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Abstract

We explore different two parametric families of quasi-periodically Forced Logistic Maps
looking for universality and self-similarity properties. In the bifurcation diagram of the
one-dimensional Logistic Map it is well known that there exist parameter values sn where
the 2n-periodic orbit is superattracting. Moreover, these parameter values lay between the
parameters corresponding to two consecutive period doublings. In the quasi-periodically
Forced Logistic Maps, these points are replaced by invariant curves, that undergo a (finite)
sequence of period doublings.

In this work we study numerically the presence of self-similarities in the bifurcation
diagram of the invariant curves of these quasi-periodically Forced Logistic Maps. Our com-
putations show a remarkable self-similarity for some of these families. We also show that this
self-similarity cannot be extended to any quasi-periodic perturbation of the Logistic map.

1 Introduction

Universality and self-similarity properties of uniparametric families of unimodal maps are a well
known phenomenon, being one of the paradigmatic examples the Logistic Map lα(x) = αx(1−x).
Given a typical one parametric family of unimodal maps {lα}α∈I one observes numerically that
there exists a sequence of parameter values {dn}n∈N ⊂ I such that the attracting periodic orbit
of the map undergoes a period doubling bifurcation. Between one period doubling and the next
there exists a parameter value sn, for which the critical point of lsn is a periodic orbit with
period 2n. Moreover,

lim
n→∞

dn − dn−1

dn+1 − dn
= lim

n→∞

sn − sn−1

sn+1 − sn
= δ = 4.66920.... (1)
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The convergence to this limit δ (the so-called Feigenbaum constant) indicates a self-similarity on
the parameter space of the family. On the other hand, the constant δ is universal, in the sense
that one obtains the same ratio δ for any family of unimodal maps with a quadratic turning
point having a cascade of period doubling bifurcations ([5]). In this paper we explore the same
kind of phenomenon when the one dimensional map is quasi-periodically forced. We will see
that universality and self-similarity do manifest, but in different manners. Moreover, we show
that they occur in a more “restrictive” class of maps, in the sense that the quasi-periodic forcing
has to have a very particular form.

A quasi-periodically forced one dimensional map is a map of the form

F : T× R → T× R(
θ
x

)
7→

(
θ + ω
f(θ, x)

)
(2)

where f ∈ Cr(T×R,R) with r ≥ 1 and ω ∈ T \Q. A quasi-periodically forced map determines
a dynamical system on the cylinder, explicitly defined as

θ̄ = θ + ω,
x̄ = f(θ, x).

}
(3)

Given a continuous function u : T → R we will say that u is an invariant curve of (3) if, and
only if,

u(θ + ω) = f(θ, u(θ)), ∀θ ∈ T.

The value ω is known as the rotation number of the curve. An equivalent way to define an
invariant curve is to require the set {(θ, x) ∈ T×R | x = u(θ)} to be invariant by F , where F is
the function defined by (2). On the other hand, note that Fn is also a quasi-periodically forced
map.

Given a function u : T → R, we will say that u is a n-periodic invariant curve of F if u is
invariant by Fn (and there is no smaller n satisfying such condition).

Given x = u0(θ) an invariant curve of (3) of class Cr (r ≥ 1), its linearized normal behaviour is
described by the following linear skew product:

θ̄ = θ + ω,
x̄ = a(θ)x,

}
(4)

where a(θ) = Dxf(θ, u0(θ)) is of class C
r−1, x ∈ R and θ ∈ T.

A linear skew product like (4) is called reducible if, and only if, there exists a change of variable
x = c(θ)y, continuous with respect to θ, such that (4) becomes

θ̄ = θ + ω,
ȳ = by,

}

where b does not depend on θ. The constant b is called the multiplier of the reduced system.
An invariant curve is called reducible if its linearized normal behaviour (4) is reducible. An
n-periodic invariant curve is reducible if it is reducible for Fn.

In the case that a(·) is a C∞ function and ω is Diophantine, the skew product (4) is reducible
if, and only if, a(·) has no zeros. Due to this property, the reducibility loss can be characterized
as a codimension one bifurcation.
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Let us consider a one-parametric family of linear skew-products

θ̄ = θ + ω,
x̄ = a(θ, µ)x,

}
(5)

where ω is Diophantine, µ belongs to an open set of R and a is a C∞ function of θ and µ. We
will say that the system (5) undergoes a reducibility loss bifurcation at µ0 if

1. a(·, µ) has no zeros for µ < µ0,

2. a(·, µ) has a double zero at θ0 for µ = µ0,

3. d
dµ
a(θ0, µ0) 6= 0.

On the other hand, consider a system like (3) with f a C∞ function, which depends (smoothly) on
a one dimensional parameter µ (we denote this dependence as f = fµ), having an invariant curve
u = uµ. We will say that the invariant curve undergoes a reducibility loss bifurcation if
the family of linear skew-products (5), where a(θ, µ) = Dxfµ(θ, uµ(θ)), undergoes a reducibility
loss bifurcation. For more details see Section 2.1 in [12] or Section 3 in [13].

Given a map like (4) we have that, due to the rigid rotation in the periodic component, one of
its Lyapunov exponents is equal to zero (see [1]). Then the definition of the Lyapunov exponent
can be suited to the case of linear skew-products as follows.

