We have considered

α = 0, and studied how different orientations in δ affected to the periodic and quasi-

periodic motion of the system. In this particular case, the system is time reversible and

the family of fixed points close to SL1 remains fixed by the reversibility. Hence, the

system has a local Hamiltonian behaviour around these points. In particular, the fixed

points that appear close to SL1 are of the type saddle × centre × centre.

We have seen that when the sail is perpendicular to the Sun - sail line (α = δ = 0),

the systems behaves essentially as the RTBP close to L1. We find families of planar and

vertical periodic orbits given by each of the two frequencies defining the centre motion.

The coupling between the two frequencies gives rise to families of invariant tori. We can

also see that for larger energy values Halo - type orbits appear. If we consider δ 6= 0 this

picture persists. Due to the reversible character of the system we still find two families

of periodic orbits emanating from the fixed point and families of invariant tori. We also

find Halo - type orbits, although they are no longer symmetric one to the other.
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If we consider α 6= 0 the fixed points are no longer of the type saddle × centre × centre

and the system is not time reversible. The dynamics on the centre projection spirals

inwards or outwards depending on the fixed point. We would like to study if at some

distance from the equilibrium point these periodic and quasi - periodic orbits persist

when α 6= 0.



114 Summary & Future Work



115

Appendix A

Expansion of the Equations of

Motion

Here we give the recurrent expressions that we have used in our computations of the

reduction to the centre manifold. In Chapter 4 we have studied the case α = 0, δ ∈
[−π/2, π/2]. Due to some simplifications that can be done on the set of equations we

consider two separate cases: α = δ = 0 and α = 0, δ 6= 0. We have used the well known

Legendre polynomials to expand the equations of motion in a recurrent way.

The Legendre polynomials are defined by the formula,

P0(x) = 1, Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n], for n = 1, 2, . . . , (A.1)

where Pn(x) is a polynomial of degree n. Equivalently the Pn(x) can also be defined as

the coefficients in the Taylor series expansion (at t = 0),

1√
1− 2xt− t2

=
∞∑
n=0

Pn(x)tn. (A.2)

Let us give some properties on the Legendre polynomials [AS92].

1. They are orthogonal w.r.t. the L2 inner product on the interval [−1, 1]:∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn. (A.3)
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2. They are symmetric or antisymmetric depending on the degree:

Pn(−x) = (−1)nPn(x). (A.4)

3. They can be constructed using the recurrent relations:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), (A.5)

with P0(x) = 1 and P1(x) = x. They also satisfy,

x2 − 1

n

d

dx
Pn(x) = xPn(x)− Pn−1(x). (A.6)

It is not difficult to verify, from equation (A.2), that,

1√
(x− A)2 + (y −B)2 + (z − C)2

=
1

D

∞∑
n=0

( ρ
D

)n
Pn

(
Ax+By + Cz

D

)
, (A.7)

where D2 = A2 + B2 + C2 and ρ2 = x2 + y2 + z2. We will use this expression to expand

the nonlinear terms of the equations of motion.

A.1 When the sail is perpendicular to the Sun - sail

line

When the sail is perpendicular to the Sun - sail direction α = δ = 0 and the equations

take the simplified form:

Ẍ − 2Ẏ =
∂Ω

∂X
, Ÿ + 2Ẋ =

∂Ω

∂X
, Z̈ =

∂Ω

∂Z
, (A.8)

where

Ω(X, Y, Z) =
1

2
(X2 + Y 2) +

(1− µ)(1− β)

rPS
+

µ

rPE
,

and rPS, rPE are the distances to the Sun and Earth respectively. See Appendix B for

further discussions on the dynamical properties of this particular case.

We start by translating the origin of coordinates to one of the fixed points SL1,2,3,
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using the change of variables:

X = ∓ξix+ µ+ ai, Y = ∓ξiy, Z = ξiz, (A.9)

where the upper sign corresponds to SL1,2 and the lower to SL3, a1 = −1 + ξ1, a2 = −1− ξ2

and a3 = ξ3. To have good numerical properties for the coefficients of the Taylor expan-

sion, we scale the distance from the fixed point to the closest primary to one [JM99, Jor99].

