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This paper studies various Hopf bifurcations in the two-dimensional plane Poiseuille problem.
For several values of the wavenumber α, we obtain the branch of periodic flows which are born at
the Hopf bifurcation of the laminar flow. It is known that, taking α ≈ 1, the branch of periodic
solutions has several Hopf bifurcations to quasi-periodic orbits. For the first bifurcation, previous
calculations seem to indicate that the bifurcating quasi-periodic flows are stable and go backwards
with respect to the Reynolds number, Re. By improving the precision of previous works we find that
the bifurcating flows are unstable and go forward with respect to Re. We have also analysed the
second Hopf bifurcation of periodic orbits for several α, to find again quasi-periodic solutions with
increasing Re. In this case the bifurcated solutions are stable to superharmonic disturbances for Re
up to another new Hopf bifurcation to a family of stable 3-tori. The proposed numerical scheme
is based on a full numerical integration of the Navier-Stokes equations, together with a division by
3 of their total dimension, and the use of a pseudo-Newton method on suitable Poincaré sections.
The most intensive part of the computations has been performed in parallel. We believe that this
methodology can also be applied to similar problems.

I. INTRODUCTION

The theory of hydrodynamic stability is one of the main topics in fluid mechanics. Poiseuille as well as Taylor–
Couette flow are test problems where it is possible the evaluation of different analytical and numerical methods,
due essentially to the simplicity of their geometry. The dynamics of plane Poiseuille flow departs from the laminar
flow. The stability of the laminar solution to infinitesimal disturbances has been analysed linearly and gives rise to
the Orr–Sommerfeld equation. This equation has been studied by several authors as Thomas [1], Orszag [2], and
Maslowe [3] among others, and it is well understood. The critical Reynolds number of the linear theory, Recr =
5772.22 for the wavenumber α = 1.02056, has been obtained by this approach. However, as experiments of Carlson,
Widnall, and Peeters [4], Nishioka and Asai [5], and Alavyoon, Henningson, and Alfredsson [6] showed, transition
to turbulence is observed for Reynolds number ≈ 1000, what motivates that finite-amplitude disturbances originate
the transition. The understanding of the transition to turbulence has been conjectured by Saffman [7] to depend on
intermediate vortical states and turbulence takes place due to their three-dimensional instability. In recent years,
authors have also payed attention to subcritical transition models based on transient optimal growth (see Schmid and
Henningson [8], for instance). Examples of vortical states are periodic[25] flows in time or space, among which can be
mentioned: two-dimensional travelling waves, secondary flows in two or three dimensions (for them the flow rate and
the pressure gradient are constants) and quasi-periodic solutions. Ehrenstein and Koch [9] discovered a new family
of secondary bifurcation branches in dimension 3, which contains only even spanwise Fourier modes and reduces the
critical Reynolds number (defined in terms of the averaged velocity across the channel) to ReQm

≈ 1000 as observed
in experiments.

Two-dimensional disordered motion is associated with the large scales of some turbulent flows, so there probably
exist attractors for those two-dimensional flows. Besides, two- and three-dimensional states can compete and coexist
in the final flow (cf. Jiménez [10] and the references therein). In spite of the fact that transition to turbulence is a
three-dimensional phenomenon, there are many properties of the two-dimensional flows observed in fully turbulent
three-dimensional flows such as wall sweeps, ejections, intermittency and bursting, as Jiménez [11] showed. The two-
dimensional case has attracted the attention of many authors but it is not completely understood as the problem of
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two-dimensional transition to turbulence proves. Due to Squire’s [12] theorem, to every three-dimensional perturbation
of the linearized Navier–Stokes equations for a given Re, α, it corresponds a two-dimensional one for some α̃ > α
and R̃e 6 Re, so the critical Re for the linear theory must be attained by a two-dimensional flow. This result has
been one of the main reasons to firstly try to understand the two-dimensional case, apart from the obvious easiness
of computations compared to the three-dimensional situation. In addition, some of the properties obtained from the
two-dimensional case can also provide new insight for three-dimensional flows.

In this work we intend to analyse the dynamics of an easily treatable problem without domain complexities as
is the case of the two-dimensional plane Poiseuille flow. Different levels of bifurcation to respective vortical states
are considered, starting at the basic parabolic flow. From it, a family of travelling waves is born subcritically (see
§ IV C) for α ≈ 1. There are many papers concerning this kind of waves: Soibelman and Meiron [13] gave an excellent
review about it. As a starting point for our computations we have also reproduced the calculations to find the
travelling waves for several values of α. Jiménez [10, 11] and Soibelman and Meiron [13] obtained the next level
of bifurcation to quasi-periodic solutions. Employing full numerical simulation in time, Jiménez [10, 11] computed
different attractor flows with a moderate number of Chebyshev and Fourier modes. On the other hand, Soibelman
and Meiron [13] implemented an algebraic approach to capture stable and unstable quasi-periodic flows, but the
number of modes used were not enough to give good results and they were not able to carry out the stability analysis.
The method implemented in the present work combines both: we solve a stationary problem to compute travelling
waves for an observer moving at an appropriate speed, whereas the quasi-periodic flows are found by means of full
numerical integration of the Navier–Stokes equations. Through algebraic manipulations, we express the discretized
Navier–Stokes system only in terms of the stream component of the velocity. As a consequence, the dimension of
the system is divided by 3, reducing considerably the computational effort. Using the numerical integrator, we have
built a Poincaré section of the flow, in order to apply a pseudo-Newton method for obtaining also unstable quasi-
periodic solutions. These unstable intermediate states of the flow provide a highly useful insight into the transition
process, as exemplified by secondary bifurcations in shear flows (see Casas and Jorba [14] for instance). The spatio-
temporal symmetries of the channel allows the reduction of quasi-periodic flows with two-frequencies to periodic flows
in the appropriate Galilean reference. The quasi-periodic solutions found in this work correspond to the first two
Hopf bifurcations of travelling waves for the case of constant pressure drop through the channel, and the first Hopf
bifurcation when the mass flux is held constant. The property of behaving as time-periodic flows if we take a suitable
Galilean reference, simplifies enormously the search of this kind of solutions. For them, the associated return time
to the Poincaré section is roughly 10000 time units at the first Hopf bifurcation for constant pressure, what makes
the temporal integration very costly. The considered numerical procedure utilizes a parallel algorithm to evaluate the
different columns of a Jacobian matrix, needed in the application of pseudo-Newton’s method for the continuation
of quasi-periodic solutions. We find that on the analysed Hopf bifurcations for both constant pressure and constant
flux formulations, there exist quasi-periodic flows with increasing Re for some range of α and with decreasing Re
for some other α: the bifurcations are supercritical or subcritical respectively. On the first bifurcation for constant
pressure, we have traversed a curve of unstable quasi-periodic solutions. On the remaining bifurcations, there are
stable quasi-periodic solutions to disturbances with the same wavenumber α and likewise, for Re sufficiently large, we
have obtained unstable solutions.

Once we have situated the different studies concerning Poiseuille flow, in the next section we pose the concrete
terms that define the plane Poiseuille problem in two dimensions, together with their equations for both cases of
constant pressure and flux. Next in§ III we explain the main details of the numerical methods. In§ IV we review some
results of the Orr–Sommerfeld equation and obtain, for several values of α, the bifurcating solutions of time-periodic
flows. From these we analyse in §V the bifurcating branches to quasi-periodic solutions at the above-mentioned Hopf
bifurcations. Finally in §VI we point out some conclusions.

II. POISEUILLE FLOW

We consider the flow of a viscous incompressible two-dimensional fluid, in a channel between two parallel walls,
governed by the Navier–Stokes equations together with the incompressibility condition

∂u
∂t

+ (u · ∇)u = −∇p+
1
Re

∆u, ∇ · u = 0, (1)

where u = u(x, y, t) = (u, v)(x, y, t) represents the two-dimensional velocity, p = p(x, y, t) the pressure and Re the
Reynolds number. As boundary conditions we suppose no-slip on the channel walls at y = ±1 and, at artificial
boundaries in the stream direction x, a period L, i.e.

u(x,±1, t) = v(x,±1, t) = 0
(u, v, p′)(x+ L, y, t) = (u, v, p′)(x, y, t)

}
x ∈ R, y ∈ [−1, 1], t > 0, (2)



3

being p′ = p + Gx, for G = G(t) the mean pressure gradient on the channel length, L, in the streamwise direction.
For the system previously described there is a time-independent solution known as the basic or laminar flow that has
a parabolic profile, namely

ub(y) = 1− y2, vb = 0, ∇pb = (− 2
Re

, 0).

