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Abstract. The problem of three bodies with equal masses in S2 is known to

have Lagrangian homographic orbits. We study the linear stability and also a
“practical” (or effective) stability of these orbits on the unit sphere.

A nuestro buen amigo Ernesto Lacomba,
en recuerdo de años pasados y con
nuestros mejores deseos para los venideros.

1. Introduction. The classical (Euclidean) N -body problem in R2 or R3 was mod-
ified by Bolyai and Lobachevsky near 200 years ago to consider the case of curved
spaces. Since then it has received sporadically some attention, but the interest has
been renewed in the last years with several contributions. We refer to the nice
paper [1] for historical details and basic results. In particular that paper proves
the existence of several kinds of Lagrangian-like homographic orbits and classifies
all the possible solutions of this type. In [1] both the Lagrangian and Eulerian
homographic solutions are studied and the curvature κ is kept as a parameter.

As in the classical case one can scale the masses of the three bodies so that the
sum of the masses is equal to 1 or, if the masses are equal, they can be all set to
1. But the curvature κ cannot be scaled. Hence, it is an essential parameter in
the problem. But in what follows we shall consider just the motion on the sphere
of radius 1. The methodology used in present paper can be extended to arbitrary
positive values of κ, but the results will be different.

Our main point is that not only the existence of periodic solutions (either in a
fixed or rotating frame) is relevant, but mainly its local stability properties. Another
question that we face is that even orbits starting close to unstable homographic
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solutions can move, during a very long time, in a vicinity of moderate size of these
orbits due to the existence of many invariant nearby tori and its sticky properties.

We consider the motion of three point particles of masses equal to 1 moving on
S2 embedded in R3. Let qi, i = 1, 2, 3 denote the position of the i-th mass. Hence,
if we denote as ( , ) the scalar product, we have (qi,qi) = 1. The force function
which extends from the plane to S2 is

U(q) =
∑

1≤i<j≤3

(qi,qj)

[1− (qi,qj)2]1/2
.

The equations of motion are a particular case of the equations (8) in [1] and read
as

q̈i =

3∑
j=1,j 6=i

qj − (qi,qj)qi

[1− (qi,qj)2]3/2
− (q̇i, q̇i)qi, i = 1, 2, 3, (1)

where ˙ denotes differentiation with respect to the time t. In contrast with the
Euclidean case that system no longer has the centre of mass integrals, but it keeps
the energy and angular momentum integrals. Concretely if T = 1

2

∑3
i=1(q̇i, q̇i) and

H = T − U and c =
∑3

i=1 qi ∧ q̇i then H and c are first integrals. Due to the
invariance of the equations in (1) under the action of SO(3) one can always assume
that c points in the direction of the positive z axis if c 6= 0. The modulus of c will
be denoted simply as c.

A Lagrangian-like solution is a solution of (1) in which the three masses form
an equilateral triangle for all t. In [1] it is proved (Theorem 4) that these solutions
are only possible with three equal masses. This is why we restrict our attention
to this case. Furthermore the possible Lagrangian-like solutions, in any sphere
of arbitrary radius, belong to different classes, as given by Theorem 2 in [1]. We
present these results in a slightly modified version, adapted to the unit sphere. This
will be obtained from the phase portrait of the Hamiltonian Hz to be introduced
in Section 3 (see Figure 3). So, the Lagrangian-like solutions belong to one of the
following types.

1) If c = 0 then there are
a) Fixed points at the equator.
b) Homothetic orbits, analogous to the homothetic orbits in the planar case,

which are ejected from the north pole and return to collision with the
north pole after reaching a minimal value zm of z which is positive. Each
one of the masses moves along a meridian. Symmetrical orbits exist ex-
changing north pole by south pole and being now zm, negative, the max-
imal value of z.

c) Homothetic orbits ejected from the north pole and going to collision at
the south pole and vice versa.

d) Finally we find orbits ejected from the north pole and going asymptot-
ically to the equator when t → +∞. They spiral towards the equator.
Also the orbits symmetrical of these one by time reversal and the corre-
sponding ones in the southern hemisphere.

2) If 0 < c2 < 8/
√

3 then there are
a) A relative equilibrium solution with the bodies at the equator,
b) Relative equilibrium solutions, with the bodies moving in a parallel, which

depends on the modulus of c with constant angular velocity. Thet can
be seen as fixed points in a rotating frame. It is analogous to the planar
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case. There are two such solutions, one in the northern and one in the
southern hemisphere.

c) Homographic solutions, such that the bodies rotate with non-constant
angular velocity and the distance between them is changing. There are
three kinds of these orbits: the ones confined to the northern hemisphere
with 0 < zmin < z < zmax < 1, the symmetrical ones confined to the
southern hemisphere, and the orbits which visit, in a symmetric way,
both hemispheres crossing the equator and ranging in −1 < −zmax < z <
zmax < 1.

d) Finally there are “separatrix” like orbits, either in one hemisphere or the
other, which reach an extreme value of z, depending on the modulus of c,
and go spiraling asymptotically to the equator for t→ ±∞, approaching
the relative equilibrium solution at the equator (with some phase shift).

