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Abstract

This note focuses on some dynamical aspects of a solar sail. The first part of
the paper is a survey of the use of dynamical systems tools to control a solar
sail near an unstable equilibrium point of the Earth-Sun system. The second
part focuses on new results on the dynamics near an equilibrium point of a sail
near an asteroid. The main tool is a reduction to the centre manifold to focus
on the bounded motions. In both cases, the role of the geometrical structures
of the phase space is highlighted.
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1. Introduction

Dynamical systems have proven to be a useful tool for the design of space
missions. For instance, the use of invariant manifolds is now common to derive
control and transfer strategies. In this note we focus on a specific kind of low
thrust propulsion, known as solar sailing. Solar sailing is based on the use
of large membrane mirrors to take advantage of the solar radiation pressure
to propel the spacecraft. Although the acceleration produced is smaller than
the one achieved by a traditional chemical thruster, solar radiation pressure
acts continuously and and it is unlimited in time. This makes some long term
missions more accessible, and opens a wide new range of possible applications
that cannot be achieved by a traditional spacecraft.

Up to now, three solar sails have been succesfully deployed in space: IKAROS,
NanoSail-D2 and LightSail-A. IKAROS (Interplanetary Kite-craft Accelerated
by Radiation Of the Sun) is a Japan Aerospace Exploration Agency experimen-
tal spacecraft with a 14×14 m2 sail. The spacecraft was launched on May 21st
2010, together with Akatsuki (Venus Climate Orbiter). On December 8th 2010,
IKAROS passed by Venus at about 80.800 km. NanoSail-D2 is a small solar
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Figure 1: Left: Scheme of the forces acting on the sail. Right: The five equilibrium points of
the Restricted Three-Body Problem.

sail (10 m2, 4kg) deployed by NASA on January 2011 in a low Earth orbit, that
reentered the atmosphere on September 17th 2011. LightSail-A is a small test
spacecraft (32 m2) of the Planetary Society, that was launched on May 20th
2015 and deployed its solar sail on June 7th 2015. It reentered the atmosphere
on June 14th 2015.

In this paper we will focus on the dynamics of a solar sail in a couple of situ-
ations. We will introduce this problem focusing on a solar sail in the Earth-Sun
system. In this case, the model used will be the Restricted Three Body Problem
(RTBP for short) plus solar radiation pressure (see Figure 1, left). The effect of
the solar radiation pressure on the RTBP produces a 2D family of “artificial”
equilibria, coming from the well known equilibria of the RTBP (see Figure 1,
right or [25] for more details). This new equilibria can be parametrised by the
orientation of the sail. We will describe the dynamics around some of these “ar-
tificial” equilibrium points. We note that, due to the solar radiation pressure,
the system is Hamiltonian only for two cases: when the sail is perpendicular to
the Sun - sail line; and when the sail is aligned with the Sun - sail line (i.e., no
sail effect). The main tool used to understand the dynamics is the computation
of centre manifolds, for both the Hamiltonian and non-Hamiltonian cases.

The second example is the dynamics of a solar sail close to an asteroid. Note
that, in this case, the effect of the sail becomes very relevant due to the low
mass of the asteroid. We will use, as a model, a modified Hill problem that
includes the effect of the solar radiation pressure, to describe some aspects of
the natural dynamics of the sail.

The paper is organised as follows. Section 2 is a short introduction to the
dynamics of a solar sail and its applications. Section 3 is a summary of some
previous work of the authors on the use of the geometry of the phase space to
control a sail. Section 4 introduces a modification of the classical Hill problem
to model a solar sail close to an asteroid. Section 5 explains the so-called
reduction to the centre manifold for the previous model, and finally Section 6
uses the centre manifold to describe the phase space.
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Figure 2: The effect of light on a solar sail. Left: Force produced by the reflected light. Right:
Force produced by the absorbed light.

2. Solar sail models

Here, a solar sail is modelled as a flat surface that reflects a large portion of
the sunlight, while a small portion is absorbed. The reflected photons produce
an impulse in the normal direction of the sail, while the absorbed photons
produce an impulse in the opposite direction of the Sun, see Figure 2. We note
that the impulse produced by a reflected photon is the sum of two impulses: the
impulse produced by its absorption and the impulse produced by its emission.
The sail orientation is given by the normal vector to the surface of the sail, ~n
and it is parametrised by two angles, α and δ. The acceleration can be written
as

~a = β̄ 〈~rs, ~n〉
(
ρ 〈~rs, ~n〉~n+

1

2
(1− ρ)~rs

)
, (1)

where ρ denotes the reflectivity coefficient (ρ = 0 corresponds to a perfect
solar panel that absorbs all the photons, and ρ = 1 corresponds to a perfectly
reflecting solar sail). The scalar factor β̄ depends on the size of the sail, its
distance to the Sun, the total mass of the satellite and the units used (see [5]
for more details).