Magnitudes in (1)–(2) are non-dimensional. We consider the two typical formulations used to drive the fluid:
fixing the total flux Q, or the mean pressure gradient G, through the channel. For each of them we obtain a different
definition of Re = hUc/ν namely, ReQ = 3Q/4ν and Rep = Gh3/2ρν2 respectively, where, in dimensional magnitudes,
h represents half of the channel height, Uc the velocity of the laminar flow in the centre of the channel, and ν and ρ
the constant kinematic viscosity and density. For a given laminar flow, i.e. letting Uc fixed, both definitions of the
Reynolds number coincides with Re = hUc/ν. That is not the case for secondary flows, defined as the ones having
constant flux and mean pressure gradient through the channel. If we consider such a flow u(x, y), expressed for each
formulation by means of respective Fourier series

uQ(x, y) =
∑
k∈Z

ûQk (y)eikαx, up(x, y) =
∑
k∈Z

ûpk(y)eikαx,

then, using the notation [f ]ba := f(b)− f(a), it is easy to check that (see for instance Casas [15])

Rep
ReQ

= −1
4

[
∂ûQ0
∂y

]1

−1

,
ReQ
Rep

=
3
4

∫ 1

−1

up(x, y) dy, (3)

and the corresponding relationships between velocities and pressures

up(x, y) =
ReQ
Rep

uQ(x, y), pp(x, y) =
Re2Q
Re2p

pQ(x, y). (4)

We will employ later that periodic conditions at artificial boundaries in the stream direction, yield a great simpli-
fication in the structure of the flow: quasi-periodic solutions may be viewed as periodic flows, and periodic solutions
as stationary ones, if the observer moves at adequate speed c, in the stream direction. For this reason we perform the
change of variable x̃ = x− ct, which (writing again x instead of x̃) turns system (1) into:

∂u

∂t
+ (u− c)∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
Re

(
∂2u

∂x2
+
∂2u

∂y2

)
∂v

∂t
+ (u− c)∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1
Re

(
∂2v

∂x2
+
∂2v

∂y2

)
∂u

∂x
+
∂v

∂y
= 0,

(5)

together with boundary conditions as in (2). We can recover (1) by simply taking c = 0 in (5).

III. NUMERICAL APPROACH

Let us now describe the numerical procedure. For system (5) we want to follow the temporal evolution of an
initial flow subjected to the incompressibility condition, ∇ · u = 0, and boundary conditions (2). To this end we
use a spectral method to approximate velocities u, v and pressure deviation p′, which from now on we consider
non-dimensional quantities. We recall that p = p′ −Gx and as it is easily obtained (see for example Casas [15])

G = − 1
2ReQ

[
∂û0

∂y

]1
−1

or G =
2
Rep

, (6)

respectively for the constant flux or pressure cases, so in the first one the mean pressure gradient varies with time
and it is constant for the second one.
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Spatial discretization. We use a standard Fourier-Galerkin, Chebyshev-collocation approach (cf. Canuto et al.
[16]) in order to discretize x, y derivatives. In this way, we consider Fourier series (with α = 2π/L the parameter
wavenumber):

(u, v, p′)(x, y, t) =
N∑

k=−N

(ûk, v̂k, p̂k)(y, t)eikαx, x ∈ R, y ∈ [−1, 1], t > 0,

which substituted in (5) gives rise to a system of partial differential equations for the Fourier coefficients (ûk, v̂k, p̂k),

∂ûk
∂t

+
̂[

(u− c)∂u
∂x

+ v
∂u

∂y

]
k

= −ikαp̂k +
1
Re

(
−k2α2ûk +

∂2ûk
∂y2

)
+ δk0G,

∂v̂k
∂t

+
̂[

(u− c)∂v
∂x

+ v
∂v

∂y

]
k

= −∂p̂k
∂y

+
1
Re

(
−k2α2v̂k +

∂2v̂k
∂y2

)
,

ikαûk +
∂v̂k
∂y

= 0,

(7)

where −N 6 k 6 N, [̂·]k stands for the order kth Fourier coefficient of [·], δ00 = 1, and δk0 = 0 for k 6= 0. Because
u, v, p′ are supposed to be real functions, it is enough to consider modes ûk, v̂k, p̂k for k = 0, . . . , N in (7). The
corresponding no slip boundary conditions in (2) are now written as

(ûk, v̂k)(±1, t) = 0, for t > 0 and k = 0, . . . , N. (8)

The previous system is imposed at two different sets of Chebyshev abscissas to avoid indeterminacy, namely ym =
cos(πm/M) (velocities and momentum) for m = 1, . . . ,M − 1, and ym+1/2 = cos(π(m + 1/2)/M) (pressure and
continuity) for m = 0, . . . ,M − 1.

Reduced equations. To emphasize the linear character of some operations, we now write system (7) as

u̇k = −
[
(u− c)∂u

∂x
+ v

∂u

∂y

]
k

−DxkC
−1
1 C2pk +

1
Re

(D2
xk + C−1

1 D2
yC1)uk + δk0G, (9a)

v̇k = −
[
(u− c)∂v

∂x
+ v

∂v

∂y

]
k

− C−1
1 DyC2pk +

1
Re

(D2
xk + C−1

1 D2
yC1)vk, (9b)

DxkC
−1
2 C1uk + C−1

2 DyC1vk = 0, (9c)

for k = 0, . . . , N , where we have taken ‘ ̂ ’ out of [̂·]k, ûk, v̂k, p̂k for convenience. In (9) we have represented vectors of
values uk, vk at the grid ym and pk at the grid ym+1/2; C1, C2 are the corresponding matrices of cosines transforms
for grids ym and ym+1/2, and Dxk, Dy denote the respective matrices of partial derivatives in x, y.

From (9c) we obtain a matrix Tk that carries out the transformation v̄k = Tkūk where ūk = (uk,1, . . . , uk,M−2)t
and v̄k = (uk,M−1, vk,1, . . . , vk,M−1)t for k = 1, . . . , N . For k = 0, from the continuity equation in (7), we obtain
∂v0/∂y = 0. Applying boundary conditions, v0(±1) = 0, we get v0(y) = 0. This implies v0,1 = · · · = v0,M−1 = 0.

For k = 1, . . . , N we introduce the notation

Uk = −
[
(u− c)∂u

∂x
+ v

∂u

∂y

]
k

+
1
Re

(D2
xk + C−1

1 D2
yC1)uk + δk0G,

Vk = −
[
(u− c)∂v

∂x
+ v

∂v

∂y

]
k

+
1
Re

(D2
xk + C−1

1 D2
yC1)vk,

Ūk = (Uk){1,...,M−2},

V̄k =
(

(Uk){M−1}
Vk

)
,

Q̄k = (DxkC
−1
1 C2){1,...,M−2},

Qk =
(

(DxkC
−1
1 C2){M−1}

C−1
1 DyC2

)
,

where A{i1,...,in} stands for rows i1, . . . , in of matrix A. Equations (9a) and (9b) can be now expressed as{
˙̄uk = Ūk − Q̄kpk,
˙̄vk = V̄k −Qkpk.
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The matrix Qk turns out to be an M ×M invertible matrix. Consequently, from the second equation we obtain
pk = Q−1

k (V̄k − ˙̄vk), which substituted into the first one yields

˙̄uk = Ūk − Q̄kQ−1
k (V̄k − ˙̄vk) = Ūk − Q̄kQ−1

k (V̄k − Tk ˙̄uk).

Finally letting Pk = Q̄kQ
−1
k , we can also invert I − PkTk, and thus we may solve for ˙̄uk{

u̇0 = U0,
˙̄uk = (I − PkTk)−1(Ūk − PkV̄k), k = 1, . . . , N,

(10)

where I is the identity matrix of dimension M − 2 and we have extended the definition of Uk for k = 0. Bearing in
mind the substitution v̄k = Tkūk, we observe that system (10) does not depend on v̄k nor pk: it only depends on u0

and ūk for k = 1, . . . , N . In addition, due to the elimination of pressure in (10), we avoid the indeterminacy caused by
an additive constant. However this indeterminacy has no effect upon the pressure gradient. Likewise this formulation
saves the problems in the imposition of consistent initial conditions with the incompressibility. At the same time the
stability analysis is simplified from (10).

Temporal evolution. Once removed v and p from (9), in (10) it just remains to discretize temporal derivatives. We
can express (10) as

˙̄uk = Lk(ūk) +Nk(ū0, . . . , ūN ), k = 0, . . . , N, (11)

where ū0 = u0 and Lk, Nk corresponds respectively to linear and nonlinear terms in ū0, . . . , ūN on the right hand
side of (10). We adopt a usual scheme for advection-diffusion problems: letting ūnk be ūk at the time instant n∆t for
some fix time step ∆t, we approximate N j

k = Nk(ūj0, . . . , ū
j
N ) by an explicit method (Adams–Bashforth) and Lk(ūnk )

by an implicit one (Crank–Nicolson), so that (11) yields

ūn+1
k − ∆t

2
Lk(ūn+1

k ) = ūnk +
∆t
2
[
Lk(ūnk ) + 3Nn

k −Nn−1
k

]
. (12)

For the kind of solutions treated in this work and moderate values of Re . 10000, we have verified local errors
originated in (12) from the time discretization. For that purpose, we approximate temporal derivatives by central
finite differences and then improve precision by means of extrapolations. In all tested cases we have found errors
O((∆t)2), which is in agreement with the discretization errors in (12). For some flows considered in §V it has been
necessary to reduce ∆t to avoid overflows in u(t).

