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Abstract. In this work we consider a class of degenerate analytic maps of the form

T = x+ym +€fl(x,y707€) +h1($,y,9,6),
g = y+xn +6f2([1,'7y,9,6) +h2($7y,9,6),
0=0+w,
where mn > 1,n > m, hy and hy are of order n+1 in 2z, and w = (wy,ws, - .. ,wq) € R?

is a vector of rationally independent frequencies. It is shown that, under a generic
non-degeneracy condition on f, if w is Diophantine and € > 0 is small enough, the
map has at least one weakly hyperbolic invariant torus.

Keywords: Quasiperiodic systems, degenerate fixed points, weakly hyperbolic invari-
ant torus, KAM iteration.

1 Introduction and main results

The existence and persistence of invariant manifolds are fundamental topics in nonlinear
dynamical systems. Geometrically, invariant tori describe the quasiperiodic motions for
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dynamical systems. Indeed, quasiperiodic forcing is not only a natural extension of periodic
forcing, it also occurs in many physically relevant situations as there are many systems
subject to external forcing depending on several frequencies. For instance, Harper map
with quasiperiodic potential and the quasiperiodically forced Arnold circle map serve as
models of quasiperiodic crystals respectively in [1] and [5].

In this paper, we consider a map of the form

(F,w): R2xT¢— R?xTY,
(2,0) — (F(z,0,¢€),0 + w),

where T¢ = R?/Z%, F is analytic with respect to z,0 and ¢, and w is a vector of rationally
independent frequencies. In this case, R? is called the fiber space, and F the fiber map.
This kind of skew product has been studied in many works [1, 3, 5, 6, 9, 11] (see also
references therein). Many of these works focus on breakdown of invariant tori into strange
nonchaotic attractors. In this paper, we study the persistence of invariant tori under
perturbation in a degenerate situation: we assume that F(0,6,0) = 0 (V6 € T%), that
D.F(0,6,0) does not depend on ¢, and that Spec (D,F(0,0,0)) = {1}. Degenerate systems
appear commonly in Celestial Mechanics [12, 13, 4, 2], and degenerate volume preserving
maps are also studied in [14, 19]. The setting considered in this paper is the following:

T=x4+ W +efi(x,y,0,¢) + hi(x,y,0,¢),
?Z_ y+x +€f2(x7y707€) +h2(x7y7976)7

0=0+w,
where Q > 0, mn > 1,n > m and w = (w1,wa, ...,wqs) € RL Moreover, f; and h; are of
the form
fi(z,y,0,¢) = Z f1ij(0,€)x hi(z,y,0,¢) = Z hiii (0, €)'y, (1.1)
0<i+j<n i+j>n+1
fo(z,y,0,0) = > faij(0,02'y’,  ha(w,y,0,6) = D ha(,€)z’y’,  (1.2)
0<i+75<n i+j>n+1

with £(0,0,6,¢) # 0 and h(0,0,6, ¢) = 0, where f = (f1, f2)" and h = (hq, h2)T. Therefore,
if e =0, u(f) = 0 is a parabolic invariant torus. We say that f are lower order terms, and
h higher order terms. Here the minimum order of hj is n 4+ 1 rather than m + 1, since x
in the solution has larger size than y has if n > m and we expect an uniform size of the
high order terms to make the results correct. Throughout this paper, and without loss of
generality, we assume that n > m. If n < m, an analogous result can be obtained.

The value of €2 can be set equal to 1 by using suitable scaling factors in x and y. Hence,
for convenience, let’s consider the following map:

T=z+y" +efi(x,y,0,¢) + hi(z,y,0,¢),
=y+a" +efo(x,y,0,€) + ha(x,y,0,¢), (1.3)

We focus on invariant tori with a prescribed vector of fixed frequencies w. Hence they
can be seen as the response of the autonomous system (when e = 0) to the effect of the



quasiperiodic forcing (when € > 0). Analogous situations are discussed in [7, 8, 10, 15, 16,
17, 18] for the elliptic or weakly hyperbolic cases.

Moreover, the results of this paper can be applied to some specific class of degenerate
differential equations by means of a suitable Poincaré section. A construction of a skew
product transformation derived from a quasiperiodic vector field will be found in Appendix
A. In particular, we consider the differential equation

LL':ym+6l1($,y,t)+q1($7y7t)v (1 4)
y:.’L'n‘i‘elQ(xayat)+q2($7y7t)7 '

as an example (see details in Appendix A), where the time dependence is quasiperiodic.
As aresult, when m = 1,n > 1, the Poincaré map of (1.4) defined by a complete revolution
of one of the angles of the quasiperiodic time-dependence has the following form

T = $+y+9$n +€f1(l',y,9,€) +h1($7y5076)a
y=y+a" +efo(z,y,0,€) + ha(w,y,0,¢), (1.5)
0

and when n > m > 1, it has the form

T=x+y"+efi(x,y,0,€) + hi(z,y,0,¢€),
:g: y +xn +6f2(x7y7976) + h2($7y7076)a
0=0+ w,

where f contains lower order terms and h contains higher order terms. These degenerate
maps are the topic of this paper.

The existence of a weakly hyperbolic quasiperiodic solution for the case m # 1 and
m, n both odd is mentioned as an open problem in Remark 4 of [16]. In this paper, we
provide an answer for this problem. What we do is even more general because m and n
can also be even. Hence, it is not just a generalization of results in [15, 16, 17]. Moreover,
we stress that the ideas of the proof are totally different from the proofs in [15, 16, 17].

When m = 1 and n is odd, a quasiperiodic solution of the differential equations (1.4)
is equivalent to an invariant torus of the map (1.5). Taking Q = 1, we obtain the map

T = x+y+xn +€f1(xay79a€) +h1($,y,9,6),
g:y+$n+€f2($7y7975)+h2(337y797€)7 (16)
0=0+w.

Under suitable hypothesis, the results in this paper show that this map has also at least
one hyperbolic invariant torus. Therefore, the cases studied in [15] and [16] by Xu are
included here. Moreover, m and n are not necessarily odd as they are in [15] and [16].

As it is usual, we need a Diophantine condition to control the small divisors appearing
during the KAM iterations.

Definition 1.1. We say w € R? is a Diophantine vector of type (c,v) if only if

|(k,w) —1] > vk e z\{0}, ez,

_c
k[’
where |k| = |ki|+ -+ |ka|l, ¢ > 0 and v > d. Let DC(c,~y) be the set of the Diophantine
vectors of type (c,7y).



The following theorems are the main results of this paper. In order to state the
theorems simply and clearly, we denote by [f] the average of f(6) with respect to 6.

Theorem 1.2. Letc >0,y >d, r >0, p > 0. Suppose that w € DC(c,7), and that h;, f;
are real analytic functions in x,y, € on an open set of the origin, analytic in 0 on an open
complex strip of the real line, and that they have the form (1.1) and (1.2) respectively,
where © = 1,2. Moreover, we assume

[F100] <0 if m is even,
100 #£0 if m is odd,

and

<0 if n is even,

[f200] { #0 if n is odd.

Then there exists a sufficiently small g > 0, such that if € < g then the map (1.3) has at
least one weakly hyperbolic and analytic invariant torus.

Theorem 1.3. Letc >0,y >d, r >0, p> 0. Suppose that w € DC(c,~), and that h;, f;
are real analytic functions in x,y,€ on an open set of the origin, analytic in 8 on an open
complex strip of the real line, and that they have the form (1.1) and (1.2) respectively,
where i = 1,2. Moreover, we assume

[F200] <0 if n is even,
2000 20 if n is odd.