If θ ∈ T, we define the Lyapunov exponent of (4) at θ as

λ(θ) = lim sup
n→∞

1

n
ln

∣∣∣∣∣∣

n−1∏

j=0

a(θ + jω)

∣∣∣∣∣∣
. (6)

We also define the Lyapunov exponent of the skew product (4) as

Λ =

∫ 1

0
ln |a(θ)|dθ.

If Λ is finite then, applying the Birkhoff Ergodic Theorem we have that the lim sup in (6) is in
fact a limit and λ(θ) = Λ for Lebesgue a.e. θ ∈ T. If a(θ) never vanishes, the lim sup in (6) is
again a limit and coincides with Λ, but now for all θ ∈ T.

Quasi-periodically forced one dimensional maps have been extensively studied ([8, 9, 15, 10, 6,
13, 3, 7]) with a focus on the existence of strange non-chaotic attractors.

The kind of maps that we consider here are like (3), where f is given by an unimodal one
dimensional map plus a small perturbation which depends on both variables x and θ. The
paradigmatic example in our case of study is the Forced Logistic Map, which is defined as

θ̄ = θ + ω,
x̄ = αx(1− x)(1 + ε cos(2πθ)),

}
(7)

where (α, ε) are parameters and ω is a fixed irrational number. This family has interest not
only for phenomena related with the existence of strange non-chaotic attractors ([9, 15, 6]) but
also as a model for the truncation of period doubling bifurcation cascade ([14, 12]). The term
“truncation of the period doubling bifurcation cascade” refers to the fact that, for fixed ε and
growing α, the attracting set of the map undergoes only a finite number of period doubling
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Figure 1: Diagram of the parameter space of the map (7) for ω =
√
5−1
2 . The axes correspond

to the parameters α (horizontal) and ε (vertical). The black lines represent the period doubling
bifurcations from period one to two (left) and two to four (right). The colour coding is the
following: Black means “invariant curve with zero Lyapunov exponent”, red means “chaotic
attractor”, blue means “non-chaotic non-reducible attractor”, grey means “non-chaotic reducible
attractor” and white refers to “no attractor (divergence to −∞)”.

bifurcations before exhibiting a chaotic behaviour. This differs from the one dimensional case,
where there are infinitely many period doubling bifurcations before chaos.

In [12] we studied the truncation of the period doubling cascade for the map (7). We observed
that the reducibility of the invariant curves plays a crucial role. We note that, in this example and
for |ε| < 1, Dxf(θ, x) is zero if and only x = 1

2 . Hence, if |ε| < 1, an invariant curve is reducible
if and only if it does not intersect the line x = 1

2 . We computed bifurcation diagrams in terms
of the dynamics of the attracting set, taking into account different properties, as the Lyapunov
exponent and, in the case of having a periodic invariant curve, its period and reducibility. One
of these bifurcation diagrams is reproduced in Figure 1.

Let dn be the value of the parameter α where the attracting periodic orbit of the one dimensional
map doubles from period 2n to period 2n+1. Figure 1 shows that from every parameter (α, ε) =
(dn, 0) of the map (7), a period doubling bifurcation curve of invariant curves is born. Let sn
be the parameter value where the critical point of the (non-forced) one dimensional family is
periodic with period 2n. Figure 1 also shows that from every parameter value (α, ε) = (sn, 0) two
curves of reducibility loss are born. The left curve (namely, S−

n ) corresponds to a passage from
a reducible to non-reducible 2n-periodic invariant curve, while the right curve (S+

n ) corresponds
to a passage from non-reducible to reducible of the same 2n-periodic invariant curve. In [17] we
prove, under suitable hypotheses, that these curves exist. In Figure 1 we can observe that the
period doubling bifurcation curve born at (dn, 0) is between the right reducibility loss bifurcation
curve born at (sn, 0) and the left reducibility loss bifurcation curve born at (sn+1, 0).
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In this paper we study, numerically, the extension of this self-similarity to the quasi-periodically
Forced Logistic Map. To this end, we approximate numerically the reducibility loss bifurcations
curves S−

n and S+
n near (α, ε) = (sn, 0). As we will see, there are self-similarities between these

curves.

2 The curves of reducibility loss

In this section we focus on the reducibility loss curves S±
n born at the points (α, ε) = (sn, 0), for

ε small. To start, let us assume that each of these curves is the graph of a function depending
on ε (this assumption is discussed in [17]). In other words, there exist a neighbourhood Un of
sn, an interval I = [0, ρ) and functions α±

n : I → R such that S±
n ∩ Un = {(α±

n (ε), ε) | ε ∈ I}.

To compute values of the curve (α±
n (ε), ε) we have used the following procedure. First, the 2n

periodic invariant curve of (7) is written as a truncated Fourier series and then the invariance
condition gives an equation (that also depends on the parameters α and ε) for these coefficients
(see [4] or [11] for more details). This equation is then supplemented by a second equation that
is the condition of reducibility loss bifurcation of the curve (in this case, this is to ask that the
curve has a tangency with the line x = 1

2). The role of this condition is to impose a relation
between both parameters which defines the curves S±

n we are looking for. Finally, a standard
continuation procedure on these two equations allows to compute the desired curves. A similar
scheme was used in [12] to compute the curve of zero Lyapunov exponent.

Assume that the functions α±
n (ε) are written at first order as

α±
n (ε) = sn + α̃±

n ε+O(ε2).

