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1 Introduction

Our goal is to study some properties of the dynamics of the N -body problem. As it is well known, the
Newtonian model of N punctual masses, mi, i = 1, . . . , N , located at qi(t) ∈ Rd, moving under their
mutual gravitational attraction is described by the equations

q̈i =

N
∑

j=1,j 6=i

(qj − qi)/r
3
i,j , r2i,j = ||qj − qi||22, i = 1, . . . , N. (1)

The system has several first integrals. The centre of mass ones, in a suitable reference moving linearly
with constant velocity, are

∑N
i=1miqi = 0,

∑N
i=1 pi = 0, where the related momenta are defined as

pi = miq̇i. Furthermore, defining the kinetic energy as T (p) =
∑N

i=1 ||pi||22/mi and the potential one as
U(q) =

∑

1≤i<j≤N mimj/ri,j one has the energy integral T (p) − U(q) = H(q, p) = h. The total angular

momentum
∑N

i=1miqi ∧ q̇i is another first integral. In general no more first integrals exist. Of course,
q and p above refer to the vectors in RNd which contain all the components of positions and momenta.
System (1) can be put in Hamiltonian formulation: q̇i = ∂H/∂pi, ṗi = −∂H/∂qi. The pairs (qi, pi) are
canonically conjugated. In present case the Hamiltonian has Nd degrees of freedom (dof), despite the use
of the centre of mass integrals reduces to (N−1)d and the angular momentum gives additional reduction.
For the applications we shall consider the cases d = 2 and d = 3. The equations are analytic except on
the collision set, when at least one of the values of ri,j equals zero.

In many problems it is interesting to consider that some of the bodies have a negligible mass. They are
influenced by the massive bodies but have no action on them. These are the restricted N -body problems.

The N -body problem belongs to the general class of Hamiltonian systems. In these systems and in
all kinds of dynamical systems, the ultimate goal is to describe the main mechanisms leading to a fairly
global description of the dynamics, how it depends on parameters and, if it is possible to act on the system
(either with additional forces or by changing parameters) how to have some control on the behaviour
of the system. In present case we shall be interested in conservative systems, either in the continuous
version described by a Hamiltonian or in the discrete version. Next we make some comments on the
passage from continuous systems to discrete ones and vice versa.

1.1 Continuous and discrete conservative systems

The associated discrete version is given by symplectic maps: F : (x, y) → (X,Y ), where X = F1(x, y),
Y = F2(x, y), with x, y,X, Y belonging to some set in Rd and such that the 2-form dx∧dy =

∑d
i=1 dxi∧dyi

is preserved: dX ∧ dY = dx ∧ dy. We can replace working in Rd × Rd by a formulation in symplectic
manifolds but, to have a simpler presentation, we prefer to work explicitly using coordinates and refrain
from extensions.

It is a simple matter to obtain discrete maps from a flow leaded by ẋ = f(x), where f is a vector
field (v.f.) in some open set U of Rn. Assume Σ is an hypersurface, given as the points x ∈ U such that
g(x) = 0, where g : U → R. We require that is satisfies the transversality condition. We say that Σ is
transversal to the v.f. if the scalar product (f,∇g) is different from zero in Σ. The geometrical meaning
is clear: the flow crosses transversally the section Σ. In many examples one simply takes as g one of
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the coordinates (either equal to zero or to a constant). In that case Σ is usually not the full coordinate
hyperplane, but the part of it satisfying the transversality condition. Then, given a point Q ∈ Σ we
define a map, the so-called Poincaré map P, as the first return of Q to Σ: ϕt(Q)(Q) ∈ Σ with a minimal
value of t(Q) > 0. Note that, eventually, some Q can never return to Σ for any t > 0. This implies that
Σ has to be reduced to a suitable subset. We also note that the return time t(Q) depends on the starting
point. We denote as P(Q) := ϕt(Q)(Q) the image of Q under the Poincaré map P.

In the case of a Hamiltonian H with m dof (hence x has dimension 2m) fixing a transversal section
Σ and the level of energy h, the Poincaré map associated to Σ defines a map in Σ ∩ H−1(h), of even
dimension 2(m− 1). This map is symplectic.

Given a discrete map x → F (x) in V ⊂ Rn there is also a simple way to produce a v.f. such that it
has, as associated Poincaré map, the initial map, provided F is close to the identity, say F (x) = x+εG(x)
with ε small enough (see later). For concreteness we shall assume that G is a real analytic function. We
want to define a non-autonomous periodic v.f. of period 1 in t. Let us consider, for instance, and for a
given k > 1, the function ψ(t) = tk(1− t)k. Then we define the flow starting at the point x after a time
t ∈ [0, 1] as ϕt(x) = x+ εψ(t)G(x), that is, we are using an Hermite-like interpolation, because ψj(0) = 0
for j = 0, . . . , k − 1, ψ(1) = 1 and ψj(1) = 0 for j = 1, . . . , k − 1. Other interpolations can also be used.
For other values of t it is defined by periodicity: ϕt(x) = ϕ(t)(x) where (t) = t− [t], being [t] the largest
integer less than or equal to t. Clearly ϕ0(x) = x, ϕ1(x) = F (x). Now we should define the v.f. at (y, τ)
for τ ∈ [0, 1]. To this end we look for z such that ϕτ (z) = y. It follows immediately, from the implicit
function theorem, that a solution exists if ||Id+ εDG||∞ > 0. Finally the v.f. is f(y, τ) = εψ′(τ)G(z).

We note that this is a slow v.f., having the parameter ε as a factor. It is usually denoted as the
suspension of the map F . We can consider if it is possible to approximate it by an autonomous v.f.
This follows from a general theorem on averaging, that we present in a wider context: the case of v.f.
depending on time in a quasiperiodic way.

Theorem 1.1. Let

ż = εf(z, θ, ε), (2)

where f is analytic in (z, θ) for z ∈ Ω ⊂ Cn, Ω = D +∆, a ∆-neighbourhood of D in Cn, D a compact
in Rn and θ ∈ Tp +∆, p ≥ 2, where Tp is a p-dimensional torus. Assume f in (2) is bounded in ε for
|ε| ≤ ε0 and θ = ωt, where ω ∈ Rn is a vector of frequencies satisfying the Diophantine condition (DC)

|(k, ω)| ≥ b|k|−τ , ∀k ∈ Zp \ {0} (3)

where b > 0,τ > p− 1 and |k| = ∑p
i=1 |ki|. Then, if ε0 is small enough, for a fixed ε with |ε| ≤ ε0, there

exists a change of variables z = h(w, θ, ε), analytic in (w, θ) for w ∈ D +∆/2, θ ∈ Tp +∆/2, such that
the new equation is ẇ = ε(g(w, ε) + r(w, θ, ε)) and the remainder satisfies an exponentially small bound

|r|∆/2 < c1 exp(−c2/εc3), (4)

where c1, c2 > 0 , c3 = 1/(τ + 1). The constants c1, c2 depend only on |f |∆, the dimensions and the
constants in (3). Furthermore |g|∆/2 < 2|f |∆. Here |f |∆ denotes the sup norm of f in D +∆, Tp +∆
for the fixed value of ε.

Remarks.

1) In the periodic case (it would be p = 1, τ = 0), there is no need of analyticity wrt t. Just integrable
is enough. Then c3 = 1. See [33].

2) The optimal number of averaging steps (i.e., up to which order in ε should be cancelled the
quasiperiodic dependence) is ≈ ε−c3 .

3) If f is a Hamiltonian v.f. the change to w can be made canonical. Hence, the averaged system,
skipping the remainder r, is also Hamiltonian.

4) If f has been obtained by suspension of a map F , we can produce an autonomous v.f., like g, which
interpolates F except by exponentially small terms.
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The basic idea of the proof is to obtain the change z = h(w, θ, ε) by means of sequence of changes.
This methodology is common to many topics in dynamical systems. First we try to cancel the purely
quasiperiodic terms in f , that is, the terms in f̃ = f − f̄ , where f̄ denotes the average wrt θ. Writing
the suitable condition for the change one checks that one has to solve a PDE to obtain the quasiperiodic
coefficients in this first change. To solve it with control on how the coefficients of the change behave
is where the analyticity wrt θ and the DC (3) play its role. In the periodic case one has to do just an
integration, and this is why to be integrable in t is enough in that case.

Once the terms in f̃ have been skipped, one has to check the contribution that the change makes in
ε2. Here is where the analyticity of f wrt z plays a role, to bound the derivatives in a slightly smaller
strip, passing from half width ∆ to ∆1. Then we proceed to cancel the purely quasiperiodic terms which
appear with ε2 as factor, and so on, to cancel the non-autonomous terms in εk, k = 3, . . .. At every step,
to be able to bound the contributions made by the change to higher order in ε, one has to reduce the
size of the analyticity domain, introducing a decreasing sequence for the half widths of the successive
domains ∆2 > . . . > ∆k > . . ..

After every change one has a bound on the remainder. If for a given ε we do too many changes, as
we want to keep an analyticity domain of positive half width, the differences ∆k−1 −∆k are small. This
implies bad estimates for the derivatives and an increase on the size of the remainder. This is why, for
every ε, there is an optimal order. Simpler estimates give then the bound in (4). See [38] for details and
examples.

These kind of bounds on remainders are relevant to bound errors on approximations done, for instance,
with normal forms (see subsection 3.2). The variables can be scaled in the domain of interest and the
role of ε is played by the size of the domain.

Finally we stress that the passage from flows to maps and vice versa, when the map or some power
of it is close enough to the identity, allows a more complete understanding and representation of key
phenomena.

In what follows we shall consider that all v.f. and maps are in the analytic category.

1.2 Comments on the contents

Letting aside the two-body problem and subclasses with some special symmetry, the simplest N -body
problem is the planar circular restricted three-body problem which has 2 dof (see section 4). Next simplest
problem can be the planar general three-body problem. Even restricting to a fixed value of the angular
momentum it has 3 dof. The dimension can be reduced by fixing energy and using a Poincaré section. In
the first case we obtain symplectic 2D maps, easy to visualize. In the second case we have symplectic 4D
maps, not so easy to visualize. There are key objects of codimension-1 (see subsection 3.4), intersections
of two objects of dimension 2 in dimension 4, the invariant tori (see subsection 3.3) do not separate the
phase space and slow escape from points as close as we like to invariant tori (Arnold diffusion or general
diffusion, see subsection 3.5), avoiding a large set of nearby tori, can occur.

For these reason we devote section 2 to introduce several simple but paradigmatic examples in the
2D case, with the hope that will make easier to grasp the main ideas in higher dimension. See also slides
2. for several examples with low dimensional conservative systems.

Section 3 is devoted to present some general theoretical results. But it is also relevant to see how to
use the ideas of the proofs in concrete examples. In many cases the effective computation is based on
the implementation of the proof, either by symbolical or numerical methods or, quite frequently, by a
combination of both.

Finally section 4 presents some applications to Celestial Mechanics, with a variety of goals.
Concerning references, most of the basic results can be found in classical standard books. A few of

them appear in the list of references, and no explicit mention to them is made in the text. I consider
worth to devote some time to learn the full contents. Some references to concrete topics are scattered
along the text and they are given at the end of these notes. The reader can also look, at the end of
the references, at the list of slides of several talks given in the past and that, in turn, refer to some
animations.
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2 Low dimension: Same key examples of 2D symplectic

maps to see the kind of phenomena to face

Invariance of dx∧dy in dimension 2 is equivalent to area preservation. We shall denote as APM the Area-
Preserving Maps. The simplest non-trivial APM which come to mind are the quadratic ones: x, y ∈ R

and F1, F2 are polynomials of degree two. These maps were widely studied by M. Hénon [19]. See also
slides 5. and slides 7. They are relevant because

1) The number of parameters can be reduced to only one, and they have a very simple geometrical
interpretation.

2) They appear in a natural way as a very good approximation in some parts of R2 when we consider
arbitrary APM. In particular when we study Poincaré maps of Hamiltonian systems with 2 dof.

3) Many problems concerning: a) the existence of invariant curves diffeomorphic to S1; b) the role of
the invariant manifolds of hyperbolic fixed or periodic points and how they lead to the existence
of chaos, and c) the geometrical mechanisms leading to the destruction of invariant curves, can all
be understood thanks to our knowledge of the quadratic case.

We shall illustrate some of these features in that section.

2.1 The Hénon map

In the initial formulation the map (except in some degenerate cases) can be written, thanks to the APM
character, shift of origin and scaling, as F : (x, y) → (1 − ax2 + y,−x). Hence, this family of maps
depends on a single parameter, a. The geometric interpretation is simple: it is the composition of the
map (x, y) → (x, y + 1 − ax2) (one of the so-called de Jonquières maps) and a rotation of angle −π/2.
Figure 1 shows, for a = −1/2, the square [−3, 3]2 (in red), the first image (in green) and part of the next
two images (in blue and magenta, respectively). One can ask whether all points will escape for future
iterations. To give an answer to this question, we plot in black the set of points which remain bounded
for all iterations and the selected value of a.

-3

-2

-1

 0

 1

 2

 3

-2  0  2  4  6  8

Figure 1: The square [−3, 3]2 (in red) and the first three images of it under the Hénon map with a = −0.5,
shown in green, blue and magenta, respectively. The last two have parts outside the frame shown here.
In black we display the invariant set of points which remain bounded under all iterations.
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However we shall use another representation of that map, see [45], given by

Fc

(

x
y

)

→
(

x+ 2y + c
2(1− (x+ y)2)

y + c
2(1− (x+ y)2)

)

, (5)

which depends on c that can be assumed to be positive. It has two fixed points: H at (−1, 0), hyperbolic
∀c > 0, and E = (1, 0), elliptic for 0 < c < 2 and hyperbolic with reflection for c > 2. The reversor
S(x, y) = (x,−y) allows to obtain F−1

c = SFcS.
Doing the change of scale (ξ, η) = (x, 2y/

√
c) one obtains a map

√
c-close to the identity. According

to section 1 it can be approximated by the time-
√
c flow of the v.f. dξ/dt = η, dη/dt = 1 − ξ2, with

Hamiltonian K(ξ, η) = η2/2 − ξ + ξ3/3. It is, of course, a trivial matter to improve K to any power of√
c. This v.f. has the same fixed points as Fc and a separatrix on the level K = 2/3.
Next we show iterates of some initial points under Fc for c = 0.2 and c = 0.762.

-0.4

-0.2

 0

 0.2

 0.4

-1  0  1  2
-0.6

-0.3

 0

 0.3

 0.6

 0  0.5  1  1.5

Figure 2: Some iterates under Fc. Left: for c = 0.2. Right: for c = 0.762. We have taken initial points on
y = 0 and plotted 5,000 iterates of each one after a transient of 106 iterates. Points outside the displayed
domain escape to infinity close to the left branch of W u

H .

An important characteristics of points whose orbit is an invariant curve (IC) is the rotation number
ρ. It measures the average value of the fraction of revolution that the point turns in each iterate. We
can look at the curves around the elliptic point E in the previous plots and take polar coordinates. Let
θk the angle of the k-th iterate, but considered in the lift R instead of S. Note that in this example the
points turn clockwise. Then we define

ρ =
1

2π
lim
k→∞

θk
k
. (6)

It always exists and does not depend on the initial point on the curve.
On the left plot one can see a pattern which looks like the phase portrait of a 1 dof Hamiltonian,

with a foliation by periodic solutions and a separatrix in blue. It seems that, as in the case of 1 dof
systems the map is integrable. That is, there exists a non-constant function C(x, y) preserved by the
map: C(F (x, y)) = C(x, y). In fact there is a Cantor set (of positive measure) of IC with ρ /∈ Q, an
infinite number of periodic orbits of elliptic and hyperbolic type and the right hand sides of the manifolds
of H do not coincide. What happens is that the differences wrt the flow case are extremely small, in
agreement with (4). We shall see details on the smallness in section 2.1.2.