Then there exists a sufficiently small eg > 0, such that if € < g then the map (1.6) has at
least one weakly hyperbolic and analytic invariant torus.

Remark 1.4. For concreteness, if m and n are both even, we get two weakly hyperbolic
and analytic invariant tori, otherwise, we just get one.

Remark 1.5. In the nondegenerate case m = n = 1, h; and f; do not need to be analytic.
It is enough if they are of class C* with k& > 1. Then, the corresponding invariant torus is
also of class C*. The proof can be found in Appendix B.

Remark 1.6. The proof of Theorem 1.3 is analogous to the proof of Theorem 1.2. Hence,
in this work we mainly discuss the proof of Theorem 1.2.

2 Sketch of the proof

To simplify the notation, we will not write the dependence of f and g on €. As we will
see, this dependence does not have any impact on the proofs. Hence, we consider the map

T = x_'_ym + Efl(l‘vyve) + h1(fﬂ,y,9),
?Z:y+$n+€f2($,y,0)+h2(.’1?,y,0), (21)
0=0+w,

where nm > 1 and n > m. Moreover, f; and h; are as in (1.1) and (1.2) skipping €, with
£(0,0,0) # 0 and h(0,0,0) = 0. If € = 0, the fiber map of (2.1) has a fixed point at the

origin.



It is natural to consider the average map of the fiber map of (2.1)

{ T=z+y" +elA](z,y)+ ]z, y),
y=y+a"+ E[fg](l',y) + [hQ]((L’,y),

where [f] denotes the average of f with respect to 6, which is

A = [ Fa.0)d.

If e = 0, the map (2.2) has a fixed point at the origin. However, if ¢ > 0, the fixed point
may split into several fixed points and we want to show that at least one of them is real.
These fixed points are roots of the combined equations

y™ + el fil(z,y) + [h](z,y) =0,
{ " + €[ fo] (2, y) + [ho](z,y) = 0. (2.3)

By rescaling the variables as follows
€r = €n j’ y = €Em g7 (24)

equation (2.3) becomes

{ 7" + [fro0] + 7F1(Z,9) + Th1 (2, 5) = 0, (2.5)

Z" + [ fa00] + Tfo(, §) + Tha(2,5) = 0,

where 7 = en. Assume that F (2,7) = 0 denotes the combined equations (2.5) where
Z = (z,9)". It is easy to see that F' is real analytic on Z and C' on 7. In order to use the
Implicit Function Theorem to show the existence of solutions for 7 # 0, we assume

<0 if m is even,
[fr00] { #0 if m is odd, (2:6)
and
<0 if n is even,
[f200] { £0  ifnis odd. 27)
Let us consider F'(%,0) = 0, which is
g™ + [f100] = 0,
~ 2.8
{ " + [f200] = 0. (28)

Equations (2.8) have at least a nonzero real root by conditions (2.6) and (2.7). Here if n
is even we denote by (—[ f200])% the positive root of the second equation, and if m is even,
we also denote by (—] floo])# the positive root of the first equation. In summary, if m and

n are both odd we obtain the real root ((—[fgoo])%, (—[floo])i), if m is odd and n is even
we have the real solutions (:I:(—[fzoo])%, (—[floo])%), if m is even and n odd we have the
real roots ((—[fzoo])%, i(—[fmo])%) and, finally, if m and n are both even we obtain four

real roots, (:I:(—[fzoo])%, i(—[floo])%)-



Denote a real root by Zoo = (Z00, Joo). As the matrix

s _ 0 m(goo)™ !

DeF(%0,0) = < n (o)™ ! 0

is regular, the Implicit Function Theorem ensures that, for each 7 close enough to 0, there
exist a value Zop(7) such that F'(Zy(7),7) = 0 and, moreover,

Zo(1) = (Z0(7),90(7)) = (Zoo, Joo) + O(7).

In this work we just consider the roots Zpy = (Zoo, Joo) which make the eigenval-

ues of the matrix Dz;F(Zy,0) real. If m and n are both even, we get two appropri-
1 1 1 1 .

ate roots 1((—[fzoo])ni(—[fwo])m) and (—(—[f200])™, —(—[f100])™ ), otherwise, one root

((=[f200]) ™, (=[f100])™ ). Hence, the conditions (2.6) and (2.7) guarantee that there is at

least one root such that the eigenvalues of the matrix DzF(Zy,0) are real. Without loss

of generality, we take the root ((—[fgoo])%, (—[floo])i) as an example. In this case, the
corresponding solution of F(Z,7) =0 is

(Z0(7), 50(7)) = ((=[fa00) #» (=[fr00)) ) + O(7).

Substituting this solution into the rescaling transformation (2.4), we have a corresponding
real root of the combined equations (2.3)

20(7) = (20(7), 90(7)) = (ro(7), 7 o(7)),

which is also a real fixed point of the averaged map (2.2).
By a translation

{ x = x~+ xo(7),
v
Y=y +yo(7),

the map (2.1) becomes

T+ (y+y0)m +Tnfl(l‘ +x05y+y039) + hl(fE +$07y+3/0,9)a
= y+ ($+ xO)n +Tnf2($ + zo,Y +y079) + hQ(x +$an+ y0a0)7 (29)
0+ w.

IR 8

As 7 is a small parameter, if m < n the first part of the map (2.9) is more important than
the second one. Hence, we rescale the variables as follows

T > Tﬁx, Y T”ﬁy,

where 8 = % Then,

{ Z: = (I 46" YAy + C(8)) + 6"Q(6, )z + 6750, ) + h(2,0,5), (2.10)

0+ w,

2mn—m—m

being § = 7 2m(»-D  and

m—1

Ay = < 0 . m(—[fio0]) ™ ) '
n(—[fa00]) ™ 0



Let By be a regular matrix such that By YAoBy = Dy = diag(\y, A). Making a change of
variables z — Bz, the map (2.10) becomes

{ 2= (I+8"'D(8) +6"Q(0,6))z + 6"9(0,6) + h(z,0,5),

G— 640, (2.11)

where D(8) = Do + B, 'C(8) By and h is of second order in 2, and of order 0 in 4.

We are going to apply a sequence of transformations such that the final fiber map has
a fixed point at the origin. The main idea is based on a KAM iteration. Before starting
a KAM iteration, we will simplify the map (2.11) so that this iteration can be carried out
in an easier way. The main idea is to make the size of the independent term g smaller.
What we exactly do is to translate the variables by an approximation of the invariant
torus. This approximation u(#,d) is obtained from the linearization

z=(I+0""tD(8))z+ 6"g(8,6),
0=0+w.

If we look for the quasiperiodic solution u of this system, we face the small divisors
|e2mV=1(kw) _ 1 — §n=1)\;| which are larger than ﬁ if A; is real and w € DC(c,7). As we
will see in Lemma 4.3, u is of order §” when [g] = 0. After applying the transformation

z=2z"4+u,
{ 0—0 (2.12)

we obtain

{ Z8 = (I4+0"'D+6"Q'(0,0))z* + 6°"g*(0,6) + h*(z*,0,9), (2.13)

0=0+ w,
1 _ D.h(u,9,5) x« 1 1 * * _ _
where Q" = Q + =, ¢" = 57 Qu+ sz h(u,0,6) and h* = h(z* +u,0,6) — h(u,0,9)

D,h(u,0,0)z*. To have a quadratically convergent scheme, we need to find a new change
of variables making §”Q! smaller. To this end, we rewrite the map (2.13) as

75 = (I + 0" LA* +6"Q*(0,0))z* + 6%"g*(6,6) + h*(2*,0,6),
0=60+w,

where A* = D +0[Q'], Q* = Q' — [Q']. Making the change of variables

{ ;*::HSI +0"P)zy, (2.14)
where P is a quasiperiodic matrix determined by the condition
P4+ 6" 1PA* — P — "t AYP = QF,
the map (2.13) becomes
e SR LS CU AL LU
0=0+4w,



where Q(0,0) = (I +6"P)~ P*(I + 6" 'A*) + Q*P — P(Q* + P+ 6" 'A*P)], §(0,0) =
(I4+6"P)~tg* and h = (I + 6"P)"'h*((I + 6" P)zy,0,5). Here we have the small divisors
|e2r(kw)V=T _ 1 _ gn=1(); — \;)| which are larger than mip for w € DC(c,).