3) If c2 ≥ 8/
√

3, only the relative equilibrium at the equator, like in 2a), and the
homographic solutions which cross the equator like in 2c), subsist.

Full details and some illustrations will be given in Section 3.

We shall study the case 2b) and the homographic solutions confined to the north-
ern hemisphere of the case 2c). We have found relevant differences with the planar
case.

For the relative equilibrium solutions in the planar three-body problem, according
to the classical results (see e.g. [7]), the Siegel exponents for these solutions give
instability. For the relative equilibria in 2b) of the three-body problem in S2, we
show that there are ranges of the angular momentum for which these orbits are
linearly stable. This is the contents of Section 2.

In the homographic case 2c) a first difference with the planar problem is that the
orbits are quasiperiodic in a fixed frame (unless the ratio of the frequencies is ratio-
nal, which is a zero measure case), while in the planar case they are periodic, with
the three bodies moving in ellipses. Furthermore, results in [5] (already announced
in [4]) show that the Lagrangian-like homographic orbits for equal masses are to-
tally hyperbolic. In the present case there are open sets of energy and momentum
for which these orbits are stable. These properties are studied in Sections 3 and 4.

Finally Section 5 is devoted to study the dynamics of homographic orbits by
direct numerical simulation. A very rough escape criterion is set up, to decide that,
definitely, an orbit starting close to a homographic solution has gone away from
it. We found that orbits starting very close to some unstable homographic orbit
can remain relatively close to them for very long time. Even if there is no linear
stability one can consider that they have a kind of “practical” or “effective” stability.
Furthermore, for the orbits displaying linear stability one can not prove, in general,
the non-linear stability. Even if KAM theorem can be applied, in the case of three
or more degrees of freedom there is no way to prevent from the existence of Arnol’d
diffusion, but the possible escape is extremely slow. The idea is similar to what
happens around totally elliptic fixed points, as studied in [2] for the Lagrangian
solutions of the RTBP.

In the present case a reference orbit (a homographic one) can be unstable, but
many invariant tori can be close, with sticky properties (as follows using standard
tools of averaging) and, hence, the departure from the vicinity of them is a very
slow process. This study is completed with a plot of the rate of escape.
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As a final comment we consider the “essential” number of eigenvalues to be
computed. In principle the system has 6 degrees of freedom and hence one has to
consider 12 eigenvalues. Due to the energy (and time shift) we can skip two of
them. As we can assume the components cx and cy equal to zero one can skip two
additional eigenvalues. Finally the fact that cz is constant and the node elimination
allow to reduce to 6 essential eigenvalues. The reduction process can be seen like
the one in the Euclidean problem, as described, e.g., in [8]. Anyway, for most of
the analytical and numerical computations we shall not use reduction, but rather
the non-relevant eigenvalues are skipped at the end of the computations. In this
way the equations to integrate are kept easy and this is also used as an additional
check.

2. Stability of the relative equilibria. The system (1) has a Lagrangian-like
periodic solution in which the three bodies move on a parallel, forming an equilateral
triangle for all time, and rotating with angular velocity ω. Let r ∈ (0, 1) be the

radius of the parallel. Then the vertical coordinate z = ±
√

1− r2 remains constant.
For concreteness we introduce the coordinates qi = (xi, yi, zi)

T . Just asking that the
values of zi remain constant it is immediate to obtain ω = (24/(12r2 − 9r4)3/2)1/2.

It is clear that, when the radius tends to zero, the dynamics approaches the
planar motion, but with present variables the value of ω in these periodic solutions
tends to ∞. As a first step it is convenient to introduce scaled x, y variables and a
new time τ defined as follows

xi = rXi, yi = rYi, t = r3/2τ. (2)

In this way, when r tends to zero the equations tend to the planar ones plus a per-
turbation which is O(r2). Let ′ denote d/dτ . Then the angular frequency becomes
Ω = (24/(12− 9r2)3/2)1/2, bounded and bounded away from zero for the full range
r ∈ (0, 1).

Next step is the introduction of a rotating frame. We define new variables ξi, ηi
and the rotation R(θ), θ = Ωτ , as(

Xi

Yi

)
= R

(
ξi
ηi

)
, R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (3)

The equations of motion become (the indices i, j ranging in {1, 2, 3} and keeping
in mind that r is a constant parameter here)(
ξ′′i
η′′i

)
= Ω2

(
ξi
ηi

)
+2Ω

(
η′i
−ξ′i

)
+
∑
j 6=i

g
−3/2
i,j

[(
ξj
ηj

)
− (qi,qj)

(
ξi
ηi

)]
−r2hi

(
ξi
ηi

)
,

(4)
where

gi,j = ρ2
i + ρ2

j − 2pi,j
√
zi,j − r2(ρ2

i ρ
2
j + p2

i,j), ρ2
i = ξ2

i + η2
i , pi,j = ξiξj + ηiηj ,

zi,j = (1− r2ρ2
i )(1− r2ρ2

j ), (qi,qj) =
√
zi,j + r2pi,j ,

hi = Ω2ρ2
i + 2Ω(ξiη

′
i − ηiξ′i) + (ξ′i)

2 + (η′i)
2 + r2(ξiξ

′
i + ηiη

′
i)

2/(1− r2ρ2
i ).