The right plot displays a typical behaviour of a not close to integrable APM. Certainly there are many
IC (again a Cantor set) around the point E, but at some distance one can see big period-5 islands around
elliptic periodic points of period 5 and one can guess the existence of period-5 hyperbolic points. Close
to them there are chaotic orbits, still surrounded by some more IC (rotational, that is, they make the full
turn around E) and, finally, some little islands before reaching a place where most of the points escape.
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2.1.1 Some comments on invariant curves

The plots in Figure 2 raise several questions:

1) Do really IC exist for Fc?

2) Which is the structure of the set of IC?

3) How are they destroyed?

4) What happens after its destruction?

First we introduce the so-called twist maps. These are integrable maps defined in some annular
domain rd < r < ru, having a foliation by IC, given by

T (r, α) = (r, α + a(r)) (7)

and satisfying the twist condition

da(r)/dr 6= 0 (8)

Of course, one can have the form (7) after a diffeomorphism. The curves can have a shape different from
circles, like ellipses, to be star-shaped or not.

A key result is Moser twist theorem.

Theorem 2.1. Consider a perturbation Fε = T + εP of a twist map T . Then, if we have an invariant
curve of T which has Diophantine rotation number γ, this curve, with a small deformation, subsists for
Fε provided ε is sufficiently small.

The Diophantine condition, in present case, is like (3) with frequencies γ and 1: |k1γ + k0| ≥ b|k|−τ ,
∀(k1, k0) ∈ Z2 \ {0}, where |k| denotes some norm of k = (k1, k0).

Let us comment a little on the three conditions: a) it must be a perturbation of a twist map T ; b)
the rotation number γ must be Diophantine; c) it must be close enough to T , that is, ε must be small.

Assume that the Fourier representation of the IC of T which has ρ = γ is r(α) =
∑

j∈Z aj exp(i jα) in
the present polar coordinates we are using (typically, for a given problem, the twist map will not be give
in the form (7) and to put explicitly it in this form can be cumbersome). Let rε(α) =

∑

j∈Z bj exp(i jα)
be the representation of the desired IC, invariant under Fε. The invariance condition is expressed, in
(r, α) as Fε(rε(α), α) = (rε(α + 2πγ), α + 2πγ). It is clear that we can fix the origin of angles in an
arbitrary way.

We try to pass from the coefficients aj to the bj by making a sequence of changes (similar to the case
of theorem 1.1) such that after the k-th change, one has an approximation of the IC under Fε with ρ = γ

with an error O(ε2
k

). That is, a Newton method in the space of Fourier series. The equation to be solved
at each step is of the form G(α+2πγ)−G(α) = R(α), the so called homological equation, where R(α) is
related to the error of the previous approximation and has zero average, a necessary condition in order
to be possible to solve the equation.

Using Fourier representations for G and R: G =
∑

j∈Z gj exp(i jα), R =
∑

j∈Z rj exp(i jα), r0 = 0, it
is straightforward to obtain gj = rj/(exp(i j2πγ) − 1), j 6= 0. But, of course, if jγ is close to an integer,
the previous denominator is close to zero. This is known as the small denominators problem. The DC
allows us to control the behaviour of the coefficients of G, so that if R is analytic in some complex strip
around real values of α, G is also analytic (perhaps in a slightly narrower strip).

The problem is then that the error in the next approximation does not have zero average and we
will not be able to solve the next homological equation. But this average can be cancelled by modifying
the initial independent term a0 (or, equivalently, by selecting a proper value for g0) and this is possible
thanks to the twist condition by applying the implicit function theorem. It is convenient to express the
twist condition as dρ/da0 6= 0; that is, in terms of the average of the initial curve. Finally the smallness
of ε is necessary to have convergence in the Newton procedure. Note that, for a fixed γ, the larger the
twist condition, the larger are the admissible values of ε.
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In section 3.3 we shall talk about generalizations to higher dimension, both for symplectic maps and
for Hamiltonian flows. The key ideas for the proofs are the same.

Using normal form tools (see section 3.2) it is easy to prove that, what seem IC in Figure 2 are really
IC, at least close to the point E. Furthermore, it is clear that the structure of the set of IC is Cantorian,
because so is the structure of the set of Diophantine numbers for values of b, τ bounded from below, see
(3).

It is interesting to see what happens when the twist condition is not satisfied. Figure 3 shows, for
the map (5), with c = 1.35, the evolution of ρ as a function of x for initial points of the form (x, 0). It
is clear that ρ is only defined for IC and periodic orbits (or islands) and in present case it seems that
this occurs for most of the initial values of x. One can prove that this behaviour, with a local minimum
at x = 1 and one local maxima on each side, appears only for c ∈ (c1, c2), c1 = 5/4, c2 ≈ 1.4123. For
c ∈ (0, c1) one has a local (in fact, global) maximum at x = 1 (the point E).

 0.302

 0.304

 0.306

 0.308

 0.4  0.6  0.8  1  1.2

Figure 3: For c = 1.35 the value of ρ = ρ(x) is plotted for initial points on y = 0. In blue the points
with ρ ∈ Q. Note that now, to the left or to the right of x = 1 the function ρ is no longer monotonous.

The twist condition is lost near the maxima. Let ρM be the value of ρ at a given maximum M .
Assume that there exist rationals p/q < ρM with q not too large. They give rise to the typical islands
structure, with q islands on each family, on both sides of the IC with ρ = ρM (or close to it). The
interaction of these two families of islands, with ρ = p/q, gives rise to the so-called meandering curves,
see [40], which cannot be written with the radius as a function of the angle seen from the point E. The
curves have some folds (or meanders) but it is still possible to apply Moser theorem 2.1 to prove that
they exist.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.8  0.9  1  1.1

-0.04

-0.02

 0

 0.02

 0.04

 0.76  0.77  0.78  0.79

Figure 4: On the left we show a couple of orbits for c = 1.3499, sitting on a domain in which ρ passes
through a maximum. These orbits are on invariant curves known as meanders. On the right we show
a magnification. Beyond different meanders in red, one can see two typical invariant curves (inner and
outer) in blue and islands which belong to two different chains of islands of rotation number 4/13.

7



2.1.2 Some comments on invariant manifolds of hyperbolic points

Beyond the IC of an APM there are other very important invariant objects which play a key role in
dynamics (this is also true for more general maps and flows in any dimension, see section 3.4). They
are the stable and unstable manifolds of the hyperbolic fixed or periodic points. They can be seen as the
non-linear generalisation of the invariant subspaces of the differential of the map at the fixed point. On
the left plot in Figure 2, for c = 0.2, the branches W u,+ and W s,− (the ones which start to the right of
x = −1) seem to be coincident but they are not. Figure 5, left, shows a magnification when they return to
the vicinity of the point (−1, 0), after going clockwise around E under Fc (red points) or counterclockwise
under F−1

c (blue points). We see tiny oscillations with a size O(10−3). The right plot in Figure 5 shows
the manifolds for c = 0.77 with large oscillations. The points in W u∩W s are known as homoclinic points
(or biasymptotic points). Some of them, on y = 0, can be seen to the right of the plot. The successive
nearby returns of the manifolds produce infinitely many homoclinic points. Depending on the location
of a point wrt a given homoclinic, after passing close to H under iteration by Fc will follow close to the
positive, W u,+, or to the negative, W u,−, branches of W u. Similar for the stable branches using F−1

c .

-0.004

-0.002

 0

 0.002

 0.004

-1.01 -1.005 -1 -0.995 -0.99

-0.8

-0.4

 0

 0.4

 0.8

-1  0  1  2

Figure 5: Left: a magnification of Figure 2 showing that the manifolds do not coincide. Right: part of
the invariant manifolds of the hyperbolic point H for c = 0.77 (the unstable manifold in red, the stable in
blue). One has W s

H = S(W u
H). The splitting of the manifolds is now clearly visible. It is increasing with

c. Note that the domain around the point E which is not covered by the oscillations of the manifolds,
becomes smaller. Compare with the non-escaping set of points in Figure 2 right, for a nearby value of c.

A measure of the lack of coincidence of W u and W s is the splitting angle. This is defined as the
angle between the manifolds at a given homoclinic point. In the present case of quadratic APM, we can
measure the angle at the first intersection of the manifolds with y = 0 to the right of x = 1 and see how
it behaves as a function of c. For concreteness we denote this angle as σ(c). In Figure 6, left and middle,
we represent the value of σ(c) in different scales. In the left plot, despite the splitting is different from
zero for any c > 0, we see that only for c > 0.2 does it start to be visible. To make visible what happens
for small c, we display, in the middle plot, log(σ) against log(c). Note that already for c = 0.05 the value
of σ(c) is below 10−15 and, hence, it is negligible for any practical application.

Concerning the right plot in Figure 6 we need some preliminaries. Let λ(c) be the dominant eigenvalue
at the point H, which is equal to 1+ c+

√
2c+ c2 for Fc. An essential parameter in the theoretical study

of the problem is h(c) = log(λ(c)), because using suitable representations of the manifolds, it is possible
to show that the splitting has upper bounds of the form exp(−η/h), where η is related to the imaginary
part of the singularity of the separatrix of the limit flow, as mentioned before Figure 2. This type of
result is true for general analytic APM close to the identity map, see [10, 11]. In fact, for the present
problem one can prove a more precise result. The splitting angle has the form

σ(c) =
9

2
× 106π2h(c)−8 exp

(

− 2π2

h(c)

)

× Ω(h). (9)

The term Ω(h) can be expanded in powers of h2: Ω(h) =
∑

m≥0 ω2mh
2m and can be bounded by ω0+

O(h). The constant term can be determined numerically and the first digits of ω0 are 2.48931280293671.
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Figure 6: Different representations of the splitting angle σ(c) between the manifolds at the first inter-
section with y = 0, x > 1. Left: σ as a function of c, showing that σ seems negligible for c < 0.2. At that
value of c one has σ(c) = 6.2146342685682663009767540674985307425003 . . . × 10−5. Middle: log(σ) as
a function of log(c), which allows to see how small σ(c) is for c approaching zero. Right: the values of
log10(ω2m(2π2)2m/(2m + 6)!) versus m, to give evidence of the Gevrey character of Ω(h) (see text).

Note, however, that the series defining Ω(h) is divergent. But for every value of h it provides a good
approximation if we truncate the summation at the right place. There is numerical evidence that the
series is of Gevrey-1 class.

A formal power series
∑

ckt
k is said to be of Gevrey-β class if the series

∑

ck(k!)
−βtk is convergent.

We can compute the series
∑

m≥0 ωmh
2m/(2m)! obtained from Ω(h) using β = 1. From a numerical

determination of Ω(h), for different values of h, one can obtain the coefficients ω2m. See [12] for method-
ology and examples. In the right plot in Figure 6 we display log10(ω2m(2π2)2m/(2m + 6)!) as a function
of m, which seems to tend to a constant. This gives evidence of the Gevrey-1 character of Ω(h) we
mentioned. But this is an open problem.

2.1.3 On the destruction of invariant curves

As mentioned in section 2.1.1, if ρ is too close to a rational (in the Diophantine sense) or if the twist
condition is too weak or if the perturbation ε wrt an integrable map is too large, the IC does not exist.
These analytic properties also have a nice geometric interpretation.

To illustrate the mechanism leading to the destruction of IC we consider Figure 7. It has been
produced for c = 0.618 (left) and c = 0.63 (right) and it only shows the left part of the set of points
which have bounded orbits. The case of Figure 7 is similar to the one in Figure 2 right, but now the
main islands are 6-periodic instead of 5-periodic.

On the left plot one can see medium size islands with ρ = 3/19 (with its central elliptic point on
y = 0) and two symmetrical islands, in the same family, with ρ = 4/25, as well as several satellite islands,
then tiny islands (e.g., with ρ = 17/107, 39/245, 11/69, 19/119, 21/131, 13/81, . . .) and IC. In particular
some IC are still present between the two chains of medium size islands. Some other IC, surrounding the
main period-6 islands (not displayed) appear as the rightmost curves shown.

On the right plot we display in black two chains of islands of rotation numbers 3/19 and 4/25,
corresponding to the ones in the left plot, but now they are smaller. Consider the associated hyperbolic
periodic orbits, the one with rotation number 4/25 being visible on the x-axis and the two symmetric
points belonging to the hyperbolic periodic orbit of rotation number 3/19 being close to x = −0.2 off the
x-axis. The manifolds of these periodic orbits give rise to heteroclinic connections that is, intersections of
the stable and unstable manifolds of two different objects. The manifolds W u

4/25,W
s
4/25 are shown in red

and green, respectively. The manifolds W u
3/19,W

s
3/19 are shown in blue and magenta, respectively. Note

that W u
4/25 and W s

3/19 (and, symmetrically W s
4/25 and W u

3/19) have transversal heteroclinic intersections.
This produces an obstruction to the existence of the IC which could separate the chains of islands. This
is the basis of the so-called obstruction mechanism [35].

Indeed, if we consider a curve formed by a piece of invariant manifold of the inner hyperbolic periodic
point (the one of period 25) until the heteroclinic point, followed by a piece of invariant manifold of the
outer hyperbolic periodic point (the one of period 19), from the heteroclinic point to the periodic one,
the IC will have to cross it. This is impossible because of the invariance. In fact, one concludes that IC
with ρ ∈ (3/19, 4/25) cannot exist. But IC with ρ in that interval are found for c = 0.618. Hence, the
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Figure 7: Left: A part of the set of non-escaping points for the map Fc and c = 0.618. Right: similar
plot for c = 0.63, displaying also several invariant manifolds of periodic hyperbolic points leading to
heteroclinic intersections. See the text for details.

geometrical mechanism responsible for the destruction is the existence of heteroclinic connections which
obstruct the possible curves.

Anyway, there are invariant objects with ρ in the above mentioned interval. It is proved that they
should be at the outer part of the manifolds of the hyperbolic periodic orbit with ρ = 4/25 and at the
inner part of the manifolds of the hyperbolic periodic orbit with ρ = 3/19. The heteroclinic intersections
of these manifolds create gaps which forbid the existence of points of the invariant object in them. As
a consequence, the invariant object which remains is a Cantor set [28, 29]. Points which were located
inside an IC for c = 0.618 and, hence, without being possible the escape, can now, for c = 0.63 find a
gap of the Cantor set and escape under iteration. It looks like some random process and, certainly, the
probabilities are related to the size of the gaps in the Cantor set.

2.2 The standard map

Looking at the right plot in Figure 2 we clearly see the period-5 islands around period-5 elliptic points
and, as already said, we can guess the existence of period-5 hyperbolic points. We also see IC close to
the island. Some of them inside, which have ρ > 1/5, and other outside, which have ρ < 1/5. If instead
of iterations under Fc we iterate using F 5

c we will check that the inside curves turn a little clockwise and
the outside ones turn a little counterclockwise. We can ask: what happens for an APM if we have two
IC turning by iteration an small amount in opposite directions?

This is the contents of the so-called last geometric theorem by Poincaré. Between the two curves
invariant, under a map M , should appear fixed points, generically isolated and alternatively elliptic and
hyperbolic. Typically it appears one point of each type. But if the map is the q-th power of some other
map M̃ , with rotation number p/q, (p, q) = 1 then there are q fixed points of each type under M , which
are q-periodic under M̃ .

The structure of the islands is reminiscent of the phase portrait of a pendulum, whose Hamiltonian
is H(x, y) = y2/2 + cos(x) using suitable coordinates. From a quantitative point of view (the width of
the islands) we recall that the maximal distance between upper and lower separatrices in a pendulum
with Hamiltonian H(x, y) = y2/2 + δ cos(x) is 4

√
δ. But we keep the presentation in the scaled version.

