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1 Introduction

So far in my research I was dealing with the dissipative partial di�erential equa-
tions (PDEs) exhibiting energy dissipation, which is in contrast to the conser-
vation of energy in conservative PDEs (cPDEs).

Examples of the dissipative PDEs (dPDEs) are

• The heat equation, modeling heat distribution over a domain.

• The Burgers equation, derived originally as a model of turbulence phe-
nomena, later on successfully used to model gas dynamics and acoustic
phenomena.

• The Navier-Stokes equations, famous equations with many mathematical
problems related, describing �uid �ow.

• The Kuramoto-Shivasinsky equation, modelling �ame propagation.

Only the �rst one being linear.

Examples of the cPDEs are

• The wave equation, it is not hard to guess, modelling wave propagation.

• The Korteweg-deVries equation (KdV equation), modeling solitary waves.

• The sine-Gordon equation, nonlinear version of Klein-Gordon equation.
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In this report we present summary of the project that focused on the speci�c
form of KdV equation. More closely speaking, �rstly, we describe the �nite
dimensional genesis of this equation, how it is derived, we show that it is a
limit of �nite dimensional structures and we present an attempt in understand-
ing the foundations of the equation by describing the dynamics of those �nite
dimensional structures.

2 Motivation

We motivate the work by the fact that the dynamics of conservative equations
is in general much di�erent than that of dissipative ones. When the energy
of a system stays trapped inside rather than escapes away a lot of interesting
phenomena is being born. Moreover if we introduce perturbation to the system
we may expect appearance of ergodicity and chaos, both describing the widely
studied phenomena of the system escaping deterministic behavior and being no
longer predictable. Due to the KAM theorem still some portion of determinabil-
ity will prevail after introduction of a perturbation, having form of the islands
in the sea of ergodicity.

3 Notation

We will use symbol q for describing both discrete values of displacement, denoted
by qi and a function q : R→ R.

4 Method of deriving cPDEs

4.1 Lattices

One of the methods of deriving cPDEs, we would like to focus on, considers a
cPDEs as the limit of equations describing interaction among n particles, when
n→∞.

De�nition 1 Let n ∈ N, n > 1.
We call a lattice a set (partially ordered) of n interacting particles placed on a
circle, where every particle interacts only with its closest neighbours.
We attach to i-th particle two values {qi, pi}, where pi is its momentum and qi
is its displacement from equilibrium position.

De�nition 2 f (qi − qi+1) is force of interaction in between i-th and i + 1-th
particle and u (qi − qi+1) is its potential, u : R → R, f : R → R are regular
functions.
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Dynamics on a lattice is considered as Hamiltonian system with Hamiltonian
in form

H =
∑ pi

2
+
∑

u (qi − qi+1) (1)

Therefore equations of motion take form of the system{
dqi
dt = pi
dpi
dt = −f (qi − qi+1) + f (qi−1 − qi)

, i = 0, . . . , n− 1. (2)

First start with presenting a few types of lattices, one linear and two nonlinear,
with di�erent forcing function f .

1. In the simplest case, interpreted as lattice of particles connected by springs
obeying Hooke's law u is a quadratic function, f is linear, equations of
motion take following form{

dqi
dt = pi
dpi
dt = qi+1 + qi−1 − 2qi

, i = 0, . . . , n− 1. (3)

This system is integrable.

2. Second degree polynomial forcing function f gives rise to Fermi-Pasta-
Ulam lattice (FPU lattice). Numerical investigation in 50's was source of
the famous FPU problem, essentially it revealed behavior of this system
which was completely out of authors expectations. Question of integrabil-
ity of this lattice will be answered later on.

3. Case that will be subject of our further investigation is the Toda lattice
with exponential forcing function. f(x) = a

(
1− ebx

)
. Surprisingly it

turned out to be integrable. Even more surprisingly if we replace expo-
nentials by in�nite series and truncate them at any given level we obtain
not integrable system. In particular force from FPU lattice can be viewed
as approximation of exponential function up to second order, thus as a
colorally we deduce that FPU lattice is not integrable.

4.2 Passing with number of particles to the limit.

In this section we describe a technique of passing to the limit with number of
particles and we present the limit (dPDEs). We assumed that all particles are
of uniform mass 1, thus in passing to the limit we need to introduce some kind
of normalization of masses. In fact instead of normalizing the masses we will
scale time equivalently. First of all we assume that there is a smooth 1-periodic
function q de�ned on the circle that approximates the displacements i.e. qi (t) =
q
(
t, 2π i

n

)
as n→∞, introducing scaling of time results in qi (t) = q

(
nt, 2π i

n

)
.