That is, α̃±
n denotes the derivative of α±

n (ε) at ε = 0. To obtain a numerical approximation
of the values α̃±

n we have used the previous procedure to compute points (α±
n (ε), ε) ∈ S±

n for
ε = 2−khn for k = 1, 2, ...,M , being hn a prescribed small value (the larger the n, the smaller
hn). Then, we can use a forward difference to estimate α̃±

n :

α̃±
n ≈ α±

n (2
−khn)− α±

n (0)

2−khn
.

To improve the accuracy, we have done three steps of Richardson extrapolation. To estimate
the accuracy of the results, we have repeated this same extrapolation but halving the value of
hn. All these computations have been done with quadruple precision, using the library [2].

Lemma 1 Let us consider a map of the form,

θ̄ = θ + ω,
x̄ = h(x, θ, α, ε),

}

satisfying the symmetry h(x, θ, α, ε) = h(x, θ+ 1
2 , α,−ε). If there is a reducibility loss bifurcation

curve (ε, α(ε)), then (−ε, α(ε)) is also a reducibility loss bifurcation curve.

The proof is obvious noting that the map is conjugated (by θ 7→ θ + 1
2) to the same map but

replacing ε by −ε.

Note that Lemma 1 implies, in our case, that α̃−
n = −α̃+

n . As a test of our calculations, we have
computed both values α̃±

n , and in all the cases the values obtained satisfy α̃−
n = −α̃+

n (within
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n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -2.0000000000e+00 - - - 3.0e-15

1 -5.8329149229e+00 2.9164574614e+00 1.5e-14

2 -8.4942599432e+00 1.4562633015e+00 8.4e-13

3 -1.6351279467e+01 1.9249798777e+00 7.4e-15

4 -1.1252460775e+01 6.8817004793e-01 3.0e-14

5 -1.2243326651e+01 1.0880577054e+00 1.6e-13

6 -1.8079693906e+01 1.4766978307e+00 1.6e-11

7 -3.4735234067e+01 1.9212291009e+00 2.0e-12

8 -2.9583312211e+01 8.5168023205e-01 2.1e-12

9 -4.1569457725e+01 1.4051657715e+00 4.2e-10

10 -7.8965495522e+01 1.8996036957e+00 9.1e-11

11 -7.4500733455e+01 9.4345932945e-01 8.1e-10

Table 1: Approximate values of α̃n(ω) for the map (7) for ω =
√
5−1
2 .

n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -2.0000000000e+00 - - - 4.1e-16

1 -4.7793787548e+00 2.3896893774e+00 9.2e-14

2 -9.9177338359e+00 2.0751094117e+00 8.0e-16

3 -6.9333908531e+00 6.9909023249e-01 4.3e-15

4 -7.5678156188e+00 1.0915028129e+00 2.4e-14

5 -1.1183261803e+01 1.4777397292e+00 2.3e-12

6 -2.1488744556e+01 1.9215095679e+00 3.0e-13

7 -1.8302110429e+01 8.5170682641e-01 3.1e-13

8 -2.5717669657e+01 1.4051750893e+00 6.1e-11

9 -4.8853450105e+01 1.8996064090e+00 2.6e-11

10 -4.6091257360e+01 9.4345961772e-01 1.2e-10

11 -7.1498516059e+01 1.5512381339e+00 4.1e-09

Table 2: Approximate values of α̃n(ω) for the map (7) for ω = 2
√
5−1
2 .

the accuracy of the computations). Hence, in what follows we only focus on the values α̃−
n . To

simplify the notation, from now on we will refer to α̃−
n as α̃n.

The values of α̃n depend on ω, the rotation number of the system. Hence, from now on, we

write α̃n = α̃n(ω). The estimated values of α̃n(ω) for the family (7) when ω =
√
5−1
2 are shown

in Table 1. We have included the ratios α̃n(ω)/α̃n−1(ω) in the third column of the table. The
value ǫa in the fourth column corresponds to the estimated absolute error of the value of α̃n. In

Tables 2 and 3 we have included the same values for ω = 2
√
5−1
2 and ω = 4

√
5−1
2 .

A remarkable fact is that the ratios α̃n(ω)/α̃n−1(ω) on the third column of Table 1 are ap-
proximately the same values on the third column of Table 2, but shifted on the index value
n by one position. In fact, the bigger is n the closer are the values. The same phenomenon
can be observed in Tables 2 and 3. We can also observe in Tables 1, 2 and 3 that the ratios
α̃n(ω)/α̃n−1(ω) do not converge to a constant value. However, in the following sections we will
obtain some self-similarity properties of this family.
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n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -2.0000000000e+00 - - - 5.3e-15

1 -6.1135714539e+00 3.0567857269e+00 4.0e-17

2 -4.6432689399e+00 7.5950186809e-01 8.8e-16

3 -5.1662366620e+00 1.1126292121e+00 5.4e-15

4 -7.6637702641e+00 1.4834338350e+00 5.2e-13

5 -1.4738755184e+01 1.9231728870e+00 6.7e-14

6 -1.2555429245e+01 8.5186497017e-01 6.9e-14

7 -1.7643286059e+01 1.4052316105e+00 1.3e-11

8 -3.3515585777e+01 1.8996226477e+00 5.8e-12

9 -3.1620659727e+01 9.4346134772e-01 2.6e-11

10 -4.9051192417e+01 1.5512387420e+00 9.0e-10

11 -9.2911119039e+01 1.8941663691e+00 5.6e-12

Table 3: Approximate values of α̃n(ω) for the map (7) for ω = 4
√
5−1
2 .