The equations are ẋ = y, ẏ = sin(x). One can think of a discrete model which, in the limit, behaves
as the pendulum. The simplest approach would be to use an explicit Euler method with step h, which
gives the map (x, y) → (x + hy, y + h sin(x)). Unfortunately that map is not APM, but can be made
symplectic using a symplectic Euler method: (x, y) → (x̄, ȳ), ȳ = y + h sin(x), x̄ = x + hȳ. If we do not
like to have the parameter h in both variables, we simply replace hy by a new variable z, rename z again
as y, introduce k = h2 and we obtain

SMk :

(

x
y

)

→
(

x̄ = x+ ȳ
ȳ = y + k sin(x)

)

, (10)

10



a popular map known as standard map [7]. It is clear that we can look at the variables (x, y) in S×R or
in T2. It has fixed points located at (0, 0), hyperbolic, and at (π, 0), elliptic, that we denote again as H
and E. The Figure 8 displays the phase portrait (in T2) for k = 0.5 and k = 1.

 0

 1.5708

 3.14159

 4.71239

 6.28319

 0  1.5708  3.14159  4.71239  6.28319
 0

 1.5708

 3.14159

 4.71239

 6.28319

 0  1.5708  3.14159  4.71239  6.28319

Figure 8: Phase portrait of (10). Left: for k = 0.5, still quite well ordered. Right: for k = 1, already
with a big amount of chaos. Beyond the main elliptic island around E one can see several islands in both
cases. The largest chaotic zone appears around the invariant manifolds of H.

On the left plot it is hard to see that the stable and unstable manifolds of H do not coincide. An
study like the one in subsection 2.1.2 reveals similar properties. But the strongest difference between
both plots is that in the left one there exist rotational IC, that is, IC going from the left vertical boundary
to the right one (in this representation; in fact these boundaries are identified). These curves are absent
in the right plot. Hence, if we consider the map in S×R, there is no obstruction to the dynamics in the
y direction. There are points with initial y ∈ [0, 2π) whose iterates can go arbitrarily far away (despite
for that value k = 1 this will require many iterates).

The critical value up to which one has rotational IC is the so-called Greene’s critical value [18]
kG ≈ 0.971635. The “last” rotational IC which is destroyed has ρ = (

√
5− 1)/2, the golden mean. This

is not a surprise. It is the number in (0, 1) with best Diophantine properties. The obstruction method
using hyperbolic periodic orbits with rotation numbers of the form Fn−1/Fn and Fn/Fn+1, being Fn the
n-th Fibonacci number, plus a suitable extrapolation, allows to determine kG accurately. Note also that
for k > kG but close to kG the rotational IC with ρ = (

√
5 − 1)/2 is replaced by a Cantor set with

“small holes”. This supports the claim about the large number of iterates needed to have y far away from
the initial location. The renormalization theory [26, 27] provides the framework to understand things in
detail.

On the other hand, the Hamiltonian H(x, y) = y2/2 + cos(x) can be replaced by more complex ones
to obtain generalized standard maps. Adding terms in y3 and y cos(x) allows to explain the asymmetry
in Figure 2 right between the inner part and the outer part of the islands and the related inner and outer
splittings of the manifolds of the associated periodic hyperbolic points [45]. Replacing y2/2 by −by+y3/3
allows to reproduce a limit flow of the meandering curves, as shown in Figure 4, and other more complex
changes give rise to labyrinthic IC with funny shapes [40].

2.3 Return maps: the separatrix map

A useful device to understand the dynamics when some hyperbolic invariant object A has orbits homo-
clinic to it are the return maps. Assume that we have an initial point in a given domain D close to a
point homoclinic to A. Then it approaches A under iteration, close to W s

A, and after the passage near
A moves close to W u

A and returns to D. Can we describe how the return is produced?
To illustrate with an example we have used a modified Hénon-Heiles potential. In a pioneer example

Hénon and Heiles in 1964 used a Hamiltonian with 2 dof (a model of the motion of a star in a galaxy
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with cylindrical symmetry) [20]. The Hamiltonian they derived is

HH(x, y, px, py) = (x2 + y2 + p2x + p2y)/2 + x3/3− xy2, (11)

and a careful study of the behaviour of nearby orbits of system (11) lead to the detection of chaotic
motion, giving evidence of the lack of integrability, a fact that was proved theoretically later and that
was relevant to face integrability problems from an algebraic point of view, see [31] and references therein.
Later on the family with Hamiltonian HHc(x, y, px, py) = (x2+y2+p2x+p

2
y)/2+cx

3−xy2 was introduced
and the case c = 0

HHc=0(x, y, px, py) = (x2 + y2 + p2x + p2y)/2 − xy2, (12)

that we shall use as illustration, presents some interesting particularities. Like many other simple models
it has a symmetry wrt to simultaneous change of sign of y and t.

One can fix the value of the energy and use y = 0 as Poincaré section. The Poincaré map P has
a fixed point H which corresponds to a periodic hyperbolic orbit of (12). The invariant manifolds on
HH−1

c=0(0.115) are shown in Figure 9. There exist homoclinic points and the symmetry implies that the
upper branch of W s

H can be obtained from the lower branch of W u
H .

-0.4
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-0.2 -0.1  0  0.1  0.2
 0
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 0.4

-0.2 -0.1  0  0.1  0.2
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KL H

Figure 9: Left: the invariant manifolds (W u in red, W s in blue) of the hyperbolic simple periodic orbit
of the modified Hénon-Heiles Hamiltonian located inside the domain of admissible conditions on the
Poincaré section y = 0, for the level of energy h = 0.115. The variables displayed are (x, px). Right: a
magnification of the upper part showing the location of sections I, J,K,L mentioned in the text. The
periodic orbit appears marked as H on the section.

Our goal is to describe the return to a suitable domain D as a model for a general setting. In Figure
9 right there is a homoclinic point in the segment market as I, whose image under P is the segment
market as J . A suitable domain can be a strip around the parts of the manifolds between I and J .
Note that in present case, due to the symmetry, we consider in Figure 9 right only the upper part in the
(x, px) variables. It can happen that, after passage near H, a point moves to the lower part. Hence, it is
convenient to consider D as the union of two strips, symmetric the one from the other, and that we can
denote as D+ and D−, according to the sign of px, and define D = D+ ∪ D−.

In general there is no symmetry and then D− is not obtained from D+ by symmetry, and even some
of the branches of the manifolds can escape, as it happens for (5).

If we take the part of W u
H from H to the homoclinic point which appears in J , followed by the part

of W s
H between the homoclinic and H, and add the symmetric part (on px < 0) we have a figure-eight

pattern which appears in many problems. For instance, for the manifolds of hyperbolic fixed point of
(10), when we look at the map in S× R in suitable coordinates, one has also a figure-eight pattern [46].

First we assume that a point is located in D+ below W s
H (the line in blue). After passing close to

H it will return to D+. We follow an elementary method to find the return map. If the splitting is
small enough we can assume that the upper branches of the manifolds are coincident and consider a
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nearby integrable map in the domain bounded by the branches of the manifolds. Let ϕt be the flow of a
Hamiltonian v.f. with 1 dof in (x, px) with Hamiltonian H such that ϕ2π coincides with this integrable
map. In particular, points in I move to points in J under ϕ2π, and we can redefine the strip D+ as the
set ∪t∈[0,2π]ϕt(I). The manifolds W s,u

H under that Hamiltonian v.f. coincide and form the separatrix of
H. As additional variable in D+, transversal to that separatrix, we take the level h of H, assuming H is
positive inside the separatrix and equal to zero on it.

For concreteness let us denote as λ the dominant eigenvalue of the differential of the map ϕt=1 at H.
It is clear that the dominant eigenvalue for ϕt=2π , close to the one of the initial map, say µ, is λ2π and
that for the Hamiltonian v.f. is log(λ). If λ is close to 1 then log(λ) will be close to zero. For simplicity
we denote log(λ) as λ∗. In terms of the dominant eigenvalue of the initial map one has λ∗ ≈ log(µ)/(2π).

As all the orbits in the domain bounded by the separatrix are periodic, when a point in D+ returns
to it, it has the same value of h. But t has changed by the period, which behaves like c − log(h)/λ∗),
where c is a constant (essentially equal to the time to go from section L to section K). The map would
be (t, h) 7→ (t+ c− log(h)/λ∗ (mod 2π), h).

Now we return to our original map. The only change is that due to the lack of coincidence ofW s
H and

W u
H . If we consider the variable h defined as an energy wrtW u

H , when continuing the motion close toW s
H

the energy should be considered wrt that manifold. There is a jump in energy due to the splitting. Note
that, using a normal form around H it is possible to define in a natural way an energy in a neighbourhood
of this point and to transport that function along both manifolds, by backward or forward iteration. The
two energies do not coincide in D+. The difference is the jump just mentioned. Let us denote it as s(t) (it
has a weak dependence on h that we neglect). The simplest expression for s(t) is a sinusoidal oscillation
ε sin(t) which measures the location of W u

H wrt W s
H . Then the return map becomes

(

t
h

)

→
(

t̄ = t+ c− log(h̄)/λ∗ (mod 2π),
h̄ = h+ ε sin(t)

)

. (13)

It is clear that the map is not defined if h̄ = 0 because then the point is in W s
H . On the other hand

we have not considered the case h < 0. Then the process is similar, but we land on the lower domain
D−. Beyond the variables (t, h) one has to consider a sign σ equal to ±1 in D±. Using also the sign and
renaming the variables as ξ, η, with ξ ∈ [0, 2π) and η small, the map (13) becomes

SepM :





ξ
η
σ



 →





ξ̄ = ξ + c− log( ¯|η|)/λ∗ (mod 2π)
η̄ = η + ε sin(ξ)
σ̄ = σ × sign(η̄)



 , (14)

a map known as separatrix map. In a general case the jump ε sin(ξ) is replaced by a function s(ξ). In the
asymmetric cases one uses different jump functions s±(ξ) according to σ. The parameter ε, related to
the size of the jump or splitting has, typically, exponentially small upper bounds as a function of some
physical parameter, like the energy in the case of system (12).

For simplicity we concentrate in the symmetric case and to points passing only through D+. Then
σ = 1 and we discard it in (14). Now we assume that η is close to some fixed value, η0, write η = η0 + ζ
and log(η̄) = log(η0) + log(1 + ζ̄/η0) ≈ log(η0) + ζ̄/η0, keeping only linear terms in ζ̄. This is a good
approximation if ζ̄/η0 is small. If we assume, also, that λ is close to 1, then λ∗ is small. In the (ξ, ζ)
variables the map becomes (ξ, ζ) 7→ (ξ̄ = ξ + c1 + b1ζ̄, ζ + ε sin(ξ)), where c1 = c − log(η0)/λ

∗, b1 =
−1/(η0 × λ∗) and we do not write explicitly that ξ is taken mod 2π. Finally, define new variables
u = ξ, v = c1 + b1ζ and the map becomes

(

u
v

)

→
(

ū = u+ v̄
v̄ = v + b1ε sin(u)

)

. (15)

Comparing (15) with (10) we see that they are identical if we set k = b1ε = −ε/(η0 × λ∗). Therefore, we
can expect to find invariant curves in the separatrix map at a distance η0 > ε/(kG×λ∗) from the location
of the invariant manifolds in D+. A similar reasoning applies in the outer part, when the invariant curves
make the full turn around the figure eight. This gives also an estimate of the width of the zone with
chaotic dynamics around the splitted manifolds. The estimate is quite realistic if ε is very small and λ
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is close to 1. This occurs, for instance, in a case like the Hamiltonian (12) because then, on a level of
energy h, λ∗ and ε are, respectively, of the order of h and exponentially small in h.

As final comments in this subsection one has to add that it is very important to derive return maps
in higher dimension, like Hamiltonian systems with ≥ 3 dof or symplectic maps in dimension ≥ 4. But
the formulas that one obtains can be far from simple, due to quasiperiodicity and resonances.

3 Some theoretical results, their implementation and

practical tools

In this section we recall some general results and also provide tools to make them explicit.

3.1 A preliminary tool: the integration of the ODE. Taylor method

and jet transport

In the case of an analytic Hamiltonian (or general) v.f. like ẋ = f(t, x), x(t0) = x0, (t0, x0) ∈ Ω ⊂ R×Rn

or Ω ⊂ C × Cn one should use integration methods of the initial value problem for ODE. For instance,
having in mind to compute Poincaré iterates.

A quite convenient method is Taylor method. That is, to obtain the Taylor expansion x(t0 + h) for
suitable values of h. If x(t0 + h) has components xi, i = 1, . . . , n we look for a representation

xi =
N
∑

s=0

a
(s)
i hs, (16)

for suitable N,h, and use it as a one-step method. For further reference we denote as a(s) the vector with

components a
(s)
i .

The point is how to compute the coefficients of the expansion in an easy way to high order.
For a very large class of functions the evaluation of f can be splitted into simple expressions

e1 = g1(t, x),
e2 = g2(t, x, e1),
...
ej = gj(t, x, e1, . . . , ej−1),
...

em = gm(t, x, e1, . . . , em−1),
f1(t, x) = ek1 ,

...
fn(t, x) = ekn .

Each one of the expressions ej contains a sum of arguments, a product or quotient of two arguments or
an elementary function (like sin, cos, log, exp,√, . . .) of a single argument. The basic idea is to compute

in a recurrent way the power series expansion (up to the required order) of all the ej . The gj have to be
seen as operations with (truncated) power series. Hence we can proceed as follows:

1) Input: t and the components of x0, that is, the coefficients of order zero in (16).

2) Step s, s ≥ 0: from the arguments of gj up to order s we obtain the order s terms of ej . In
particular for fj(t, x), which gives the order s + 1 for xj (dividing by s + 1). This is repeated up
to the required value of N .

3) The values of N,h can be selected so that the truncation error
∑

s>N a
(s)
i hs is bounded, for every

component, by some small ε negligible in front of the (unavoidable) round off error.
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Under reasonable assumptions, like c1γ
s ≤ ||a(s)|| ≤ c2γ

s, 0 < c1 < c2 (which implies radius of
convergence ρ = 1/γ) in the limit when ε → 0, say ε = 10−d, with d large, one can take h such that the
last term satisfies ||a(N)||hN = ε. It turns out, concerning efficiency, that the optimal value of h tends to
ρ× exp(−2) (independently of the equation, and where ρ refers to the radius of convergence around the
current point x0) and N ≈ d log(10)/2 when ε→ 0.

To carry out step 2) above is elementary for the arithmetic operations. As an example for elementary
functions we consider the case of powers, that we should use to integrate (1). Let u(t)=

∑

s≥0 ust
s, u0 6= 0,

α ∈ R, and we want to compute v(t) = u(t)α =
∑

s≥0 vst
s. Then

v0 = uα0 , vs = − 1

su0

s−1
∑

k=0

vkus−k[k − α(s − k)], for s > 0,

the determination being fixed by the one used for v0. This follows easily from v(t) = u(t)α by taking
logarithms and differentiation wrt t. Similar recurrences can be obtained for any elementary function.
If f contains special functions (e.g., Bessel functions) it is enough to add the ODE satisfied by these
functions to the system to be integrated.

To compute to order N has a cost O(N2). This is true for the most expensive elementary operations
and functions, and it is the basis of the optimal estimates given above, see [22] and slides 1.

In the autonomous case, to obtain the image of a point for a Poincaré map P through a section Σ given
by g(x) = 0 when g changes from < 0 to > 0, assume that we have a time t∗ such that g(ϕt∗(x0)) < 0 and
g(ϕt∗+h(x0)) > 0, for the current value of h. To find P(x0) reduces to solve a 1-dimensional equation,
g(ϕt∗+δ(x0)) = 0, for the variable δ. This is easily done by using Newton method.

Assume now that we look for a periodic solution. It can be written as a fixed point of a Poincaré map:
G(x0) = P(x0) − x0 = 0 for a x0 ∈ Σ. Again this can be solved by Newton method, but this requires
to know the differential map DP(x0). To this end we integrate, together with the v.f. f , the first order
variational equations Ȧ = Df(ϕt(x0))A, A(0) = Id. There are two points to take into account, see [37]:

a) The admissible variations of x0 should be confined to the tangent space to Σ at that point. Further-
more, if the system has first integrals, like in the Hamiltonian case, this gives additional constrains
for x0 and the admissible variations if we fix the levels of these integrals.

b) The return time to Σ depends on the initial point. If instead of leaving from x0 we leave from
x0 + ξ, being ξ an arbitrarily small admissible variation, the landing time in Σ has to be corrected
by terms O(||ξ||). This is relevant to compute DP(x0).