Our present goal is to prove the following result.

Theorem 1. Consider the Lagrangian-like periodic orbits of three equal masses
moving on S2. Let the motion take place on a parallel with |z| =

√
1− r2. Then

the orbits are linearly stable (or totally elliptic) for r ∈ (r1, r2)∪ (r3, 1) and linearly
unstable for r ∈ (0, r1)∪(r2, r3). In the unstable domains the local behaviour around
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the orbits consists of two elliptic planes and a complex saddle. The bifurcations at
rk, k = 1, 2, 3 are Hamiltonian-Hopf bifurcations.

Remark 1. As it will be shown along the proof, the values of rk at which the
bifurcations are produced can be obtained from the zeros which belong to (0, 1), of
the polynomial

P1(R) = 27R5 + 3861R4 − 11574R3 + 11690R2 − 4716R+ 648,

where R denotes r2. Approximate values are

r1 = 0.55778526844099498188467226566148375,

r2 = 0.68145469725865414807206661241888645,

r3 = 0.92893280143637470996280353121615412.

Proof of Theorem 1.
It is easy to check that

ξ1 =1, η1 =0, ξ2 =−1/2, η2 =
√

3/2, ξ3 =ξ2, η3 =−η2, ξ
′
1 =η′1 =ξ′2 =η′2 =ξ′2 =η′2 =0

(5)
is a fixed point in the rotating frame. We are interested on the eigenvalues of the
differential of the vector field (4), written as a system of 12 first order equations, at
that point.

The structure of the differential of the vector field at the fixed points is easily
seen to be of the form

Df =

(
0 I
A B

)
.

Some tedious but elementary computations give

A = Ω2Â

being (24− 18r2)Â the matrix whose components âi,j are given by

â1,1 =72r4−120r2+44, â1,2 = â2,1 = â4,5 = â6,3 =0, â1,3 = â1,5 =−18r4+27r2−10,

â1,4 =−â1,6 =(6r4−11r2+6)
√

3, â2,2 =−24r2+20, â2,3 =−â2,5 =(−9r2+6)
√

3,

â2,4 = â2,6 =3r2+2, â3,1 = â5,1 =−9r4+24r2−10, â3,2 =−â5,2 =(3r4−10r2+6)
√

3,

â3,3 = â5,5 =18r4−48r2+26, â3,4 = â4,3 =−â5,6 =−â6,5 =(−18r4+24r2−6)
√

3,

â3,5 = â5,3 =−6r2+8, â3,6 =−â5,4 =(6r4−2r2)
√

3, â4,1 =−â6,1 =(9r4−12r2+6)
√

3,

â4,2 = â6,2 =−9r4+6r2+2, â4,4 = â6,6 =54r4−96r2+38, â4,6 = â6,4 =−18r4+36r2−16,

and

B=ΩB̂, being B̂=



0 2− 2r2 0 0 0 0
−2 0 0 0 0 0

0 0 −r2
√

3
2 2− r2

2 0 0

0 0 −2 + 3r2

2 r2
√

3
2 0 0

0 0 0 0 r2
√

3
2 2− r2

2

0 0 0 0 −2 + 3r2

2 −r2
√

3
2


.

We are interested in the characteristic multipliers of the periodic orbit, that is
in λ = exp(ζT ), where T = 2π/Ω is the period and ζ an eigenvalue of Df . Let us
introduce µ such that ζ = Ωµ and then λ = exp(2πµ). In this way we can skip the
factor in Ω2 in the characteristic polynomial, and the equation for µ becomes

p(µ) := det(Â+ µB̂ − µ2I) = 0.
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Let now R denote r2 and M = µ2. The characteristics polynomial, after multiplying
by (4− 3R)4 to skip denominators, dividing by M(M + 1) to take out some eigen-
values associated to first integrals and removing a factor depending on R, nonzero
in [0, 1], turns out to be

P (M)= (27R3 − 108R2 + 144R− 64)M4

+(81R3 − 324R2 + 432R− 192)M3

+(−81R5 + 810R3 − 1608R2 + 1212R− 336)M2

+(54R6 − 27R5 − 900R4 + 2788R3 − 3376R2 + 1812R− 352)M
+(1350R6 − 4050R5 + 3780R4 − 200R3 − 1624R2 + 888R− 144).