We will not present all the steps needed to derive cPDE from a lattice, but
rather an outline.
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Having approximation q, the equation q̈i = −f (qi − qi+1) + f (qi−1 − qi) is
equivalent to

n2
∂2q(nt, x)

∂t2
= −f(q(nt, x)− q(nt, x+ 2π

n
)) + f(q(nt, x− 2π

n
)− q(nt, x)), (4)

at points x = 2π i
n , i = 0, . . . , n. Then we Taylor expand q(nt, x + 2π

n ). This
step wipes out terms q(nt, x) in (4), rest is dependant on ε = 2π

n . We perform
truncation of terms having ε over given order, and depending on the level at
which we performed truncation we receive di�erent cPDEs. We present brie�y
what one receives for linear and nonlinear cases. We have respectively

1. Linear force lattice - the wave equation qtt = qxx. It is integrable system,
with in�nite number of integrals.

2. Nonlinear - depending on the level of approximation in (4)

• the wave equation qtt = aqxx +O
(
1
n

)
,

• the Boussinesq equation qtt =
[
q + q2 + qxx

]
xx

+O
(

1
n3

)
,

• subject of our further investigation the Korteweg-deVries equation

qt = q · qx +
1

2
qxxx (5)

5 KdV equation

In this section we focus on (5) and present a brief survey of rigorous knowledge
regarding it and what phenomena are embedded in this equation. Firstly, we
address the latter, because it was somehow indicator to what can be proved by
rigorous means. The equation admits solutions in form of soliton waves. By
soliton it is meant a solitary wave that travels at its own speed and its shape
remains unchanged. Numerical experiments performed back in 60's revealed
an astonishing feature of solitons, basically they almost do not interact during
collisions. After collision the velocities and amplitudes remains unchanged, only
what is being changed is the separation distance between solitons.

This behavior gave a hint that there has to be present in KdV equation in�nite
number of invariant quantities, some kind of memory that allows solitons to
remember their shape. It led to the discovery of in�nite set of integrals of
motion for this equation, see e.g. [Mk].

6 Undesirable e�ects

In this and in the following chapters we focus on the Toda lattice and KdV
equation, and analyze this model from dynamical systems point of view. First
of all, Toda lattice is an integrable system, as well as KdV equation, however
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having in�nite degrees of freedom it posses also in�nite number of integrals.
One of the consequences of this fact is that the motion can be described by
simple means, as we already have explained that in the case of KdV equation the
motion takes form of solitons, whereas in the Toda lattices particle and momenta
motion is quasi-periodic. This is due to the simplicity of the model. However
this model is of little relevance to the reality, because of strong assumption that
masses of all particles are equal to 1. We never �nd a system with bodies of
exactly equal masses in the world that surround us. In next chapter we get rid
of this �undesirable e�ect�.

7 Modi�cation of the model

In this section we propose a modi�cation to the original model, such that re-
sulting model will be free of what we called in the previous section �undesirable
e�ect�. Our modi�cation is to introduce lack of homogeneity to the particle
masses. For our purpose, we change masses of particles by introducing a per-
turbation to the particle masses.

De�nition 3 Inhomogeneous Toda lattice is a Toda lattice consisting particles
having masses satisfying the law mi = 1 + δ sin 2π i

n , where mi is mass of the
i-th particle, δ is the perturbation parameter.

In the case of inhomogeneous Toda lattice motion equations (2) are slightly
changed into{

dqi
dt = pi
dpi
dt = ae−b(qi+1−qi) − ae−b(qi−qi−1)

, i = 0, . . . , n− 1 (6)

Now very important question arise, what is the limit PDE of this system? We
give answer shortly, but do not provide here detailed analysis, similar to the one
presented in Section 4.2 plus some speci�c scaling.

De�nition 4 Continuous approximation of particle masses (3) is a continuous
function m : R→ [1− δ, 1 + δ], de�ned by m(x) = 1 + δ sin 2πx.

Under assumption that there is a smooth 1-periodic function q de�ned on the
circle that approximates the displacements i.e. qi (t) = q

(
t, 2π i

n

)
as n→∞ the

limit PDE of (6) is

qt +
δ

2
sin 2πx qx +

m(x)

2
qxxx +m(x)q · qx = 0 (7)

The inhomogeneous Toda lattice is not integrable for three particles [Si2].
We have predicted �interesting� dynamics embodied by this system, in the sense
that the motion is not anymore deterministic, and starting at some value of the
perturbation parameter δ the system shows some part of ergodic behavior. Goal
of our research is to examine inhomogeneous Toda lattice varying the number
of particles and searching for behaviour that is invariant to changing number of
particles. This, we hope, will be transfered to the limit case, which is perturbed
KdV equation. (7).
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8 Examination of inhomogeneous Toda lattice

8.1 Lyapunov exponents

In order to get an outlook of dynamics of (6) we used Lyapunov Characteristic
Exponents as dynamics indicator, see e.g. [Sk]. For our purposes we have been
approximating only maximal Lyapunov characteristic exponent. Basically it
gives asymptotic behaviour of separation between two orbits that were started
at points in some distance from each other.