2.1 Universality of the ratio sequence

Let F be a quasi-periodic forced map like (2) where f is a Cr map and ω an irrational number.
We suppose that this map depends on two parameters α, ε such that, if ε = 0 then f does not
depend on θ and it has a cascade of period doubling bifurcations with respect to α. Moreover we
assume, for ε small, that the reducibility-loss bifurcation curves are well defined as differentiable
functions with respect to ε. In what follows, we will write explicitly the dependence on f of
the slopes of these curves as α̃n(ω, f). Now we can resume the discussion on the phenomenon
observed on Tables 1, 2 and 3. Our numerical computations suggest that, for large n,

α̃n(ω, f)

α̃n−1(ω, f)
≈ α̃n−1(2ω, f)

α̃n−2(2ω, f)
. (8)

Consider two different values ω0 and ω1 such that 2ω0 = 2ω1(mod 1). If (8) is true, then
α̃n(ω0, f)/α̃n−1(ω0, f) ≈ α̃n(ω1, f)/α̃n−1(ω1, f) if n is large. To check it, in Table 4 we have

recomputed the same values as in Table 1 but this time for ω =
√
5
2 (and f the function associated

to the map (7) as before).

If F denotes a quasi-periodically forced map (2), let F 2 be the map composed with itself.
Concretely, the map F 2 can be written as F 2(θ, x) = (θ + 2ω, f(θ + ω, f(θ, x))). To simplify
the notation, let us denote by f2 the map defined as f2(θ, x) := f(θ + ω, f(θ, x)). Moreover
we have that the 2k periodic curves of F are 2k−1 periodic curves of the map F 2, therefore
α̃n(ω, f) = α̃n−1(2ω, f

2). Hence, for n large, the relation given by (8) can be rewritten as

α̃n(2ω, f
2)

α̃n−1(2ω, f2)
≈ α̃n(2ω, f)

α̃n−1(2ω, f)
. (9)

Now we have that the relation given by (8) can be explained as a consequence of a much more

general phenomenon. We believe that the sequence α̃n(ω,f)
α̃n−1(ω,f)

is (asymptotically) universal, in

the sense that it does not depend on the map f . This would imply (9) and consequently (8).

To check the universality of the sequence, we consider the following map,

θ̄ = θ + ω,
x̄ = αx(1− x) + ε cos(2πθ).

}
(10)
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n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -2.0000000000e+00 - - - 5.3e-17

1 -3.7459592187e+00 1.8729796094e+00 3.6e-15

2 -6.1798012892e+00 1.6497246575e+00 2.4e-13

3 -1.2170152952e+01 1.9693437350e+00 2.1e-15

4 -8.4095313813e+00 6.9099635922e-01 9.5e-15

5 -9.1576001570e+00 1.0889548706e+00 5.2e-14

6 -1.3525371011e+01 1.4769558377e+00 5.0e-12

7 -2.5986306241e+01 1.9213008072e+00 6.5e-13

8 -2.2132200091e+01 8.5168703416e-01 6.6e-13

9 -3.1099463199e+01 1.4051681745e+00 1.3e-10

10 -5.9076676864e+01 1.8996043914e+00 5.6e-11

11 -5.5736446311e+01 9.4345940345e-01 2.5e-10

Table 4: Approximate values of α̃n(ω) for the map (7) for ω =
√
5
2 .

n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.0000000000e+00 - - - 2.7e-14

1 -8.1607837043e+00 2.0401959261e+00 5.1e-14

2 -1.1166652707e+01 1.3683309241e+00 2.4e-12

3 -2.1221554117e+01 1.9004400578e+00 2.1e-14

4 -1.4564213015e+01 6.8629342294e-01 8.6e-14

5 -1.5837452605e+01 1.0874224778e+00 4.6e-13

6 -2.3384207858e+01 1.4765132021e+00 4.5e-11

7 -4.4925217655e+01 1.9211776567e+00 5.8e-12

8 -3.8261700375e+01 8.5167534788e-01 5.9e-12

9 -5.3763965691e+01 1.4051640456e+00 1.1e-09

10 -1.0213020106e+02 1.8996031960e+00 1.1e-10

11 -9.6355685578e+01 9.4345927630e-01 2.3e-09

Table 5: Approximate values of α̃n for the map (10) for ω =
√
5−1
2 .

n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.0000000000e+00 - - - 3.8e-15

1 -6.2417012728e+00 1.5604253182e+00 2.4e-13

2 -1.2036825830e+01 1.9284527253e+00 2.1e-15

3 -8.2891818940e+00 6.8865180997e-01 9.0e-15

4 -9.0187641307e+00 1.0880161934e+00 4.9e-14

5 -1.3318271659e+01 1.4767291245e+00 4.7e-12

6 -2.5587438370e+01 1.9212281462e+00 6.1e-13

7 -2.1792312360e+01 8.5168011135e-01 6.2e-13

8 -3.0621808757e+01 1.4051656497e+00 1.2e-10

9 -5.8169300479e+01 1.8996036760e+00 5.2e-11

10 -5.4880369083e+01 9.4345932701e-01 2.3e-10

11 -8.5132515708e+01 1.5512380316e+00 8.2e-09

Table 6: Approximate values of α̃n for the map (10) for ω = 2
√
5−1
2 .
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This map is like (7) but with an additive forcing instead of a multiplicative one. In the literature,
sometimes (7) is referred as the Driven Logistic Map and (10) is referred as the Forced Logistic
Map. In this paper we consider both as two different versions of the Forced Logistic Map.