We recall that the condition for the linear stability of the relative equilibria is
that the solutions M of the previous equation be real and negative. In Figure 1 we
plot the real zeros of P (M) as a function of r. The values of r1, r2 and r3 given in
Remark 1, when the number of real negative zeros changes from 2 to 4 or vice versa
are shown by short vertical lines.

-2

-1.5

-1

-0.5

 0

 0  0.2  0.4  0.6  0.8  1

Figure 1. The evolution of the real zeros of P (M) as a function of r.

We consider first the limit cases, r = 0, 1 (R = 0, 1) for P (M). If R = 0 the roots

are M = −1 (double) and M = −1/2 ±
√

2 i. Last ones give µ = ±1/
√

2 ± i, the
well known Siegel exponents for equal masses in the planar case, see [7]. If R = 1
the roots are M = 0 and M = −1 (triple). We have to consider first what happens
for R > 0 small and for R < 1 but close to 1.

For R small the roots obtained by continuation of the Siegel exponents are simple
and only move slightly. To analyze the behaviour of the other roots we set M =
−1 + N . After simplification P (M) becomes 10R2 + 3RN − 4N2 + O(||(N,R)||3)
and a standard Newton polygon argument shows that the roots have expansions of
the form N = 2R + O(R2), N = −5R/4 + O(R2). Hence, M continues to be real
and close to −1.

For R close to 1 we introduce R = 1+S and expanding P (M) around S = 0,M =
0 we obtain−M+10S+O(||(M,S)||2). Hence the rootM = 0 for S = 0 has the form
M = 10S+O(S2) and keeps being negative for S < 0 near zero. For the triple root
we set M = −1+N and then we obtain 144S2+16NS+N3+O(S3, S2N,SN2, N4).
Again a Newton polygon argument gives roots of the form N = −9S +O(S2), N =
±4
√
−S +O(S3/2). Therefore, for S < 0 near zero (i.e., R < 1) the roots M keep

being real and close to −1.
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Changes on the stability of the Lagrangian-like periodic orbits can be produced
when a couple of conjugate imaginary roots µ become real (i.e., M crosses 0) or when
two couples of conjugate imaginary roots collide and move outside the imaginary
axis (i.e., M has a negative double root which moves to the complex), the so-called
Hamiltonian-Hopf bifurcation.

Setting M = 0 in P (M) = 0 we find that the possible values for R are R1,2 =

(10±
√

10)/15. These are double zeros, beyond the trivial zeros R = 1, R = −2/3.
Let now write R = R1,2 + S. The expansions of P (M) around M = 0, S = 0 give,
in both cases (i.e., for R = R1 and R = R2), expressions of the form αM + βS2 +
O(M2,MS, S3) with α < 0, β < 0. Hence, the value of M is not crossing zero. This
can be seen in Figure 1.

Finally it remains to check negative double roots for M . To this end we compute
the resultant of P (M) and dP (M)/dM as a polynomial in R which factorizes as

R2(R− 1)3(3R− 4)10(3R− 1)2P1(R)P2(R)2,

where P1 and P2 are irreducible polynomials of degree 5

P1(R) = 27R5 + 3861R4 − 11574R3 + 11690R2 − 4716R+ 648,

P2(R) = 486R5 − 2133R4 + 4428R3 − 4824R2 + 2512R− 468.

The roots of the first three factors are irrelevant in the range of interest. The double
factors 3R − 1, P2(R) give rise to double zeros, but there are no complex roots for
M because the roots return to the reals. This happens at values of R equal to 1/3
and approximately equal to 0.4044168969, 0.9360332760, 0.9652070601 (other zeros
of P2 being complex). But these concrete values are not relevant.

Hence, the only possible bifurcations are associated to the zeros of P1. As P1(1) <
0, P1(0) > 0 one should have one root with R > 1 and another with R < 0. A
simple computation gives three roots R1, R2, R3 ∈ (0, 1) which correspond to the
radii r1, r2, r3 given in Remark 1.

There are other values of r for which the corresponding values of µ are of the
form k i/2, k ∈ Z and, therefore, corresponding to eigenvalues of the monodromy
matrix of the periodic orbit equal to ±1. But these values of µ are simple and
cannot give rise to bifurcations. This ends the proof of Theorem 1. �

The zeros of P (M) as a function of R = r2 have been computed numerically
and from them the eigenvalues λ1, . . . , λ8, being λj+4 = λ−1

j for j = 1, . . . , 4 are
obtained. We recall that the eigenvalues already known to be associated to first
integrals have been skipped. On the other hand we have computed all the charac-
terictic multipliers by direct numerical integration of the equations (1). As expected
four of them are equal to 1. For the remaining ones the results agree with the ones
obtained from the roots of P (M) within the expected numerical accuracy.