Now, for the linear part of (2.15),

%“" =+ 5n_1A*)Z+ + 52”@(07 9),
=0+ w,

we have that, as [§] # 0, the invariant torus is not of order 62" (for details see Lemma 4.3).
Then after two transformations (the first for making the independent term smaller, and
the second for making the new term §2"() smaller), we obtain

{ z=(I+ 6 LA5(0) + &3T1Q1(0,0))z + 83T 1gi(0,9) + hi(z,0,9),

0=10+w. (2.16)

Here we use Lemma 4.2 to show that all the corresponding eigenvalues are real numbers
and this allows to control the divisors |¢2™V=1(k«) _ 1 — §n=1);| when ); changes.
Replacing 6"~ ! by 7, the map (2.16) can be written as
{ 2= (I +nA7(0) +7°6°Q1(0,0))z + 0097 (0,0) + hi(2,0,9),

2 (2.17)

0=0+w.
Now, we split 7°6%g7 (6, §) into the two factors n? and 1né*g; (6, 6). Here we use the part n?
to deal with the 7 appearing in nA%(d), and let the part nd*g:(6,5) be a KAM iteration
term which means that in each KAM step we make the size of this term smaller than it
is in the above step. We also rewrite n?64Q% (6, §) in the same way. Then the map (2.17)
becomes

{ z= (I +n4i(n) + n*Qu(6.m)z +n’g1(6,m) + hu(2,0,m), (2.18)

where A; () = A (6), @1(0,n) = 7754Q>{ (0,0), 91(0,m) = 77549T (0,0), h1(2,0,n) = hi (2,0,0).
Moreover, it is easy to see that ()1 and g; are of order 1. We are going to apply a sequence
of transformations such that the fiber map of the final map has a fixed point at the origin.
We take the map (2.18) as the initial map in KAM iteration.

In the j-th KAM step, we have a map of the form

{ z=(I+nA;j(n) +n°Q;(0,n)z +n’g;(0,n) + hj(z,0,n), (2.19)
0 =0+ uw, :

where [|Q;|l < vj, ||lgjll < v; (1 =n). By transformations of the type (2.12) and (2.14),
the map (2.19) becomes

2= (I +n4jr1 +1°Qjt1)z + 0’gja1 + hjs,
0=0+w,

where ||Qj4+1]| < vjt+1, |gj+1]] < vj+1. Roughly speaking, we will have v, ~ VJZ (the
exact iterative formula of v; can be found in section 6). In view of v =7, Q41 and gj+1

are of order n%'. Then, the scheme will be convergent to a map

Z=({I+nAx)z+ heo(z,0),
0=0+w,



which has a hyperbolic fixed point at the origin. Therefore, the original map has a hyper-

bolic invariant torus near the origin, more precisely, near the point ((—¢| fgoo])%, (—€] flog])%)

which is the main part of a root of the averaged map (2.2). Moreover, the eigenvalues

of I + nAs are of the form of 1 + O(n), so we say that the invariant torus is weakly

hyperbolic. Furthermore, when m and n are both even, we can get one more weakly hy-

perbolic invariant torus near the point (—(—E[fgo()])%, —(—e[floo])%) if we take the point
1

(—(=[f200]) ™, —(—[floo])i) which is also an appropriate root of F(Z,0) = 0.

3 Notations

For z € R?, ||z denotes the sup norm of z and, if A is a matrix, ||A]| is the corresponding
sup norm. We denote the complex torus by T¢ = C?/T%. For f(z,0) : R? x T% — R, [f](2)
denotes the average of f with respect to 6.
Let us define
Ba(Ao) = {A € LRLR?) A - Ag]| < a},

D(r,p) ={(z,0) eR* x T¢: ||z]| <7, [S(6)| <p i=1,2,---,d},
Tg = {9 € T((dl : |%(0Z)’ <p, 1=12,-- 'ad}a A(So = (0750]a
being () the imaginary part of 6.
Suppose f(z,0) : R? x T — C is an analytic function defined on D(r, p), with

(2 0)llrp = sup  [f(z0)]
(2,0)eD(r.p)
We denote by C7/, (R?xT? R) the set of analytic functions on D(r, p) such that f(R?xT9) C
R and by C’7’f7p(IR<2 x T% R) the set of C* functions. If f(z,0) : R? x T¢ — C? is analytic on
D(r, p), then
1z, 0)lr.p = max{|[f1(z,0)llr.p; [ f2(z, ) p}

and we define Cf,p(RQ x T4, R?) similarly to C’;‘jp(R2 x T4 R). If f(2,0,6) is analytic with
respect to z and 6 on D(r, p) and continuous with respect to § on As,, we define

1f(z,6,6)

rpdo = sup  sup  [|f(z,60,0)].
56A50 (Z,Q)ED(T,p)

Given k € N, we denote by C’k(’]I‘g,RQ) the set of C* functions u : ’H‘g — C? such that
u(T%) C R?, endowed with the norm

[ullcx = sup sup [ D'u(6)],
i|<k eTd

where || - || denotes sup norm of D'u(6). C’”(']Tﬁ, R?) is defined in the same way, with the
sup norm

lullp = sup fu(@)]

OETS



4 Some technical lemmas

In order to prove the main theorem, we will first give some lemmas.

Lemma 4.1. (Lemma 2.8 in [8]) Let Dy be a diagonal matriz with 2 different nonzero
eigenvalues N, N9, and u, o be two positive values such that [N > 2u, |N9] > 2u,
A = X3| > 21 and o < 2u/5. Then if |A — Do|| < «, the following conditions hold:

1. Spec(A) = {1, A2}, and [ M| > p, |A2| > i, | A1 — Aa| > p.

2. There exists a nonsingular matriz B such that B~*AB = D = diag(\1, \2), where
1Bl <2 and B < 2.

The proof of this Lemma can be found in [8].

Lemma 4.2. Let D be a diagonal matriz with 2 different nonzero real eigenvalues A1, Ao.

Then if || Al < w, the eigenvalues of D + A are real numbers.

Proof. Assume Ay > A\ and
A= ( ai a2 ) _
a1 a2
Let 5\1, 5\2 be the eigenvalues of D + A, and let Uy, Us be the following disks

U, = {u eC: |u — ()\1 +6L11)| < |CL12|},

Uy = {u eC: |u — ()\2 —|—CL22)| < |a21|}.

By Gerschgorin theorem, if Ui N U = 0, A1 lies in one of the disks, and A lies in the

other disk. This implies that A;, and Ao must be real numbers.

In view of [|4| < Lﬂ, we obtain

la11] + |ai2| + |a21| + |agz| < A2 — A,
which implies
all + ’a12’ + |a21| — a9y < Ay — M.