De�nition 5 The quantity

χ1(x0, ξ0) = lim sup
t→∞

log ||ξ(t)||
t

is called maximal Lyapunov Characteristic Exponent (mLCE) of (6). Where x0
is an initial value, ξ(t) is a deviation vector at time t and ||ξ0|| = 1, evolution
of deviation vectors is governed by variational equation i.e. ξ̇ = D2H(q, p) · ξ.

Meaning of this quantity is as follows: if χ1(x0, ξ0) > 0 it guarantees that
given orbit is chaotic, on contrary if χ1(x0, ξ0) = 0 the orbit is regular. In our
approach we approximate (5) by numerical algorithm. We use the approximate

value χ1(x0, ξ0) =
log ||ξt||

t to predict the value of χ1(x0, ξ0).

De�nition 6 The sum

Sn = log ||ξ1||+ log
||ξ2||
||ξ1||

+ log
||ξ3||
||ξ2||

+ · · ·+ log
||ξn||
||ξn−1||

, ξi = ξ(iτ)

is called the n-th Lyapunov sum.

Using this approach we have to answer many questions. First, we cannot use
in�nite time, when should we stop calculations? Second, we have to perform
thresholding in order to having an approximation, determine if mLCE is zero or
positive. Last but not least question, how to make huge amount of data �nish
in reasonable time? We address them in the next section.

8.2 Numerical approximation

To answer �rst two questions, we determined by rule of thumb suitable values of
T , being maximum time, and χ̃1, being the threshold value. We have established
χ̃1 = 10−3, and then performed bunch of numerical simulations to look for T

such that if χ1 = 0 then χ1(x0, ξ0) =
log ||ξ(t)||

t will most likely drop under χ̃1

before time T . Thus T established at T = 20000. To address the last question,
one of the implemented techniques was to do linear least-squares �tting of the
Lyapunov sums (6) in order to determine if sums are growing linearly, because
then if �t is good enough (5) is positive and we can stop calculating. There is
also important issue how to avoid ||ξi|| being out of range of representable �xed-
point numbers, which may happen very quickly for chaotic orbits. To address
this we simply normalize ξi at each time iτ .
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Still, at �rst shot we implemented Taylor algorithm solving simultaneously
motion equations (6) and variational equations (5) using fast automatic di�er-
entiation library FADBAD [FADBAD]. It became obvious that this approach
can not be used in practice due to very poor e�ciency. Time of calculating

a ˜χ1(x0, ξ0) for (6) with thirty particles and T = 15000 was six minutes on a
PC. Then we become aware that such calculations could be made feasible by
using Taylor solver with variable step size using custom implementation of fast
automatic di�erentiation formulas that omits recalculating things. Doing so we

reduced total time of calculating mentioned ˜χ1(x0, ξ0) for thirty particles down
to six seconds. �gure 8.2 presents striking di�erence between both mentioned
approaches.
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Figure 1:

9 Transition region

We performed experiment, which aimed at �nding values of perturbation pa-
rameter δ− and δ+, such that if δ < δ− we will with high probability have
χ1(x0, ξ0, δ, n) = 0 and for δ > δ+ we will have χ1(x0, ξ0, δ, n) > 0. Basi-
cally speaking over δ+ there is chaos, whereas under δ− is determiniability. We
present results on �gure 9. By high probability we mean that for three ran-
dom initial conditions we get expected quantities. We are aware that number
of samples should be increased to re�ne this results, but with three particles
already calculations were very time consuming. All of the initial conditions had
normalized energy, we mean H = 5. For three particles very suprisingly we have
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not detected chaos at this energy level. The results give us hope that there is a
universal parameter δ that is in the transition region for all amounts of particles.
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Figure 2:

10 Future

In this last section we present our future goals. First of all we are going to look
at the transition region for all high number of particles up to 100 to predict what
is going to happen in the limit case. Then having this knowledge we are going
to search in this region hyperbolic periodic (quasi-periodic) orbits and then
examine if homo/heteroclinic phenomena is present in indicated region. Having
this knowledge we will move our attention to the limit PDE (7). Moreover to
make numerical calculations fast enough to realize those tasks our algorithms
will be parallelized to make them perform on a computer cluster.
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