Moreover, as said at the Introduction, we can expect a further reduction. Indeed,
it has been checked that the eigenvalues λ1, . . . , λ8 are not independent, beyond the
conditions imposed by the symplectic character. In any case, for the full range of
r ∈ (0, 1) one finds three indices j1, j2, j3, the differences between them being always
different from 4, such that λj1λj2λj3 = 1. This is the effect of the first integrals not
taken into account until this point. It is immediate to check also that the same
holds by taking the eigenvalues as exp(2πµj) where µ2

j = Mj and Mj are the roots
of the polynomial P (M) for any value of R ∈ [0, 1].
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3. Preliminaries for the homographic solutions. Now we pass to the homo-
graphic orbits, keeping the constant curvature κ = 1 and scaling again time and
momentum to normalise m = 1 for the three bodies.

We look for homographic solutions in the form

xi = r(t) cos(θ(t)+(i−1)2π/3), yi = r(t) sin(θ(t)+(i−1)2π/3), i = 1, 2, 3, (6)

for some scalar functions r(t), θ(t). We recall that qi = (xi, yi, zi), i = 1, 2, 3. To
study the homographic solutions we introduce Qi = (xi, yi), i = 1, 2 and a rotating
and pulsating reference system as

Qi = r(t)R(θ(t))Ui, Ui = (ξi, ηi)
T , i = 1, 2, 3

whereR(θ) is the rotation defined in (3). We remark that if we take r(t) as constant,
and θ(t) = Ωr−3/2t, we recover the change of variables introduced in Section 2.
However, to study homographic solutions now, we preserve the initial time t.

The equations in the new variables become the following(
ξ̈i
η̈i

)
= α1

(
ξ̇i
η̇i

)
+ α2

(
η̇i
−ξ̇i

)
+ α3

(
ηi
−ξi

)
+ α4

(
ξi
ηi

)
+

+
∑

j=1,3,j 6=i

d
−3/2
i,j

[(
ξj
ηj

)
− (qi,qj)

(
ξi
ηi

)]
(7)

where

α1 =−2
ṙ

r
, α2 =2θ̇, α3 =

2ṙθ̇+rθ̈

r
, α4 =− (r̈−rθ̇2)

r
−(q̇i, q̇i), di,j =1−(qi,qj)

2.

We are interested in the homographic solutions contained in northern hemisphere,
so we can assume z > 0. Using the constrain z2

i = 1 − r2(ξ2
i + η2

i ), i = 1, 2, 3, the
equations in (7) only depend on the variables ξi, ηi. A simple computation shows
that

(qi,qj) = r2(ξiξj + ηiηj) +
√

(1− r2ρ2
i )(1− r2ρ2

j ), ρ2
i = ξ2

i + η2
i ,

(q̇i, q̇i) = (ṙ2 + r2θ̇2)ρ2
i + 2rṙ(ξiξ̇i + ηiη̇i) + 2r2θ̇(ξiη̇i − ηiξ̇i) + r2(ξ̇2

i + η̇2
i )+

1

1− r2ρ2
i

[
rṙρ2

i + r2(ξiξ̇i + ηiη̇i)
]2

It is easy to check that (5) is a fixed point of (7) if and only if r(t), θ(t)satisfy the
following equations

r̈ =
c2(1− r2)

r3
− r(ṙ)2

1− r2
− 24(1− r2)

r2(12− 9r2)3/2
, (8)

θ̇ = c/r2, (9)

where c is the modulus of the angular momentum as before. We note that from
(8) and (9) it follows that all the αi coefficients in (7) only depend on r(t), ṙ(t). In
particular α3 = 0.

A fixed point of (8) is found at a given value of r when c2 = 3r(3 − 9r2/4)−3/2

and then θ̇ = ω, as given before. Letting aside the values r = 0 and r = 1, for any
c such that c2 ∈ (0, 8/

√
3) there exists a unique fixed point r = re, 0 < re < 1.

This value of r corresponds to the relative equilibrium for that value of c. Note that
close to r = 0 it is convenient to introduce scalings as done in Section 2 and that
close to r = 1 the radius is a bad coordinate and we shall introduce later a more
clear description using z as a good variable outside a neighborhood of the poles.
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Let be s = ṙ and multiply the system of first order equations by h(r) = (1−r2)−1.
The equation (8) can be written as

ṙ =
s

1− r2
, ṡ =

c2

r3
− 24

r2(12− 9r2)3/2
− rs2

(1− r2)2
,

which turns out to be Hamiltonian with Hamilton function

Hr(r, s) =
s2

2(1− r2)
+

c2

2r2
+

3r2 − 2

r(12− 9r2)1/2
. (10)

Given any c with c2 ∈ (0, 8/
√

3) the phase portrait of the Hamiltonian (10) is qual-
itatively like the one plotted in Figure 2 left. There are periodic orbits surrounding
the equilibrium point (r, s) = (re, 0). We note that these periodic orbits give rise
to homographic solutions. Each periodic orbit intersects the horizontal axis at two
points with r = r1, r = r2, r1 < r2. Furthermore, there exists a lower limit value
r1,lim of r1, which is found when we set r2 = 1 and hence r1,lim satisfies

c2/(2r2) + (3r2 − 2)/(r(12− 9r2)1/2) = c2/2 + 1/
√

3.