Using equation (A.7) we have that the equations of motion around the equilibrium

point in these new coordinates can be rewritten as,

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cn(µ, β)ρnPn

(
x

ρ

)
, (A.10)

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cn(µ, β)ρnPn

(
x

ρ

)
, (A.11)

z̈ + c2z =
∂

∂z

∑
n≥3

cn(µ, β)ρnPn

(
x

ρ

)
, (A.12)

where the left - hand side contains the linear terms and the right - hand side the nonlinear

ones. The coefficients cn(µ, β) are given by,

cn(µ, β) =



1

ξ3
i

(
(±1)nµ+ (−1)n

(1− µ)(1− β)ξn+1
i

(1∓ ξi)n+1

)
, for SLi, i = 1, 2

(−1)n

ξ3
3

(
(1− µ)(1− β) +

µξn+1
3

(1 + ξ3)n+1

)
, for SL3.

(A.13)

The upper sign of the first equation is for SL1 and the lower sign for SL2.

We define,

Tn(x, y, z) = ρnPn

(
x

ρ

)
.

Using equation (A.5) one can see that Tn(x, y, z) is a homogeneous polynomial of degree

n satisfies the recurrent expression,

Tn =
2n− 1

n
xTn−1 −

n− 1

n
(x2 + y2 + z2)Tn−1, (A.14)

with T0 = 1 and T1 = x. Now we can find recurrences to compute, ∂Tn/∂x, ∂Tn/∂y and
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∂Tn/∂z. Deriving equation (A.14) and using the equation (A.6) we see that,

∂Tn+1

∂x
= (n+ 1)Tn,

∂Tn
∂y

= yRn−1,
∂Tn
∂z

= zRn−1,

where Rn(x, y, z) is also a homogeneous polynomial of degree n and satisfies the recurrent

expression,

Rn(x, y, z) =
2n+ 3

n+ 2
xRn−1 −

2n+ 2

n+ 2
Tn −

n+ 1

n+ 2
(x2 + y2 + z2)Rn−2, (A.15)

with R0 = −1 and R1 = −3x.

Finally, the expansion of the equations of motion is:

ẍ− 2ẏ − (1 + 2c2)x =
∑
n≥2

cn+1(µ, β)(n+ 1)Tn,

ÿ + 2ẋ+ (c2 − 1)y = y
∑
n≥2

cn+1(µ, β)Rn−1,

z̈ + c2z = z
∑
n≥2

cn+1(µ, β)Rn−1.

(A.16)

A.2 When the sail is not perpendicular to the Sun -

sail line

Here we consider the sail orientation to satisfy α = 0 and δ 6= 0. In Chapter 4 we focus

on the equilibrium points on the FL1 family. These equilibrium points are on the Y = 0

plane between the Earth and Sun (µ − 1 < X < µ). We also have that the equations of

motion take the simplified form:

Ẍ − 2Ẏ =
∂Ω̃

∂X
− β (1− µ)

r3
PS

(X − µ)Z

r2

cos2 δ sin δ,

Ÿ + 2Ẋ =
∂Ω̃

∂Y
− β (1− µ)

r3
PS

Y Z

r2

cos2 δ sin δ,

Z̈ =
∂Ω̃

∂Z
+ β

(1− µ)

r3
PS

r2 cos2 δ sin δ,

(A.17)
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where

Ω̃ =
1

2

(
X2 + Y 2

)
+

(1− µ)(1− β cos3 δ)

rPS
+

µ

rPE
.

We start by translating the fixed point, (X∗, 0, Z∗), to the origin and scale so that the

distance to the closest primary is 1. This is done to have good numerical properties on

the coefficients of the Taylor expansion. As β is small the closest primary is always the

Earth. This change of variable is:

X = −ξx+X∗, Y = −ξy, Z = ξz + Z∗, (A.18)

where ξ =
√

(X∗ − µ+ 1)2 + (Z∗)2 is the distance between the fixed point and the Earth.

After this linear change of variables, equation (A.17) takes the form,

ẍ = 2ẏ + x− X∗

ξ
−KS

(x− X∗−µ
ξ

)

r3
ps

−KE
(x− X∗−µ+1

ξ
)

r3
pe

−Kss
(x− X∗−µ

ξ
)(z + Z∗

ξ
)

r3
psr2

,

ÿ = −2ẋ+ y −
(
KS
r3
ps

+
KE
r3
pe

)
y − Kss

y(z + Z∗

ξ
)

r3
psr2

,

z̈ = −
(
KS
r3
ps

+
KE
r3
pe

)(
z +

Z∗

ξ

)
+ Kss

r2

r3
ps

.