In this section, to simplify the discussion, we will assume that the sail is
perfectly reflecting, that is, ρ = 1 (the model with ρ < 1 will be used in the case
described in Section 4).

2.1. A dynamical model

Here we use the Restricted Three Body Problem (RTBP) taking the Sun
and Earth as primaries and including the solar radiation pressure. In this case,
writing β̄ = βms

r2ps
, we have that the acceleration of the sail is given by

~a = β
ms

r2ps
〈~rs, ~n〉2 ~n,

where now β is a constant, that can be seen as the ratio of the solar radiation
pressure in terms of the solar gravitational attraction (β = 1 means that, if the
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sail is perpendicular to Sun direction, the effect of the solar radiation pressure on
the sail equals the gravitational attraction of the Sun). With current technology,
it is considered reasonable to take β ≈ 0.05 ([20]). This means that a spacecraft
of 100 kg has a sail of 58× 58 m2.

The equations of motion are:

ẍ = 2ẏ + x− (1− µ)
x− µ
r3ps

− µx+ 1− µ
r3pe

+ β
1− µ
r2ps
〈~rs, ~n〉2nx,

ÿ = −2ẋ+ y −
(

1− µ
r3ps

+
µ

r3pe

)
y + β

1− µ
r2ps
〈~rs, ~n〉2ny, (2)

z̈ = −
(

1− µ
r3ps

+
µ

r3pe

)
z + β

1− µ
r2ps
〈~rs, ~n〉2nz,

where ~n = (nx, ny, nz) is the normal to the surface of the sail with

nx = cos(φ(x, y) + α) cos(ψ(x, y, z) + δ),
ny = sin(φ(x, y, z) + α) cos(ψ(x, y, z) + δ),
nz = sin(ψ(x, y, z) + δ).

Here, ~rs = (x − µ, y, z)/rps is the Sun - sail direction and the angles φ and ψ
refer to the position of the probe w.r.t. the Sun, in spherical coordinates (see [7]
for details).

The properties of this system depend on the values of the parameters. If
α = δ = 0 the system is Hamiltonian for any value of β. If α = 0 and δ 6= 0,
the system is not Hamiltonian but it is still reversible, under the symmetry
R : (x, y, z, ẋ, ẏ, ż, t) → (x,−y, z,−ẋ, ẏ,−ż,−t). For general values of the pa-
rameters, the flow of (2) preserves volume but is neither Hamiltonian nor re-
versible. Of course, if β is small, it is close to a Hamiltonian system.

It is well known that the RTBP has 5 equilibrium points (Li, i = 1, . . . , 5,
see Figure 1, right). For small β, these 5 points are replaced by 5 continuous
families of equilibria, parametrised by α and δ. For a small value of β, we have
5 disconnected families of equilibria near the classical Li. For larger values of
β, these families merge into each other. We end up having two disconnected
surfaces, S1 and S2, where S1 is like a sphere and S2 is like a torus around the
Sun ([21, 7, 9]).

2.2. Interesting missions applications

There are some proposed missions where the capabilities of solar sails are
fundamental ([20]). One of the first is the so-called Geostorm Warning Mission,
whose goal is the continuous observation of the Sun to provide information
and early warnings of geomagnetic storms. The proposed location is near the
point L1 of the Earth-Sun system. In this case, due to the effect of the sail,
the equilibrium point L1 is closer to the Sun, which is better for this mission.
Moreover, if the sail is not orthogonal to the Sun direction, the equilibrium
point is displaced away from the Earth-Sun line (see Figure 3) which makes
radio communications possible: if the probe were sitting on the Earth-Sun line
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Figure 3: The Geostorm Warning Mission.

then, as seen from Earth, it would be on the middle of the solar disk and its
radio signals would be completely masked by the noise coming from the Sun.

Another interesting mission is the Polar Observer mission, to provide a con-
tinuous monitoring of Earth poles. Note that the use of conventional satellites
on circumpolar orbits would require several of them to have a continuous cov-
erage. Using the same idea as before, we can use the orientation of the sail to
displace the equilibrium point upwards as shown in Figure 4.

Finally, there is an increasing interest on sending manned missions to Mars.
There is a long list of problems to be solved before making such a journey
possible. Here we note that it would be highly interesting to be able to keep
the communications with Earth when the two planets are lined up at opposite
sides of the Sun (which happens every two years, roughly). One option is to
use the same idea as with the Polar Observer Mission, and to displace the
equilibrium point upwards so that the solar sail has a clean view of both planets.
Of course, this can be done either putting the sail over the Earth, or over Mars
(see Figure 5).