We apply system (12) to the two formulations described in § II, namely, constant flux and constant mean pressure
gradient. The imposition of constant flux Q = 4/3 (a linear condition) allows us to reduce by one the number of
unknowns in ū0. Therefore the number of equations is also reduced by one. This condition is related to the formula
derived for G in (6), which depends linearly on ū0 and thus it is included in L0. On the other hand, in the constant
pressure case, the value of G is held constant and so it is a nonlinear term. Taking into account that in (10), u0

has only real components but for k = 1, . . . , N, ūk it is a complex vector, we conclude that the block for k = 0 has
dimension M − 2 or M − 1 respectively for ReQ and Rep formulations, and dimension M − 2 for the 2N remaining
real blocks. In summary, each time step, (12) implies the solution of a block diagonal linear system of total real
dimension (2N + 1)(M − 2) in the constant flux case and (2N + 1)(M − 2) + 1 in the constant pressure one. That
means a rough division by 3 in the dimension of the whole system (7). In what follows we denote a solution flow at
time t as U(t) = (ū0, . . . ,ūN )(t) ∈ RK for K = (2N + 1)(M − 2) + 1 or K = (2N + 1)(M − 2), according to the two
above-mentioned cases.

IV. PERIODIC SOLUTIONS

A. The Orr–Sommerfeld equation

Before applying the previously described numerical scheme, we make some considerations about the linearized
stability of the laminar flow and time-periodic solutions. We start from the linearization of the vorticity equation
around the basic flow, which is known as the Orr–Sommerfeld equation

(ub −
λi
α

)(φ′′ − α2φ)− u′′bφ =
1

iαRe
(φ(4) − 2α2φ′′ + α4φ). (13)
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FIG. 1: Neutral stability curve (in blue) for the laminar solution, using n . 1000 discretization points. For each pair (Re, α)
in this curve, the most unstable eigenvalue λ is purely imaginary. The curve splits the Re-α plane in two stability regions as
shown in the graph: the green one is stable and the red one unstable.

It is a fourth order ordinary differential equation on φ = φ(y) as eigenfunction, with λ as eigenvalue, and boundary
conditions φ(±1) = φ′(±1) = 0. For each Re and α, (13) represents an eigenvalue problem on λ and φ. In this way
if λ = λr + iλi is a complex eigenvalue with λr > 0, then the laminar flow is unstable to infinitesimal disturbances
according to the linear theory.

We have employed finite differences to approximate φ(y) and its derivatives in an uniform mesh ȳm = 2m/(n+1)−1 ∈
[−1, 1] for m = 0, . . . , n + 1 and n a sufficiently large positive integer. After substituting φ(ȳm), m = 0, . . . , n + 1
and the approximation to its derivatives in (13), we obtain an eigenvalue problem of finite dimension: Aφ = cBφ,
for A,B matrices depending only on Re, α, and n: A is pentadiagonal and B tridiagonal. We solve the eigenvalue
problem (by means of the inverse power method with adapted shifts) in order to simply get the eigenvalue with the
largest real part, that is to say, the most unstable one. Precision is improved through extrapolations on the mesh
size 2/(n + 1). We have obtained the known results reported by other authors, e.g. Orszag [2], with an analogous
accuracy. The neutral stability curve, where λr = 0, is presented in figure 1. In this figure, each point in the Re–α
plane represents a perturbation of the laminar solution whose stability is decided upon its position: green points are
stable, red ones unstable and blue ones neutrally stable. We also observe the critical Reynolds number, Recr = 5772.22
for α = 1.02056, so that if Re < Recr the laminar solution is linearly stable for any value of α. Likewise, for α & 1.1
the laminar flow is linearly stable for every Re.

B. Continuation of travelling waves

Next, we use the above results to look for periodic solutions in time. Due to the translational symmetry of the
channel in the stream direction (artificial boundaries in (2)), it is showed in Rand [17] that if we have u(x, y, t) such
that

u(x, y, t+ T ) = u(x, y, t), for all x ∈ R, y ∈ [−1, 1], t > 0

and some T > 0 (that is, u(x, y, t) is T -periodic in time), then it is a rotating (or travelling) wave, i.e.

u(x, y, t) = u(x− ct, y, 0), for c =
L

T
. (14)

Consequently u(x, y, t) is observed as a stationary solution in a system of reference moving at speed c as it was
introduced in (5). The converse is also true, namely every stationary solution of (5) gives rise to a time-periodic
solution as is easily verified. This fact allows us to search for periodic solutions in time as functions u(x, y) in a
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FIG. 2: Bifurcating curve of periodic flows for several discretizations specified as N ×M , α = 1.1, and based on Rep and
ReQ. On each curve based on Rep there are several ‘*’ corresponding to Hopf bifurcations. They divide the different regions
of stability to superharmonic disturbances, which are also represented in the plot as continuous (stable) and discontinuous
(unstable) lines. In the ReQ case, the point labeled ReQ0 represents a real eigenvalue crossing the imaginary axis, meanwhile
ReQ1 is a Hopf bifurcation. Likewise, at ReQ0 it is attained the minimum ReQ.

Galilean reference at speed c, which solve the stationary version of (5) or, in its discretized form, the stationary
version of (10) {

0 = U0

0 = (I − PkTk)−1(Ūk − PkV̄k), k = 1, . . . , N.
(15)

Given a fixed α, what we have in (15) is a zeros search problem for a system of nonlinear equations of dimension K
(defined at the end of § III). It can be expressed as Hp(Re, c, U) = 0. Solutions of (15) are locally unique for each
Re, except translations in the stream direction. This is due to the fact that any translation of a rotating wave in the
stream direction, gives rise to the same wave at a different time instant. Indeed, if u(x, y, 0) is the starting position
of a rotating wave then, by (14), for every θ ∈ R we have u(x − θ, y, 0) = u(x, y, θ/c), and thus u(x − θ, y, 0) lies in
the same orbit as u(x, y, 0). In order to achieve uniqueness, we fix one of the coordinates of U , by restricting it to a
Poincaré section

Σ1 = {U = (ū0, . . . , ūN ) | <(ū11) = s1} , (16)

(<(u),=(u) stand for the real and imaginary part of u), for s1 ∈ R, a fixed value. We mainly set s1 = 0, since this
choice gives well conditioned systems. If we fix Re in (15), the number of unknowns, K, is the same as the number of
equations. We look for its solutions by means of pseudo-Newton’s method, in which we factorize the resulting linear
system using a direct LU decomposition. The first approximation of the Jacobian matrix DHp is implemented by
finite differences with extrapolation. Every column of this matrix is obtained evaluating Hp in parallel in a Beowulf
system. Subsequent updates of DHp are carried out by Broyden’s ‘good’ formula. As a consequence, at each pseudo-
Newton step we only have to apply rank-one updates to the LU factorization of DHp. These improvements mean an
enormous increase in the speed of computations.

If we use Re as a continuation parameter, we can trace the one-parameter curve Hp(Re, c, U) = 0. This is
implemented numerically by pseudo-arclength continuation. To this end, we compute the unit-norm tangent vector
to the curve. This vector and previously computed points on the curve, are used to predict the next solution point,
which is finally corrected by pseudo-Newton iterations.
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FIG. 3: Bifurcating curves of periodic flows for Rep and several values of α specified on each curve. The number of discretization
points is N = 22,M = 70. The ‘•’ on each curve represents a change of stability. Joining those points we obtain 4 regions:
the corresponding solutions are unstable on the right and bottom-left regions and stable on the top region. In the intermediate
region there are stable and unstable flows, even for a single α, e.g. α = 1.3175. Curves for α = 1.02056 and α = 1.3175 are
traced in thicker lines. For α = 1.02056 it is attained the critical Reynolds number at Rep = 5772.22 and for α = 1.3175 it is
approximately reached a solution at a minimum Rep = 2939.

The starting point of those iterations is a numerically integrated periodic solution. We obtain it using the numerical
integrator (12). The initial condition is taken as a small perturbation of the laminar flow. At the same time we check
our previous results and those reported in Orszag [2] about Recr. Namely, taking for example α = 1.02056, Re > Recr,
we observe how the laminar flow is not stable, as it evolves to another steady flow which turns out to be T -periodic in
time for some T . Up to errors of order O((∆t)2) (those of the time discretization (12)), this T -periodic solution satisfies
(15) and it is thus a rotating wave. We choose it as initial approximation to a point on the curve Hp(Re, c, U) = 0.