In some cases (see subsection 3.4) we can be interested in having an approximation of the Poincaré
map not restricted to first order terms in the variations of x0 ∈ Σ, but to higher order: we would like
to have the Taylor expansion of P(x0 + ξ) to some given order in ξ. To this end one can integrate the
higher order variational equations, restrict the domain of definition to Σ and to the levels of current first
integrals, or proceed in a different, easier, way, using jet transport that we describe next.

This can be also applied to obtain the image of a neighbourhood of a point x0 under ϕt, to see how
it depends on parameters (useful to analyze bifurcations), etc.

Assume the initial conditions are x0+ξ, where ξ are some variations and we want to obtain ϕt(x0+ξ)
at order m in ξ. It is enough to replace all the operations described above to compute ej , done with
numbers, by operations with polynomials in ξ up to order m. This applies to arithmetic operations,
elementary functions, special functions, etc. Hence, instead of the vectors as of numerical coefficients in
(16) we deal with tables containing the numerical coefficients, up to order m, of n polynomials in ξ.

If we return to the case of the Poincaré map, we had to solve g(ϕt∗+δ(x0)) = 0, for the variable δ.
Now δ will depend on ξ, but this is not a problem for Newton method. We simply apply it replacing
numbers by polynomials in ξ.

We remark that the jet transport can be implemented in an efficient way. It is also possible to produce
rigorous estimates of the tails at every step and to obtain intervals which contain the correct values of
all the coefficients. This allows to convert a purely numerical simulation into a Computer Assisted Proof
(CAP). See, e.g., [23].
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3.2 Normal forms

A useful thing, to study many systems, is to try to reduce them to an expression as simple as possible,
according to the topics of interest. If we study a discrete map around a fixed point, it would be nice to
be able to reduce it to a linear map. In general, this is not possible. Furthermore, we can be interested
also in the dependence wrt parameters, to analyze possible bifurcations.

For concreteness we face a Hamiltonian in n dof, in Cartesian coordinates, around a fixed point
(located at the origin) that we assume totally elliptic: the eigenvalues are exp(±iωj), j = 1, . . . , n. In
canonically conjugate variables (xi, yi), i = 1, . . . , n we write it as H =

∑

k≥2Hk, where Hk denote the

homogeneous terms of order k and H2 =
∑n

i=1 ωi(x
2
i + y2i )/2. In principle, we try to make a change

of variables to cancel the terms Hk, k > 2. To keep the Hamiltonian character of the v.f. we shall use
canonical transformations. These can be easily obtained as the flow of an auxiliary Hamiltonian, G, wrt
an auxiliary time s until, say, s = 1. If you do not want to use a “so big time s = 1” simply scale
(x, y) → ε(u, v), divide the Hamiltonian by ε2 obtaining H2(u, v) + εH3(u, v) + ε2H4(u, v) + . . . and then
the final value of s will be ε. But this is equivalent to the previous approach. What makes the change
close to the identity is the smallness of (x, y), not the fact of using s = 1.

As we want to cancel, first, the terms in H3, we shall represent G also as a sum of homogeneous parts,
starting at order 3: G =

∑

k≥3Gk.

To transform the function H under the change we write dH/ds = {H,G}, where

{H,G} =

n
∑

i=1

∂H

∂xi

∂G

∂yi
− ∂H

∂yi

∂G

∂xi

denotes the Poisson bracket. Note that the bracket of homogeneous polynomials of degrees d1 and d2
has degree d1 + d2 − 2. Higher order derivatives are obtained by doing, successively, the Poisson bracket
with G once and again. Trying to cancel (if it is possible to cancel) the terms Hk, k ≥ 3 we determine
the homogeneous parts Gk. But it turns out that to obtain these parts it is much simpler to use complex
coordinates. We introduce

(

xi
yi

)

=
1√
2

(

1 i
i 1

)(

qi
pi

)

, i = 1, . . . , n.

Then H2 becomes
∑n

j=1 iωjqjpj.

The transformed Hamiltonian is

ϕG
s=1(H) = H + {H,G} + 1

2!
{{H,G}, G} +

1

3!
{{{H,G}, G}, G} + . . . . (17)

Assume we have determined Gj , j < m and we want to cancel all the possible terms to order m in
(17). There are terms or order m in (17) which come from Hm or involving Gj , j < m, which are already
known and that we denote, together, as Km. For definiteness assume Km =

∑

a,b,|a|+|b|=mKa,b q
apb,

where a denotes a multiindex with n non-negative components ai, |a| =
∑n

i=1 ai and qa = Πn
i=1q

ai
i ,

as usual. Similar for b and pb. The only unknown part comes from Gm, that we also write as Gm =
∑

a,b,|a|+|b|=mGa,b q
apb and we would like to have

0 = {H2, Gm}+Km =
∑

a,b,|a|+|b|=m

i (ω, b− a)Ga,b q
apb +

∑

a,b,|a|+|b|=m

Ka,b q
apb, (18)

where (ω, b − a) denotes the scalar product
∑n

j=1 ωj(bj − aj). As Ka,b is known, one determines easily
Ga,b, provided (ω, b − a) 6= 0. But it is clear that if bj = aj for all j, then the term Ka,a must be left
on the transformed Hamiltonian, independently of ω. These are called the unavoidable resonances which
appear at even orders. Furthermore, if ω is resonant, i.e., there are integers cj , j = 1, . . . , n such that
(ω, c) = 0, other terms should be kept in the transformed Hamiltonian when b − a = c. These are the
additional resonant terms.
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The normalization process can be continued to any order. But, in general, unless the Hamiltonian
is integrable, the formal normal form is not convergent. One can expect that it belongs to some Gevrey
class (see subsection 2.1.2), but I am not aware of concrete general results in that direction.

After we have transformed the Hamiltonian up to order M , we can skip the terms of higher order
and denote the contribution up to order M as HNFM , the normal form to order M . We recall that a
Hamiltonian system with n dof is said to be integrable (in the Liouville-Arnold sense) if there exist n first
integrals, Fj , j = 1, . . . , n, in involution, {Fi, Fj} = 0, and functionally independent almost everywhere.
If ω is non-resonant then the HNFM is integrable, because one can take Fj = qjpj,∀j.

Now consider the resonant case. It is clear that, by construction, {H2,HNFM} = 0 and, therefore,
except in the degenerate case in which they are not independent, if n = 2 one has HNFM integrable.
In general this is not true if n > 2. The system can be far from integrable even in a small vicinity of a
totally elliptic point. But it can take a long time to have numerical evidence of the existence of chaos,
even if it occurs for most of the initial conditions.

A celebrated theorem by Arnold says that, for an integrable system, if the set of points in the phase
space corresponding to fixed values of the first integrals F−1

1 (c1) ∪ F−1
2 (c2) ∪ . . . ∪ F−1

n (cn) is compact,
then it is an n-dimensional torus Tn. Around a given torus one can introduce the so-called action-angle
variables (I, ϕ), I ∈ Rn, ϕ ∈ Tn. The integrable system can be written, then, as depending only on I:
H = H0(I), the integration is elementary and the frequencies on the given torus have the expression
ωj = ∂H0/∂Ij |F=c, j = 1, . . . , n. If the system is perturbed to H = H0(I) + εH1(I, ϕ) we can study how
the properties of H0(I) change under the effect of the perturbation. See subsections 3.3 and 3.5 in this
direction.

But we want to point out that it is also possible to try to produce a normal form for the perturbed
Hamiltonian around the given torus if the frequencies on it, ωj satisfy a non-resonant condition. This
can push the perturbation to higher order in ε, making easier the applicability of general results.

Up to now we have considered, around a fixed point, the totally elliptic case. If the quadratic term
H2 contain some hyperbolic part H2 =

∑ne

i=1 ωi(x
2
i + y2i )/2 +

∑n
j=ne+1 λjxjyj, one can use similar ideas

to obtain approximations of the central manifold and of the Hamiltonian reduced to it. We return to
this in subsection 3.4.

3.3 Stability results: KAM theory and related topics

There is a natural generalization of the idea of twist map to higher dimension. Consider a map T defined,
in suitable coordinates, in a product of n annuli, with radii ri ∈ (rd,i, ru,i), 0 < rd,i < ru,i, i = 1, . . . , n, of
the form T (r, α) = (r, α + a(r)), where r ∈ R = Πn

i=1(rd,i, ru,i) has components r1, . . . , rn, α ∈ Tn and a
is a map from R to Rn which can be denoted as translation. The map T is an integrable symplectic map
and R × Tn is foliated by tori invariant under T . Nothing else that what we saw for (7) in subsection
2.1.1.

The differential of the translation with respect to the radii, Dra(r) is know as torsion.
Then the KAM theorem for symplectic maps has the following statement, completely analogous to

Theorem 2.1.

Theorem 3.1. Consider a perturbation Fε = T + εP of the integrable symplectic map T in R× Tn and
assume that for r = r∗ the vector a(r∗) satisfies a DC, that the torsion is non-degenerate and ε is small
enough. Then the map Fε has also invariant tori in Tn, close to r = r∗, and on them the action of Fε is
conjugated to the one of T on r = r∗, that is, a translation by a(r∗).

In present case the DC is slightly different from the one in (3). Beyond the translations ai(r), i =
1, . . . , n, one has to add the value 1, as it is obvious thinking on the suspension. So, it reads as

|(
n
∑

i=1

ki, ai) + k0| ≥ b|k|−τ , ∀k ∈ Zn+1 \ {0},

where k denotes now (k1, . . . , kn, k0). The role of the DC, the non-degeneracy of the torsion, analogous
to the twist condition, and the smallness of ε play the same role.

A result similar to Theorem 3.1 holds in the case of Hamiltonian systems.
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Theorem 3.2. Let H0(I) be an integrable Hamiltonian, for which there exist invariant tori, and assume
that for some given torus, labelled by I∗, the frequencies ω(I∗) = ∂H0(I)/∂I|I=I∗ satisfy a DC (in the
sense of (3)) and are non-degenerate, so that the differential ∂ω/∂I|I=I∗ is regular. Then if ε is small
enough, a perturbed Hamiltonian H(I, ϕ) = H0(I) + εH1(I, ϕ, ε) has a nearby invariant torus with the
same frequencies.

These results usually do not give estimates on how small ε should be or, if any, they are very
pessimistic. However, normal form techniques, see subsection 3.2 can help to start the iterative process
in a very good approximation, so that the difference with the initial guess and the true torus, if it exists,
is sufficiently small.

For the effective computation of invariant tori there exist different methods.
A quite classical method is the Lindstedt-Poincaré (LP) method. In principle it is formal because

one looks for the invariant tori without paying too much attention to the DC (despite this can also be
implemented). Assume that we look for 2D tori around a totally elliptic point (assumed to be located
at the origin) in a Hamiltonian system with n = 2 dof. Let ω1(0), ω2(0) be the frequencies at the fixed
point. The linear system will have, for the q, p variables, a representation as linear combinations of
cos(ω1(0)t+ψ1), cos(ω2(0)t+ψ2), where ψ1, ψ2 represent some phases, and these terms have amplitudes
α1, α2. Due to symmetries and the freedom to select the origin of time the phases for the different
variables can be put in simple form.

We ask to satisfy the equations q̇ = ∂H/∂p, ṗ = −∂H/∂q by expanding in powers of the amplitudes
α1, α2 and integration of the coefficients of these powers with respect to time. However, it turns out
that at some order we can find on the right-hand side of the equations terms which are not purely
quasiperiodic, i.e., they are constant. The solution consists in allowing the frequencies to depend also
on the amplitudes. So ωi = ωi(0) +

∑

j1,j2
ci,j1,j2α

j1
1 α

j2
2 , i = 1, 2 and a suitable choice of these ci,j1,j2

coefficients cancels the constant terms.

A quite used method is based in writing the coordinates of the points of the unknown torus as
Fourier series in some angles and impose the invariance conditions. For concreteness we consider the case
of symplectic maps. The flow case can be reduced to this one via a Poincaré map. Assume that we look
for a d-dimensional torus in which the dynamics is conjugated to θ 7→ θ +α for θ ∈ Td and a translation
vector α ∈ Rd satisfying the DC. Let x be the coordinates in the phase space and F the discrete map.
The invariance condition is

F (x(θ)) = x(θ + α). (19)

It is clear that one has freedom to select the origin of the angles θi and that eventual symmetries can
reduce the number of coefficient the be determined.

To start, we can assume that we have obtained some approximation by direct numerical simulation, or
that we start near a fixed point (or periodic) point and use the linear approximation or an approximation
obtained by LP method. If we are interested in a family of invariant tori, one can use continuation
methods, but taking into account that the values of α should satisfy the DC. Hence, there will be gaps
in the family, despite they can be very small in some cases. Let c denote, generically, the coefficients of
the Fourier expansion, truncated at a suitable order. From a grid of values of θ one can obtain initial
values of x. They are mapped to F (x) and the images can be Fourier analyzed to obtain the new Fourier
coefficients ĉ. Let L be the action of the translation by α on the initial Fourier coefficients. According
to (19) we should require L(c)− ĉ = 0. This is the equation that follows from (19) and has to be solved,
usually by Newton method. The differentials of the Fourier synthesis and analysis are elementary and
the one of F can be obtained by computing DF (this can be, typically, the differential of a Poincaré
map). See [21] for an efficient implementation with similar and extended ideas, which works even with a
very large number of harmonics.

The number of harmonics to be used depends on the shape of the torus. One can use in the grid in θ
(and, therefore, in x) a number of points larger than the number of components of c. In that way one can
check the behaviour of coefficients in ĉ which have not been used as c coefficients in the representation
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of the solution we search, and see if they can be neglected. Otherwise one increases the number of
harmonics. This can be done at successive iterations of Newton method in a dynamic way.

It is also possible not to fix α a priori and determine it together with the the coefficients c. Note that
in case α is close to resonant, one can have convergence problems. For other quite different problems,
like looking for invariant tori in PDE, this method require a huge number of Fourier coefficients if the
discretization dimension is large. Other methods, working directly in the phase space, like the synthesis
of a return map, see [39, 36] can give the desired results.

There is a fact, concerning invariant tori, and which applies also to the computation of some periodic
orbits, which can produce difficulties. This is the instability present in partially normally hyperbolic tori
or, in a simpler case, in linearly unstable periodic orbits. Given a point x, and assuming it approximately
located in an invariant torus, the instability can produce that F (x) is far away from the torus. This
produces convergence problems.

The solution consist in using parallel shooting. Instead of using a single Poincaré section, say Σ,
one can use several of them: Σ0 = Σ,Σ1,Σ2, . . .Σm−1 and the corresponding partial Poincaré maps:
P1 : Σ0 7→ Σ1, P2 : Σ1 7→ Σ2, . . . ,Pm : Σm−1 7→ Σ0. Hence, the full Poincaré map can be written as
P = Pm ◦ . . .P2 ◦ P1. Then we look for Fourier representations in each one of the intermediate sections.
This produces a much large set of equations but it has the advantage that each one of the partial maps
Pj is much less unstable.

In the case of highly unstable periodic orbits the things are simpler. We only need one point in each
intermediate section, say x0 ∈ Σ0, x1 ∈ Σ1, . . . , xm−1 ∈ Σm−1. The conditions are simply P1(x0) − x1 =
0,P2(x1) − x2 = 0, . . . ,Pm(xm−1) − x0 = 0. The system to be solved is large but the differential has a
simple block structure and the condition number is much better.