It is clear that as r1 increases towards re the value of r2 decreases to re.
Note that from r2 + z2 = 1 follows ṙ = −zż/r. Assume that an orbit tends

linearly asymptotically to z = 0, say for t → +∞, that is, ż = −mz + O(z2) for
some positive m and let us write r = 1− ε for r close to 1. It follows immediately

that, if c <
√

8/
√

3 then ṙ has a dominant term in ε when r → 1. However, if ż

tends to a finite value when z → 0 and hence r → 1, then the dominant term in
ṙ is of the order of ε1/2. The point (r, ṙ) = (1, 0) is degenerated. The degeneracy
disappears in the (z, ż) variables, as it will be seen in (12).

The right part of Figure 2 displays the domain in (c, r) that will be used in Section
4 to study the stability of homographic solutions in the northern hemisphere. It is
clear that for each one of the periodic orbits shown in the left part of the figure it
is enough to take as initial point the minimum radius.

-4

-2

 0

 2

 4

 0  0.25  0.5  0.75  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

Figure 2. Left: Examples of homographic orbits in the (r, ṙ)
variables around a relative equilibrium (near r = 0.75) for c = 1.
Right: the relevant domain in the (c, r1) variables: for each value

of c ∈ (0, (8/
√

3)1/2) we display in the variable r ∈ (0, 1) the range
between r1,lim and re that we shall use as initial data for homo-
graphic solutions.
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To look for the Lagrangian-like solutions using z instead of r as variable we note
that the equation equivalent to (8) using z is

z̈ = − z

1− z2
(c2 + (ż)2) +

24z

(1− z2)1/2(3 + 9z2)3/2
. (11)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

-1

-0.5

 0

 0.5

 1

-2 -1  0  1  2

-1

-0.5

 0

 0.5

 1

-4 -2  0  2  4

Figure 3. Examples of homographic orbits in the (ż, z) variables,
that can be read off as phase portrait of (12). Note that, to give
a feeling of what happens on the sphere, the variable displayed in
the vertical direction is z. The values of c are 0 (top left), 1 (top
right) and 2.5 (bottom).

As in the previous case one can write (11) in Hamiltonian form, in that case
without changing the time variable. Let us define w = ż/(1 − z2) as variable
canonically conjugated to z and then the new Hamiltonian is given by

Hz(z, w) =
w2

2
(1− z2) +

c2

2(1− z2)
− 3z2 − 1

[(1− z2)(3 + 9z2)]1/2
. (12)

Figure 3 shows the phase portrait for the values of c equal to 0, 1 and 2.5, last
one greater than (8/

√
3)1/2. From these plots one can easily read off the description

of the different types of Lagrangian-like solutions given at the Introduction.
Our next goal is to study the stability of the homographic orbits.

4. Stability of the homographic solutions. The stability of the homographic
solutions reduces to the analysis of a fixed point in a non-autonomous periodically
depending system as given by (7). Both equations (8) and (9) give r and θ as
functions of t with r(t) periodic. Note that in one period the angle turned by θ is
not a multiple of 2π in general. Then the homographic solution (6) is no longer
periodic but quasiperiodic in a fixed frame. An example of the motion of the first
mass in one of these orbits is shown in Figure 4.
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Figure 4. Part of an homographic solution, displaying (x1(t),
y1(t), z1(t)) in a fixed frame. The other bodies have the (x, y)
coordinates rotated by 2π/3 and 4π/3, respectively. These orbits
are quasiperiodic, in general. The orbit displayed here has been
computed for c = 0.7 and initial values for (r, θ) equal to (0.39, 0).

To face the stability problem we have used numerical methods. Using (7) we
have computed numerically the monodromy matrix associated to the fixed point
(5) for a grid of values in (c, r1). From this matrix we have computed the traces
which allow to obtain the eigenvalues, as it will be explained later.

Alternatively, for a given value of c, the equations of motion (1) are integrated
with initial conditions given by (6) being (r(t), θ(t)) solutions of the equations (8)
and (9), starting at t=0 with a value of r(0) in the range (r1,lim, re] and ṙ(0) = θ(0) =

0. Let us define R as
∑3

j=1(x2
j + y2

j ). It is obvious that Ṙ =
∑3

j=1(xj ẋj + yj ẏj) is

zero at t = 0. In fact R has a minimum there and then R̈ > 0 for the homographic
orbits which are not relative equilibria, according to the choice of r(0). We shall

use Ṙ = 0 at a minimum of R as Poincaré section, Σ, on a fixed level of energy
H = h corresponding to the homographic solutions. We use in Σ the local variables
(y1, x2, y2, x3, y3, ẏ1, ẋ2, ẏ2, ẋ3, ẏ3) and x1, ẋ1 are recovered from Ṙ = 0, H = h.