Given a profile of velocities (u, v) we define its amplitude A, as the distance to the laminar profile (ub, 0) in the
L2-norm

A =
1

2L
‖(u− ub, v)‖2, ‖(u, v)‖22 =

∫ L

0

∫ 1

−1

[
u(x, y)2 + v(x, y)2

]
dy dx. (17)

For a rotating wave as defined in (14), its amplitude does not depend on time since for fixed t:∫ L

0

∫ 1

−1

u(x, y, t)2dy dx 1=
∫ L

0

∫ 1

−1

u(x− ct, y, 0)2dy dx

2=
∫ L−ct

−ct

∫ 1

−1

u(x̃, y, 0)2dy dx̃ 3=
∫ L

0

∫ 1

−1

u(x̃, y, 0)2dy dx̃.
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TABLE I: For some values of α, this table shows the minimum values of Rep and ReQ for which exists periodic flow. Calculations
made for N = 22 and M = 70. The minimum Re attained is marked with ‘*’. Results are in good agreement with those
reported by Herbert [18] for Rep.

α minReQ α minRep

1.1000 3564.5164 1.1000 3797.0331

1.2236 2845.5884 1.2400 3048.0073

1.3000 2647.6068 1.3092 2939.3711

1.3424 2608.9990 1.3145 2939.2069

1.3520 2607.5519 1.3174 2939.0345

1.3521 2607.5516∗ 1.3175 2939.0343∗

1.3523 2607.5520 1.3177 2939.0350

1.3534 2607.5753 1.3265 2940.6307

1.5000 3018.3031 1.4665 3526.0725

4660 4700 4740 4780
Rep

−0.0005

0.0000
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0.0015

0.0020

<(
λ

)

Rep1

<(λ1)
<(λ2)
<(λ1),<(λ2)
imaginary axis
Hopf bifurcation

4660 4700 4740 4780
Rep

−0.0009

−0.0006

−0.0003

0
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0.0009

=(
λ

)

=(λ1),=(λ2)
=(λ1)
=(λ2)

FIG. 4: Real and imaginary part of the two most unstable eigenvalues (λ1 and λ2) of periodic flows for N = 22, M = 70,
α = 1.02056 and Rep (cf. figure 3). Close to the minimum Rep of the amplitude curve, λ1 and λ2 are unstable and real, and
give rise to a pair of complex conjugate eigenvalues. The first crossing through the imaginary axis is associated to a single real
eigenvalue (λ2), meanwhile the second one corresponds to the Rep1 Hopf bifurcation (λ1 and λ2). Arrows for both graphs,
point to the direction of increasing amplitude in figure 3.

In step 1 we apply definition (14). For step 2 we make the change of variable x̃ = x− ct, and because u is L-periodic
in x we have step 3.

C. Stability of periodic solutions

We notice that zeros of system (15) can either correspond to stable or unstable time-periodic solutions. With a
stable solution it is meant the one for which any small disturbance ultimately decays to zero, whereas if some of those
disturbances remain permanently away from zero, it is called unstable.

To decide whether a time-periodic flow u is stable or not, we consider it as a steady solution for its appropriate
c = L/T and obtain the eigenvalues of its Jacobian matrix. This matrix is computed analytically linearizing (10)
around u. If every eigenvalue has negative real part, the periodic flow is stable to disturbances of the same wavenumber
α but, if there is an eigenvalue with positive real part, the solution is unstable. Let us mention that there is always
a zero eigenvalue which corresponds to the lack of uniqueness of the time-periodic flow due to translations. Setting
α = 1.1, the bifurcating diagram for the periodic flows in the Re-A plane together with the stability changes are
represented in figure 2 for both formulations in terms of Rep and ReQ. Due to relations (3) and (4) we only need
to compute travelling waves up(x, y, t) at speed c for Rep, since (4) gives the associated uQ(x, y, t), which is easily
checked to be a travelling wave at speed rc for ReQ, being r = Rep/ReQ. As well as computing the eigenvalues, we



10

4000 5000 6000 7000 8000 9000 10000
Re

0.00

0.01

0.02

0.03

0.04

0.05

0.06

<(
λ

)

constant
pressure

constant
flux

28× 70
15× 70
22× 70
imaginary axis
eigenvalue crosses

FIG. 5: Real part of the most unstable eigenvalue for periodic flows for α = 1.1 and N ×M as specified. For the Rep case,
the two crossings of each curve with the imaginary axis corresponds to the first two ‘*’ of figure 2, and are detailed in table II
as Rep1 and Rep2. In the analogous plot based on ReQ, the two crossings of each curve with the imaginary axis corresponds
to the first two ‘*’ of figure 2 and are also specified in table II as ReQ0 and ReQ1. Continuous and discontinuous lines refer
respectively to stable and unstable periodic solutions associated to each point (Re,<(λ)). Arrows point to the direction of
increasing amplitude in figure 2.

confirm the stability of a periodic flow using the numerical integrator (12). A more complete picture of the different
connections among stable and unstable solutions is given in Casas and Jorba [14].

By simply taking a known travelling wave for some α as initial guess and moving slightly α, we can find periodic
solutions for different values of α. These are shown in figure 3, together with their stability. In addition, in table I
we have computed, for several values of α, the corresponding minimum value of Rep and ReQ (denoted as Remin(α))
along the amplitude curves (see figure 3). In turn, Remin(α), is minimized as a function of α. In this way we obtain
the absolute minimum Rep and ReQ for which there exists periodic solution. These minimum values are marked with
‘*’ in table I. For Rep, Herbert [18] obtained the minimum value at Rep = 2934.80 for α = 1.3231 and N×M = 4×40
as the spectral spatial discretization for the stream function: this discretization is analogous to the one used in the
present work. We observe that our value of Rep differ from Herbert’s not more than 0.15%.

Previously, Soibelman and Meiron [13] found similar bifurcations of travelling waves for α = 1.1, and the critical
Reynolds number for which there are time-periodic solutions: Rep ≈ 2900 for α ≈ 1.3, and ReQ ≈ 2600. We remark
that in figure 3 for α = 1.3175 there exists an attracting periodic solution for Rep = 3024 which corresponds to
ReQ = 2630. For the case of the laminar flow, we encounter the classical results of Orszag [2] about the critical
Reynolds being at Recr = 5772.22 for α = 1.02056. On the one hand, we observe in figure 3 that the bifurcation curve
of periodic flows reaches the laminar solution at the above mentioned Recr and in addition, the laminar solution is
checked to be stable when Re < Recr and unstable if Re > Recr. This Hopf bifurcation at Recr is called subcritical,
because the branch of periodic solutions emanating at it decreases in Re. When the new branch increases in Re, we
call it supercritical bifurcation. We also notice that for α = 1.02056, it is reached the minimum Reynolds number
where the transition from stable to unstable laminar flow takes place, what was formerly presented in figure 1. For
α & 1.1 the curve of periodic solutions does not reach the laminar flow. This is in agreement with the situation
shown in figure 1, since for α & 1.1 the laminar flow is linearly stable for every Re. In figure 3 we check as well that
for α & 0.91 the curve of periodic flows bifurcates subcritically from the laminar flow, but for α . 0.91 the Hopf
bifurcation is changed into supercritical. Precisely for α ≈ 0.915 it is born a new change of stability on the curve of
travelling waves at Rep ≈ 6700. The behaviour around this new point is saddle-node bifurcation, analogous to ReQ0,
and will be described in the following subsection.
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FIG. 6: Speed of the observer c, for parameters and periodic solutions as in figure 2. On both Rep and ReQ cases, upper
and lower branches correspond to the respective ones of amplitudes. Unlike Rep, for the constant flux case the upper branch
increases with ReQ. Continuous and discontinuous lines refer respectively to stable and unstable periodic solutions associated
to each c.

D. Hopf bifurcations

Now let us discuss the bifurcation diagram shown in figure 3 for α = 1.02056. First, the laminar solution becomes
unstable at the critical value Recr = 5772.22, due to a Hopf bifurcation that gives rise to a unstable family of periodic
orbits. This family continues backwards (with respect to Re, i.e. it is subcritical) until Rep ≈ 4636, where a turning
point is reached and <(λ2) (described in figure 4) crosses the imaginary axis. Before arriving at this turning point,
there is a single eigenvalue, λ1, on the real positive axis, while the remaining ones have negative real part (we ignore
the eigenvalue at 0 arising from the lack of uniqueness of periodic flows). On traversing through the turning point,
a real and negative eigenvalue (λ2) becomes real positive, so the number of unstable eigenvalues is now two. Shortly
after that, these two unstable eigenvalues collide and become a conjugate complex pair (still with positive real part),
and then they cross the imaginary axis for Rep ≈ 4684 producing a new Hopf bifurcation at the point Rep1 on figure 3.
Between Rep1 and Rep2 ≈ 6936, the family of periodic orbits is stable to disturbances of the same wavelength. At
Rep2, there is another Hopf bifurcation produced by a pair of conjugate eigenvalues crossing the imaginary axis. These
bifurcations persist, as shown in table II, when M,N are increased and no new ones seem to appear in this range.