3.4 Invariant manifolds

Another basic ingredient of the dynamics are the invariant manifolds. In contrast with the tori of maximal
dimension, responsible of the regular behaviour, the invariant manifolds are, typically, responsible of the
chaotic part of the dynamics. We comment first on invariant stable and unstable manifolds of fixed points
of APM F . The components will be denoted as F1, F2.

Assume a fixed point is located at the origin with dominant eigenvalue λ > 1 and having an unstable
linear subspace Eu and a stable one Es. Then the unstable manifold Theorem ensures the existence of an
unstable manifold W u

loc in a neighborhood of the origin, invariant under F , tangent to Eu at the origin

and such that for a point p on it, the iterates under F−1 tend to the origin. In fact, only the points inW u
loc

remain on the neighborhood for all iterations. This is a local result. Then the global unstable manifold
W u is obtained by iteration of W u

loc under F . A similar result gives the stable manifold, obtained by

exchanging F and F−1. In the analytic case, as we assume, the manifolds are analytic.
Let u and s be local coordinates along the unstable and stable eigenvectors. For the linear map DF

the manifoldW u is just s = 0. We can try to find a representation ofW u for F as the graph of a function:
s = g(u) =

∑

j≥2 aju
j. The invariance condition reads F2(u, g(u)) = g(F1(u, g(u))). The coefficients aj

are determined in a recurrent way by identifying the left and right coefficients of uj .
An alternative representation of W u is the parametrization method. Let us use z as a parameter. In

the linear case a point with u = z is mapped to u = λz. Now it is not necessary to use coordinates
adapted to the eigenspaces. If we use (x, y) as coordinates around the fixed point and represent the
parametrization as (p1(z), p2(z)), the invariance condition is simply

F (p1(z), p2(z)) = (p1(λz), p2(λz)). (20)

That is, we look for a conjugacy on the manifold between F and its linear part. We search now for the
parametrizations as p1(z) =

∑

j≥2 ajz
j , p2(z) =

∑

j≥2 bjz
j in (20). Note that the parametrization can

be normalized so that the vector of coefficients of order 1 has Euclidean norm equal to 1. As before,
the coefficients of order j > 1 are obtained in a recurrent way. This is the method used for many of the
examples displayed before.
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A first practical question, given a parametrization to order N (a similar question can be posed for
the graph method), is up to which value of z, say zmax one can use the representation. The idea is quite
simple: given a tolerance ε we can compute the point B of parameter z and also the point A of parameter
z/λ. One should have F (A) = B, according to (20). Then we can check up to which value of z one has
||F (A) −B|| < ε. This gives the admissible domain for z. Then, a fundamental domain is parametrized
by z ∈ (zmax/λ, zmax]. Any point on the manifold can be found as an iterate of a point on it. A similar
domain, with z < 0, has to be found for the other branch of the manifold.

To obtain points in the manifold for z > zmax we simply divide the current parameter by λ as many
time as required until a value less than zmax is obtained. Assume one has to divide k times. Then we
compute the point of parameter z/λk and iterate it k times under F . In this way it is possible to reach
points away from the fixed one, to detect folding of the manifold, to reach the vicinity of a homoclinic or
heteroclinic point, etc. The selected values of z at which the computation is done can be chosen to satisfy
conditions like maximal distance between two consecutive points in W u or maximal angle between three
consecutive points below some prefixed values.

Why to use approximations beyond the linear one? The answer depends on the purpose. If we want
to produce a long part of the manifold and, specially, if λ is close to 1, one can required many iterates.
On the other hand, if F is not given explicitly but follows from a Poincaré map, one needs jet transport
to have a local Taylor expansion. In any case, there is an optimal choice to obtain the “cheaper order”
(cheaper can mean in terms of CPU time, of personal time, or a combination of both).

If we are interested in locating an homoclinic point, and no symmetry is available for this, the
problem reduces to find two parameters, zu and zs, and well as two integers, ku and ks, to be used for the
unstable and stable manifolds, respectively, such that F ku(pu(zu)) = F−ks(ps(zs)) where pu, ps denote
the respective parametrizations. It is possible to find suitable values of ku, ks and then to solve for zu, zs
using Newton method. A similar method can be used for heteroclinic points, for tangencies, etc.

The ideas are similar in higher dimension. One can look for d-dimensional invariant manifolds, d > 1,
using either graph or parametric methods. This is specially necessary, for instance, if we look for an
unstable manifold with quite different eigenvalues. A low order representation will take the initial points
along the direction of the maximal eigenvalue. Beyond using high order local expansions, to decrease the
problem, one can use different devices depending on the problem.

To look for the invariant unstable manifold of an invariant curve in a symplectic 4D map, a parametriza-
tion using a parameter z, which measures the distance to the curve, and an angle θ along the curve is
useful. The fundamental domain, in that case, is diffeomorphic to an annulus. See an example in sub-
section 4.2 in a different context and another one in subsection 4.5 concerning a family of invariant
curves.

The idea extends to any dimension with increasing complexity. See [2, 3, 4] for a nice global approach.

A different problem appears when we consider symplectic maps in dimension 4 (or higher) or problems
reducible to them. Consider again the case of a fixed point but assume that, together with an eigenvalue
λ > 1 and its inverse, there is a couple of eigenvalues of modulus 1. They give rise to the centre manifold
of the point. In general, when we consider a given neighborhood of the point, the manifold has some
degree of differentiability which depends on the neighborhood. Furthermore, there is no uniqueness in
general.

The problem is that the dynamics on that manifold is not known. It can contain, simultaneously,
invariant curves, periodic points and chaotic zones. It is said to be a normally hyperbolic invariant
manifold (NHIM) if the hyperbolicity normal to the manifold is stronger than the hyperbolicity that can
be found inside the manifold.

One can recur to normal forms to obtain an approximation of all the dynamics around the point and,
in particular, the centre manifold. A similar idea is to use a partial normal form, see [39]. Assume we
have a Hamiltonian

H = λq1p1 +
1

2
ω1(q

2
2 + p22) +

1

2
ω2(q

2
3 + p23) +

∑

k≥3

Hk(q1, q2, q3, p1, p2, p3), (21)
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where, as usual, Hk denotes a homogeneous polynomial of degree k.
We proceed as in the case of normal form above, but trying only to cancel all the terms such that

the total degree in (q1, p1) is equal to 1. Using again complexification, as in the case of the normal
form, for the couples (q2, p2) and (q3, p3), the current denominators to obtain the successive terms in the
Hamiltonian G used to transform H are of the form

(k1 − l1)λ+ i (k2 − l2)ω1 + i (k3 − l3)ω2,

with modulus bounded from below by |λ|, even if ω1 and ω2 are resonant. It is clear that, denoting the
new variables as Q1, Q2, Q3, P1, P2, P3, if we set Q1 = P1 = 0 this is the desired centre manifold. Hence,
setting these variables to zero we have a Hamiltonian with 2 dof, which gives the reduction to the centre
manifold of the initial Hamiltonian. The process is formal, there is no convergence in general, but one
can obtain a good approximation in a suitable domain. One can check up to which distance of the fixed
point the approximation satisfies some tolerance condition. See [39] for an example around the collinear
point L2 in the spatial circular restricted three body problem.

3.5 Instability, bounds and detection

In the case of a Hamiltonian with n ≥ 3 dof, in principle, there is no way to avoid diffusion. The maximal
dimensional tori have dimension n, that is, codimension n− 1 in a fixed level of energy, and they do not
separate the phase space. For instance, initial conditions as close as we like to L4,5 in the spatial circular
restricted three-body problem, see beginning of section 4, which are totally elliptic fixed points, can go
far away from these points. But normal forms, or averaging, lead to the so-called Nekhorosev estimates
[34], showing that one needs an extremely large time if one starts close enough to the libration point.
Similar things happen for (2n − 2)-dimensional symplectic maps.

Consider a perturbation H(I, ϕ) = H0(I) + εH1(I, ϕ, ε) of an integrable Hamiltonian H0. The basic
idea of the bounds is similar to the averaging Theorem 1.1, trying to cancel, around an arbitrary torus
labelled by the action I∗, the dependence wrt ϕ. But now the frequencies of the unperturbed Hamiltonian
ω(I) = DH0 maybe do not satisfy the DC and, on the other hand, the perturbation will produce that the
frequencies change. Hence, the passage through resonances or through other frequencies not satisfying
the DC is unavoidable.

First one should examine which is the effect of a resonance. We refer to subsection 2.2 where we
commented on the width associated to a pendulum like structure. A perturbation O(ε) can give rise to
variations O(

√
ε) due to the presence of a simple resonance. This happens if the frequencies change, reach

a resonance and they go away from it. But then one can put the following question. Assume that in the
variation of some action there is a term, due to the perturbation, like İj = ε cos((k, ϕ)), where (k, ϕ) is a
linear combination of the angles, and the related combination of the frequencies satisfies (k, ω) = 0. One
expects that the frequencies will change with time and one will escape from resonance, but it can happen
that the frequencies are locked at resonance up to order m for some m > 0. That is, dk

dtk
(k, ω) = 0 for

k = 0, 1, . . . ,m, dm+1

dtm+1 (k, ω) 6= 0. Then, during a long time the term cos((k, ϕ)) will be close to constant
and the action can change by a large amount. If the locking occurs at all orders the change in Ij will
be O(εt). To prevent this locking is why Nekhorosev introduced the so-called steepness condition which
prevents that the order of the locking exceeds a maximal value. Then one has the Nekhorosev result:
Under steepness of some order the variation of the actions ||I(t) − I(0)|| do not exceeds a bound O(εb)
during a time interval |t| < O(exp(cε−a)), where the positive constants a, b, c depend on the order of
steepness and properties of H0, assuming that the norm of H1 is bounded.

Around a given point, or a given torus (in particular, a periodic orbit) it can happen that there are
many KAM tori. The above description of the Nekhorosev estimates puts a bound on how fast can be
the escape from the vicinity of these tori. Perhaps the escape is so slow that has no relevance during the
time interval in which we are interested, or even during the period of validity of the model. This suggests
to introduce the concept of practical stability. Assume that the studied object has I = I∗. Then, for fixed
values of (ε, T ), where ε is moderately small and T is large, we say that there is (ε, T )-practical stability
if there exists ρ = ρ(ε, T ), such that points with initial conditions at t = 0 satisfying ||I(0) − I∗|| < ρ
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evolve with time satisfying ||I(t) − I∗|| < ε for all t ∈ [0, T ]. That is, we require stability only for finite
time.

It is clear that for any v.f. with Lipschitz constant L, (ε, T )-practical stability is found if ρ ≤
ε exp(−LT ), as follows from Gronwall lemma. But this gives extremely small values of ρ, completely
useless for any practical application. More realistic values would be ρ = 0.01 for ε = 0.02 and T = 109,
depending on the practical example in mind.

See, e.g., [9] for a nice approach to KAM and practical stability simultaneously.

Another relevant point is how to detect the existence of chaos and quantify it in a concrete example.
There are many different approaches. We comment on the Lyapunov exponents.

To measure the instability properties of a fixed point (of a continuous or discrete system) it is enough
to look at the differential of the v.f. or of the map at that point. How to proceed for a general orbit?
The idea is to look for the rate of increase (if any) of distance between the orbits of nearby points. In the
limit, this becomes the rate of increase of an initial displacement, ξ, under the differential of the iterates
of the map or under the action of the first order variational flow. For concreteness we consider the case
of maps.

Let x0 be an initial point on a manifold M on which it acts a map F and let x1 = F (x0), . . . , xk =
F (xk−1), . . . the orbit of x0. We can define, if it exists,

Λ = sup
ξ

lim
k→∞

log(||DF k(x0)ξ||)
k

, (22)

where ξ is taken from the vectors with unit norm ||ξ|| = 1 in the tangent space to M at the point
x0: Tx0

M. One can prove that the limit in (22) exists for almost every x0 ∈ M and for almost every
ξ ∈ Tx0

M, and it is known as maximal Lyapunov exponent.
In the Hamiltonian case (or in the symplectic one), it is easy to prove that the limit exists and is equal

to zero for initial points in invariant tori of maximal dimension. Typically ||DF k(x0)ξ|| behaves linearly
in k in that case, which gives the desired limit. For generic unstable orbits one expects positive values of
Λ. The geometrical reason is clear: every time that the iterates pass close to an hyperbolic object, the
unstable component will increase at a geometric rate. For an integrable system, if, for instance, unstable
and stable manifolds coincide, when returning near the hyperbolic object, this expansion is cancelled due
to the iterations which occur close to the stable manifold. But the existence of transversal homoclinic
(or heteroclinic points) prevents this to occur.

One of the basic questions is how to have an estimate of the limit. In practice the number of iterations
should be finite (and there is also the effect of round off, which is another issue). A simple approach is
to proceed to the computation in (22) using a different presentation. Let us define the Lyapunov sums
as follows: Let x0, ξ0 be the initial point and vector and set S0 = 0. Then, at the kth iterate, we use the
following algorithm:

xk = F (xk−1), ηk = DF (xk−1)ξk−1, ξk = ηk/||ηk||, Sk = Sk−1 + log(||ηk||). (23)

Hence, we normalize the tangent vector after every step and add the log of the normalization to the
current value of the sum S. It is clear that the limit slope of Sk, as function of k, should coincide with
Λ, as define in (22). Hence, we can proceed as in (23) and, from time to time (say, after mN iterates,
m = 1, 2, . . .), fit a line to three different subsamples of the current sample (e.g. last 25%, last 50%
and last 75%) and accept the average of the slopes as value of Λ if they differ by less than a prescribed
tolerance. Otherwise, keep doing iterates until the next multiple of N , provided this do not exceeds a
maximal value.

A problem is that, in case Λ = 0, the convergence can is slow. For instance, log(k)/k is below 10−5

only for k ≥ 1, 416, 361. An alternative approach, which tends in a faster way to the limit and also
smoothes out the oscillations due to the quasiperiodic effects (in the case of orbits) can be found in
[8]. One can look for the systematic use of that method in [24] for a family of 2D symplectic maps in
S2. Another idea, if one is interested only in deciding whether the orbit is regular or chaotic, is to stop
computations and consider the orbit as chaotic if Sk exceeds some threshold.
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4 Applications to Celestial Mechanics

In this section we present several applications to illustrate theoretical and computational approaches to
simple examples in Celestial Mechanics. One can have a look at slides 3. concerning the role of dynamical
systems in celestial mechanics. Most of the applications deal with the Restricted Three-Body Problem
(RTBP). We shortly recall it.

The RTBP studies the motion of a particle P3 of negligible mass under the gravitational attraction
of two massive bodies, P1 and P2, of masses m1 and m2, respectively. They are known as primaries
or as primary and secondary. We assume that the primaries move in a plane in circular orbits around
their centre of masses. We can normalise m1 +m2 = 1 and d(P1, P2) = 1 and express the dynamics in
a rotating frame (the so-called synodical frame) with unit angular velocity. The problem depends on a
unique parameter µ = m2. In this frame P1 and P2 are kept fixed at (µ, 0, 0) and (µ− 1, 0, 0).

The equations of motion are

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy, z̈ = Ωz, (24)

where Ω(x, y, z) = 1
2(x

2+y2)+ 1−µ
r1

+ µ
r2
+ µ(1−µ)

2 , being r21 = (x−µ)2+y2+z2, r22 = (x+1−µ)2+y2+z2.
The function J(x, y, z, ẋ, ẏ, ż) = 2Ω(x, y, z)− (ẋ2+ ẏ2+ ż2) is a first integral, its value is known as Jacobi
constant and it is usually represented as C. The related 5D energy manifolds are defined as

M(µ,C) =
{

(x, y, z, ẋ, ẏ, ż) ∈ R6|J(x, y, z, ẋ, ẏ, ż) = C
}

(25)

and their projections on the configuration space are known as Hill’s regions, bounded by the zero velocity
surfaces (ZVS) (the zero velocity curves, ZVC, in the planar case).