Then we have
A+ air + |arz] < Ao+ a — |ag],

which implies Uy (Us = (0. Hence, the eigenvalues of D + A are real numbers.

O
Lemma 4.3. Consider the following map
zZ= (I+89A+6'Q(0))z +6'9(0) + h(z,0), (4.1)
0=0+w, ’

where | > g > 1, A € Bo(Dy),Q(0), g(0) € C“’(Tﬁ,RQ), h(z,0) € C‘;jp(RQ x T R?) and
w € DC(c,v). Assume that the eigenvalues of A are real and

[Q] = 07 h(oae) = 07 Dzh(0>9) = Oa ||D22h(zve)||7"7p <K.

10



Let 0 < p* < p such that o0 = p — p* < 1. Then there exists a function u(0) € C"J(']I‘g*,RQ)
such that the transformation (z,0) = Hy(z*,0) = (z* +u(0),0), Hy : D(r*, p*) — D(r, p),
conjugates the map (4.1) to

(4.2)

0=10+w,

where 0 < r* < r — lul|,+, Q*(0), g°(9) € C“(TZ*,RQ), h* e C’,‘:i,p*(R2 x T4 R?), Q* has
zero average and the following bounds hold:
1.

ull - < { 0Ly |lgllp s if [9] # 0,
7= 8 Lallglle e if lg1 =0,

2. A < [|A]l +51HQQP+KHUHP*7
g Q- < 201Q, + 5 K llullo~,

4o Mg e < NQpllull = + gzl
5. h*((),@) == 0, Dz*h*(O,H) == O, ||DZ*Z*h*||r*,p* S K

Proof. Let u(#) be the solution of the linear map

a = (I+35"A)u+ dg(0),
First of all, let us prove that the following bound holds:
8Ly ||gllp b, if [9) #0
wll « < P egd+v _ y 44
Il <{ Gl i 2o (44)

In view of A € B,(Dy), let B be the matrix found in Lemma 4.1. Then the change of
variables (u, ) = (Bv, #) conjugates the map (4.3) to

v=(I+3D)v+d5f(0),
{ 0=0+w.

where D is a diagonal matrix and f(0) = B~!g. Expanding f; and v; as
Ji0) = 37 fPY TN () = 37 o TR,
kezd kezd

st pk
2/ —1(kw) _1_gax,

where i = 1,2, we obtain that vF = . As )\; is a (real) eigenvalue of A

and w € DC(c,7), if k # 0 we have
2T 1= 50 2 () — 9l 2

where p is a suitable integer. Then we have the following bounds:

sl £l : _
”Uf| S 7”“ |k,|w lf k — 07
S Nl eIkl if k#0,
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when [g] # 0, u is defined in Lemma 4.1, and
’L)A
LA etk £ 0,

when [g] = 0.
When [g] # 0, we use Lemma 2.6 in [8] to have

1 01L
[—
ol < 87l | 1+ 2]

and when [g] =0,
L
!
Jolly < 81—

where L = % is a constant depending on d, 7, with x(s) = (%)871 v/s — 1. For

c<1and o <1, we obtain

l—q | 1 1 :
HUHP* < { 51 [ﬂ + Il’] HfHPCUd+w 1.f [g] # 0,
S L fllp e if [g] = 0.
According to || f]l, < |IB~YIllgll,, |ullp—s < [ Bl|||v]lp—o, the inequality (4.4) holds and
Ly=4|3+L].
Applying the translation z = z* + u(#), the fiber map of (4.1) becomes
2 = (I + 814+ 51Q1(0))2" + 81g7(6) + h*(*,0),

where Q1 = Q + szg(lu’g), g =Qu+ w and h* = h(z* + u,0) — h(u,0) — D h(u,0)z*.
As h is analytic on D(r, p), h(0,0) =0, D,h(0,0) =0, and || D,.h(z,0)|, < K, it is easy
to see that ||h(2,0)||., < &|z||> and || D.h(z,0)]|,, < K||z||. Therefore,

1
1Q1llp = 1@y + 57 Klully~,

and, similarly,

. K
9" < QU lull e + ool
HDZ*Z*h*HT*m* < || Dz2h(2" + u, 0)”?"”0 < K.

As usual, we denote the average of Q1 by [@1]. If Q* = Q1 — [@1] and defining
A* = A+ 6'79[Q4], then we obtain the map (4.2). The bounds on A* and Q* follow from

1@l < 1@l p—o and [[Q7[|p= < 2[[Qul]-- -

Lemma 4.4. Consider the following map

7r = (I + 694" 4 8'Q*(0))2* + 6'g*(6) + h* (2", 6), (45)
0=0+w, '

where | > q > 1, A* € B,(Dy), Q*(8), g*(0) € C‘”(’]I‘g*,R2), h* e C’T‘iyp*(R2 x T4, R?) and
w € DC(c,v). Assume that the eigenvalues of A* are real and

[Q*] =0, h*(O,Q) =0, Dz*h*(079) =0, ”Dz*z*h*(z*79)|’r*,p* <K.

12



Let 0 < py < p* such that 0 = p* — p4 < 1. Then there exists a change of variables
H2 : D(T+7p+) - D(T*ap*)} where (Z*’a) = HQ(Z-HQ) = ((I+5lp(9))z+79)7 ”P||P+ <

1 _ 320dx(d+y)
Lo[|Q~ P* cgdF and Ly = N T—

, such that it conjugates the map (4.5) to

{ Zp = (I + 0944 +8'Q+(0))2+ +0'g+(0) + hi(24.,0), (4.6)

0=060+w,

where P(0) is analytic on ’Jl‘g+ and Q4 has zero average. Moreover, the following bounds
hold: l
* 2l—q * *
1 A < AT+ 1_25‘?“7,4@[(1 + U A DIPIZ, + 19+ 1 Ploy],

l
2 Q4o < w=aypr [+ SUA DIPIZ, + 1Q% o 1215, ],

1
3 gl < an*np*a

I+8'[IPllpy)?
4- ‘|DZ+Z+h+||7‘+ap+ S Km’

where 0 < (I + 6'P)r, < r* and § is small enough such that (SZLQHQ*HP_UCQW%+27 < 1.

Proof. Under the transformation Ha, the fiber map of (4.5) becomes

2, = (I+3094%) 2 + 8P+ 391A*P + Q" — P — §9PA")z,
+02 (I + 6'P)HPH(I + §9A4%) + Q*P — P(Q* + P + §7A*P)]z,
+06U(T +8'P) " g* + (I +6'P) " h* o Ho(2y,0),

where we denote P = P(f + w), and it satisfies the homological equation
P+ 67PA* — P — §7A*P = Q*.

Therefore,

(4.7)

Zp = (I + 094" +8'Q2(0)) 24 + 8'92(0) + ha(24,0),
0=0+w,

where Q2(0) = 6'(I + §'P)~[P*(I + 09A*) + Q*P — P(Q* + P + §9A*P)], g2(0) = (I +
6'P)~1g* and ho = (I +0'P)~'h* o Hy(z1,6). To estimate the bounds on these terms, let
us solve the homological equation.