The case of constant flux is qualitatively different. For ReQ the bifurcating diagram of periodic solutions has a
turning point at a minimum value of ReQ, which we designate as ReQ0 (cf. figure 2). The lower branch of periodic
solutions is unstable with only one unstable real eigenvalue and the upper is initially stable, being also real the
most unstable eigenvalue. On traversing the bifurcating curve towards the upper branch, this real positive eigenvalue
becomes negative at the turning point. The upper branch is kept stable until a subsequent Hopf bifurcation appears
at certain value ReQ1. For ReQ & 7000 and α = 1.1, we have detected more Hopf bifurcations which we do not
consider in this study. However for the range included in figure 2 all periodic flows for ReQ > ReQ1 are unstable.

Pugh and Saffman [19] pointed out that the null eigenvalue at ReQ0 has algebraic multiplicity 2 and geometric
multiplicity 1. We can consider that eigenvalue simple (with algebraic and geometric multiplicity 1) if we ignore
the constant zero eigenvalue due to a trivial phase shift of the flow in the stream direction. The suppression of this
trivial null eigenvalue can be made by restricting equations (10) to the closed linear manifold Σ1 defined as a Poincaré
section in (16). According to bifurcation theory, at a simple eigenvalue like this one we have no equilibrium point for
ReQ < ReQ0 and two equilibrium points for ReQ > ReQ0: this situation corresponds to a saddle-node bifurcation
and no new branches of solutions come out from ReQ0.

In table II are shown Rep, ReQ, the speed of the observer c and the period τ of the bifurcated solution corresponding
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TABLE II: Minimum Reynolds number ReQ0 and the three Hopf bifurcations of periodic flows at Rep1, ReQ1, Rep2, together
with associated parameters c and τ for α = 1.02056, 1.1, M = 70 and several N . The values reported in Soibelman and Meiron
[13] for M = 70 are also included.

N ReQ0 c0 Rep1 c1 τ1 ReQ1 c1 τ1 Rep2 c2 τ2

Present work for α = 1.02056

4 4439.1 0.31544 4701.7 0.29729 9662.43 5620.0 0.37239 13.52 7450.1 0.28091 17.93

5 4387.1 0.31934 4684.6 0.29881 8983.08 5108.0 0.36054 14.00 6347.5 0.29014 17.39

6 4393.9 0.31890 4686.1 0.29868 9080.07 5085.8 0.36257 13.78 6355.4 0.29013 17.22

7 4396.3 0.31845 4684.1 0.29853 9143.27 5243.2 0.36468 13.68 6643.2 0.28783 17.33

8 4395.4 0.31854 4684.1 0.29857 9125.21 5335.6 0.36610 13.67 6827.8 0.28608 17.49

9 4395.2 0.31858 4684.3 0.29858 9120.06 5341.9 0.36637 13.70 6845.0 0.28592 17.55

10 4395.2 0.31857 4684.2 0.29858 9120.76 5353.9 0.36653 13.68 6865.9 0.28581 17.54

11 4395.2 0.31858 4684.2 0.29858 9120.24 5371.9 0.36680 13.64 6900.7 0.28555 17.52

12 4395.2 0.31858 4684.2 0.29858 9119.98 5385.0 0.36703 13.62 6926.8 0.28534 17.52
...

...
...

...
...

...
...

18 5253.3 0.40634 11.78 6936.0 0.28530 17.51

19 5389.8 0.36711 13.61 6934.9 0.28532 17.51

20 5390.4 0.36713 13.61 6936.3 0.28530 17.51

21 5390.3 0.36712 13.61 6935.9 0.28531 17.51

22 5390.3 0.36712 13.61 6936.1 0.28531 17.51

Present work for α = 1.1

4 3603.5 0.34248 3864.5 0.31927 7429.40 5812.6 0.41532 11.62 8946.1 0.26985 17.88

5 3564.7 0.34467 3841.0 0.32004 7090.00 5296.6 0.40633 11.65 7670.3 0.28059 16.87

6 3562.8 0.34506 3841.4 0.32018 7065.52 4840.4 0.40235 11.93 6732.7 0.28927 16.59

7 3564.9 0.34475 3840.8 0.32010 7100.29 4905.9 0.40270 11.88 6844.8 0.28863 16.58

8 3564.7 0.34474 3840.6 0.32010 7098.78 5054.0 0.40392 11.85 7145.8 0.28568 16.75

9 3564.5 0.34477 3840.6 0.32010 7096.05 5107.8 0.40457 11.86 7264.9 0.28445 16.87

10 3564.5 0.34477 3840.6 0.32011 7095.79 5120.9 0.40477 11.87 7292.5 0.28424 16.90

11 3564.5 0.34477 3840.6 0.32011 7095.68 5157.2 0.40519 11.84 7368.9 0.28358 16.92

12 3564.5 0.34477 3840.6 0.32011 7095.56 5189.1 0.40555 11.82 7436.6 0.28298 16.94
...

...
...

...
...

...
...

21 5246.8 0.40624 11.78 7558.9 0.28197 16.97

22 5250.4 0.40629 11.78 7567.0 0.28190 16.98

23 5249.5 0.40628 11.78 7565.0 0.28192 16.97

24 5250.6 0.40630 11.78 7567.4 0.28190 16.98

25 5249.6 0.40628 11.78 7565.2 0.28192 16.98

Soibelman and Meiron [13] for α = 1.1

2 3630 4742.32 5600 20.6 9400 35.50

3 3800 4935.43 6250 12.5 9675 17.65

4 3775 4875.63 5875 13.4 9592 16.54

to the first Hopf bifurcations for several values of N and M = 70. Taking M = 70, Chebyshev modes seem to be
enough to attain convergence in the results. The values obtained by Soibelman and Meiron [13] are also presented
for comparison. For α = 1.1 we observe convergence of our results on the different Hopf bifurcations considered as
N is increased. In all cases there are substantial differences with Soibelman and Meiron’s [13] results, being in more
agreement for the lowest Re. We remark the slow convergence of the Fourier series to the bifurcation values as N
is increased. At the same time we have also obtained convergence in the qualitative behaviour: the subcritical or
supercritical character of all the studied Hopf bifurcations remain unaltered as M,N are increased.

Formulas (3) and (4) provide again the correspondence between bifurcation points at ReQ and Rep (cf. table II).
For instance at Rep1 = 3840.6 for N = 12, M = 70 and α = 1.1, the periodic solution transformed by these formulas
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furnish a periodic solution at ReQ = 3564.5 and c = 0.34490, values in good agreement with ReQ0 reported in table
II. Likewise, the transformed periodic solution for N = 25, α = 1.1 at ReQ1 = 5249.6 gives rise to Rep = 7565.5 and
c = 0.28192, again in good precision with respect to Rep2.

The different stability changes marked as a blue dot in figure 3, roughly divide the Rep-A plane in four regions. On
the right and bottom-left regions the corresponding periodic solutions are unstable (filled with red points), meanwhile
they are stable on the top region (only green points). In the intermediate region there are both stable and unstable
flows, even for a single α, e.g. α = 1.3175. Through this classification, given a periodic flow with its associated
(Rep, A), we can deduce its stability, independently on α in some cases. On traversing the Rep1 blue curve in the
direction of increasing amplitudes, up to the relative maximum on that curve attained at Rep1 ≈ 9909 for α ≈ 0.814,
we encounter saddle-node bifurcations for α ∈ [0.88, 0.915] at a relative maximum on each bifurcation curve. For
α ∈ [0.714, 0.88], the former relative maximum disappears and the saddle-node bifurcation turns into a Hopf one. The
rest of the Rep1 curve is made up of Hopf bifurcations for the studied values α 6 1.7. The minimum Rep1 ≈ 3024 is
reached precisely for α ≈ 1.3175, where the minimum periodic flow was found in § IV C. The Rep2 blue curve is only
constituted of Hopf bifurcations for the α ∈ [0.74, 1.3175] considered. The minimum Rep2 ≈ 6936 is achieved again
for the critical α ≈ 1.02056.

The maximum growth rate (real part of the most unstable eigenvalue) for each periodic flow is presented in figure 5
for the same parameters as in figure 2. For the most unstable eigenvalue λ, <(λ) crosses the imaginary axis twice, on
the values Rep1 and Rep2 for Rep and on ReQ0 and ReQ1 for ReQ. Those diagrams represent the degree of instability
of each flow. Comparing to figure 2, we observe that at the same Re on the upper branch of amplitudes, periodic
solutions based on ReQ are more unstable than the associated ones based on Rep. On the other hand, on the lower
branch of amplitudes, at the same Re, both curves of <(λ) visually coincides for Re & 5000. This behaviour is also
reflected in figures 2 and 6. In this last figure we present qualitatively different curves for the speed c in Rep and ReQ
cases. In the first case. c is decreasing in both branches of solutions in figure 2. However, for ReQ the shape of the
c-curve is similar as the A-curve in figure 2.