Note that both maps are in the class of quasi-periodically forced one dimensional unimodal maps,
with a quasi-periodic forcing of the type h(x) cos(2πθ), where h is a function of one variable.
This is certainly a very restrictive class of maps. In Section 4 we explore what happens when
the quasi-periodic forcing is not of this form.

We have computed the slopes α̃n(ω), the associated ratios α̃n(ω)/α̃n−1(ω) and the estimation
of their accuracy for the family (10) as it was done for the family (7). The results are shown in

Table 5 for ω =
√
5−1
2 and in Table 6 for ω = 2

√
5−1
2 .

Now we can compare the sequences α̃n(ω0)/α̃n−1(ω0) in Tables 1 and 2, with the ones in Tables 5
and 6 respectively. Again we can observe that both sequences have an equivalent asymptotic
behaviour for equal values of ω. This agrees with the conjectured universal behaviour.

3 Self-similarity of the bifurcation diagram

Given a one dimensional map in the interval g : I → I, its (doubling) renormalization is defined
as R(f) = A−1 ◦g ◦g ◦A with A an affine transformation. Note that the self-similarity (1) in the
bifurcation diagram of the Logistic Map can also be seen in the following way. If s∗ is the limit
of the sequence of parameter values sn, then sn − s∗ ≈ δ(sn+1 − s∗). In terms of the parameter
space this means that the affine map L(α) = δ(α− s∗) + s∗ sends (approximately) the point sn
to sn−1. Given a q.p. forced map like (2), one might try to define a renormalization for these
kind of maps. The most simple choice would be to define its (doubling) renormalization also as
T (F ) = A−1 ◦F ◦F ◦A, with A a suitable affine map. If the map F has rotation number ω, its
(doubling) renormalization will have rotation number 2ω. This is due to the composition of F
with itself when we define its renormalization.

The reducibility loss curves S±
n in the parameter space of the map (7) depend on the rotation

number (i.e. S±
n = S±

n (ω)). We can look for self-similarity of the parameter space, but taking
into account the “doubling” of the rotation number. In other words, we look for an affine
relationship between the slopes of the curves S±

n around sn for ω0 and the slope of the same
curves for 2ω0. That is, we look for an affine map of the kind

L

(
α
ε

)
=

(
δ0 0
0 δ1

)(
α− s∗

ε

)
+

(
s∗

0

)
, (11)

such that it maps the curves S−
n (2ω) to S−

n−1(ω) (and respectively S+
n (2ω) to S+

n−1(ω)). If we
impose these conditions to the local parameterization (around sn) of the curves considered above
then we get

(
sn−1 + α̃n−1(2ω)t+ o(t)

t

)
=

(
δ0 0
0 δ1

)(
sn + α̃n(ω)s+ o(s)− s∗

s

)
+

(
s∗

0

)
,

for any t and s. Then, replacing s = t/δ1 in the first coordinate and equating terms in the order
of t, we obtain

sn−1 = δ0sn + (1− δ0)s
∗

α̃n−1(2ω) =
δ0
δ1
α̃n(ω).

9



Figure 2: Diagram of the parameter space of the map (7) for ω =
√
5−1
2 on the left hand side

and for ω =
√
5− 1 on the right. Color codes are the same as in Figure 1.

Using these two equations we have that the value δ1 can be estimated as δ1 ≈ δ0
α̃n(ω)

α̃n−1(2ω)
. For

δ0 we recover the estimation δ0 ≈ sn−sn−1

sn−1−sn−2
, which converges to the Feigenbaum constant δ.

Therefore we replace δ0 by δ in the estimation of δ1, obtaining δ1 ≈ δ
α̃n(ω)

α̃n−1(2ω)
.

In Table 7 we have estimations of these values for the family (7) for ω =
√
5−1
2 (left) and

ω =
√
5− 1 (right). In Table 8 we have the same estimation for the family (10) and ω =

√
5−1
2 .

In all the cases the sequence seems to converge to a concrete value. This convergence means
that there exists an affine relation between the reducibility loss bifurcation curves S±

n (ω) and
S±
n−1(2ω) around the superstable periodic orbits of the uncoupled map. Note that the limit

constants obtained in each of these three cases are different one to each other. This indicates
that the renormalization factor depends both on the value of ω taken and the family of maps
considered. Therefore the renormalization factor δ1 is not universal.

These evidences of self-similarity are only valid for infinitely small values of the coupling pa-
rameter ε. If the self-similarity between families extends to larger values of ε, the bifurcation
diagram of the map (7) in a box I1 × I2 of the parameters space for a prescribed ω = ω0 should
be approximately the same as the diagram in the box L(I1 × I2) for ω = 2ω0, where L is the
affine map (11).