Let B be the matrix found in Lemma 4.1, which satisfies B"'A*B = D.If P = BSB™!,
then the homological equation becomes S + 675D — S —§9DS = B~'Q*B =: R, where R
has zero average. As D is a 2 x 2 diagonal matrix with eigenvalues A\; and Ao, which are
real, the upper equation can be solved by dealing with 4 equations. Assume S = (s;;),
then the entries s;; satisfy

k

o Tij ke zt\ {0}
Yo e2m(kw)v—1 _ 1 — 39N — )‘j)7 |

where

Cc

2r(kw)V=1 _ 1 _ sa(\. _ ). v
|€ 1 5 (AZ )\j)| Z |]€|7,
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when k #£ 0. When k£ =0, si-“j = 0 (recall that Q* has zero average). Then we have

20dx(d+v) 1

IS5 < =2 F IRl

Noticing that [|[Pll,. < [IB|[[[Sllps[B~![l, and [|R[l,~ < [|B~'[[|Q*[l,-|| B, we obtain
. 320dx(d+
1Pllps < Lol Qllpr bes with Ly = 200D,
Now, we are going to estimate the functions in map (4.7). According to the bound of

| P||,, and if § is small enough it is easy to see that §'||P||,, < 1. Hence we have

o0
, , 1
1L+ 6'P) o <D 6PN, < ——<m—
pe = 2 0Pl < T —ppy -
Therefore,
261 q * 2 *
[Q2llp, < W[(l + S AN, + I1Q% o [1Pllpy ],
(P P ———
g2 S g or 19 lp*s
A U P s
and

(I +3"[P]lp,)?

D h <K
1Decsslilrcrs < B =501p,,

i (14 8P, )rs <7
Let Q4+ = Q2 — [Q2]. Then the initial map becomes (4.6), where A, = A* + §79[Q5],
g+ = go, hy = hy and, moreover,

* - * 262[_(1 * *
AL < 1A%+ 0@l oy < A + 5 [(L + 87 A*DIPIZ, + Q%I Pllos]s
1= 6P|y
and
45l q * 2 *
1Q+llpy < [+ AT NIPIL, + Q%o [|1Plp,]-
1= &' Pl

5 KAM theorems

To prove Theorem 1.2, we reduce the original map (2.1) to a map of the form (see the
details in Section 6)

{ 2= (I+0" A5 +6"Q(6,8))z + 5"9(6.6) + h(=.6.9), 5.1)

0 =0+ w.

We are not going to start the KAM iteration from map (5.1). In the following theorem,
we simplify (5.1) such that these iterations are easier to perform.

14



Theorem 5.1. Assume that 0 < c <1, v>d, 0<r<1,0<p<1,0<d <1 and
w € DC(c, \). Suppose that A(§) = Do + O(8) is C1 with respect to §, and that Q(6,6),
9(0,9) and h(z,0,0) are continuous in §. We also assume that for a fixred § < oy, Q(0,9),
9(0,9) € C“J(Tg,RQ), h(z,0,6) € C¥,(R? x T¢,R?) and that the following conditions hold:

[@Q =0, [g=0, h(0,6,0)=0, D.h(0,6,8)=0, ||Ds.h(z,0)|lsps< K.

Then there exists a transformation H € Cy, | (T¢ x R?,R?), continuous on § < &, where

61 < o, such that this transformation conjugates the map

zZ=(I+ 0" TA(S) +6"Q(8,6))z + 6"g(0,6) + h(z,0,0),
0=0+w,

to

{ 2= (I 40" AT(0) + 07 TQ1 (0, 0))z + %91 (6,6) + hi(=,6.0). o)

0=060+w,

where Q7 has zero average, Q7(0,9), g7(0,9) € C“(Tpdl,RQ), h*(2,0,0) € Cy, ,, (R?xT%, R?)
continuous on 6 < 61, 1 =1/2, pr = p/2 and || A7|| < ||A|| + O(9).

Proof. We recall that Dy = diag(\?, \9), where A = —\J. There exists a positive number z
such that [A?] > 24, which implies [AJ| > 2u and [A\? —\9| > 4. Let a be a value such that
0<ac< %" As A(S) = Doy + O(6), there exists a positive constant 0 < §* < §y such that

0_ )0
A € B,(Dy). In view of o < %" < ‘)‘172)‘2", it is easy to see that, if A € B, (Do), Lemma 4.2
implies that A has real eigenvalues. Using Lemma 4.3 with [g] =0, r* =r—7, p* = p—o0,

7 = g and 0 = £, we have a change of variables (z,6) = Hi(2*,0,0) = (2* + u(6,9),0),

where H; € Cf_ﬁp_g(RQ x T¢,R?), that conjugates the map (5.1) to
28 = (I 46" 1A*(0) + 6"Q*(0,0))z* + 6"g*(0,0) + h*(2*,6,6), (5.3)
=0+ w, '

where A*, Q*, g* and h* have the properties obtained in Lemma 4.3. Here, § < 6** where
0** is a positive constant such that §** < 6* and (5**)1L1||9”Pwd%v <7

From the estimate on ||A*|, it follows that there exists 64+ < §** such that, if 6 < d4,
A* € Bo(Dyp) and cSZLg||Q*||p,(,c%d¥+27 < 7. Then we are able to use Lemma 4.4 to obtain
a new change of variables (z*,0) = Ha(z4,0,9) = ((I + " P)z4,0) that conjugates the
map (5.3) to

{ Ze = (I + 0" VAL () +0"Q+(6,0))2" + 0" g+(6,6) + h (24,6, 6), (5.4)

0=06+w,

where A4, Q4+, g+ and hy have the properties obtained in Lemma 4.4 with ry = r —
27, p+ = p — 20. Rewriting (5.4) by using z in place of z;, Q = %ﬁ, g="% and h = hy,
we have

{ Z=(I+8TA(0) +62Q(0,0))z* + 62"g(0,6) + h(z,0,5),

0=0+w, (5:5)

where we have the bound [|A| < || Dyl +O(d). Moreover, Q(6,6), g(8,9) € C"*’(’]I‘ngU,RQ),

h(z,0,0) € C;fizf,’pf%f(]l%2 x T% R?) for 6 < 64. Let Hyg = Hy o Hy. Then Hip €
C’;‘L%pf%(RQ x T R?) conjugates the map (5.1) to (5.5).
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Similarly, if ¢ is small enough, A € B,(Dy). We apply Lemmas 4.3 and 4.4 again but
with [g] # 0 which affects the size of the translation in Lemma 4.3. Then we obtain a
change of variables H3y € Cy) (R? x T¢ R?) which conjugates the map (5.5) to (5.2)
where Q7(0,9), g7(0,9) € C“’(’H‘zl,RQ), hi(z,0,0) € Cp , (R* x T¢,R?) with 71 = r/2, p1 =
p/2,6 < b1 and [[Af]] < [[Dol| + O(6).

Hence, there is a transformation H = Hip 0 H3y € C} o (R? x ’H‘d,R2) that conjugates

the map (5.1) to (5.2). O

The KAM iteration will be applied to the following map,

{ z2=(I+nA+17°Q(0))z +1n’g(0) + h(z,0), (5.6

0=0+w, 6)
where

Q(0),9(6) € C*(T4,R?), h(z,0) € C,(R* x TV, R?), (5.7)

@ =0, [Qll,<v, lgl, <v, (5.8)

h(079) =0, Dzh(oae) =0, ||Dzzh(za0)“7',,0 < K. (59)

We denote by
r+:7a_27§7 p+:p_20-7
Kv

E=——"_ v, =LyE?
2g2d+2)° + )

K =(1+2)°K.
Then, the iterative theorem is as follows.