V. QUASI-PERIODIC SOLUTIONS

In this section, we study the quasi-periodic flows that appear at the Hopf bifurcations of rotating waves shown in
§ IV. They are found as time-periodic orbits in an appropriate Galilean reference, which simplifies enormously their
search. Those time-periodic orbits are obtained as fixed points of a Poincaré section, by means of a pseudo-Newton
method. We have traversed bifurcating branches of quasi-periodic solutions for the Hopf bifurcations at Rep1, Rep2
and ReQ1 defined in § IV. We have obtained different qualitative results than the ones reported in Soibelman and
Meiron [13]. For α = 1.1 and Rep they found that the bifurcation at Rep1 to quasi-periodic solutions is subcritical:
they obtained quasi-periodic solutions for Rep before the bifurcation point. In consequence, close to that point, those
bifurcated flows are stable. In the present study, by increasing the number of Fourier modes N , we have achieved a
supercritical Hopf bifurcation at Rep1: the bifurcating quasi-periodic flows are located for Rep after the bifurcation
point and therefore close to it they are unstable. This is treated in §V B. For the second Hopf bifurcation at Rep2, in
agreement with Soibelman and Meiron [13], the quasi-periodic orbits are found for Rep greater than the bifurcation
point. More details are given in §V C. The behaviour at ReQ1 (considered in §V D) is analogous to that of Rep2.
However for ReQ > ReQ1 large enough we have detected another Hopf bifurcation to tori with 3 basic frequencies.
The stability of quasi-periodic flows to superharmonic disturbances is estimated by means of the linear part of the
Poincaré map and also with a full numerical simulation of the fluid.

A. Reduction to periodic and numerical procedures

We use again the spatio-temporal symmetry of our system, due to the artificial boundaries of the channel. Consid-
ering this symmetry in Rand [17] it is proved that every solution u(x, y, t) that lies on an isolated invariant 2-torus
(a quasi-periodic solution), not asymptotic to a rotating wave, is a modulated wave, that is to say, there exists τ > 0
and φ ∈ R such that

u(x, y, nτ + t) = u(x− nφ, y, t) for every n ∈ Z. (18)

Hence, this kind of wave has the property that, may be viewed as a τ -periodic wave in time, in a frame of reference
moving at speed c = (pL+ φ)/τ , for any integer p. In effect, defining x̃ = x− ct for that value of c, and ũ(x̃, y, t) =
u(x̃+ ct, y, t) as the velocity in the moving frame of reference at speed c, it turns out that

ũ(x̃, y, τ) 1= u(x̃+ cτ, y, τ) 2= u(x̃+ pL+ φ, y, τ) 3= u(x̃, y, 0) 4= ũ(x̃, y, 0). (19)
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a b

FIG. 7: Two representations of the solution vector U(t) of a quasi-periodic flow projected on the plane of two selected coordinates
namely, M − 1 + (2N − 3)(M − 2) + 3, and M − 1 + 2(M − 2) + 5, for Rep = 3865, α = 1.1, N = 8,M = 70. The range of
values for (a) is [−0.002, 0.002] × [−0.001, 0.001] and [0.00037, 0.00129] × [0.000338, 0.000385] for (b). In (a) a dot is plotted
each ∆t = 0.02 time units, meanwhile in (b) only for t such that U(t) ∈ Σ1. The red closed curve in (b) is obtained integrating
repeatedly for t ∈ [0, τ ]. This curve is also represented as a reference on the right centre of (a).

In steps 1, 4 we use the previous definition of ũ. Substituting the previously defined c we obtain step 2, and because u
is L-periodic in x and a modulated wave, one gets step 3. Consequently we have proved that ũ(x̃, y, t) is a τ -periodic
function of t.

In order to look for periodic flows satisfying (19) in a Galilean reference at speed c, we make use of the Poincaré
section Σ1 defined in (16). In this case, we only consider points on Σ1 when they cross the section in a particular
direction as time increases, namely, from s1 < 0 to s1 > 0. Likewise we define the associated Poincaré map Pc :
Σ1 −→ Σ1 as follows: starting from an initial condition U = U(0) ∈ Σ1 we integrate (10) for fixed parameters Re, α
and c, until a time tc such that Ũ(tc) ∈ Σ1 (Ũ(tc) represents the evolution of U(0) in a Galilean reference at speed
c) for the nc-th time (i.e. after nc crosses with Σ1), where nc is a positive integer which represents the minimum
number of times needed for the flow to return close to the initial point U(0) (the meaning of ‘close’ will be specified
in §V B). We then set Pc(U(0)) = Ũ(tc). In this way we have reduced the search of quasi-periodic flows to a zeros
finding problem for the map Hq defined as

0 = Hq(Re, c, U) def= Pc(U)− U = Ũ(tc)− U(0). (20)

From (18) we have that, if Pc(U(0)) = Ũ(τ) = U(0), for some τ , then as well Pc(V (0)) = Ṽ (τ) = V (0) for
V (0) = P k0 (U(0)) and k any positive integer. Indeed, we can express (19) as ũ(x̃, y, τ + t1) = ũ(x̃, y, t1) for every
t1. From here, since V (0) = U(t1) for some t1, we immediately obtain Pc(V (0)) = V (τ) = V (0). Therefore we can
generate different points on the same orbit as a solution of (20). We avoid this lack of uniqueness by restricting
Pc : Σ1 ∩ Σ2 −→ Σ1, for Σ2 a Poincaré section (analogous to Σ1) defined by

Σ2 = {U = (ū0, . . . , ūN ) | S = 0} , (21)

where we set S = <(ūN,M/2−1)− s2, for s2 ∈ R a suitable quantity. For Re close to the studied Hopf bifurcations, we
have chosen s2 = <(ūpN,M/2−1), with up ∈ Σ1 the travelling wave at the exact Re where the bifurcation takes place.
The reason for this choice is merely to preserve continuity in the amplitude diagrams described next.

In order to trace the curve Hq(Re, c, U) = 0, we utilize the same continuation method as for system Hp(Re, c, U) = 0
in (15), differing essentially in the definition of the equation to vanish: for periodic flows the computations are much
simpler and faster than for quasi-periodic ones. The solution of (20) needs an initial guess, which is obtained as
described in the following subsections. Once we have a quasi-periodic flow such that Hq(Re, c, U) = 0, we measure
its amplitude A, as in the case of periodic flows (cf. (17)). If u(x, y, t) is a modulated wave, using (18) and the
L-periodicity we have∫ L

0

∫ 1

−1

u(x, y, τ)2 dy dx =
∫ L

0

∫ 1

−1

u(x− φ, y, 0)2 dy dx =
∫ L

0

∫ 1

−1

u(x, y, 0)2 dy dx. (22)
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FIG. 8: Bifurcated branches of quasi-periodic flows at the supercritical Hopf bifurcation of periodic flows at Rep1. Each curve
represents A as a function of Rep and has specified N ×M . Both branches of periodic (in lighter colors) and quasi-periodic
flows are presented. Calculations are shown for α = 1.1 and ∆t = 0.02. The ‘*’ correspond to the Hopf bifurcation at Rep1

presented in figure 2. For the range shown, the bifurcating branch consists of unstable quasi-periodic orbits (dotted lines),
whose amplitude decreases with Rep.

Since we have numerically checked that A is not constant for modulated waves, we conclude from (22) that it is a
τ -periodic function of t. This is not so for the rotating waves of § IV, for which A is constant in time. In the case
of a quasi-periodic flow U(t), with the purpose of considering a concrete value for the amplitude, we evaluate A(t),
at t such that U(t) ∈ Σ1 ∩ Σ2. This is simply a representative and easy to compute value for A(t), as we cannot
obtain a single value for the amplitude of this class of flows. We use it to trace the continuation curve: it provides
the distance to the laminar solution at some time instant. In the same way, c can be considered as a representative
and time independent value for every quasi-periodic flow, so that we can as well use it to trace continuation curves.

B. Hopf bifurcation at Rep1

For Rep < Rep1 and α ≈ 1 the corresponding time-periodic flow in figure 3 is unstable, but its temporal evolution
ultimately decays to the laminar flow. The results in Soibelman and Meiron [13] point out the existence of a subcritical
Hopf bifurcation at Rep1: they use the vorticity equation and only consider N 6 2 Fourier modes. According to
bifurcation theory (see Marsden and McCracken [20]), this means that the bifurcating quasi-periodic flows are locally
stable. Following this result we tried to find quasi-periodic flows in the subcritical region, but with no success: we
were not able to detect a quasi-periodic attracting solution for Rep < Rep1 and N > 3. In consequence we direct the
search of quasi-periodic flows to the supercritical region, i.e. for Rep > Rep1.

It is also known from bifurcation theory that, in the case of a supercritical Hopf bifurcation in which fixed points
before it are unstable and after it stable, the branch of periodic solutions that emanates at the bifurcation point is
locally unstable. That should be the situation for Rep > Rep1 and thus the bifurcating quasi-periodic flows are locally
unstable and therefore hard to locate by direct numerical integration, because the evolution of the fluid close to them
does not remains near as time evolves.