In Figure 2 we have a bifurcation diagram of the map (7) analog to the one displayed in Figure 1.
The scale of the boxes has been selected such that the one in the left is the image of the one

10



n δ1,n(ω0) δ1,n − δ1,n−1 δ1,n(ω0) δ1,n − δ1,n−1

1 1.36175279e+01 - - - 1.11579415e+01 - - -

2 8.29844510e+00 -5.3e+00 7.57460662e+00 -3.6e+00

3 7.69807112e+00 -6.0e-01 6.97211386e+00 -6.0e-01

4 7.57782290e+00 -1.2e-01 6.83972864e+00 -1.3e-01

5 7.55390503e+00 -2.4e-02 6.81347460e+00 -2.6e-02

6 7.54857906e+00 -5.3e-03 6.80758174e+00 -5.9e-03

7 7.54747726e+00 -1.1e-03 6.80631795e+00 -1.3e-03

8 7.54724159e+00 -2.4e-04 6.80604419e+00 -2.7e-04

9 7.54719154e+00 -5.0e-05 6.80598601e+00 -5.8e-05

10 7.54718076e+00 -1.1e-05 6.80597353e+00 -1.2e-05

11 7.54717846e+00 -2.3e-06 6.80597086e+00 -2.7e-06

Table 7: Estimations of the value δ1,n = δ1,n(ω) = δ
α̃n(ω0)

α̃n−1(2ω0)
for ω0 =

√
5−1
2 on the left and

ω1 = 2
√
5−1
2 on the right.

n δ1,n(ω0) δ1,n − δ1,n−1

1 9.52608610e+00 - - -

2 8.35338804e+00 -1.2e+00

3 8.23204689e+00 -1.2e-01

4 8.20385506e+00 -2.8e-02

5 8.19937833e+00 -4.5e-03

6 8.19817945e+00 -1.2e-03

7 8.19796400e+00 -2.2e-04

8 8.19791815e+00 -4.6e-05

9 8.19790879e+00 -9.4e-06

10 8.19790672e+00 -2.1e-06

11 8.19790628e+00 -4.4e-07

Table 8: Estimations of the value δ1,n = δ1,n(ω) = δ
α̃n(ω0)

α̃n−1(2ω0)
for the family (10) with ω0 =

√
5−1
2 .

in the right through the affine map L given by (11). The value of δ0 has been taken equal to
the Feigenbaum constant and δ1 ≈ 7.54718 the experimental value obtained in Table 7. The
results indicate that self-similarity properties extend to the whole reducibility region around
each period doubling bifurcation.

4 Non-universality of the ratio sequence

A natural question to ask after the numerical evidences of universality and renormalization
reported in the previous sections is “how general are these phenomena?”. In this section we
present an example which demonstrates that the universality and the self similarity properties
depend on the Fourier expansion of the quasi-periodic forcing.

Consider the following family,

θ̄ = θ + ω,
x̄ = αx(1− x) + ε(cos(2πθ) + E cos(4πθ)).

}
(12)

We consider E a fixed value and α and ε as true parameters, obtaining a two parametric family.
We note that for E = 0 we recover the map (10).
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n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.4000000000e+00 - - - 2.1e-14

1 -8.5708073961e+00 1.9479107718e+00 3.2e-14

2 -1.2367363641e+01 1.4429636637e+00 2.5e-12

3 -2.2002414361e+01 1.7790707058e+00 2.0e-14

4 -1.5466051366e+01 7.0292519321e-01 1.2e-13

5 -1.7124001858e+01 1.1071993396e+00 7.5e-13

6 -2.5233583736e+01 1.4735798293e+00 5.0e-11

7 -4.5526415150e+01 1.8041993411e+00 4.4e-12

8 -4.0793050977e+01 8.9603037802e-01 3.7e-12

9 -5.9579098646e+01 1.4605207804e+00 1.1e-09

10 -1.0695246126e+02 1.7951339260e+00 9.0e-11

11 -1.0464907069e+02 9.7846341692e-01 3.1e-09

Table 9: Approximate values of α̃n(ω) of the family (12) for ω =
√
5−1
2 and E = 10−1.

We have done the computation of the values α̃n(ω) for the family (12), for E = 10−1, 10−2, 10−3

and ω =
√
5−1
2 , 2

√
5−1
2 . The results are shown in Tables 9 to 14. To compute the values in the

tables we have used the same procedure as for the families (7) and (10) before. In these tables
we have also included the estimated values of the ratios α̃n(ω)/α̃n−1(ω) and the estimated
accuracies. In Table 15 we include the ratios δ1,n(ω) = α̃n(ω)/α̃n−1(2ω) and the differences
δ1,n(ω)− δ1,n−1(ω).

In the third column of Tables 9 to 14 we can observe that the relations given by (8) do not
hold in this case. Moreover, if f(θ, x) = αx(1 − x)(1 + ε cos(2πθ)) and g(θ, x) = αx(1 − x) +
ε(cos(2πθ) + E cos(4πθ)), the numerical results displayed in these tables suggest that

lim
n→∞

[
α̃n(ω, f)

α̃n−1(ω, f)
− α̃n(ω, g)

α̃n−1(ω, g)

]
6= 0.

We can also observe in Table 15 that the different sequences δα̃n(ω)/α̃n−1(2ω) cease to converge.
Recall that the limit of this sequence gives the scale factor between the bifurcations diagrams
of the map and of the square of the map. In other words, the self-similarity properties of the
maps disappear.

Analyzing the results with more detail we can observe in Tables 9 to 15 that (when the parameter
E is small) the map is not self-similar, but it behaves “close to self-similar” in the following sense:
The values α̃n(ω) for the family (10) that were shown in Table 5 become, for the family (12),
the values shown in Tables 9, 11 and 13. Similarly, the values in Table 6 become, for E 6= 0, the
values shown in Tables 10, 12 and 14. Note that the change in these values when E 6= 0 is of
the order of E. This implies that the differences δ1,n − δ1,n−1 are also of the order of E.