Theorem 5.2. Assume that 0 < r, p,c<1,v>d, 0<2f <r,0<20<p, K>1
and v is small enough. Consider the map (5.6) satisfying (5.7)-(5.9), with |A — Dyl| <
a—nv? —nlE, w € DC(c,v), and nL3E < 7. Then, there exists a transformation
dcC¥  (R?x T4 R?), real analytic in D(r, py), such that it conjugates the map (5.6)
to (5.6)+ which satisfies the inductive properties (5.7)+-(5.9)+ with parameters vy, 4,
p+s Ko and Ay < |A| +0Pv + 0L E + n’vy, where

®(-,) : (21,0) € D(re, py) — (I + n*P(0))z+ +u(0),0) € D(r, p),
being n*||Pllp, < nLsE and |ull,, <nLsE.

Proof. As ||A — Do|| < a — qv? — nL1E, Lemmas 4.3 and 4.4 imply that the change
of variables ® = H; o Ha(zy4,0) conjugates (5.6) to (5.6)1. Now let us compute the
corresponding bounds.
As ®(z4,0) = (I +1?P)2z4 +u(f),0), with
v

ullp—o < nleﬁ

and

1 v Kv
2 2 * 2
1 Pllpy <n7La@ Hp—crc(fTJW <2 L2C0'd+’y + 277111112(32(727(1”7 <nL3FE,
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with L3 = 2(Lg + L1L9), we obtain
®: D(ry,py) = D(r— 2% py) C D(r, p),
if nLyE < . It is easy to see that n*||P||,, < i. Then,

(L +n*[[Pllp,)

< K(I+20%|P,,)? < (1+27)°K = K.
1= P, o

H‘DZ+Z+h2||T+,p+ S K

If  is small enough such that n|Al| < 3, then

2773
ALl < A" + W[(l + 77||A>'<H)||P||,2)+ +1Q%p—o 1Pl ]
P
< A+ n*v + nLiE + n*LyE?,
4772 * 2 * 2
1Q+ -0 < W[(l + AT DIPIG, +1Q ool Pllps] < 2nLaE”,
P+
1

o < Mgl p—e < (L2 + L) E? < Ly E?
”g+Hp o = 1 _772||P||p+ Hg ||P o = ( 1 +77 1) >~ L4 ;
where Ly = 24L§. If L is large enough, such that 2L4E? < LoE? = v, then we obtain
that
1AL < [JAll+ 7y + 0Ly B + vy,

1Q+1lpy < vy
lg+1lpy < v
O
6 Proof of the Main Theorem (Theorem 1.2)
Considering the map (1.3) which has form of
T=x +ym +€f1($,y, 9) + hl(‘ray79)v
g =y+ "+ €f2(x7y7 9) + h2(x7y79)7
0=0+ w,
when 1 <m <n, n > 1. Let us start by considering the following equations
z" + el fo](z,y) + [ho](z,y) = 0, '
where [-] denotes the average with respect to 6. By rescaling the variables as follows,
1 1
x=€nl, y=eny,
equation (6.1) becomes
{ gm_i_ [flOO] +T.f1(i.7g) +Tﬁ1(‘%7g) = 07 (62)
" + [fa00] + 7 f2(Z, §) + Tha(Z,7) = 0,

17



1
where 7 = en,

A= D0 [hgl™ iy, = > [hylr el E
1<iti<n i+intl

and

o= > lfulr eI T @, hy = > [haylr el T

1<i+j<n i+j5>n+1
Assume that F(Z,7) = 0 denotes the combined equations (6.2) where 2 = (z,7)7. It is
clear that F is real analytic on Z and C! on 7. If

[ F100] <0 if m is even,
10059 £ 0 if m is odd,

and
<0 if n is even,

[f200] { £0 if n is odd,

then, for the equation F(E, 0) = 0, we obtain one real root if m and n are both odd, 2
real roots if one of m,n is even, or 4 real roots otherwise. From now on, we consider the
root ((—[fa00])7, (—[f100]) ™) as an example. Here if n is even, we denote by (—[fae0])"
the positive root, and if m is even, (—| flOO])% denotes the positive root. As the Jacobian
matrix Dz F((—[ fgoo])%, (—[ floo])% ,0) is invertible, the Implicit Function Theorem implies
that there exists a constant 7y, and a function Zj,

Z0(T) = ((=[fa00)) ™, (= [fr00]) ™) + O(r) =: (Fo(7), Fo (7)),

such that if |7| < 79, it satisfies F(Zy(7),7) = 0. Moreover, Z, is a C! function of 7 < 7.
Let 20(7) = 720 (7), yo(T) = 7m §o(7), then (x0(7), yo(7)) is the solution of equation (6.1)
when |7| < 7.

Making the change of the variables

x = x~+ xo(7),
U< y—=y+yolr),
00,

on map (1.3) we obtain

i’::1,‘—|—(y+y0)m—|—Tnf1($—|—;1;0’y—|—y0’9)—|—h1(;l,‘—|—1'0,y—|—y0’0)’
g:y—i_(x—i_w())n+Tnf2(x+w07y+y079) +h2(‘r+x07y+y070)7
0 =0+ w,

which can be written as

Zf‘:$+P1($+fU0>y+y0a9)a
?Z:y+P2($+3?0,y+y079)7
0=0+w,

where Pl(x7y7 6) = ym + Tnfl(xvyv 9) + hl(x7y)9) and PQ(xa y)e) ="+ Tnf?(x7y7 9) +
ha(x,y,6). Rescaling the variables as follows

T Tﬁaj, T T"ﬂy,
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m, we obtain

T=a+7 Py +yo)™ + 7" fi(7P + 20, 7Py + y0,0) + 7 Pha (702 + w0, Py + o, 0),
gz:y—{—T‘”ﬁ(Tﬁx—l—xo)"+T”_"ﬁf2(7'5x+:C0,T”By+y0,c9)+T‘”Bhg(Tﬁx—i—xo,T”By—i—yg,H),

which is equivalent to

M —m—mn n(2mn—m—n) . n(2mn—m—n) R
z=(I+ 7 Ao+ 7 =D Q(0,7))z+71 =0 §(0,7)+ h(z,0,7),
0 =0+ uw,
where
Ao = o (=L )
(—[f200]) = 0

A _ [ @11 q12
@ (C]21 C]22>7

with

g1 = 7" D1 fi(x0, Y0, 0) + 77" D11 (20, 10, 0),

qi12 = 7_(2n 1)6D2f1(330’y07 ) + T (2n—1)8- nD2h1(x0ay079)7
@21 = 72 D1 fo(20,y0,0) + 77" D1ha(z0, 10, 6),

g22 = 7" Dy fa (20, Y0, 0) + 70" Daha(x0, yo, 0),

and
g — T%fl(fﬂ07y07 0) + T%inhl(x07y07 9)
f2(x01 y07‘9) + TﬁnhZ(w(]’va 0)
h(,0,7) = ( T PUP(TP e + 20, 7"y + y0,0) — Pi(20, y0,0) — D2 Pi(0,%0,6)7] >
T Tﬁnﬁ[P2(7—Bx + xOyTn'By + 3/0,9) - PZ('T(%yOa 9) - DZPQ(x(]:yOv Q)Z]

n—

Let us define § = 7 BT . Then,

{

C(6) = 0[Q)(r), Q(0,8) =Q(0,7) — [Q)(r), §(0,8)=3g(0,7), h(2,0,6)=h(z0,7).