The problem has five equilibrium points (also known as libration points):

• Three of them collinear (or Eulerian) on the x axis, L1,2,3, of centre×centre×saddle type and,
hence, they have a 4D centre manifold which contains the so-called horizontal and vertical periodic
orbits of Lyapunov type (to be denoted as hpoL and vpoL), invariant 2D tori and other periodic
orbits (like the halo orbits, depending on the value of C), as well as chaotic regions.

• Two of them triangular (or Lagrangian), L4,5, at x = µ − 1/2, y = ±
√
3/2, z = 0. The term

µ(1 − µ)/2 is J is added to have C(L4,5) = 3. Let µj be the value of µ for which the ratio of

frequencies in the plane,
[

(1± (1− 27µ(1 − µ))1/2)/2
]1/2

is j. The points are totally elliptic for

0 < µ < µ1 = (9 −
√
69)/18 and the 2:1, 3:1 resonances (leading to instability) show up for

µ2 = (45 −
√
1833)/90 and µ3 = (15 −

√
213)/30. Associated to these frequencies there are short

and long period periodic orbits. The vertical frequency, giving rise also to a family of vpoL, is
equal to 1.

4.1 An elementary mission around L1

First we consider the planar case. Assume that P1 and P2 are Sun and Earth, respectively. The distance
between them and the period (1.5 × 108 km, 1 year) are scaled to 1 and 2π units as said before and we
take µ = 3.0404326 × 10−6 (it includes Moon’s mass). We want to carry out the following steps:

i) Compute a periodic orbit of the system, around the Earth, with a period of 1 day (a geostationary
orbit) and check that it is close to circular. Call it PO1.

ii) Compute some periodic orbits around L1 (of the hpoL family), which are symmetrical wrt the x
axis. Check that they are unstable. We call them, in general, PO2.

iii) Compute the left branches of the stable manifolds of the previous orbits until they reach some
suitable value of x (e.g., x = −0.999).

iv) Now assume an spacecraft is moving in the “parking” orbit PO1. At some point of the orbit we
give an impulsion ∆v, in the direction of the velocity at that point, with the goal of reaching a
point of the stable manifold of one of the hpoL. Determine the hpoL which are reachable in that
way from the parking orbit, at which place one should give the impulsion and which is the size ∆v.
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This allows to obtain an elementary approach to a space mission. Later one can consider the effect
of perturbations of other bodies, the separate effects of Earth and Moon, change to a non-planar target
orbit, the fact that the target orbit is, approximately, quasiperiodic instead of periodic, to optimize
wrt fuel consumption and wrt transfer time from departure to a vicinity of the target orbit, etc. For
information about the methodology for the design and control of missions around libration points see
[16, 17, 14, 15]. We detail the steps to find the solution in the present example.
Step 1. First we compute a periodic orbit around the Earth with period τ = 2π/366.25. We start with
initial data (x0, 0, 0, ẏ0) and should require ϕτ (x0, 0, 0, ẏ0) = (x0, 0, 0, ẏ0). In fact, it is much simpler to
ask for the image at t = τ/2 to be of the form (x1, 0, 0, ẏ1) and then the symmetry completes the task.
We have two known data x0, ẏ0 and two conditions y1 = 0, ẋ1 = 0. After a few attempts one can use
Newton method to find the solution x0 ≈ −0.999714471273, ẏ0 ≈ 0.103463316596. One can check that
the monodromy matrix has a double eigenvalue equal to 1 (as expected: energy preservation and time
shift) and the other eigenvalues are exp(±αi ), α ≈ 0.034228998. The difference wrt a circular orbit is
less than 350 m. For further reference we denote as γ(t) this orbit.
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Figure 10: Left: some orbits in the family hpoL around L1. The initial values of x, on y = 0, are of the
form xL1

+ k × 10−4 for k = 1(1)22. Right: For some of the orbits, concretely for k = 6(4)22, we plot
also the left branches of W s

POk
until they reach x = −0.999. In both plots the variables x, y are shown.

Step 2. Now we face the hpoL around L1. First we locate L1 by imposing Ωx = 0 as it follows from (24).
Starting at x = µ−1+(µ/3)1/3 Newton method converges quickly for µ small. Then we can compute the
eigenvalues at that point, which turn out to be λ, λ−1, exp(±ωi ) with λ ≈ 2.532659199, ω ≈ 2.086453579.
Hence, the maximal eigenvalue of the nearby periodic orbits, when they tend to L1, is exp(2πλ/ω) ≈
2052.671203.

This large instability suggests, again, to look for the initial data for the hpoL on the Poincaré section
y = 0 for a fixed x0 with ẋ0 = 0 and leaving ẏ0 as only unknown variable. The condition to be satisfied is
then that the next intersection with y = 0 (to the left of L1) should have ẋ = 0. This is easily solved by
Newton method. From the half orbit we recover the full orbit by symmetry, the monodromy matrix and,
hence, dominant eigenvalue and eigenvector. The instability becomes milder when the size increases. For
instance, for the smaller orbit in Figure 10 left the dominant eigenvalue is 2050.987058, while for the
largest one is 923.004416. Standard continuation techniques are used to generate these orbits.

Step 3. With the previously computed data it is simple to produce the left branches of the stable
manifolds W s,−

PO of the hpoL until they intersect the value x = −0.999. It is enough to use the linear
approximation of the manifold in the Poincaré section y = 0. An example is shown in Figure 10 right. To
compute the manifolds 200 points have been taken in a fundamental domain, equally spaced in logarithmic
scale. The intersections for the orbits with k = 8(2)22, i.e., for the indices ranging from 8 to 22 with step
2, (see Figure 10) are shown in red in Figure 11 right, using y, ẏ as variables.
Step 4. Last step is how to reach W s,−

POk
for a given k leaving from the parking orbit. It is suggested

to give an impulsion ∆v from a given point γ(t∗) in the orbit, in the direction of the velocity γ̇(t∗) at
that point. The first question is to compute which is the size of the new velocity. We simply require
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Figure 11: Left: The parking orbit and an example of a possible target hpoL (with k = 14), both in red,
the branch W s,−

PO14
in blue, and some of the possible trajectories ψ(t, t∗) departing from the parking orbit

(see text) in magenta. Plot done using x, y variables. Right: The intersections of W s,−
POk

for k = 8(2)22
with x = −0.999, in red, and the intersections with the same plane of ψ(t, t∗) for different values of t∗

on the Jacobi levels of POk, k = 10(4)22, in blue. Note that these four blue curves are quite close and
similar. The possible places for the transfer are the intersections of a W s,−

POk
curve with the corresponding

blue curve. They are marked in magenta. For each k shown here two possible places are obtained. This
plot is done using y, ẏ variables.

that the value of the Jacobi constant with this velocity equals the one of the target POk. Let |v| the
modulus obtained for this velocity. Then ∆v = |v| − |γ̇(t∗)|, and the components of the new velocity are
proportional to the ones of γ̇(t∗). This allows to compute the trajectories ψ(t, t∗) leaving from the parking
orbit until they reach x = −0.999. Depending on t∗ it can happen that ψ(t, t∗) reaches x = −0.999 or it
goes first far away to the left spending too much time. These trajectories are skipped. A sample of the
possible ψ(t, t∗) trajectories for several t∗ values is shown in magenta in Figure 11 left, where the parking
and target orbit (with k = 14) are in red and W s,−

PO14
is shown in blue.

Finally, on the right part of Figure 11 we show, in the (y, ẏ) variables, the information that has been
obtained in x = −0.999: the intersections of W s,−

POk
for k = 8(2)22, in red, and the intersections of ψ(t, t∗)

when one changes t∗, for the Jacobi levels of POk, k = 10(4)22, in blue. The intersections of a given red
curve with the corresponding blue one are the candidates for the transfer. The values of ∆v are quite
close. They range from 0.040286 for k = 10 to 0.041246 for k = 22 (i.e., impulsions from 1.203 to 1.232
km/s).

25



4.2 Escape and confinement in the Sitnikov problem

This is an example to study escape/capture on a given problem of Celestial Mechanics using a very simple
model. Two massive bodies of equal mass are moving on the z = 0 plane on elliptic orbits of eccentricity
e around the common centre of mass, located at (0, 0, 0), with semimajor axis a = 1, while a body of
negligible mass moves along the z axis. The standing equations are

z̈ = − z

(z2 + r(t)2/4)3/2
, r(t) = 1− e cos(E), t = E − e sin(E), (26)

where E denotes the eccentric anomaly of the primaries. For e = 0 the problem has 1 dof and, hence, it is
integrable. As a first order system we have ż = v, v̇ = z(z2 + r(t)2/4)−3/2, with the obvious symmetries
S1 : (z, v, t) ↔ (z,−v,−t), S2 : (z, v, t) ↔ (−z, v,−t), S3 : (z, v, t) ↔ (−z,−v, t). We can introduce
E as new time variable (denoting ′ = d/dE) and introduce a Hamiltonian formulation:

H(z,E, v, J) = (1− e cos(E))

[

1

2
v2 − (z2 + (1− e cos(E))2/4)−1/2

]

− J.
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Figure 12: Left: A representation of the Sitnikov model. Right: For e = 0 plots of the orbits in the
(z, v) variables for values of H equal to −1.5, −1.0, −0.5 and 0.

A suitable Poincaré section for the representation of orbits is Σ = {z = 0} and to use (v,E) as local
coordinates. Thanks to the symmetry and to avoid strong deformations we shall use, instead, (v̂, E),
where v̂ = |v|(1 − e cos(E))1/2.

If the infinitesimal mass escapes to infinity, the massive bodies move in S1 (eventually, after regu-
larization of binary collisions using Levi-Civita variables). One talks of a periodic orbit at infinity. A
celebrated Theorem by Moser states

Theorem 4.1. The problem has periodic orbits at both z plus and minus infinity, with invariant manifolds
(orbits going to or coming from infinity parabolically). For e small enough the manifolds intersect Σ in
curves diffeomorphic to circles. These curves have transversal intersection, implying the existence of
heteroclinic orbits from +∞ to −∞ and vice versa.

As a consequence one has: non-integrability, embedding of the shift with infinitely many symbols,
existence of oscillatory solutions, escape/capture domains, etc. The PO at∞ is parabolic or, topologically,
weakly hyperbolic. The linearized map around the PO is the identity. To study the vicinity of these
orbits we introduce McGehee variables (q, p) defined as z = 2/q2, ż = −p. Then the equations of motion
become

q′ = Ψq3p, p′ = Ψq4
(

1 + Ψ2q4
)−3/2

being Ψ = (1− e cos(E))/4. (27)

If e = 0 the invariant manifolds are given as p = ±q(1 + q4/16)−1/4. We shall denote as W u,s
± the

intersections of unstable/stable manifolds of ±∞ with Σ. Due to S3, W
u
± coincide and also W s

± coincide,
but W s

+,W
u
− have v > 0, while W s

−,W
u
+ have v < 0. Due to S1, W

u
+ and W s

− are symmetric with respect
to E = 0.
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We look for a parametric representation of the manifolds of the PO as

p(E, e, q) =
∑

k≥1

bk(e,E)qk =
∑

k≥1

∑

j≥0

∑

i≥0

ci,j,ke
i sc(jE) qk , (28)

where bk(e,E) are trigonometric polynomials in E with polynomial coefficients in e, ci,j,k are rational
coefficients and sc denotes sin or cos functions.

Note that the problem can be reduced to obtain invariant manifolds of fixed parabolic points of
discrete maps (think about the intersection of the manifolds with E = 0). In this context McGehee
proved [25]: The invariant manifolds are analytic except, perhaps, at q = 0. In fact, a result of Baldomà
and Haro [1] shows that, generically, the 1-dimensional manifolds of fixed parabolic points are of some
Gevrey class (see section 2.1.2).

From (27) and (28) the invariance of the manifolds can be written as

Ψq4
(

1 + Ψ2q4
)−3/2

=
∑

k≥1

dbk
dE

(e,E)qk +
∑

k≥1

bk(e,E)Ψkqk+2
∑

m≥1

bm(e,E)qm. (29)

Equating coefficients of powers of q in (29) leads to the recurrence

(

−3/2
m

)(

1− e cos(E)

4

)2m+1

= b′n(e,E) +
1− e cosE

4

n−3
∑

k=1

kbk(e,E)bn−2−k(e,E), (30)

where m = n/4− 1, defined only for n multiple of 4.
To solve the recurrence in (30) we first note that for the unstable manifold of +∞ we have b1 = 1. One

has b1 = −1 for the stable manifold. For a given value of n we can split the function bn as b̃n+ b̄n, where
b̄n denotes the average and b̃n the periodic part. Given b′n(e,E) equal to some known function (computed
from the previous coefficients) allows only to compute b̃n. The average b̄n is computed previous to the
solution of the equation for b′n+3(e,E), to have a zero average function when we integrate. An essential
fact is that b2 = b3 = b4 = 0. One has also b6 = b7 = b10 = 0, but this is not so relevant.
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Figure 13: The manifolds W u
+, in red, and W s

−, in blue, for different values of e. At the top row for
e = 0.1 (left) and e = 0.5 (right) and at the bottom row for e = 0.9 (left) and e = 0.999 (right). In all
cases we use (v̂, E) as polar coordinates.
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Now it is a simple task to implement the computation of the coefficients to high order. Using high
order is important, because this allows to have a good representation for large values of q. A large q
allows to start the numerical integration, to obtain the intersection W u

+ of the manifold with z = 0, at a
moderate value of z. For instance, using terms up to order n = 100 one checks that the representation
is good (error of the order of 10−16) for q = 1/3. Then the numerical integration can be started at
z = 2/q2 = 1/18.

The Figure 13 shows some results for different values of e, displaying W u
+ and W s

− and using the
(v̂, E) variables as polar coordinates. Note that the use of (|v|, E) would give curves extremely elongated
to the right for e close to 1. Concretely, if the eccentricity is equal to 1 − δ then the horizontal variable
in the plots reaches values ≈ 2

√
δ. The values of the splitting angle at E = 0 and E = π on the section

Σ are shown as a function of e in Figure 14. Note the quite different behaviour when e → 1. This gives
evidence of the transversality for all values of e.

 0
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Figure 14: The splitting angle of the manifolds W u
+ and W s

− in Σ. For positive values on the horizontal
axis the splitting angle at E = 0 is shown as a function of e. For the negative ones, the splitting angle at
E = π is shown as a function of −e.

Summarizing: the steps to obtain the manifolds W u
+ and W s

− and, hence, the splitting angle, are

1) Introduce McGehee coordinates to pass from (26) to a formulation around the periodic orbits at
infinity, as given by (27).

2) Look for a suitable representation as the one in (28), in which the manifold is expressed as function
of a distance to infinity (q) and a periodic time variable (E). Write the invariance condition (29)
and derive the recurrences, as given in (30).

3) Analyze the properties of the recurrences (symmetries, powers of e in the coefficients of the trigono-
metric polynomials, etc). Design and implement routines to obtain the desired numerical coeffi-
cients.

4) Select a suitable value of q for the current maximal order of the expansion, evaluate (28) for a
sample of values of E for every desired value of e and carry out the numerical continuation until
z = 0.

It is important to stress that for other similar problems (RTBP planar or spatial, general, etc) to
decide if an observed body will be captured or will escape, it is enough to obtain the manifolds and decide
the actual position with respect to them.
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4.3 Practical confinement around triangular points

As mentioned at the beginning of section 4, the triangular libration points are linearly stable in the 3D
RTBP if µ is small enough. But, what can be say about nonlinear stability? For the 2D case nonlinear
stability is proved for µ ∈ [0, µ1) except for the couple of values µ2, µ3. A possible approach is to reduce
to the study of a symplectic 2D map and to apply Moser theorem. There is an exceptional value for
which the twist condition is not satisfied, but can be recovered to higher order via normal forms.

In the 3D case, in principle, there is no way to avoid diffusion. Hence, initial conditions as close as
we like to L4,5 can go far away from that point. But normal forms, or averaging, lead to the so-called
Nekhorosev estimates, showing that one needs an extremely large time if one starts close enough to the
libration point as discussed in section 3.5.