We must observe that, in these three missions, the equilibrium point is always
unstable. Therefore, some kind of strategy is needed to keep the sail there.
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Figure 4: The Polar Observer Mission.
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3. Controlling a solar sail

In this section we focus on the station keeping of a solar sail near an unstable
equilibrium point. The main idea is to look at the linear dynamics around the
equilibrium point, study how it varies when the sail orientation changes, and
then use this information to change the sail orientation (i.e. the phase space)
to make the natural dynamics act in our favour, keeping the trajectory close to
a given equilibrium point.

As an example, we focus on the mission Geostorm, where the equilibrium
points are unstable with two real eigenvalues, λ1 > 0, λ2 < 0, and two pair of
complex eigenvalues, ν1,2 ± iω1,2, with |ν1,2| << |λ1,2|. As the real parts ν1,2
are very small, we will assume that they are zero. Of course, we will see later
(in Section 3.4) that the control strategy still works when this assumption is
dropped. If ν1,2 are zero, the linear dynamics at the equilibrium point is of the
type saddle × centre × centre. We describe the trajectory of the sail in three
reference planes defined by the eigendirections, see Figure 6.

For small variations of the sail orientation, the equilibrium point, eigenvalues
and eigendirections have a small variation. We will describe the effects of the
changes on the sail orientation on each of these three reference planes.

3.1. The hyperbolic direction

Let us start by discussing the control for the hyperbolic directions. When we
are close to the equilibrium point, p0, the trajectory escapes along the unstable

(x1, y1)

(x2, y2)

(x3, y3)

Figure 6: Motion near the equilibrium point, as seen in the reference planes given by the
saddle and the two centres.
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Figure 7: Motion in the hyperbolic direction. Left: The trajectory escapes along the unstable
direction. Right: If, using the parameters of the system, we can move the equilibrium point
to a suitable place, the unstable manifold of the new point will push the trajectory back.

direction (see Figure 7, left). If we change the sail orientation the equilibrium
point is shifted, and the trajectory will escape along the new unstable direction.
A first goal is to find a new sail orientation (α, δ) so that the trajectory will
come close to the stable direction of p0 so that, when the initial orientation is
restored, the trajectory approaches p0 (see Figure 7, right). As the trajectory
escapes again, the process is repeated.

3.2. The centre directions

In these planes, the trajectory is a rotation around the equilibrium point
p0. Note that, if the sail orientation is changed, the equilibrium point is shifted
and the trajectory will rotate around a new equilibrium point p1. Therefore,
a sequence of changes on the sail orientation results in a sequence of rotations
around different equilibrium points. At this point, it is important to note that a
sequence of rotations around different points can result in an unbounded motion
(see Figure 8, right). It can be shown that a sufficient condition for the motion
to be bounded is that (the centre projection of) p1 is chosen on the segment
that goes from p0 to the actual position of the probe (see [7] for the proof). In
this way, the centre part of the trajectory will not spiral out.

3.3. The control algorithm

The control algorithm is based on looking for a sequence of orientations of
the sail such that the natural dynamics of the saddle and centres projection of
the dynamics is as described in the previous sections. In this way, the natural
dynamics of the sail will keep it close to the selected equilibrium point.

To implement this process, note that we do not know explicitly the position
of the equilibrium points p(α, δ), but we can easily compute the linear approxi-
mation of this function, p(α, δ) = p(α0, δ0) +Dp(α0, δ0) · (α− α0, δ − δ0)T . We
could also compute a second order expansion, but this linear approximation is
enough. It is also enough to use the eigenspaces of p0 for all these points (adding
the first order corrections for the eigenvalues when moving α and δ does not

7



p0

p1

p1

p0

Figure 8: Motion in the centre directions. Left: The second point p1 is makes the trajectory
to approach the initial point p0. Right: The second point p0 makes the trajectory to move
away from the origin. See the text for more details.

improve the results, because the variation of the angles is small). Hence, we
have a two parameter family of equilibria, and we have several conditions to
attain, namely, on the relative positions of the saddle and the two centres (that
makes up to 6 conditions). This is solved by means of a least squares method.

Of course, it may happen that the solution of this overdetermined system
is not good enough to control the sail. For instance, imagine that the saddle
shown in Figure 6 (left) moves up and down with α, and orthogonal to the
paper page with δ. Then, it would be impossible to control the sail since no
matter what we do the saddle is always pushing the trajectory away. On the
other hand, if for some angles the (projection of the) saddle moves to the “other
side” of the sail, then this can be used to push the trajectory back (at least,
to the stable direction of the previous point). To have this second situation a
suitable non-degeneracy (or transversality) condition is needed. This condition
is satisfied in the Geostorm mission considered here (see [7] for more details).

3.4. Simulations

The next step is to test this control strategy using the full set of equation.
That is, we use the linearized dynamics (with the assumption that ν1,2 are
zero) to compute the change on the sail orientation, but use the complete set of
equations for its motion.