(A.19)

where KS = (1− µ)(1− β cos3 δ)/ξ3, KE = µ/ξ3 and Kss = β(1− µ) cos2 δ sin δ/ξ3. Now,

rps =
√

(x− (X∗ − µ)/ξ)2 + y2 + (z + Z∗/ξ)2,

rpe =
√

(x− (X∗ − µ+ 1)/ξ)2 + y2 + (z + Z∗/ξ)2,

r2 =
√

(x− (X∗ − µ)/ξ)2 + y2.

To expand the nonlinear terms in a recurrent way we use equation (A.7).

Let us take 1/rps:

1
rps

=
1√

(x− (X∗ − µ)/ξ)2 + y2 + (z + Z∗/ξ)2
=
∑
n≥0

(
ξ

η

)n+1

ρnPn

(
(X∗ − µ)x− Z∗z

ηρ

)
,

where η =
√

(X∗ − µ)2 + (Z∗)2.

We define TSn(x, y, z) = ρnPn

(
(X∗−µ)x−Z∗z

ηρ

)
. Using equation (A.5) we see that this
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is a homogeneous polynomial of degree n that satisfies the recurrent expression:

TSn+1 =
2n+ 1
n+ 1

(
(X∗ − µ)x− Z∗z

η

)
TSn −

n

n+ 1
ρ2TSn−1, (A.20)

with TS0(x, y, z) = 1, TS1(x, y, z) =
(X∗ − µ)x− Z∗z

η
. Hence,

1
rps

=
∑
n≥0

(
ξ

η

)n+1

TSn(x, y, z),

The same can be done for 1/rpe:

1
rpe

=
1√

(x− (X∗ − µ+ 1)/ξ)2 + y2 + (z + Z∗/ξ)2
=
∑
n≥0

ρnPn

(
(X∗ − µ+ 1)x− Z∗z

ξρ

)
.

We define TEn = ρnPn

(
(X∗−µ+1)x−Z∗)z

ξρ

)
. It also is a homogeneous polynomial of degree

n and using equation (A.5) we see that they can also be found in a recurrent way:

TEn+1 =
2n+ 1
n+ 1

(
(X∗ − µ+ 1)x− Z∗z

ξ

)
TEn −

n

n+ 1
ρ2TEn−1, (A.21)

with TE0(x, y, z) = 1, TE1(x, y, z) =
(X∗ − µ+ 1)x− Z∗z

ξ
. Hence,

1
rpe

=
∑
n≥0

TEn(x, y, z),

Finally, for 1/r2,

1
r2

=
1√

(x− (X∗ − µ)/ξ)2 + y2
=
∑
n≥0

(
ξ

|X∗ − µ|

)n+1

ρ̄nPn

(
−x
ρ

)
,

where ρ̄ = x2 + y2. We define Tbn = ρ̄nPn

(
x
ρ

)
, that is also a homogeneous polynomial of

degree n that satisfies the recurrent expression:

Tbn+1 =
2n+ 1
n+ 1

xTbn −
n

n+ 1
ρ̄2Tbn−1, (A.22)

with, Tb0 = 1, T b1 = x. Hence,

1
r2

=
∑
n≥0

(−1)n
(

ξ

|X∗ − µ|

)n+1

Tbn(x, y).
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With all this, equation (A.17) can be written as,

ẍ = 2ẏ + x−
X∗

ξ
−KS

24X
n≥0

cnTSn

353 „
x−

X∗ − µ
ξ

«
−KE

24X
n≥0

TEn

353 „
x−

X∗ − µ+ 1

ξ

«

−Kss

24X
n≥0

cnTSn

353 24X
n≥0

dnTbn

35„x− X∗ − µ
ξ

«„
z +

Z∗

ξ

«
,

ÿ = −2ẋ+

0@1−KS

24X
n≥0

cnTSn

353

−KE

24X
n≥0

TEn

353

−Kss

24X
n≥0

cnTSn

353 24X
n≥0

dnTbn

35„z +
Z∗

ξ

«1A y,

z̈ = −

0@KS
24X
n≥0

cnTSn

353

+KE

24X
n≥0

TEn

3531A„z +
Z∗

ξ

«
+Kss

24X
n≥0

cnTSn

353 24X
n≥0

dnTbn

35−1

.