But these results, concerning domains of practical stability in the 3D case give, at most, small regions
around the triangular points. On the other hand one has found the so-called Trojan asteroids, for the
Sun–Jupiter system, far away from L4,5, even with relatively high inclination. Hence, it seems that the
domain of practical stability for long times is much larger than what is given by theoretical predictions.
It would be nice to search for the confining mechanisms.

A side problem is why Trojan-like bodies are not found in the Earth-Moon case. Certainly the Sun
is guilty for that, the orbits equivalent to L4,5 for the E-M system being unstable even in simple models
of the E-M-S motion. But this do not excludes the possibility that stable orbits exist with moderate
inclination.

Here we present some results which can help to understand the main mechanisms, see [44].
For different reasons many computations are done with initial conditions on the ZVS using (z, α, ρ)

as parameters for a fixed µ, as follows:

x=µ+ (1 + ρ) cos(2πα), y=(1 + ρ) sin(2πα), z=z0 ≥ 0, α ∈ (0, 1/2), ẋ= ẏ= ż=0. (31)

As for µ = 0 one must be in 1 − 1 resonance it is convenient to look, starting at the ZVS, for initial
conditions at rest, in the synodical frame, in the moment that an elliptic orbit with semimajor axis equal
to the unity passes through the apocentre in the sidereal frame. That is, for values of (z,R = 1 + ρ)
related by

z =
[

4(1 +R2)−2 −R2
]1/2

or ψ = 1− 1

2
w +

3

25
w2 − 1

28
w3 − 25

213
w4 +

33

216
w5 +O(w6), (32)

where w = z2, ψ = ψ(z) = R2. This suggests to make plots using the variables

(α, γ = 1 + ρ−
√

ψ(z), z). (33)

It is clear that L5 corresponds to ρ = 0, α = 1/3, z = 0. By symmetry, similar results are obtained
for L4. Also due to symmetry it is enough to look for z ≥ 0. For the limit case, µ = 0, one would have
γ = 0.

Some reasons to start at the ZVS are:

• Most of the i.c. non-leading to escape are on 3D tori. Hence, we scan a set of positive measure in
the full phase space (not fixing the Jacobi constant C).

• The results obtained can be used as a seed to obtain the relevant objects involved in the practical
confinement, either starting at the ZVS or not.

First we show some results concerning the quasi-boundary between escape and practical confinement.
In Figures 15 and 16 we display, for a small value µ = 10−4 of the mass parameter, two different kinds
of objects which appear on the quasi-boundary. We should mention that the relevant objects have
codimension 1 in the full phase space. In present case they have dimension 5. Typically they are W u,s

of central objects of dimension 4. These objects can be fixed points of centre×centre×saddle type or
families of periodic orbits of centre×saddle type. But it is clear that these W u,s do not coincide: there
is some splitting. This is the reason why they are named quasi-boundaries.

In Figure 17 we display a general view of the boundary. See comments on the caption. Typically the
transitions have been detected after a maximum integration time equal to 106 × 2π (in special cases 10,
100 or 1,000 time larger) and with a resolution of 10−6 in ρ. See slides 4. on the web for other values of
µ.
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Figure 15: Example of a transition for µ = 0.0001, α = 0.05, z = 0.3. The two tori (confined in red,
escaping in blue) have values of ρ which differ in 10−10 We show the projections on (x, y) of the Poincaré
section through z = 0. Left: a global view. Right: a magnification. The separating unstable 2D torus or
invariant curve in the section, belongs to W u,s

L3
.
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Figure 16: Similar to Figure 15 but starting at α = 0.4, z = 0.6. Now the separating unstable 2D tori
are not in W u,s

L3
. Top: initial part of Poincaré iterates with many iterates in blue, giving evidence of the

lower unstable 2D torus and points escaping from it (left) and the separating lower unstable invariant
curve alone (right) projected on (x, y). Bottom: The same curve projected on (x, ż) (left) and the related
2D separating unstable torus in a (x, y, z) projection.
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Figure 17: A 3D view of the detected boundaries of practical stability starting at the ZVS for µ = 10−4,
shown in the (α, γ, z) variables. The inner (resp., outer) part corresponds to γ < 0 (resp. γ = 0). Note
the sharp change on the behaviour of the boundary which occurs between z = 0.4 and z = 0.5.

We can make a rough scan of the boundaries for different values of µ, both for the planar and spatial
RTBP. We say rough in the sense that, typically, the maximal time to look for escape has been reduced
to 105 × 2π time units and that the grid we scan uses ∆ρ = 10−4, then ∆α equal to 2 × 10−4 in the
planar case (5× 10−4 in the spatial one) and ∆z = 5× 10−3 in the spatial case.
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3D and 2D

Figure 18: Statistics as a function of µ starting at the ZVC (planar case, in red) and at the ZVS (spatial
case, in blue). This is normalized to the maximum, which for the planar case occurs at µ = 0.0014 with
282757 points. For the spatial case it occurs for µ = 0.0017 with 19014882 points. Note the sharp effect
of the resonances in the planar case, reminiscent of Hénon map. In the spatial case the effect of the
resonances is milder and delayed. In both cases some stability subsists even for µ > µ1.

From now on we concentrate on a fixed value µ = 0.0002. The reasons for the choice are:

• Being µ small, the boundaries are sharper,

• It should be also possible to obtain some information by means of perturbation theory,

• It is close to the Titan-Saturn mass ratio.

This small value of µ, however, raises a problem: The escape is relatively slow and, hence, the integration
time is large.

The methodology used (for the L5 case) is as follows:
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1) Define some escape criterion (e.g., the (x, y) projection of the orbit enters some wedge near the
negative y axis, or the orbit comes too close or too far from the primary, or too close to the
secondary).

2) Scan a set of initial conditions for short time (e.g. 104 × 2π, using some grid with small steps
∆α,∆ρ, δz). Look at every initial point on the grid, for fixed z, as a pixel. Keep the pixels non
leading to escape.

3) Repeat for longer time (e.g. 5 × 104 × 2π) for the pixels at a distance (counted in the sup norm)
less than d pixel units from the ones which already escaped (typically we take d = 5). The tested
points are marked depending on whether they escape or they remain. Iterate the scan until no
more points have to be tested: all the ones at distance ≤ d from escaping points have been tested
and remain. Repeat two more times for longer and longer integration time (25×104×2π, 106×2π).

4) Eventually do additional refinements of ρ for fixed α, z.
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Figure 19: For µ = 0.0002 the subsisting points, starting at the ZVS for 12 different z values, given on
the top of the plot. The coordinates used for the representation are (α, ρ).
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Figure 20: Boundaries of the domains shown in Figure 19 using the paraboloid like corrections. That
is, as vertical variable one has used γ, as defined in (33) instead of ρ.
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Figures 19 and 20 show some results for µ = 0.0002, displaying, for different values of z, the set of
non-escaping points starting on the ZVS and the boundaries of the domain. See the captions for the
variables used to represent the results. Note that the domain of practical stability contains, for the planar
case z = 0 stable points quite close the L3 (α ≈ 0). In the spatial case there are stable orbits which
reach z as large as 0.865 and, as the value of ρ for these orbits reaches ≈ −0.181 they have a maximum
inclination exceeding 46 degrees.
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Figure 21: Some sections of the boundary starting at the ZVS for different values of α. Left: in the
(ρ, z) variables. Right: using the (γ, z) variables. In red are plotted the curves for α = 0.05, 0.12, 0.25,
easily seen on the right plot going away from (0, 0) and each line encircling the previous one. In blue the
curve for α = 0.33 is displayed. This is the largest one. Finally the curves for α = 0.40 and α = 0.435
are plotted in magenta. Last one do not reaches z = 0.

To have an idea of the domain for different values of α, Figure 21 shows different sections. The
structure is hard to see on the left plot, in (ρ, z), while it becomes clear using (γ, z), as done in the right
plot. We note that the larger α-section corresponds to a vertical plane passing through L5, as one could
expect. For this value of α (we display it for α = 0.33) and up to values which are not so close to it
(α = 0.25, 0.435) one can see a change in the shape of the boundary. This should be due to the action of
different quasi-boundaries.

Still many things must be completed even for this small µ for which the boundaries tend to be rather
sharp, because they are associated to relatively small splitting. The problem becomes more rough for
the Sun-Jupiter case, because then one starts to see the effect of some island-like structure. For the
Earth-Moon case the behaviour is quite wild due to the strong effect of resonances. The Earth-Moon
mass ratio is not far from the 3:1 resonance value µ3.
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4.4 Infinitely many choreographies in the 3-body problem

In the Newtonian N−body problem with all masses equal to 1 we can consider very simple solutions in
the planar case, like N−gon relative equilibrium solutions. Due to the homogeneity one can scale time
and distance so that it is enough to consider solutions with period 2π. The N bodies move on a circle of
radius R such that

2R3 = ΣN−1
j=1 (2 sin(jπ/N))−2.

It is clear that all the bodies move on the same path in the plane. Hence, a natural question is: Are
there other periodic solutions such that all bodies with equal masses move on the plane along the same
path? At the end of the XXth century a solution with 3 bodies on the same planar curve, different form
a circle, was proved to exist by Chenciner and Montgomery [5]. Also Moore [30] found the same orbit
in a previous numerical work in a different context, a few years before. The path of this solution is the
very popular figure eight curve and is displayed in Figure 22.
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Figure 22: The figure eight solution of the 3-body problem. The initial positions of the bodies are
marked as black points. For concreteness we can assume that at t = 0 the body located at the origin
moves to the right, up. This forces the motion of the other two.

Immediately one can pose the question for N > 3 and for other shapes of the path. These solutions
are named choreographies because of the dancing-like motion of the bodies, seen in animations, see
[41, 6]. More precisely they should be named simple choreographies, because they are on the same curve.
k-choreographies has to be used for bodies moving on k different curves. Slides 6. provide some examples
and links to animations. One can also introduce the notion of relative choreographies if they are seen
as choreographies in a uniformly rotating frame. Two choreographies which differ only by a rotation, by
scaling, change of orientation, symmetry, etc, should be seen as the same.

Returning to simple choreographies in a fixed frame (or absolute choreographies) what one tries to find
is some 2π–periodic function ψ : S1 7→ R2 such that if the body j is located at qj(t) = ψ(t− (j−1)2π/N)
for j = 1, . . . , N , we have a solution to the equations of motion.

Another natural question arises: Are there other choreographies of the 3-body problem different from
the figure eight?

A simple observation is that at some t > 0, relatively small, the three bodies in Figure 22 will be in
an isosceles configuration. Such a configuration is defined, for instance, assuming that at some moment
of time the bodies 2 and 3 have positions and velocities given by

x3 = x2, y3 = −y2, ẋ3 = −ẋ2, ẏ3 = ẏ2. (34)

The conditions for m1 are determined from the centre of mass integrals. This isosceles triangle has a
symmetry axis passing through m1.

Assume that after some time τ the bodies pass through another isosceles configuration, concerning
positions, with the body m2 in the symmetry axis defined by the positions of m3 and m1 and that the
velocities are close to satisfy the isosceles condition. Let β be the angle between the former symmetry
axis (the x axis) and the new one. A refinement is done to satisfy the full isosceles conditions with good
accuracy (see the end of this subsection). Then, after rotating positions and velocities at τ by an angle
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−β, we have an isosceles configuration with the same symmetries concerning velocities than the initial
one. The only change is a circular permutation of the bodies with change of orientation. Then the action
of the semi-direct product of Z2 and Z3 (symmetry and permutation of the bodies) produces a relative
choreography with period T = 6τ and rotation 6β. If β is kπ, k ∈ Z, we have an absolute choreography,
symmetric with respect to the x axis.

This has been applied to ≈ 109 initial conditions. Near 3×105 relative choreographies have been found
and by continuation of each one of them with respect to the angular momentum many (345 up to now)
absolute, non-equivalent, choreographies have been found. It is clear that several relative choreographies
can lead, by continuation, to an absolute choreography equivalent to another one found previously and
they are not counted. It is checked that some of these new 3-body choreographies seem to belong to
families. An example is shown in Figure 23. See [42] for other families.
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Figure 23: Choreographies of the 3-body problem belonging to a family. The paths of the three bodies
during 1/3 of the period are shown in different colors. The positions of the bodies in the initial isosceles
configuration and the ones after 1/6 of the period are also shown. To display the solutions with the
same scale in x and y variables, the coordinates have been exchanged. Now, for these choreographies,
the symmetry axis is the vertical one and for this family both isosceles configuration (at t = 0 and after
1/6 of the period) are symmetrical the one from the other wrt the horizontal axis. Counting the little
inner loops (for instance, the ones in red) the number increases from 1 to 9 from top to down and from
left to right.

Figure 23 suggests to try to continue the family for increasing number of loops. Now the continuation
has to be done with respect to integers and not in a continuous way. But using extrapolation of the data
from the previous loops it has been possible to continue the family without any problem (using quadruple
precision and high order extrapolation) until the solution shown in Figure 24. The natural conjecture is
that there are infinitely many choreographies in this family.

There is an easy description of that solution. One of the bodies (say, the red one) moves close to
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an elongated ellipse while the other two (green and blue) move in a close binary, with its centre of mass
close to an ellipse. When the three bodies approach the centre of mass there is an exchange: the blue
body moves close to a elongated ellipse and the red and green form a binary in turn. At the end of this
we have travelled 1/3 of the period. The bodies return to the initial position with a cyclic permutation
RGB → GBR. One should stress that when they approach the centre of mass the bodies are not close
to triple collision. Preliminary results seem to indicate that the minimal value of the moment of inertia
along the orbit is strictly decreasing with the number of binary loops, tending to a positive constant.

It should be mentioned that among the 345 absolute choreographies available, one can identify several
families. It is not excluded that some of these families contain infinitely many elements. But it can also
happen that a couple of families merge together in a saddle-node bifurcation.

Figure 24: Top: a choreography of the 3-body problem of the same family of the ones shown in Figure
23. In each of the binary portions the bodies in the binary make 200 revolutions around the centre of
mass of the binary, while the third body moves close to an elongated ellipse. Only 1/3 of the orbit is
shown. The remaining parts are obtained by cyclic permutations. Bottom: a magnification of the central
part of the top.

The steps for that application are as follows:

1) To obtain initial data in isosceles configuration one can prescribe some negative energy. Then we
give values of (x2, y2) and determine the positions of the other masses. Because of the symmetries
we can select x2 > 0, y2 < 0. A bound on the domain is obtained because the kinetic energy should
be non-negative. The possible values of the (ẋ2, ẏ2) are parametrized by an angle γ ∈ [0, 2π].

2) Then we proceed to the integration of (1) with the selected initial conditions, looking for a passage
near another isosceles configuration. A maximal time is used (e.g. 5 units) and the attempt is
stopped if the bodies move too far or they become too close. If a candidate is obtained a refinement
is done by Newton method, to have a good approximation to an isosceles symmetry after 1/6 of
the period. For the refinement we fix γ and leave (x2, y2) as free variables to satisfy the isosceles
condition for the velocities when it is satisfied by the positions.

3) Next we carry out continuation by changing the angular momentum, looking for an absolute chore-
ography. Continuation is stopped if the bodies approach a collision. The new absolute choreogra-
phies are stored in a list. If they are already in the list, they are discarded. Later, for our present
goal, we select the ones which belong to the family as shown in Figure 23.

4) Finally the family is continued wrt the number of loops. An extrapolation based on the previously
computed loops allows to have a very good guess. Then Newton method converges in few iterations.
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4.5 Evidences of diffusion related to the centre manifold of L3

In this last application we consider the 3D RTBP for a small value µ = 0.0002, like we used in subsection
4.3. Our goal is to give evidences of the diffusion when we consider the unstable dynamics originated by
the unstable/stable manifolds of the part W c

L3,C
of the centre manifold W c

L3
of L3 for a given value C

of the Jacobi constant. For concreteness we use the value C = 2.95998466228. To have a feeling of the
meaning, let us say that for that value of C the vpoL in W c

L3,C
has values of z going from −0.2 to +0.2.