5 Summary and conclusions

We have performed a numerical study of the asymptotic behaviour of the slopes α̃n(ω, f) of
the reducibility loss bifurcation curves of quasi-periodic perturbations of the Logistic Map. The
results can be summarized as follows.

• First numerical observation: We have computed the sequences α̃n(ω)/α̃n−1(ω) for the
maps (7) and (10). They do not look convergent but the difference between these two
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n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.4000000000e+00 - - - 4.2e-15

1 -6.8849393233e+00 1.5647589371e+00 2.6e-13

2 -1.2339134533e+01 1.7921921972e+00 1.9e-15

3 -8.8252833730e+00 7.1522709709e-01 1.0e-14

4 -9.9507316299e+00 1.1275254526e+00 2.6e-14

5 -1.5240261120e+01 1.5315719172e+00 4.9e-12

6 -2.6987715314e+01 1.7708171207e+00 6.9e-13

7 -2.4101506278e+01 8.9305471016e-01 1.0e-12

8 -3.4274713216e+01 1.4220983876e+00 1.4e-10

9 -5.9739968275e+01 1.7429750002e+00 4.0e-11

10 -6.0772668123e+01 1.0172865818e+00 3.5e-10

11 -9.7063373626e+01 1.5971550472e+00 8.3e-09

Table 10: Approximate values of α̃n(ω) of the family (12) for ω = 2
√
5−1
2 and E = 10−1.

n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.0400000000e+00 - - - 2.6e-14

1 -8.1970065912e+00 2.0289620275e+00 4.9e-14

2 -1.1286613379e+01 1.3769189098e+00 2.4e-12

3 -2.1298993542e+01 1.8871022535e+00 2.1e-14

4 -1.4654396022e+01 6.8803232383e-01 8.9e-14

5 -1.5964802815e+01 1.0894207302e+00 5.0e-13

6 -2.3545880397e+01 1.4748619617e+00 4.5e-11

7 -4.4967877741e+01 1.9097981041e+00 5.6e-12

8 -3.8501241787e+01 8.5619432630e-01 4.8e-12

9 -5.4345411904e+01 1.4115236128e+00 1.1e-09

10 -1.0260055779e+02 1.8879341272e+00 1.0e-10

11 -9.7178352178e+01 9.4715227943e-01 2.3e-09

Table 11: Approximate values of α̃n(ω) of the family (12) for ω =
√
5−1
2 and E = 10−2.

n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.0400000000e+00 - - - 3.8e-15

1 -6.2967793362e+00 1.5586087466e+00 2.4e-13

2 -1.2062745707e+01 1.9157008786e+00 2.1e-15

3 -8.3390918858e+00 6.9130959805e-01 9.0e-15

4 -9.1092083960e+00 1.0923501648e+00 4.6e-14

5 -1.3509885744e+01 1.4831020608e+00 4.7e-12

6 -2.5722289496e+01 1.9039605503e+00 6.1e-13

7 -2.2023032848e+01 8.5618478288e-01 6.8e-13

8 -3.0953588852e+01 1.4055098163e+00 1.2e-10

9 -5.8281365651e+01 1.8828629510e+00 5.1e-11

10 -5.5448581611e+01 9.5139468666e-01 2.5e-10

11 -8.6313143445e+01 1.5566339289e+00 8.2e-09

Table 12: Approximate values of α̃n(ω) of the family (12) for ω = 2
√
5−1
2 and E = 10−2.
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n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.0040000000e+00 - - - 2.7e-14

1 -8.1643491058e+00 2.0390482282e+00 5.0e-14

2 -1.1178647202e+01 1.3692024995e+00 2.4e-12

3 -2.1229290655e+01 1.8990930004e+00 2.1e-14

4 -1.4573231305e+01 6.8646812284e-01 8.6e-14

5 -1.5850170411e+01 1.0876222355e+00 4.7e-13

6 -2.3400073191e+01 1.4763294391e+00 4.5e-11

7 -4.4929300750e+01 1.9200495820e+00 5.7e-12

8 -3.8285483755e+01 8.5212730036e-01 5.8e-12

9 -5.3822109356e+01 1.4058098286e+00 1.1e-09

10 -1.0217709608e+02 1.8984223641e+00 1.0e-10

11 -9.6437862923e+01 9.4383053171e-01 2.2e-09

Table 13: Approximate values of α̃n(ω) of the family (12) for ω =
√
5−1
2 and E = 10−3.

n α̃n(ω) α̃n(ω)/α̃n−1(ω) ǫa
0 -4.0040000000e+00 - - - 3.7e-15

1 -6.2470810635e+00 1.5602100558e+00 2.4e-13

2 -1.2039370639e+01 1.9271993618e+00 2.1e-15

3 -8.2941266770e+00 6.8891696467e-01 9.0e-15

4 -9.0277699390e+00 1.0884533466e+00 4.8e-14

5 -1.3337423899e+01 1.4773774686e+00 4.7e-12

6 -2.5600860673e+01 1.9194756698e+00 6.1e-13

7 -2.1815381589e+01 8.5213469453e-01 6.3e-13

8 -3.0654499563e+01 1.4051782426e+00 1.2e-10

9 -5.8180013759e+01 1.8979273708e+00 5.2e-11

10 -5.4936892373e+01 9.4425712239e-01 2.4e-10

11 -8.5250385421e+01 1.5517875464e+00 8.2e-09

Table 14: Approximate values of α̃n(ω) of the family (12) for ω = 2
√
5−1
2 and E = 10−3.