(A.23)

where, cn =
(
ξ

η

)n+1

and dn = (−1)n
(

ξ

|X∗ − µ|

)n+1

.

Notice that at some point we need to invert the power series
[∑

n≥0 dnTbn
]
. Once we

have computed its the power expansion up to a given order N we can invert this series

with a simple iteration scheme [Knu81].

Let SQ =
∑N
|k|=0 qkx

k and SR = SQ−1 =
∑N
|k|=0 rkx

k, then it is easy to check that

the coefficient rk satisfy,

r0 = 1/q0,

rk =
1

qk

|k|−1∑
|j|=0

qk−j rj

 , for |k| = 1, . . . , N.
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Appendix B

Equilibrium Points when the Sail is

Perpendicular to the Sun - line

In this Appendix we focus on the particular case of a perfectly reflecting sail that is

oriented perpendicular to the Sun - sail line (α = δ = 0). Notice that the force due to

the sail is in the opposite direction to the Sun’s gravitational attraction. As we will see,

the system has lots of similarities with the RTBP. In some sense we can think that we are

changing the mass of the Sun.

The equations of motion of the RTBPS for this particular case are simplified. When

α = δ = 0 we have that,

~n =

(
(X − µ)

rPS
,
Y

rPS
,
Z

rPE

)
.

The equations of motion can be written as:

Ẍ − 2Ẏ =
∂Ω

∂X
, Ÿ + 2Ẋ =

∂Ω

∂X
, Z̈ =

∂Ω

∂Z
, (B.1)

where

Ω(X, Y, Z) =
1

2
(X2 + Y 2) +

(1− µ)(1− β)

rPS
+

µ

rPE
,

and rPS, rPE are the distances to the Sun and Earth respectively. As in the RTBP this

system has a first integral, similar to the Jacobi constant,

JC = Ẋ2 + Ẏ 2 + Ż2 − 2Ω(X, Y, Z).

If we introduce the classical momentums PX = Ẋ − Y , PY = Ẏ +X and PZ = Ż, the

equations take the Hamiltonian form, where
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H =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX −XPY −
(1− µ)(1− β)

rPS
− µ

rPE
.

Here we consider µ = µSE and β ∈ [0, 1], although only small values for β are consid-

ered realistic (Section 1.1.2).

To have an equilibrium point we need
∂Ω

∂X
=
∂Ω

∂Y
=
∂Ω

∂Z
= 0. Hence,

0 = X − (1− µ)(1− β)
X − µ
r3
PS

− µX − µ+ 1

r3
PE

, (B.2)

0 = Y

(
1− (1− µ)(1− β)

r3
PS

− µ

r3
PE

)
, (B.3)

0 = −Z
(

(1− µ)(1− β)

r3
PS

+
µ

r3
PE

)
. (B.4)

Notice that equation (B.4) is true if and only if Z = 0 as the other part is always the

sum of two positive quantity for β ∈ [0, 1]. Hence, the fixed points lie on the XY plane.

Now we focus on equation (B.3) and distinguish two possible cases, Y = 0 or Y 6= 0.

CASE I (Y = 0).

If Y = Z = 0 equation (B.2) turns into:

X − (1− µ)(1− β)
X − µ
|X − µ|3

− µ X − µ+ 1

|X − µ+ 1|3
= 0,

we follow the same scheme as in [Sze67] to find the values of X that satisfy this equation.

We consider three different cases, (a) the fixed point is on the left-hand side of both

primaries, (b) the fixed point is between the two primaries, and (c) the fixed point is on

the right-hand side of both primaries.

(a) X − µ < 0 and X − µ+ 1 < 0:

So |X − µ| = µ−X and |X − µ+ 1| = µ− 1−X then,

X +
(1− µ)(1− β)

(µ−X)2
+

µ

(1− µ−X)2
= 0.

We consider ξ = µ− 1−X, the distance to the closest primary, the Earth, so:

µ− 1− ξ +
(1− µ)(1− β)

(ξ + 1)2
+
µ

ξ2
= 0,
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and the following quintic must be satisfied,

ξ5 + (3− µ)ξ4 + (3− 2µ)ξ3 − (µβ − β + µ)ξ2 − 2µξ − µ = 0. (B.5)

(b) X − µ < 0 and X − µ+ 1 > 0:

So |X − µ| = µ−X and |X − µ+ 1| = X − µ+ 1 then,

X +
(1− µ)(1− β)

(µ−X)2
− µ

(X − µ+ 1)2
= 0.