We have done a Monte Carlo simulation taking 1000 random initial condi-
tions near the point and trying to control each one for a time span of 30 years
(this is a very long time for a space mission). We have tested the robustness
of our strategy by including random errors on the position and velocity deter-
mination (this means that we do not know exactly the position of the sail in
phase space), as well as on the orientation of the sail at each manoeuvre (this
means that the sail is not exactly at the required orientation). These errors try
to imitate the real situation found in a space mission.

We have taken β = 0.051689 which refers, for instance, to a satellite of
130 kg mass with a 67 × 67 m square sail. The results of the simulation are
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Success Max. Time Min. Time Ang. Vari.

No Error 100 % 45.87 days 24.13 days 1.43◦

Error Pos. 100 % 45.85 days 24.13 days 1.43◦

Error Pos. & Ori. ? 100 % 53.90 days 21.59 days 1.42◦

Error Pos. & Ori. † 97 % 216.47 days 15.54 days 1.67◦

Table 1: Statistics for the Geostorm mission taking 1000 simulations. Considering errors on
the sail orientation of order 0.5◦ (?) and 2.2◦ (†). See the text for more details.

summarised in Table 1. The meaning of the entries is the following: The row “No
Error” refers to the simulations without any errors in the phase space position
of the sail, or in its orientation. The row “Error Pos.” refers to simulations with
errors in the phase space position, the row “Error Pos. & Ori” adds errors in the
desired orientation for the sail. The first of these two rows has used orientation
errors of half a degree, while the second one of 2.2 degrees (when the control
strategy starts to fail). The columns “Max. Time” and “Min. Time” refer to the
time between manoeuvres (it is convenient to have a reasonable time between
manoeuvres, for instance a month is a good number) and the last column is the
angular variation of the sail as seen from the Earth. The conclusion is that the
proposed method works perfectly, provided that the errors in the orientation of
the sail are below 2◦. If the orientation errors were larger than this value, then
we should allow the sail to move far away from the point (to make the errors
in the orientation relatively smaller) and, hence, use second (or higher) order
terms for the manifolds.

4. The Augmented Hill problem

The classical Hill problem is a simplification of the RTBP introduced by
G.W. Hill ([15]) to study the motion of the Moon. In short, the Hill problem
aims to describe the motion of an infinitesimal particle (Moon) attracted by two
massive bodies: the first (Earth) is fixed at the origin, while the second body
(Sun) is assumed to be far away, in such a way that it produces a uniform and
constant vector field around the mass sitting at the origin. The reference frame
rotates uniformly such that the x axis points in the direction of the Sun. The
motion of the infinitesimal particle is driven by this constant vectorfield plus
the gravitational attraction of the mass at the origin. For more details see, for
instance, [25, 22].

In this section we are interested in the motion of a solar sail near an asteroid.
Due to the large difference between the masses of Sun, asteroid and probe, and
the difference between the asteroid-Sun and the asteroid-probe distances, it
seems natural to use a Hill model for this situation. As we also want to account
for the effect of the solar radiation pressure on the sail we add this force as an
extra term. The equations of motion are then,

ẍ− 2ẏ = − x

r3
+ 3x+ ax,
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ÿ + 2ẋ = − y

r3
+ ay,

z̈ = − z

r3
− z + az,

where (x, y, z) denotes the position of the solar sail, r =
√
x2 + y2 + z2, and

~a = (ax, ay, az) is the acceleration given by the solar sail. In this case, as the
direction of the Sun is constant, rs = (1, 0, 0), expression (1) takes the form

ax = β̄(ρ cos3 α cos3 δ + 0.5(1− ρ) cosα cos δ),

ay = β̄(ρ cos2 α cos3 δ sinα), (3)

az = β̄(ρ cos2 α cos2 δ sin δ),

where α and δ are the angles defining the orientation of the sail. The normalised
units of distance and time are L = (µsb/µsun)1/3R and T = 1/ω, where µsb and
µsun are the gravitational parameters for the small body (asteroid) and the Sun,
R is the Sun-asteroid mean distance, and ω =

√
µsun/R3 is its frequency.

Due to the nature of the Hill model, the normalisation of units is different
from the one of the RTBP. In the normalised units for the Hill problem, we have

that β̄ = K1(A/m)µ
−1/3
sb , where K1 ≈ 7.8502 if the area A is given in m2 and

the mass m is measured in kg. Defining momenta as px = ẋ − y, py = ẏ + x,
pz = ż, this system is described by the Hamiltonian function

H =
1

2
(p2x + p2y + p2z) + ypx − xpy −

1

2
(2x2 − y2 − z2)− 1

r
−axx− ayy − azz. (4)

4.1. Equilibrium points

It is well-known that the Hill problem (that is, the case β̄ = 0 in (3)) has
two equilibrium points, L1,2, symmetrically located around the asteroid, with
coordinates (±3−1/3, 0, 0) (see [25]). The effect of the solar radiation pressure
is to displace these points. For instance, if the sail is perpendicular to the Sun
direction (α = δ = 0), the position of L1,2 move towards the Sun (on the x
axis) as β increases. If the sail is not perpendicular to the Sun direction, the
equilibrium points are displaced outside the x axis, see [10, 11] for more details.