On the other hand, pseudo-Newton’s method applied to solve (20) does not distinguish between stable or unstable
flows. However, the difficult task is the search of a good starting guess for (20); it is carried out as follows. First we
consider an unstable time-periodic solution Up1 (t), i.e. a fixed point of (10), for certain Re1 < Rep1. Close to the
Hopf bifurcation Rep1 in the unstable region Rep < Rep1, the linearization of (10) around Up1 has just a couple of
complex conjugate eigenvalues, λ = λr ± iλi with λr > 0 (cf. § IV). If w = wr ± iwi is the associated eigenvector, we
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FIG. 9: Different curves related to figure 8 for N×M points as specified. (a) τ represents the period in time for a quasi-periodic
flow when the observer sees it as periodic. (b) The appropriate value of c that converts a quasi-periodic flow in periodic, together
with the corresponding curve for periodic flows in lighter colors (cf. figure 6). The ‘*’ correspond to the Hopf bifurcations at
Rep1 presented in figure 2.

a b

FIG. 10: Two representations of the solution vector U(t) of an (almost resonant) quasi-periodic flow projected on the plane of the
same coordinates as figure 7, for Rep = 7000, α = 1.02056, N = 22,M = 70. The range of values for (a) is [−0.00185, 0.00185]×
[−0.004, 0.004] and [0.00147, 0.00164] × [−0.002495,−0.002385] for (b). In (a) a dot is plotted each ∆t = 0.01 time units. In
(b) a dot is plotted only for t such that U(t) ∈ Σ1. The curve in (b) is also represented as a reference on the lower right corner
of (a) as a small green line.

choose v ∈ 〈wr, wi〉, i.e. v is in the plane of the most unstable directions, along which the flow escapes in the fastest
fashion from Up1 . Now we change to Re2 > Rep1 close to the bifurcation and select c2 near to the one associated
with the corresponding periodic orbit Up2 at Re2, i.e. Hp(Re2, c2, U

p
2 ) = 0. For Re2, c2 and |r| � 1 a small constant,

we integrate numerically the initial condition U = Up1 + rv, until a time when it become as closest as possible to a
solution of Hq(Re2, c2, U) = 0. This first approximation of c2 is optimized by using minimization algorithms. In this
case we also observe a value τ of the return time of Pc, neighbouring to 2π/|Im(λ)|, taking λ as the unique purely
imaginary eigenvalue (together with its conjugate) at the Hopf bifurcation Rep1.

The initial guess obtained in this way is improved through pseudo-Newton’s iterations applied to the function Hq,
to finally obtain a first unstable modulated wave for Rep > Rep1. In figure 7 we present numerical evidence that
solutions U(t) of (20) lie in a 2-torus and are unstable in time for supercritical Rep. In a) we observe how the
trajectory, projected on a plane of two arbitrary coordinates of U(t), fills densely a 2-torus. On the outer red curve
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FIG. 11: Bifurcated branches of quasi-periodic flows at the supercritical Hopf bifurcation of periodic flows at Rep2. Each curve
represents A as a function of Rep and has specified N ×M . Both branches of periodic (in lighter colors) and quasi-periodic
flows are presented (the green color almost completely conceals the red one). Calculations are shown for α = 1.02056 and
∆t = 0.02. The ‘*’ correspond to the Rep1, Rep2 Hopf bifurcations presented in figure 3. For the range shown, the bifurcating
branch consist of quasi-periodic orbits, stable to disturbances of the same wavenumber.

of b), it is simply plotted U(t) when U(t) ∈ Σ1 with the following adaptation: if t > τ , being τ the period of U(t) as
a modulated wave, we plot U(s) for s such that 0 6 s = t− pτ < τ and p = [t/τ ], ([·] stands for the integer part) i.e.
we treat U(t) as if it were exactly τ -periodic in order to avoid its unstability. We note that, as we are on the Poincaré
section Σ1, the 2-torus in a) is reduced to a closed curve in b), which corresponds to the unstable quasi-periodic flow,
seen as if it were unperturbed by numerical errors. Likewise in b) we let the flow evolve for long time and plot again
U(t) (in green) when U(t) ∈ Σ1 but suppressing the previous time adaptation. Here we can check that the flow is
unstable, because it moves away from the outer closed curve and falls to the time-periodic and stable régime: a simple
point in the centre of the figure.

Once we have obtained the first solution of (20) by the pseudo-Newton’s method, we use continuation methods to
traverse the bifurcating branch of quasi-periodic flows parametrized by Rep. In figure 8 we plot the amplitude A for
each quasi-periodic solution as a function of Rep. It seems that we have achieved both qualitative and quantitative
convergence because we obtain a similar graph in increasing the values of N,M . It looks also clear from this plot
that the Hopf bifurcation is supercritical so, at least locally, solutions on the bifurcating branch are unstable. The
analysis of the stability of a quasi-periodic solution is done by means of the eigenvalues of the linear part of Pc at
a fixed point U(t) such that Pc(U(0)) = U(0). This computation, analogously to the matrix DHq, is obtained by
extrapolated finite differences. In the range of Rep presented in figure 8, the quasi-periodic solutions are unstable.
Furthermore, unlike the bifurcation at Rep2, solutions at Rep1 present certain symmetry: ûk(y, t) (defined in § III) is
an even or odd function of y according to the parity of k.

We also observe in figure 9(a) for different values of N , an indicator of the numerical effort involved in the evaluation
of the map Pc. The big slope of the Rep-τ curve shows the high computational cost involved as Rep is slightly increased.
For Rep ∈ [3840, 3872], α = 1.1 and ∆t = 0.02 the time needed to return to Σ1 is τ ∈ [7000, 10700]. Likewise it has
been necessary to adapt dynamically the minimum number of times, nc (defined just before system (20)), that the
solution crosses Σ1 before it returns to the starting point. For Rep close to Rep1, nc starts at 1 and it is incremented
by 1 when Rep varies approximately in just 2–3 units. The way we modify nc is described next. If we change slightly
Rep the return time τ should be varied in accordance. Thus, we impose that the new value obtained for τ satisfy
|τ−τo| < ε, for some tolerance ε and τo the former return time. If this condition is not fulfilled we increase or decrease
nc by one unit, until it is satisfied, or we decrease Rep if necessary.

In figure 9(b) is represented c for the same range of Rep. We observe for c, nearby values as their counterpart



18

7000 8000 9000 10000
Rep

17.4

17.5

17.6

17.7

17.8

17.9

18.0

18.1

18.2

τ

a

28× 70
15× 70
22× 70

7000 8000 9000 10000
Rep

0.255

0.260

0.265

0.270

0.275

0.280

0.285

c

Rep2

b

28× 70
15× 70
22× 70

FIG. 12: Different curves related to figure 11 using Rep in the abscissa axis for N ×M points as specified. (a) and (b) are as
in figure 9. In (b), in lighter colors, it is also drawn the periodic flows around Rep2 (marked with ‘*’). In this case, the green
color almost completely conceals the red one.
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FIG. 13: Analogous to figure 11 based on ReQ1, using the specified α and N ×M = 22 × 70, ∆t = 0.01. The bifurcated
branches of quasi-periodic solutions have a change of stability at another Hopf bifurcation. Continuous and discontinuous lines
represent stable and unstable flows respectively.

periodic flows (cf. figure 6), but in this case the curve has a large decreasing slope. We emphasize that the c graph
shows a bifurcation diagram of periodic and quasi-periodic flows, which is time independent in contrast to the Re-A
plot in figure 8.
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FIG. 14: Values of τ (a) and c (b) associated to quasi-periodic flows of figure 13. In (b), in lighter colors, it is also drawn the
periodic flows around ReQ1 of figure 13. Colors for curves in (a) are also valid for (b).

C. Bifurcation at Rep2

As we presented in figure 3, for Re > Rep2 the corresponding periodic flow is unstable, so the evolution of (10)
from such a flow as initial condition, drives the fluid away from it. By following the temporal evolution of this flow,
we observe that the fluid seems to fall in a regular régime, which finally proves to be a quasi-periodic attracting
solution. This is checked in figure 10 where we plot the projection of the solution vector U(t) over the plane of the
same two coordinates as in figure 7. Each point in figure 10(a) corresponds to the value of the specified coordinates
at a time instant. As we can observe, the trajectory appears to fill densely the projection of a 2-torus. Plotting the
same coordinates as above, but only when U(t) ∈ Σ1, we see in figure 10(b) a closed curve, which seems again to
confirm that the flow lives in a 2-torus.