We consider ξ = X − µ+ 1, then,

ξ + µ− 1 +
(1− µ)(1− β)

(1− ξ)2
− µ

ξ2
= 0,

and the following quintic must be satisfied,

ξ5 − (3− µ)ξ4 + (3− 2µ)ξ3 + (µβ − β − µ)ξ2 + 2µξ − µ = 0. (B.6)

(c) X − µ > 0 and X − µ+ 1 > 0:

So |X − µ| = X − µ and |X − µ+ 1| = X − µ+ 1 then,

X − (1− µ)(1− β)

(µ−X)2
− µ

(X − µ+ 1)2
= 0.

We consider ξ = X − µ the distance to the closest primary, the Sun, so:

ξ + µ− (1− µ)(1− β)

ξ2
− µ

(ξ + 1)2
= 0,

and the following quintic must be satisfied,

ξ5+(2+µ)ξ4+(1+2µ)ξ3−(1−µ)(1−β)ξ2−2(1−µ)(1−β)ξ−(1−µ)(1−β) = 0. (B.7)

We follow the classical RTBP notation and consider SL1 to be the fixed point between

both primaries and SL2 and SL3 the fixed points at the left hand side and right hand

side of both primaries respectively. Hence,

SL1 = (µ− 1 + ξ1, 0, 0), SL2 = (µ− 1− ξ2, 0, 0), SL3 = (µ+ ξ3, 0, 0),
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where ξ1, ξ2 and ξ3 are the positive solutions of the quintics (B.6), (B.5) and (B.7) respec-

tively. In Figure B.1 we can see the position of these three equilibrium point for β ∈ [0, 1].

Notice that as β tends to 1 the fixed points come closer to the Sun. For β = 1, SL1 and

SL3 collide with the Sun, and SL2 gets closer to the Earth, but not colliding with it.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5  0  0.5  1  1.5

β

X

SL2 SL1 SL3

Figure B.1: Position of the three collinear equilibrium points SL1,2,3 for β ∈ [0, 1].

CASE II (Y 6= 0) .

For equation (B.3) to be true we need,

1− (1− µ)(1− β)

r3
PS

− µ

r3
PE

= 0.

Without loss of generality, we take rPE = R and rPS = d · R and we try to find R and d

that satisfy equations (B.2) and (B.3). Then,

0 = X − (1− µ)(1− β)
X − µ
d3R3

− µX − µ+ 1

R3
,

0 = 1− (1− µ)(1− β)

d3R3
− µ

R3
,

(B.8)
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equivalently,

0 = (d3R3 − (1− µ)(1− β)− d3µ)X + (1− µ)(1− β)µ− µ(1− µ)d3,

0 = d3R3 − (1− µ)(1− β)− d3µ,
(B.9)

This holds if,

d3R3 − (1− µ)(1− β)− d3µ = 0 and (1− µ)(1− β)µ− µ(1− µ)d3 = 0.

Finally, we get that d = (1 − β)1/3 and R = 1. This means that the fixed points with

Y 6= 0 must satisfy rPE = 1 and rPS = (1− β)1/3. It is easy to see that this is true for,

X = µ− (1− β)2/3

2
, Y = ±(1− β)1/3

[
1− (1− β)2/3

4

]1/2

.

Hence, we have two other fixed points SL4,5:(
µ− (1− β)2/3

2
,±(1− β)1/3

[
1− (1− β)2/3

4

]1/2

, 0

)
.

Again, as β tends to 1 these two points come closer to the Sun, colliding with it for β = 1.

To summarise, this problem has 5 equilibrium points: Three of them (SL1,2,3) lay on

the line joining the two primaries, and their position is found by finding the only positive

root of a quintic; The other two fixed points (SL4,5) lay on the X, Y and can be found

as one of the vertexes of an isosceles triangle taking the other two primaries as vertexes.

The ratio of this triangles is 1 to (1 − β)1/3, where the small distance is given by the

Sun - SL4,5 side. In Figure B.2 we have a schematic representation of the fixed points

position for a fixed β. As β increases, all the fixed points come closer to the Sun.
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Figure B.2: Schematic representation of the position of the equilibrium points SL1,...,5 for a
fixed β.
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