4.2. Families of periodic and quasi-periodic orbits

For realistic values of β, these equilibrium points are unstable: the linearised
dynamics at the point is the product of two linear oscillations and one linear
saddle. Skipping the hyperbolic directions, the linear dynamics around the point
can be described as the product of two harmonic oscillators. If the frequencies
of these two oscillators are linearly independent over rationals, their product
produces a two parametric family1 of quasi-periodic orbits that sometimes are

1The two parameters of the family are the amplitudes of the two linear oscillations.
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referred as Lissajous orbits. When the nonlinear part of the system is added,
the well-nown Lyapunov centre theorem (see, for instance, [22]) ensures that for
each harmonic oscillator there exists a one-parametric family of periodic orbits
that can be seen as the extension of these oscillations to the full nonlinear
system. When the amplitude of these periodic orbits goes to zero (i.e., when
the periodic orbits tend to the equilibrium point) their period goes to the period
of the corresponding harmonic oscillations.

If the frequencies of the two centre directions are not only linearly indepen-
dent over rationals but also Diophantine, the two parametric family of Lissajous
orbit can be extended into the nonlinear system as a two-parametric Cantorian
family of quasi-periodic motions with two basic frequencies. As before, when the
amplitudes of these quasi-periodic orbits go to zero (i.e., when the quasi-periodic
orbits tend to the equilibrium point) their frequencies go to the frequencies of
the harmonic oscillators. The normal directions to these orbits contain a saddle
(it comes from the saddle of the equilibrium point) so they are unstable. For
more details on these topics, see [18, 19, 4].

The previous discussion shows the existence of a two-parametric (Cantorian)
family of unstable quasi-periodic orbits close to the equilibrium points. We want
to know if this local behaviour extends to a larger region around the point, and
what kind of orbits exist in this large region. Note that this question is very
difficult to answer by means of numerical simulations: the numerical integration
of orbits starting near these points produces trajectories that escape quite fast
due to the unstable character of the region. To solve this problem, we will
perform the so-called reduction to the centre manifold.

5. Reduction to the centre manifold

It is based on performing a sequence of normalising transformations on the
Hamiltonian function (4) with the only purpose of decoupling the centre direc-
tions from the hyperbolic ones. These transformations are applied on a power
expansion of the Hamiltonian at the equilibrium point and, hence, the final
Hamiltonian (which is a power expansion) is only valid on a neighbourhood of
the point. As we will see, this neighbourhood is quite large. At the end of the
process, we obtain the power expansion of a two-degrees of freedom Hamiltonian
system, which can be seen as the initial three-degrees of freedom Hamiltonian
without the directions of the saddle. Choosing suitable Poincaré sections, the
dynamics reduces to a family of two dimensional maps (being the parameter
of the maps the energy level of the Hamiltonian), and can be easily displayed.
This technique has already been used to study the neighbourhood of the collinear
points of the RTBP; see, for instance, [12] (reprinted as [13]) and [16, 17, 14].
For the use of this technique in a non-Hamiltonian situation, see also [8, 9]. Now
let us discuss how it works in the Hamiltonian setting.

Let us start by assuming that the equilibrium point has been translated to
the origin and the Hamiltonian has been expanded in power series. Moreover,
we have chosen suitable (complex) coordinates such that the linear part of the
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system is in diagonal form. This means that the Hamilton function can be
written as

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p), (5)

whereH2 = λ1q1p1+
√
−1ω1q2p2+

√
−1ω2q3p3, andHn denotes an homogeneous

polynomial of degree n.

5.1. The Lie series method

Let us recall that, if F (q, p) and G(q, p) are two real functions (where, as
usual, q denotes the positions and p the momenta), their Poisson bracket is
defined as

{F,G} =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
.

In what follows, we will use the following notation. If z = (z1, . . . , zn) is a vector
of complex numbers and k = (k1, . . . , kn) is an integer vector, we denote by zk

the value zk1
1 · · · zkn

n (in this context we define 00 as 1). Moreover, we define |k|
as |k1|+ · · ·+ |kn|.

A change of variables is called canonical when it preserves the Hamiltonian
form (for any Hamiltonian function) of the equations of motion. It is not difficult
to show a transformation is canonical if and only if the differential of the change
(on any point) is a symplectic matrix. Canonical transformations are very useful
both from the theoretical and practical point of view, since they allow to work on
a single function (the Hamiltonian) instead of a system of differential equations.