Then the Poincaré map P with respect to Σ and its differential DP can be
computed by integration of (1) and the first variational equations. We remark that
P has an extra rotation due to the fact that the final value θf of θ is not a multiple
of 2π. It is easy to “correct” this irrelevant fact by applying a rotation of angle
−θf to P and DP. In that way the final point under P coincides with the initial
one (except by the effect of tiny numerical errors). Another point worth to be
commented is that the local variables used in Σ are not canonically conjugated.
Hence DP is not a symplectic matrix, but it is conjugated to the symplectic matrix
that one would obtain by doing first a change to positions and conjugated momenta
in the equations in (1).

Hence one has to look for the eigenvalues of DP. It is immediately realized that
two of them are equal to 1, associated to the fact that the components cx and cy
of c are first integrals. The characteristic polynomial of DP is of the form

P10(λ) = (λ− 1)2(λ8 + 1 + a1(λ7 + λ) + a2(λ6 + λ2) + a3(λ5 + λ3) + a4λ
4) (13)

and the values of a1, a2, a3, a4 are computed from the entries of DP. Instead of
computing the eigenvalues λj , j = 1, . . . , 8 with λjλj+4 = 1 for j = 1, 2, 3, 4 as
solutions of (13) it is simpler to compute the associated traces Trj = λj +λj+4. The
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corresponding equation is

Tr4 + c1Tr3 + c2Tr2 + c3Tr + c4 = 0, (14)

where

c1 = a1, c2 = a2 − 4, c3 = a3 − 3a1, c4 = a4 − 2a2 + 2.

The linear stability condition is that all the zeros of (14) be real and range in the
interval (−2, 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.6  1  1.4  1.8  2.2

Figure 5. The set of values in the (c, r) variables, with r ≤ re(c)
for which the homographic solutions are found to be linearly stable.

The methods described have been applied to values of c, r in the domain shown
on the right side of Figure 2 with steps in c and r equal to ∆c = ∆r = 5 × 105.
In all near N0 = 104.9 × 106 cases have been examined. A relatively small, but
still important fraction of them, near 14.05× 106 show linear stability. The results
of both methods coincide and are displayed in Figure 5. As it should be, the part
of the domain which is linearly stable and has the relative equilibrium solutions as
boundary, coincides with the result given by Theorem 1. It is also worth to mention
the following facts:

(i) Similar to what happens in the case of relative equilibria, there are two “super-
fluous” eigenvalues related to additional first integrals not taken into account:
the invariance of cz and the node elimination. It is checked that, in all cases
and within the accuracy of the numerical computations, there exist indices
j1, j2, j3, j4, not two of them differing in 4 units, such that λj1λj2λj3λj4 = 1.

(ii) The lose of stability observed at the boundaries of the set shown in Figure 5,
different from the values r1,lim(c), re(c), seems to be due to Hamiltonian-Hopf
bifurcationsi in all cases.

(iii) In the figure one can observe tiny filaments of stability close to the boundary
associated to r1,lim(c). In analogy to what happens in the general planar 3-
body problem (see [6]) one can conjecture the role played by the separatrix
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which appears in Figure 2, an orbit tending asymptotically to r = 1 (z = 0) for
t→ ±∞, more clearly seen in Figure 3 top right. Using a standard argument
one can blow up the degenerate point (r, ṙ) = (1, 0) into a full line with two
fixed hyperbolic points having an heteroclinic connection between them. The
separatrix is seen as another heteroclinic connection between these points.
The analysis of the vicinity of these connections allows to prove the existence
of stability transitions. See [6] for details.

5. Global aspects around the homographic solutions. In order to see which
is the role of linear stability/instability in the dynamics of the orbits close to ho-
mographic ones, a massive simulation by long time direct numerical integration has
been carried out. Concretely, this has been done for each one of the ≈ 104.9× 106

initial conditions considered in Section 4. Even starting at the theoretical values of
a homographic orbit, the numerical errors move the solution to a vicinity of it and
can reveal the (nonlinear) “effective” stability or the instability. We shall consider
all these initial conditions as pixels in a plot.

The method used for the simulation proceeds as follows:

1) Start the integration for each pixel using initial data as explained in Section 4.
2) Define an “escape set” in a somewhat arbitrary way, just to detect that the

solution has moved away from the homographic orbit. In the simulations we
decide that a solution escapes if one of the following quantities is below 10−3:

i) ri = (x2
i + y2

i )1/2, i = 1, 2, 3,
ii) zi, i = 1, 2, 3,

iii) the distance between two of the bodies.
3) The integration is stopped when either a escape is produced or a maximal time

tf1 is reached. The set of pixels which subsist at that time is denoted as S1.
4) At that point a new maximal time tf2 > tf1 is used but only some pixels are

checked. As points which are deeply inside S1 can be expected to be more
stable that the ones close to the boundary, we define a “deepness” parameter
d2. Every pixel in S1, say of indices j, k so that c = j∆c, r = k∆r, such that
another pixel of indices j′, k′ with |j − j′| ≤ d2, |k − k′| ≤ d2 has escaped, is
checked up to the time tf2 and discarded if it escapes in turn. The process is
repeated until all the current points of deepness d2 subsist until t = tf2 . The
set of pixels which remain is denoted as S2.