It is clear that C(§) is C* with respect to 6, and that Q, g and h are continuous in 4.
Moreover,

= (I + 6" Y(Ag + C(8)) + 6"Q(0,6))z + 6"§(0,6) + h(z,0,6),

=0+ w, (6.3)

| Wy

[@Q=0, [9]=0, Ah(0,6,6)=0, D.h(0,6,6)=0, |D..h(2,6,0)|.,<K.
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Let Bp be a regular matrix such that By YAgBy = Dy = diag(\y, AJ). Making a change
of variables z — Byz, the map (6.3) becomes

{ Z=(I+6"'D(8) +6"Q(0,6))z + 6"9(0,6) + h(z,0,5),

0 =0+ w, (6.4)

where D(8) = Do+By 'C(6) By = Do+O(6), Q(8,8) = By ' Q(6,6)Bo, g(8,8) = By '3(6,6) By
and h(0,9) = Bo_lfL(Boz,H,é). In fact, after these transformations, the domain of z
changes. For the moment being, and to simplify the notation, we still use r as the bound
of z (later we will account for the changes in this domain). If § is small enough, § < Jy,
by Theorem 5.1 there exists a transformation that conjugates the map (6.4) to the map

{ z= (I + 6" LA5(6) + 83TLQ1(0,6))z + 83T gi(0,0) + hi(z,0,9),
0=0+w,

T1,P1

with continuous dependence on 6 < 41, and | Af|| < ||D|| + O(8), where r1 = r/2, p;
p/2,01 < 0. Let d2 be a value such that d2 < §; and that, for any § < d2, A} € B%(Do).

Let us denote 6"~ ! as 7, and let us take v, = 7. Then,

z2=(I+nA1+7*Q1(0))z +1n*91(0) + ha(z,0),
0 =060+ w,

where Q7 has zero average, Q7 (6,9), g;(0,0) € CW(TgI,R2), hi(z,0,0) € C¥  (R?xT? R?),

(6.5)

which satisfies (5.7)1-(5.9)1 with 4, € Ba (D).

Now we choose the inductive parameters to be able to iterate the KAM steps indefi-
nitely. The choice is:
r1 75

2 _ J . — N
5 =5 Tj+1 =T — 275,

A

ri=r/2, =

P1 oj
pPL=p[2, o1="0, Oj1 = 5 pie = Py — 205,
Kjv;
)
030?d+37

2
n=n, Ej= viy1 = LoEj,

a] = O, aj11 = a; + 772Vj —+ T]LlEj + 772Vj+17
K| =K, Kj—i-l = (1 + 27%‘)3 Kj
Dj = D(Tj,pj).

It is easy to see that K converges,

lim K; = M > 0.

]*)OO
Moreover, we have

2 2 271
EJ+1 — 22d+3’7(1 +2,f,j)3L0 EJ < L* EJ < L*@ ,
E]’ Ejfl
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implying that ‘
E 27 -1
Ej < <L*Ei> Ey.

22443V [* [y K2 (1+4271)3
4d+6
BT

If 14 is small enough such that v < %, then

o0

ZEjSQEla il/j§2E1.
j=1 i=1

Now, we are going to show that, if 1 is small enough such that

2Ly +2)K;
2d+3y
1

);

e
v < mln(g,

o] =

o

then [|A; — Dol < a — nyf —nl1E; and nL3Ej < 7 for all j > 1. From the definition of
E; and #;, it follows that nLsE; < #; for all i > 1 if %ul <.

For j = 1, it is obvious as A; € B% (Dg). For j > 1, let us proceed by induction:
assume that ||4; — Do|| < o — nv? — nL1E; holds for any 1 <1 < j, and let us see that it
holds for j.

According to the inductive assumption, using Theorem 5.2 (5 — 1) times, we obtain

that ||A; — Do|| < § +a;. As the sequence {K;}; is convergent, if UL DKL

o
aoarsy V1< g we have
1

that lim; ,o a; < /2. As the sequence {a;}; is increasing, we obtain
o o 9
|A; — Aol < §—|—aj <a—(§—aj) <a—(aj+1 —aj) <a—nvj —nl E;j.

Hence, for all j > 1, we have that [|A; — Dol| < o — nv§ — nL1Ej and nL3E; < 7 hold
which allows to use Theorem 5.2 to find a sequence of changes of variables ®;, which is
real analytic, such that

(I>j : Dj+1 — D(Tj — 27§]2<,pj) C Dj.

Moreover, ®; is of the form z; = (I + n*Pj(0))zj41 + u;(0), 0 = 0, where ?||P||,,,, <
nL3Ej, [[ullp;,, < nL3Ej, which means

||7’j+17pj+1 ”Tj+17,0j+1

52

Let 7 = dgoPjo0---0 ®;_1, where @y = id. ®J is analytic on D; and transforms the
initial map into

zj = (I +nA; +1°Q;(0))2 + n*g; (0) + hy(2;.0),
0=0+w,

where
Q3(0).45(0) € C* (T4 ), h(z,60) € P, (B x T, ),

Q] =0, 1Qjllp; <vjs lgillp; < vy,
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hj(O,H) =0, Dzjhj((),é) =0, ”Dzjzjhj(zj79)Hrj,pj < Kj.

For lim; oo 7j = 5 and lim;_,o p; = &, the domain D(r;, p;) converges to the domain

D(%, & ). In order to prove the convergence of the KAM iteration, we need to verify that

all the related sequences are convergent with the norm || - ||r1 e1.
272
As

, 9 ,
HHl o ((I)J - Zd)| < 277L3Ej, HVHI o ((I)] - ’Ld)|

j+1

|Tj+1,pj+1 |7’j+1,Pj+1 < 77L3E]'?

. [e.°]

the derivative of ®’ is bounded from above and below by two numbers, Ls; = [[(1 —
i=0
o . .

nL3E;) and Le = [[(1 4+ nLsE;). This implies that the sequence {®’}; (where ®7 is a

i=0
diffeomorphism on D;) converges uniformly on Dy, = D(%, &) to a diffeomorphism ®°.
As limj_,o aj < /2, the sequence A; converges to Ao and ||As|| < || Dol + c.

It is easy to see that H772QjH%1 — 0 and that Hn2ng% — 0. As the sequence K con-

verges, we have that HDZJ.Z].th%% < M, which means that thH%% < Xr}. Therefore,

the sequence {h;}; converges. Consequently, the transformation ®>° conjugates the map
(6.5) to

{ 2o = (I + 1 oc) 200 + hoo (200, 6), (6.6)

0=0+uw,

where ho(0,0) =0, D, _hso(0,0) = 0. As the map (6.6) has zo, = 0 as a weakly hyperbolic
fixed point, the initial map has a weakly hyperbolic invariant torus near the origin.