It is not easy to obtain canonical changes of variables in a explicit form, since
it is very difficult to impose that its differential at any point is a symplectic
matrix. Fortunately, there exist several techniques to produce such transforma-
tions. The one used here is based on the following properties of Hamiltonian
flows:

1. Let Φt(x, y) be the time t flow of a Hamiltonian system. Then, (q, p) =
Φt(x, y) is a canonical transformation.

2. Let G(q, p) a Hamiltonian system (with ` degrees of freedom) and let
(q0(t), p0(t)) be an orbit of this system. Then, for any smooth function f ,

d

dt
f(q0(t), p0(t)) = {f,G} (q0(t), p0(t)). (6)

Then, it is not difficult to see that to transform a Hamiltonian H by means of
the time 1 flow of a Hamiltonian G, we can apply the formula

Ĥ ≡ H + {H,G}+
1

2!
{{H,G} , G}+

1

3!
{{{H,G} , G} , G}+ · · · , (7)

where Ĥ denotes the transformed Hamiltonian. This formula follows from the
application of the Taylor formula for the transformation and using (6) for the
derivatives involved. The Hamiltonian G is usually called the generating func-
tion of the change of variables.
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If the Hamiltonian H and the generating function G are truncated power
expansions, the expression (7) is very suitable for effective computations, since
it can be easily implemented on a computer. Some authors use the so-called
Lie triangle for this implementation. We note that it is possible to organise the
computations to avoid computing this triangle and saving memory, see [16]. One
can argue that a practical problem for this kind of transformation is that it is
defined by an infinite series. This is not a problem since we usually work with a
finite truncation of these series. This will produce a high order approximation to
the results wanted that, in many cases, are good enough for practical purposes.
On the other hand, it is possible to derive rigorous estimates on the size of this
remainder so one can obtain bounds on the error of the results obtained with
the truncated series.

5.2. Practical implementation

It is easy to check that, if P and Q are homogeneous polynomials of degree r
and s respectively, then {P,Q} is a homogeneous polynomial of degree r+s−2.
This property is very useful for the computer implementation of a transforma-
tion given by a generating transformation G. For instance, let us assume that
we want to eliminate the monomials of degree 3 of the Hamiltonian, as it is
usually done in a normal form scheme. Let us select as a generating function a
homogeneous polynomial of degree 3, G3. Then, it is immediate to check that
the terms of the transformed Hamiltonian Ĥ satisfy

• degree 2: Ĥ2 = H2,

• degree 3: Ĥ3 = H3 + {H2, G3},

• degree 4: Ĥ4 = H4 + {H3, G3}+ 1
2! {{H2, G3} , G3},

• . . .
Hence, to kill the monomials of degree 3 one has to look for a G3 such that

{H2, G3} = −H3. Let us denote

H3(q, p) =
∑

|kq|+|kp|=3

hkq,kp
qkqpkp ,

G3(q, p) =
∑

|kq|+|kp|=3

gkq,kpq
kqpkp ,

where η1 = λ1, η2 =
√
−1ω1 and η3 =

√
−1ω2. As

{H2, G3} =
∑

|kq|+|kp|=3

〈kp − kq, η〉 gkq,kp
qkqpkp , η = (η1, η2, η3),

we immediately obtain

G3(q, p) =
∑

|kq|+|kp|=3

−hkq,kp

〈kp − kq, η〉
qkqpkp .
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Observe that |kq| + |kp| = 3 implies 〈kp − kq, η〉 6= 0. Note that G3 is so easily
obtained because of the “diagonal” form of H2.

We are not interested in a complete normal form, but only in uncoupling the
central directions from the hyperbolic one. Hence, it is not necessary to cancel
all the monomials in H3 but only some of them. Moreover, as we want the
radius of convergence of the transformed Hamiltonian to be as big as possible,
we will try to choose the change of variables as close to the identity as possible.
This means that we will kill the least possible number of monomials in the
Hamiltonian. Hence, we kill the monomials qkqpkp such that the first factor
of kq is different from the first factor of kp (we will see in a moment that this
is enough to produce the centre manifold). This implies that the generating
function G3 is

G3(q, p) =
∑

(kq,kp)∈S3

−hkq,kp

〈kp − kq, η〉
qkqpkp ,

where Sn, n ≥ 3, is the set of indices (kq, kp) such that |kq| + |kp| = n and
the first component of kq is different from the first component of kp. Then, the

transformed Hamiltonian Ĥ takes the form

Ĥ(q, p) = H2(q, p) + Ĥ3(q, p) + Ĥ4(q, p) + · · · , (8)

where Ĥ3(q, p) ≡ Ĥ3(q1p1, q2, p2, q3, p3) (note that Ĥ3 depends on the product
q1p1, not on each variable separately2). This process can be carried out up to a
finite order N , to obtain a Hamiltonian of the form