5) The previous process is repeated starting with S2 with new values of the final
time and the deepness: tf3 > tf2 and d3 > d2. And then the checks are
stopped with a new, smallest, set of pixels S3.

The concrete values used for tf1 , tf2 and tf3 are 104, 105 and 106 and for d2, d3 the
values 3 and 5 have been adopted.

The results, as it can be expected, show that all the pixels which belong to the
set shown in Figure 5 belong to the non-escaping set S3. Diffusion can occur but
it is extremely slow. But the set S3 contains more points. Some selected regions
on the (c, r)-plane are shown in Figure 6. The gray regions correspond to points
in the domain of linear stability of Figure 5 and the black dots are pixels which
correspond to homographic solutions which are linearly unstable, but they do not
“escape” up to t = tf3 = 106.

We note that in these enlarged plots one can distinguish several tiny domains of
linear instability, specially close to r1,lim(c), but an important part of them is non-
escaping until t = tf3 . These tiny domains seem to reach the relative equilibria, as it
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Figure 6. Two selected domains in the (c, r)-plane for which an
abundant set of non-escaping points (in black) outside the domain
of linear stability (in gray) has been found.

has been checked for some of the largest ones, but they are extremely tiny and quite
soon they are below the pixel resolution. Most of them are almost irrelevant from
a measure point of view. The explanation of its non-escaping character is rather
simple. Points which start at a linearly unstable homographic solution will go away
because of the numerical errors in the initial data and the ones which appear in the
integration of the ODE. These errors produce some component along the unstable
direction(s) and this component increases with time. But there can be plenty of
nearby invariant tori. The orbit can come close to them and became “effectively
stable” for a long time. An example is shown in Figure 7. On it we represent iterates
of the Poincaré map P, associated to the section Ṙ = 0 introduced in Section 4,
for two sets of initial data. One of them has parameters (c, r) = (0.84, 0.65) and
belongs to the stable (gray) set in Figure 6 top. The other has (c, r) = (0.84, 0.62)
and belongs to the unstable (black) set in the same plot. Up to 106 iterates of P
have been computed in both cases, but only one every 100 iterates is displayed.
The time span in both cases is ≈ 2.8 × 106 units. In the plot the variables shown
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are the values of (x1, x2, x3), the points in black corresponding to r = 0.65 and the
ones in gray to r = 0.62. Despite the maximal Lyapunov exponent for the last case
is Λ ≈ 0.053785 the orbit seems to be confined, not far from the stable one, for a
very long time.

-0.6

 0

 0.6
-0.6

 0
 0.6

-0.6

 0

 0.6

Figure 7. Poincaré iterates in Ṙ = 0 for a homographic stable
orbit (in black) and for a nearby unstable one (in gray) which is
not escaping for a long time. See the text for details.

As a final point we comment on the “rate of escape” observed in the previous
simulations. When we start the iterations with N0 pixels, most of them (near
80%) escape quickly, before t = 100. Then a slower rate of escape is seen, so that
at t = 104 the number of non-escaped pixels is ≈ 15.6 × 106. This reduces to
≈ 15.0 × 106 for t = 106, still far away of the number of pixels (≈ 14.05 × 106)
associated to linear stability. Figure 8 shows the rate of decay. It is quite slow,
giving an evidence of the strong sticky character of invariant tori which exist close
to the some unstable homographic solutions.

 0

 10000

 20000

 30000

 4  4.5  5  5.5  6

Figure 8. Using log10 scale for the time between 104 and 106 and
40 divisions in that scale (1 division amount to multiply t by 1.122)
for every value tj = 104+j/20 we display the number of points which
escape between tj−1 and tj .
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6. Future work. In a natural way there are several possible extensions of the
present work. Just to mention a few one can consider

1) To extend the linear stability analysis to other values of the curvature κ. For
instance, how the curvature influences the fraction of linearly stable relative
equilibria?

2) To carry out an analysis of the vicinity of the separatrix orbits shown in Figure
3 top right and bottom.

3) To do a massive check of the applicability of KAM theorem around the linearly
stable solutions, using the standard jet transport methods (see, e.g., [3]) and
to validate rigorously a sample of them.

4) To derive a theoretical approach, applicable to many other problems, which
allows to explain the rates of escape obtained in Section 5.
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[3] T. Kapela and C. Simó, “Rigorous KAM results around arbitrary periodic orbits for Hamil-
tonian Systems” Submitted for publication, 2011.
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