n δ1,n(ω) δ1,n − δ1,n−1

1 9.095188 - - -

2 8.387251 -7.1e-01

3 8.325844 -6.1e-02

4 8.182639 -1.4e-01

5 8.035129 -1.5e-01

6 7.730884 -3.0e-01

7 7.876621 1.5e-01

8 7.902866 2.6e-02

9 8.116387 2.1e-01

10 8.359271 2.4e-01

11 8.040253 -3.2e-01

n δ1,n(ω) δ1,n − δ1,n−1

1 9.473633 - - -

2 8.369274 -1.1e+00

3 8.244333 -1.2e-01

4 8.205249 -3.9e-02

5 8.183245 -2.2e-02

6 8.137779 -4.5e-02

7 8.162729 2.5e-02

8 8.162820 9.1e-05

9 8.197747 3.5e-02

10 8.219826 2.2e-02

11 8.183173 -3.7e-02

n δ1,n(ω) δ1,n − δ1,n−1

1 9.520727 - - -

2 8.355159 -1.2e+00

3 8.233307 -1.2e-01

4 8.204041 -2.9e-02

5 8.197777 -6.3e-03

6 8.191961 -5.8e-03

7 8.194411 2.4e-03

8 8.194339 -7.1e-05

9 8.198023 3.7e-03

10 8.200161 2.1e-03

11 8.196456 -3.7e-03

Table 15: Estimations of the value δ1,n = δ1,n(ω) = δ
α̃n(ω)

α̃n−1(2ω)
for the map (12) (where δ is the

Feigenbaum constant). The different boxes correspond (from left to right) to E = 10−1, 10−2

and 10−3. In all the cases we have taken ω =
√
5−1
2 .
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sequences seems to have zero limit.

• Second numerical observation: The sequence α̃n(ω)/α̃n−1(2ω) seems to be convergent
in n. The limit depends on ω and on the particular family considered.

• Third numerical observation: The two previous observations are not true for the map
(12). The sequence seems to be E-close to the corresponding sequence for E = 0 (i.e.,
map (10)).

These numerical observations evidence the existence of some structure governing the asymptotic
behaviour of the sequence α̃n(ω). In a sequence of forthcoming papers ([17, 18, 19]) we will study
the renormalization operator for these maps to give an explanation of these phenomena.
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[4] E. Castellà and A. Jorba. On the vertical families of two-dimensional tori near the triangular
points of the bicircular problem. Celestial Mech. Dynam. Astronom., 76(1):35–54, 2000.

[5] W. de Melo and S. van Strien. One-dimensional dynamics, volume 25 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1993.

[6] U. Feudel, S. Kuznetsov, and A. Pikovsky. Strange nonchaotic attractors, volume 56 of
World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. Dynamics between order and
chaos in quasiperiodically forced systems.

[7] J. Figueras and A. Haro. Reliable computation of robust response tori on the verge of
breakdown SIAM J. Appl. Dyn. Syst. (to appear).

[8] C. Grebogi, E. Ott, Pelikan S., and J.A. Yorke. Strange attractors that are not chaotic.
Phys. D, 13(1-2):261–268, 1984.

[9] J. F. Heagy and S. M. Hammel. The birth of strange nonchaotic attractors. Phys. D,
70(1-2):140–153, 1994.

[10] T. H. Jaeger. Quasiperiodically forced interval maps with negative schwarzian derivative.
Nonlinearity, 16(4):1239–1255, 2003.

[11] A. Jorba. Numerical computation of the normal behaviour of invariant curves of n-
dimensional maps. Nonlinearity, 14(5):943–976, 2001.

[12] A. Jorba, P. Rabassa, and J.C. Tatjer. Period doubling and reducibility in the quasi-
periodically forced logistic map. Discrete Contin. Dyn. Syst. Ser. B, 17(5):1507–1535,
2012.

15



[13] A. Jorba and J. C. Tatjer. A mechanism for the fractalization of invariant curves in quasi-
periodically forced 1-D maps. Discrete Contin. Dyn. Syst. Ser. B, 10(2-3):537–567, 2008.

[14] K. Kaneko. Doubling of torus. Progr. Theoret. Phys., 69(6):1806–1810, 1983.

[15] A. Prasad, V. Mehra, and R. Ramaskrishna. Strange nonchaotic attractors in the quasiperi-
odically forced logistic map. Phys. Rev. E, 57(2):1576–1584, 1998.

[16] P. Rabassa. Contribution to the study of perturbations of low dimensional maps. PhD
thesis, Universitat de Barcelona, 2010.

[17] P. Rabassa, A. Jorba, and J.C. Tatjer. Towards a renormalization theory for quasi-
periodically forced one dimensional maps I. Existence of reducibily loss bifurcations. In
preparation, 2012.

[18] P. Rabassa, A. Jorba, and J.C. Tatjer. Towards a renormalization theory for quasi-
periodically forced one dimensional maps II. Asymptotic behaviour of reducibility loss bi-
furcations. In preparation, 2012.

[19] P. Rabassa, A. Jorba, and J.C. Tatjer. Towards a renormalization theory for quasi-
periodically forced one dimensional maps III. Numerical support. In preparation, 2012.

16