H̄(q, p) = H̄N (q, p) +RN (q, p), (9)

where HN (q, p) ≡ HN (q1p1, q2, p2, q3, p3) is a polynomial of degree N and RN

is a remainder of order N + 1 (note that HN depends on the product q1p1).
Neglecting the remainder and applying the canonical change given by I1 =

q1p1, we obtain the Hamiltonian H̄N (I1, q2, p2, q3, p3) that has I1 as a first in-
tegral. Setting I1 = 0 we obtain a 2DOF Hamiltonian, H̄N (0, q̄, p̄), q̄ = (q2, q3),
p̄ = (p2, p3), that represents (up to some finite order N) the dynamics inside
the centre manifold.

It is important to note the absence of small divisors during this process.
The denominators that appear in the generating functions, 〈kp − kq, η〉, can be
bounded from below when (kq, kp) ∈ SN : using that η1 is real and that η2,3 are
purely imaginary, we have

|〈kp − kq, η〉| ≥ |λ1|, for all (kq, kp) ∈ SN , N ≥ 3.

For this reason, the divergence of this process is very mild. The divergence of
normalising transformations in the absence of small divisors has been considered
in other contexts, see, for instance, [1] or [2]; for a more general discussion

2Because we have killed the monomials qkqpkp of H such that the first component of kq is
different from the first component of kp
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see [23]. This is clearly observed when this process is stopped at some degree N ,
since the remainder is very small in a quite big neighbourhood of the equilibrium
point.

5.3. Changes of variables

It is also possible to compute an explicit expression for the nonlinear change
of variables between the coordinates of (5) and (9), by applying each generating
function G3, . . ., GN to each coordinate: for instance,

q̃j = qj + {qj , G3}+
1

2!
{{qj , G3} , G3}+

1

3!
{{{qj , G3} , G3} , G3}+ · · · ,

p̃j = pj + {pj , G3}+
1

2!
{{pj , G3} , G3}+

1

3!
{{{pj , G3} , G3} , G3}+ · · · ,

is the transformation that links the coordinates of (8) given by the (q, p) vari-
ables to the coordinates of (5) given by the coordinates (q̃, p̃). The successive
application of the generating functions G4, . . ., GN produces the final transfor-
mation. See [16] for details.

6. Dynamics in the centre manifold for the Augmented Hill Problem

Next step is to display the dynamics of the 2DOF Hamiltonian systemHcm =
H̄N (0, q̄, p̄). Let us call (qh, ph) the variables in the normalised coordinates
related to the horizontal oscillations, and (qv, pv) the variables related to the
vertical oscillations. We consider the Poincaré section qv = 0 (in other words,
we are “slicing” the vertical motions).

In what follows, we fix ρ = 0.85 and β = 5. Note that, as β is an adi-
mensional value that compares the solar radiation pressure with the gravitation
of the asteroid, the smaller the asteroid mass is, the larger the β. The value
β = 5 corresponds to a small sail near a large asteroid like Ceres ([10, 11]).
Moreover, we will focus on the dynamics near the point L2. Hence, we perform
the reduction to the centre manifold for this case. As this process is very fast,
the reduction is done for each set of considered parameters.

Let us first consider the case α = δ = 0 and select the energy level Hcm =
0.4 (corresponding to H = −4.51907174 in (4)). The corresponding Poincaré
section is shown in Figure 9 (left), in coordinates (qh, ph). This map is obtained

as follows: for each initial data (q
(0)
h , p

(0)
h ), we compute the only positive value

p
(0)
v such that the point (q

(0)
h , p

(0)
h , q

(0)
v = 0, p

(0)
v ) is in the energy level Hcm =

0.4. This point is used as initial data for the flow of the Hamiltonian Hcm

and Figure 9 (left) shows the intersections of the orbit with the section qv =
0, for several orbits. Figure 9, right, displays these same points but in the
initial (synodic) coordinates (x, y, z) of the Hill problem. Note that most of the
trajectories in this map are invariant curves. In the initial flow, they correspond
to quasi-periodic motions with two basic frequencies: a frequency related to a
vertical oscillation (by vertical we mean outside of the (x, y) coordinates of (4)),
and a frequency related to the rotation on the invariant curve shown in the

15



Figure 9: Hcm = 0.4, α = δ = 0. Left: Poincaré section in centre manifold coordinates.
Right: The left plot but in synodical Hill coordinates.

Figure 10: Hcm = 0.8, α = δ = 0. Left: Poincaré section in centre manifold coordinates.
Right: The left plot but in synodical Hill coordinates.

Poincaré section. The fixed (elliptic) point in the centre of the plot corresponds
to a vertical periodic Lyapunov orbit, and the outside boundary of the plot
corresponds to a planar periodic Lyapunov orbit.