Beyond the vpoL theW c
L3,C

contains 2D tori, the hpoL, some tiny chaotic domains and the additional
periodic orbits related to these domains. Using the methods of subsection 3.1 and 3.3 we can compute
both periodic orbits and several tori. It is simpler to represent the tori as IC of the Poincaré map P
associated to the section Σ := {z = 0, ż > 0}. In this application we shall use once and again Σ and P.
As we fixed also the value of C, we have to consider a discrete map in a 4D space that we denote as ΣC .

The IC are hyperbolic normally to the centre manifold. Hence, we can compute its manifolds, say
W u

C ,W
s
C , for a given curve C. Note that these manifolds are 2D and to visualize them we can compute a

section through some codimension-1 manifold in ΣC (e.g., an hyperplane Π). A suitably chosen Π gives
as W u

C ∩ Π a closed curve, say Cu. In a similar way we can obtain Cs. Of course, these two curves in
ΣC ∩ Π, which is 3D, do not intersect generically, as opposite to W u

C and W s
C which are 2D in the 4D

space ΣC , for which one expects to have intersections, but not necessarily located in Π. But we can have
a feeling of their relative position by looking at Cu and Cs.

Figure 25 illustrates what has been said. In the left plot several IC are shown, as well as the
point corresponding to the vpoL. Note that the largest IC is quite close to the hpoL. The 2D torus
corresponding to this last IC has values of z which range in the small interval [−0.017, 0.017]. The hpoL,
which is already on z = 0 is located outside the largest IC shown at a distance ≈ 0.004. The right plot
displays Cu and Cs for several IC, using as Π the hyperplane defined by y = −

√
3(x − µ). One detects,

visually, that for tori close to the vpoL the curves are quite close. The difference increases going outside,
away from the vpoL, and decreases again when approaching the hpoL. This will be one of the relevant
facts to explain the results obtained.
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Figure 25: Left: Invariant curves obtained as intersections with Σ of some tori in the W c
L3,C

for C =
2.95998466228 projected on the (x, y)-plane. The vpoL orbit for this value of C has z ∈ [−0.2, 0.2] and
corresponds to the blue point. The blue curve will be used in the computations reported here. Right:
Sections with y = −

√
3(x− µ) of the Poincaré sections of the unstable (red) and stable (blue) manifolds

of some of the tori. For the 3D view we use the (y, ẏ, ż) variables.

Figure 26 shows the projection in (x, y) of the first 105 iterates under P starting at a point close
to the blue curve, say Cb, in Figure 25, left. The first iterates follow closely the upper part of W u

Cb
and

return near Cb close to the upper part of W s
Cb

(or of some other nearby curve). As it is well known, next
iterates can continue going up or down, as happens after every return near Cb, in a quasirandom way.
For completeness, the manifolds of vpoL are also shown (displayed in blue).

This behaviour suggests that, at the successive returns nearW c
L3,C

, the Poincaré iterates can approach
different tori on that centre manifold. That is, a typical mechanism of diffusion thanks to chains of
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heteroclinic connections of different tori.
But there are also tori (3D for the Hamiltonian flow, 2D for P) close to these manifolds. Among

these tori one finds the ones close to the boundary of the practical stability domain for L5, as seen in
subsection 4.3. Looking at Figure 19 one checks that they reach values of α very close to 0 (the value of
α for L3) up to z = 0.3. The iterates can remain for a large number of iterates (say, 106 and even 108 in
some tests) close to one of these tori, to one of the tori in the symmetric domain around L4, or even tori
which visit a vicinity of both L5 and L4 (with an (x, y) projection of the iterates in Σ similar to the red
points in Figure 26). The tori are very sticky, see subsection 3.5. As a consequence, the orbit of a point
should consists of passages from the vicinity of W u of one of the IC to the vicinity of the W s of another
IC (or, perhaps, the same one) with long stays near tori of one of the three types described.
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Figure 26: Starting at a point very close to the invariant curve in blue in Figure 25 we have computed
the first 105 intersections with Σ. The plot shows the projections on the (x, y)-plane. As a reference
we also show in blue the initial part of the manifolds of the vpoL. The lack of coincidence of these last
manifolds is not seen with present resolution.

To have evidence of this expected behaviour, we have taken 1920 points close to Cb (the blue curve in
Figure 25 left). For every initial point we record the first 5×106 Poincaré iterates, except if some kind of
escape is detected. A typical escape occurs when, going the iterates to the left, either near the upper or
lower part of Figure 26, they approach the location of the secondary. After this encounter the successive
iterates can move close to the primary, escape far away or even return several times near the secondary.
Anyway, only for 37 of the 1920 initial conditions escape was detected. Certainly the initial conditions
will lead to escape if the number of Poincaré iterates is largely increased, at least on this level of Jacobi
constant. See later for some tests with initial data taken near the vpoL.

To visualize the diffusion and to display a moderate amount of data we have computed passages of
the Poincaré iterates through a narrow slice around x = 0. Only from time to time an iterate falls in the
slice. For instance, among the 1920 × 5 × 106 computed Poincaré iterates (except the few iterates lost
because of escape) only ≈ 3.2× 106 fall in the slice |x| < 10−3. The passage can occur in the upper part
going from right to left (inner transition) or from left to right (outer transition) and also from right to
left (outer transition) or from left to right (inner transition) in the lower part (see Figure 26).

The variables used in Σ are (x, y, ẋ, ẏ). Due to the symmetries, the inner upper and inner lower
transitions are symmetrical, with the changes (x, y, ẋ, ẏ) ↔ (x,−y,−ẋ, ẏ), and the same occurs for the
outer ones.

Using only the iterates falling into the slice for a maximum of 105 for all the initial conditions, the
results (inner and outer upper transitions) are shown in Figure 27 left. The blue points, P− to the left
and P+ to the right, correspond to the intersections with x = 0 of the manifolds of the vpoL. The point
P− is the first intersection of W u

vpo
L

with x = 0 and P+ is the first intersection of W s
vpo

L

with x = 0.
The y coordinate of P− is smaller than the one of P+. In both cases we refer to the manifolds of vpoL
as seen in Σ. Compare with the section through x = 0 of the upper part of the blue curves in Figure 26.
Note also that in Figure 27 we display y− 1 as horizontal coordinate, while ẏ is used for the vertical one.
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To compare with increasing number of iterates, the right part of Figure 27 shows the evolution when
we consider iterates in the slice after a maximal number of iterations going from 105 to 8×105 and, later,
to 5 × 106 (from green to blue and then to red). The points are plotted in the reverse order. So, blue
points hidden red ones and green points hidden blue ones. In magenta we show the location of P−. To
prevent from too heavy files we take the narrower slice |x| < 10−4 and only show iterates when moving
in the upper part to the left, that is, upper inner transitions.
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Figure 27: For the set of points described in the text we show the (y − 1, ẏ) projections using different
slices and times, for y > 0 (for y < 0 it is similar). Left: the slice is defined as |x| < 10−3 and we restrict
to the first 105 Poincaré iterates of the initial points. In green (resp., red) the points when the iterates
move to the left (resp., to the right) when looking at them projected on (x, y). We also show the location
of P±, as described in the text. Right: Points in the upper inner transitions. In red (resp., blue, green)
we plot the points on the slice for a number Poincaré iterates up to 5×106 (resp., up to 8×105, up to 105).

It is interesting to display statistics of the process. A simple measure is the evolution of the distance
of the iterates to the point P−, marked in magenta in Figure 27 right. We use the slice |x| < 10−3 and
all the Poincaré iterates (up to 5 × 106 for the 1920 initial points, except for 37 points which escape,
after escape is detected). Then we compute the distances rk,i to P− in the (y, ẏ) variables, where i is
the index of the initial point and k the number of the Poincaré iterate. One takes samples of the rk,i for
all the indices i and for ranges of k of the form ((j − 1)M, jM ], j = 1, . . . , 100, with M = 50, 000. The
samples can be labelled by the final value of k. The Figure 28 displays, on the left the behaviour of the
average distance as a function of the final value of k in the range of values of k in the sample, while the
behaviour of the standard deviation is shown on the right. For these computations both inner transitions
(upper and lower) have been taken into account, in order to have larger samples (the total number of
inner transitions amounts to 1643007).

The results deserve some discussion. We can consider a diffusion process but, as the rate of diffusion
is related to the passage from some 2D torus (invariant curve in the Poincaré section) to a nearby one,
from the comments preceding Figure 25, the rate of diffusion is not constant. It increases going away
from the vpoL and then it decreases again when approaching the hpoL. From the left plot in Figure 28
it seems that the average is still in a range where the diffusion rate is increasing. This asymmetry is
what produces the increase of the average. Note that the value of the distance to P− for the first iterates
which fall in the slice has an average ≈ 0.0597. Concerning the standard deviation, one should mention
that it takes a not so small value (≈ 0.005) for k = 50, 000 (the first displayed point). One of the reasons
for this is that, looking at the green points in Figure 27, one checks that they are scattered around an
ellipse, not a circle. Also, after 50,000 iterates the scattering is non-negligible.

One can mention that a good fit of the data for the standard deviation, as a function of the number
of Poincaré iterates, k, is of the form σ ≈ c(a0 + a1k + a2k

2)1/2 with a0, a1 > 0, a2 < 0 and c a small
positive constant. The negative character of a2 should be due to the decrease of the diffusion rate when
going to the outer curves in Figure 25.

Furthermore, when the distance d to P− reaches a value d∗ less than, but not too far from 0.18, the
orbits quickly escape. One can check that the upper part of the unstable manifold of the hpoL has a

39



first intersection with x = 0 on a curve, similar to a circle, for which the distance to P− takes an average
value equal to 0.2. Hence, we can consider this as a diffusion process with varying diffusion rate (first
increasing, later decreasing, as a function of the distance to P−) and with an absorbing barrier: reaching
d = d∗ the points disappear from the system.
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Figure 28: The left (resp., right) plot shows (in red) the evolution of the average (resp., standard
deviation) for ranges of k of the form ((j − 1)M, jM ], j = 1, . . . , 100, with M = 50, 000. The horizontal
variable in the plots refers to millions of Poincaré iterates. For comparison, the blue lines show the same
results, with a reduced set of initial points, for computations done using quadruple precision. See the
text for details.

It is worth to comment also that, as an additional check, preliminary computations concerning diffu-
sion and the related statistics have been carried out using quadruple precision. The size of the sample of
initial points has been reduced by a factor 4. The number of escapes before reaching N = 5× 106 is 9, in
good agreement with the previous result. Note that now the samples for the statistics are smaller, which
gives slightly larger errors in the determination of average and standard deviation. For comparison, the
results are displayed in blue in the same Figure 28.

Concerning escape, the following experiment has been carried out. A total of 625 initial conditions
has been taken in Σ at distances of the order of 10−13 from the intersection of the vpoL with Σ. Poincaré
iterates have been computed up to a maximum of 109. The first escape is produced after a number of
iterates close to 65 × 105. Only 13 points subsist for the full 109 iterates, most of them spending a big
part of the iterations very close to invariant tori. A plot of the number of points which subsist after k
iterations, for values of k multiples of 107 is shown in Figure 29.

Furthermore, taking initial data close to the outer 9 tori in Figure 25 (again using samples of 625
points), one checks that all the points escape and that the average number of iterates for the escape
decreases in an exponential way when we approach the outer torus. If the same experiment is done with
625 initial points close to the hpoL the result is that all of them escape. In that case, as the orbit lives in
z = 0, one can count the number of crossings of the orbits through the section x = 0, either with y > 0
or y < 0 and either with ẋ > 0 or with ẋ < 0. The average number of such crossings is 14175. Note that,
in contrast with the passage of Poincaré iterates through an slice around x = 0, it happens that there are
outer and inner, upper and lower crossings both with ẋ > 0 and with ẋ < 0. See [44] for an explanation
of this fact.

These results require a few comments. Up to 64.9 million iterates there is no escape. Only 14 points
escape before 108 iterates. Then, up to ≈ 3× 108 iterates the number of subsisting points is nearly linear
in the number of iterates, that is, a rate of decrease close to a constant. Finally, up to ≈ 9× 108 the rate
of escape is slightly below an exponential one. The last escape was produced around 870 million iterates.
To explain these changes is a nice open problem.

A basic ingredient for this application is to have an efficient method to compute Poincaré iterates.
Then the steps are:

1) The computation, stability properties and unstable direction of the vpoL, as fixed point of the
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Figure 29: Statistics of the number of non-escaping points, starting close to the vpoL, as a function of
the number of Poincaré iterations. For the simulations one has used a sample of 625 initial points. In
the horizontal axis the number of iterations is shown in millions.

Poincaré map, is an easy task. The invariant curves of P are computed by looking at a represen-
tation of the variables (x, y, ẋ, ẏ) as Fourier series in a parametrization angle, using a number of
harmonics between 6 and 26, depending on the torus, as explained in subsection 3.3. The symme-
tries imply that, setting the origin of the angle at the minimal value of x, both x and ẏ are even,
while y and ẋ are odd. In this way the left plot in Figure 25 has been obtained. As a side comment
we remark that the rotation numbers are of the order of 10−4 and decreasing when going away
from the vpoL. This produces some problems in the condition number of the linear systems to be
solved in the Newton iterations.

2) Next step is the computation of invariant unstable/stable manifolds of the invariant curves. The
reversibility implies that it is enough to compute the unstable ones, the stable being then recovered
by the symmetries.

We recall that the manifolds have a parametrization as a function of an angle and a distance to
the curve. A fundamental domain is diffeomorphic to a cylinder. Looking for points such that
after some number of iterations are on an hyperplane Π requires a continuation method (e.g., to
have the starting distance as a function of the angle) or any similar device. This has been used
for the right plot in Figure 25. The plots in Figure 26 follow immediately from the computation of
Poincaré iterates.

3) To produce Figure 27 only requires the computation of Poincaré iterates, detection of the pas-
sage through a given slice and whether an inner or outer, upper or lower passage occurs. These
are elementary tasks, despite the computational cost is high. The statistics can be produced by
elementary means.

Note that the difficulties mentioned in item 1), about the smallness of the rotation number, could be
expected a priori. The problem in this region of the phase space is a tiny perturbation of the two-body
problem in synodical coordinates. If µ → 0 the limit is the two-body problem, without the singularities
which occur in the case of L1 and L2 due to the presence of the secondary, which lead, under suitable
scaling, to a limit non-integrable case which is Hill’s problem, see [43, 32]. Hence, for µ→ 0 the rotation
numbers of the IC like the ones in Figure 25 tend to zero. Concretely, they are O(µ), in contrast with the
hyperbolicity at L3 and also on the IC, the vpoL and the hpoL which is O(

√
µ). The possible resonances

are of a so high order that they become undetectable. The diffusion comes only from the effect of the
heteroclinic connections of the manifolds of these IC. The situation is more complex if there is also a
relevant amount of hyperbolicity in the centre manifold itself. See related topics in [13].

Summarizing: one has good evidence of the existence of diffusion associated to the centre manifold of
L3 on levels of the Jacobi constant not too far from the value at that point. Certainly one can produce
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escape, due to the effect of the secondary and even for µ as small as 0.0002, but the escape time is large.
Anyway, there are many topics which require further research.
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[43] C. Simó, T. Stuchi, Central Stable/Unstable Manifolds and the destruction of KAM tori in the
planar Hill problem. Physica D 140 1–32 (2000).

[44] C. Simó, P. Sousa-Silva and M. Terra, Practical Stability Domains near L4,5 in the Restricted Three-
Body Problem: Some preliminary facts. In Progress and Challenges in Dynamical Systems, Vol. 54,
Springer, 2013, 367-382.
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