Let us denote as U0(t) = (ū0
0, . . . , ū

0
N )(t), a time instant of the flow in the attracting 2-torus. We need to approximate

the value of c0 which better makes U0 appear as a periodic flow. That c0 exists according to (18)–(19). It can be
estimated as (cf. Rand [17])

c0 =
2π
k

lim
t→∞

n(t)
t
, for n(t) =

[
arg(Conj(ū0

km(t)))
2π

]
,

where k is the number of peaks of the wave U0 for x ∈ [0, L] and we have used the midpoint of the channel for
m = M/2. With t large enough, 2πn(t)/kt gives an approximation of c0 which we optimize using minimization. Next
we use U0, c0 as the initial condition for pseudo-Newton’s method applied to (20) to confirm that our attracting 2-torus
U0 is in fact a modulated wave. For a fixed α, once we have a first point (Rep, c0, U0) which satisfies (20), taking Rep
as a continuation parameter, we can trace the curve of quasi-periodic flows in the Re–A plane by pseudo-arclength
numerical continuation, applied to Hq as in §V B.

As we observe in figure 11, there appears a branch of quasi-periodic solutions which bifurcates supercritically
from the curve of periodic flows. We may again have zeros of Hq(Re, c, U) that can either correspond to stable
or unstable quasi-periodic solutions. Since on crossing the bifurcation point Rep2, the periodic orbits change from
stable to unstable, the branch of bifurcating quasi-periodic flows are locally stable to two-dimensional superharmonic
disturbances. By means of the eigenvalues of the Jacobian matrix ∂Pc/∂u we also compute the stability of the obtained
quasi-periodic solutions. For α = 1.02056 and the range of Rep ∈ [7000, 13000] studied, all quasi-periodic flows found
are stable to perturbations of the same wavelength and the situation is kept when N,M are increased. In figure 12
we present the curves of frequencies c, τ which define the different modulated waves. Again the Re-c graph shows a
time independent bifurcation diagram.
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a b

c d

FIG. 15: (a) An stable 2-torus on Σ1 for ReQ = 8635, α = 1.02056, N ×M = 22 × 70, ∆t = 0.009. The integration time
on the figure is about 1,222,000 time units. (b) Analog of (a) for ReQ = 8640. We observe in this case that the initial
2-torus is unstable and is attracted by a 3-torus. The integration time on the figure is about 419,000 time units. (c) The
same as (b), but the initial condition is an unstable 2-torus for ReQ = 9750 which is also attracted by a 3-torus. The
integration time is about 1,005,000 time units. (d) The initial condition is an unstable 2-torus for ReQ = 10500 and α = 1.10
which is again attracted by a 3-torus. The integration time is about 1,002,000 time units. The respective ranges in the four
figures are [0.0019, 0.00445]× [−0.00965,−0.0053], [0.0018, 0.0045]× [−0.0098,−0.0052], [0.0013, 0.0058]× [−0.0126,−0.005] and
[0.0016, 0.00535]× [−0.0147,−0.0078].

D. Bifurcation at ReQ1

In the case of constant flux the bifurcation diagram of periodic flows is qualitatively different to that of constant
pressure, as can be verified in figure 2. For ReQ and the values of α considered (0.9, 1.02056, 1.1 and 1.15) there is a
change of stability at the minimum Reynolds ReQ0 of the amplitude curves, but no new bifurcations are born there.
The first Hopf bifurcation occurs at the point labeled ReQ1 in figure 2. We can summarize that the qualitative picture
of amplitudes of quasi-periodic solutions emanating from ReQ1 is analogous to that of Rep2. The main differences are
basically quantitative, because ReQ1 < Rep2 (cf. figures 11 and 13).

For α = 0.9, 1.02056, 1.1 and 1.15, we compute the quasi-periodic flows that bifurcate from ReQ1, following the
same steps of §V C. In figure 13 we plot their amplitudes, and again, as in the case of Rep2 we observe a supercritical
bifurcation. The associated frequencies c, τ , to the modulated waves are presented in figure 14. We remark the
analogies between bifurcation diagrams of A and c in respective figures 13 and 14(b), the latter one being time
independent. The quasi-periodic solutions found from ReQ1 and α = 1.02056, are stable for ReQ1 < ReQ . 8640. At
ReQ ≈ 8640 the branch of quasi-periodic solutions loses stability at a new Hopf bifurcation, giving rise to a family
of attracting tori of 3 frequencies. Numerical evidence of this bifurcation is shown in figure 15(a) where the same
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FIG. 16: Stream lines (left) and levels of vorticity (right) for a unstable quasi-periodic flow at ReQ = 10500, α = 1.1, N =
22,M = 70,∆t = 0.009. Surface levels are plotted for 0 6 x 6 L,−1 6 y 6 1. The depicted time instants from top to down
are 0, τ/6, 2τ/6, 3τ/6, 4τ/6, and 5τ/6 for the associated orbit period τ = 10.24. Ranges for levels of stream lines and vorticity
are [−0.55, 0.80] and [−3, 3] respectively. They are represented by a common scale of colors to the right of each column.

coordinates of U(t) as in figure 7 are plotted on Σ1 for ReQ = 8635, yielding an apparently perfect closed curve, after
a considerably long time of integration: it is a stable quasi-periodic solution. On the contrary, in a similar plot for
ReQ = 8640, figure 15(b) shows an unstable quasi-periodic flow, which is attracted by a 3-torus. The new frequency
of this attracting solution is verified using in turn the Poincaré section Σ2. We have carried this out by plotting the
same two selected coordinates of U(t) only when the flow crosses Σ1 if, in addition, it is approximately on Σ2. We
obtain in this way what seems to be a closed curve (see Casas and Jorba [14] for a plot) as may be expected for a
3-torus. We can observe two other more involved 3-torus in figure 15(c) and (d).
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Finally in figure 16, stream lines and levels of vorticity of an unstable quasi-periodic flow for ReQ = 10500, α = 1.1,
N ×M = 22× 70 and ∆t = 0.009, are presented at six equidistant values of time in the interval [0, τ ] for τ = 10.24.
We observe (as expected) larger vorticity close to the walls than in the channel centre, which in addition can be
confirmed on the stream lines figures.

VI. CONCLUSIONS

In this work we have studied some bifurcations of plane Poiseuille flow. We have reproduced results of other authors
and obtained similar qualitative results about the Hopf bifurcations, in what concerns to their number and location.
The main quantitative differences between Soibelman and Meiron’s [13] computations and ours are due to the larger
resolution we have used, together with the distinct formulations implemented of the Navier–Stokes equations. The
important qualitative difference is the kind of bifurcation found at Rep1: in their computations this bifurcation is
subcritical, but improving the precision of the numerical approach we obtain that it is supercritical. Then, the
bifurcating quasi-periodic orbits are unstable. This has also been confirmed by numerical simulations.

In the case of the bifurcation at Rep1, because the lengthy time integrations, we have only been able to move away a
few tens from Rep1. The further we advanced in Rep, the greater are the numerical difficulties we encounter to track the
bifurcating branch of quasi-periodic flows, due to long time integrations. It is also worth to mention the complications
derived from their instability. Close to Rep1 and with the discretization employed (N = 8, M = 70, ∆t = 0.02), it
seems that we have achieved both qualitative and quantitative convergence. By observing figure 8 we can conjecture
that, for the range of α ∈ [1, 1.1] considered, the minimum Re ≈ 2900 attained with travelling waves is not lowered
by quasi-periodic flows. This question still remains open for two-dimensional flows, although Ehrenstein and Koch
[9] solved the gap between experiments and numerical results in the case of three-dimensional flows. However, in the
present work for α = 0.89, Rep1 ≈ 7250 we have localized a subcritical branch of stable quasi-periodic orbits. They
are difficult to follow by means of the approach described in §V B, because the time needed to evaluate the Poincaré
map is τ ≈ 15, 000 time units. It remains open whether that family could reduce the minimum Re ≈ 2900 of periodic
flows to Re ≈ 1000, where transition has been observed experimentally.

For Rep > Rep2 the quasi-periodic flows encountered are attracting and the integration time is of the order of
tens, so in this case the computational cost is drastically reduced compared with the bifurcation at Rep1. The
range of Rep obtained for attracting quasi-periodic flows moves now to several thousands. However, in spite of
keeping qualitative convergence, the use of larger Reynolds numbers makes necessary an increase in precision to get,
furthermore, quantitative convergence. An analogous qualitative picture is found at the quasi-periodic flows which
bifurcate from ReQ1. In this case the quasi-periodic solutions quickly loses stability and we have also obtained another
Hopf bifurcation to a family of tori with 3 basic frequencies. We could say that dynamics are richer for ReQ than
Rep (see Casas and Jorba [14]), because bifurcations and different vortical states appear for lower ReQ than the
counterpart Rep.

As future work, it would be of interest to analyse the stability to disturbances with different wavenumber α or even
to 3-dimensional perturbations. The connections of the different families of solutions is also of great relevance, or
even the discovering of new vortical states which could approach more the transition to turbulence. Likewise, due to
nonnormality in the Navier-Stokes system, the sensitivity of eigenvalues to perturbations is an important issue that
can be analyzed by means of the pseudospectra. This study would give a measure of the reliability of the spectrum
obtained in linearizing (10) around periodic flows, mainly for high values of Re. In this work, the stability according
to eigenvalues is coherent with our direct numerical simulations (12) of the different flows.
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