Appendices

A The Poincaré map of a degenerate differential equation

Here, we show how to obtain a skew product transformation from a quasiperiodic time-
dependent vector field. The considered differential equation is

{ .’i’:ym—i-dl(l‘,y,t)—i-ql(l',y,t):{;1(2,75,6), (A 1)
y:$n+6l2(xay7t)+(ﬁ($ayat):G2(zat7€)v '

where 1 < m < n # 1, [ are the lower order terms, ¢ the higher order terms, z =
(z,y)T and G; is an analytic quasiperiodic function with d + 1 frequencies. Let us de-
fine (@1(z,t, e),ég(z,t, Nt = G(z,t,e). Then we have G(z,t, €) = G(z,01,02,...,0441,€)
where G is 1-periodic in each 6;. Moreover, HZ = w;, and W = (w1, w2, ...,w4+1) is a vector
of rationally independent frequencies. It is natural to consider the lift of the differential
equation to R? x T4+,

{ i =G(z,0,¢),

0=w.
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Let 0441 = 0 be the Poincaré section and let us denote by z(t;z9,67,...,69,0,€) the
solution of the differential equation, where z(0; 2o, 69, . . ., 02, 0,0) = z9. Then the Poincaré
map is defined on R? x T¢,

Z:() = Z(l/@dJrl; zo,ﬁ?, - ,92,0, 6),
0?:0?+w“ ’L':]_,Q,...,d,

where w; = @;/wg441. Let us denote the Poincaré map as

15

with z = (z,y)" and w = (w1,...,wq). As P(z,€) is analytic with respect to z and €, we
can write P(z,€) = P(z,0) + O(e) and P = (P, P»)” where

P(z,0,¢),
0+ w,

)T

p(z0)= Y PHOD

o
|a|>0
where i = 1,2 and a = (a1, as) € N? is a two dimensional multi-index,
la| = |aa| + |ag|, a! = a;las!,

and we use the standard notation

2% = g™

ya2 9% = HM Ho2
) T y o
Let us denote by o(t, z,€) = (¢1(t, 2, €), p2(t, z,€))T the solution of (A.1) with initial
condition ¢(0,z,€) = z. As the Poincaré map is P(z,¢) = ¢(1/@4+1, 2, €), we have that
P(0,0) = 0. Moreover,
{ g?l(t,z,e) = (gl(go(t,z,e),t,e), (A.2)
Oa(t, z,€) = Galp(t, z,€),t,€).

Differentiating (A.2) with respect to z and exchanging the derivations on ¢t and z, we
obtain the first order variational equations,

d dp(t,z,0)
dt 0z

dp(t,2,0)  9p(0,z,0)
0z 0z

= D1G(p(t, 2,0),t,0) =1,

where DG (z,t,¢) = %. Similarly, we can obtain higher order variational equations.
Moreover, we have 0%¢(0, z,0) = 0 for |a| > 1.

When n > m = 1, the solution of the first order variational equations is

dp(t, z,0) | _ 1 t
62 ZZO 0 1 )

implying that




For 1 < |a| < n, aq # n, as 3°Gy(z,t,0)|.—0 = 0, we have
d .
aaago(t, 2,0)|2=0 = D1G(2,t,0)|,=00%¢(t, 2,0)|2=0, 0%¢(0,2,0) =0,

which means that 0%¢(t, z,0)|,—0 = 0 and this implies that 9*P(0,0) = 0. For a = (n,0),
0°G(2,t,0)].=0 = (0,n))T, we have

d . 9
S 0%0(1,2,0) =0 = D1G(z,1,0)|=00”p(1, 2, 0) =0 +(0, nK% o)™T, 8%p(0, 2,0) = 0.

For %bzo =1, we have 9%¢(t, 2,0)|,=0 = (n!t?/2,n!t)T which means

d9“P(0,0) :< 1 1 )T.

a! (@d+1)? Day1

As a result, when m = 1, n > 1, the Poincaré map of the differential equation (A.1)
has the following form

T=z +y+ mxn +61U1(3771179:€) +d1(xay?0)7
J=y+ g 5" +ela(w,y,0,6) + @2(x,9,0),
0=0+ w.

Using suitable scaling factors in z and y and dividing el into lower order terms and high
order terms, we obtain the map

g: y+xn+6f2(x7y7076) +h2($7y7975)7
0=0+w,

where f are lower order terms and h higher order terms.
When n > m > 1, which implies D1G(z,t,0)|,—0 = 0, the solution of the first order

variational equations is % = I, and then,

3(1’0)P1 8(0’1)P1
< oLopy 9O P, ) B

For 1 < |a| < m,a1 # m,az # m, as 9°Gi(2,1,0)|.—0 = 0 we have 9*P(0,0) = 0. For
a=(0,m), 0°G(z,t,0)|.—0 = (m!,0)T, we have

d A 0
aaa@(t, Z, 0)’210 - DIG(Za t? O)‘Zioaa@(ta Z, 0)‘Z:0+(m‘(ai?;2 Z:())n7 0)T7 8(190(07 Z, 0) = 07

where 8(9—‘22|z:0 = 1, implying that 0%p(t, z,0)|.—0 = (m!t,0)7, which means

aap(o,0)2< 1 0>T.

— Y
o! Wd+1

If n = m, for & = (m,0), we obtain

aap(o,()):(O 1 )T‘

) —
o! Wd+1
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If n # m, for m < |a| < n,a; # n, we have 9*P(0,0) = 0, for o = (n,0),

d*P(0,0) (O 1 >T.

=(0,-
al Wd+1

As a result, we obtain the corresponding Poincaré map of (A.1) as
r=x+y"+ Gfl(x7y797 6) + h1($7y7 0, 6)7
=y+a" +efo(x,y,0,¢) + ha(z,y,0,€),

under some scaling and rearrangement when n > m > 1.

B Proof of Remark 1.4 (Nondegenerate Case)

When m = n = 1, we rewrite the map (1.3) using z = (z,v)?, f = (f1, f2)?, and
h = (h1,ha)”. We obtain

zZ=Az+¢€f(z,0)+ h(z,0),
0=0+w,

where f,h € Cf,p(RQ x T¢,R?), and

11
(1)
which can be diagonalized. Let C' be a regular matrix such that C~'AC = diag(0,2) = D.
Now, we can prove that there exists an invariant torus by using the Implicit Function

Theorem. Let X = C’k(Tg,]RZ), E ={u € X : |lul|cx < r}. Obviously, X is a Banach
space with norm || - ||+ and E is an open subset of X. Let

F(u,€) = u(f 4+ w) — Au(f) — ef (u,0) — h(u,0).
Then we get F(0,0) =0, F: E xR — X, and
D,F(0,0): X =X
P(0) — o(60 +w) — Ag(6).
Then,
1. FeCHE xR, X).

2. The linear map D, F(0,0) is injective: If ¢p(6 + w) — Ap(8) = 0, let ¢(0) = Cv(0).
We have v(0 + w) — Dv(0) = 0 implying v(f) = 0 and, finally, ¢(0) = Cv(f) = 0.

3. The linear map D, F(0,0) is exhaustive: If ¢(f) € X, we have to show that there
exists an unique ¢ € X such that ¢(6 + w) — Ap(0) = ¢(0). Let ¢p(0) = Cv(f) and
C~1p(0) = ¢(#). Let us consider the equation v(6+4w)—Dv(f) = ¢(6), which implies
Ul((g) = @1(9 — w) and

1)2(9 + w) — 27./2(9) = @2(0) (B.l)
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Let us define ] 1
Tu = -u(f +w) — -p2(0).
2 2
Obviously, T' : Ck(Tz,R) — C’“(Tg,R) is a contractive map: for any uj, ug €

C”“(Tg, R), we have X
ITu1 = Tuzllor < 5llur — uzllow.
As Ck(TCpl,R) is a Banach space, we can use the Fixed Point Theorem to solve

equation (B.1), and the solution vy is unique. As ¢(6) = Cv(6), we obtain an unique
¢ € X such that ¢(0 +w) — (I + A)p(0) = p(0) for any ¢(0) € X.

Now we can use the Implicit Function Theorem to show that there exist neighbour-

hoods Iy of e = 0, Vj of u = 0 and an operator U (0, -) : Iy — Vp, such that F(U(0,¢),¢€) =0,
and F(u,e) =0 if and only if u = U(0, €), for all (u,€) € Vi x Iy. Moreover, U is necessar-
ily C*. Therefore, there exists a constant e such that if € < €g, the map (1.3) has a C*
invariant torus which is hyperbolic with normal eigenvalues close to 0 and 2.
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