We note that, as Hcm(0) = 0 and the Hessian of Hcm at the origin is positive
definite, the set Hcm = h is diffeomorphic to S3 if h is small.

Figure 10 corresponds to the energy level Hcm = 0.8 (H = −4.45085751 in
(4)). The main difference with the previous figure is that two new elliptic points
have appeared: the so called Halo orbits.

6.1. Halo orbits

Halo orbits are a very well known class of periodic orbits of the Restricted
Three-Body Problem, located near the collinear equilibrium points L1,2,3. They
are periodic orbits which bifurcate from the planar Lyapunov periodic orbits
when the in plane (or intrinsic) and out of plane (or normal) frequencies are
equal. In other words, they are born at a 1:1 resonance involving the frequency
of a periodic orbit with one of its normal frequencies.

The importance of these orbits became clear with the mission ISEE 3 (Inter-
national Sun-Earth Explorer) that was launched in 1978. The purpose of this
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Figure 11: Left: Continuation of the planar Lyapunov family of periodic orbits when α = 0,
δ = 0, showing the pitchfork bifurcation where the family of Halo orbits is born. Right:
Periodic orbits when α = 0, δ = 0.02. Both plots show the (x, z) coordinates of the periodic
orbits in the Poincaré section y = 0.

probe was to study the Sun so it was desirable to place it in between Earth and
Sun, to have a continuous monitoring of the activity of the Sun. Note that to
place it at the L1 point satisfies this requirement but with the following draw-
back: as seen from the Earth, the spacecraft would be in the middle of the solar
disk. This means that an antenna pointing to the probe is also pointing to the
Sun, and the noise coming from the Sun would make it impossible to receive any
data from the probe. Halo orbits provide a very good alternative to place the
spacecraft: As seen from the Earth, a Halo orbit with low vertical amplitude is
seen as moving East and West through the solar disk, but if the orbit is selected
with a large enough vertical amplitude, the orbit is seen moving around the
solar disk, without crossing it. This is the reason for using the word “Halo” to
name these these orbits: they somehow remind one of a halo around a saint.
Note that a probe on one of these orbits can keep permanent communications
with the Earth while it has a continuous coverage of the Sun. Pioneer works in
this direction are [6, 24] (Sun-Earth), [26] (Sun-Jupiter), and [3] (Earth-Moon).

The Augmented Hill model can be seen as a perturbation of the RTBP:
on the one hand, the Hill problem is a simplification of the RTBP that is very
natural in the present situation and, one the other hand, we have added the effect
of the radiation pressure. Hence, it is not a surprise to still find Halo orbits in
this augmented Hill problem. If we fix α = δ = 0 (we recall that β is already
fixed at 5), we can continue the planar Lyapunov family of periodic orbits by
varying the energy level (we could also use an arc-length continuation) and
then the Halo orbits appear as a pitchfork bifurcation of the planar Lyapunov
periodic orbits.

It is interesting to note that one of the effects of the extra parameters δ is to
break the symmetry of the pitchfork, as shown in Figure 11. As an illustration,
Figure 12 shows the pitchfork bifurcation in two different Poincaré sections of
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Figure 12: Poincaré section in the centre manifold, for α = 0, δ = 0 and different energy
levels. Left plots: (qh, ph) (horizontal) section. Right plots (qv , pv) (vertical) section.

the centre manifold: in the left column of Figure 12 we show what we call the
horizontal section: the slice is given by qv = 0 and we display the (qh, ph) plane
(the value of pv is obtained from the energy level). The outer boundary of this
section corresponds to the planar Lyapunov orbit and the vertical Lyapunov
orbits appears as a single dot at the middle. Note that this orbit is completely
included in the section and, hence, its pitchfork bifurcation is not well seen, so
that the Halo orbits seem to appear from nowhere. On the other hand, in the
right column we show what we call the vertical section: the slice is qh = 0 and
we display the (qv, pv) plane (as before, the value of ph is obtained from the
energy level). Now the outer boundary of the section is given by the vertical
Lyapunov orbit, while the planar Lyapunov orbit appears as a dot at the middle.
This section is transversal to the bifurcating planar Lyapunov orbit and then the
pitchfork is displayed properly. Figure 13 contains the same plots as Figure 12
but for δ = 0.02, where you can see the effect of the symmetry breaking on the
Poincaré section.
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Figure 13: Poincaré section in the centre manifold, for α = 0, δ = 0.02 and different en-
ergy levels. Left plots: (qh, ph) (horizontal) section. Right plots (qv , pv) (vertical) section.
Compare with Figure 12
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Figure 14: Same as Figure 12 but for α = 0.49, δ = 0.

Now let us fix δ = 0 and move α (this keeps the symmetry responsible
for having the pitchfork bifurcation that created the Halo orbits). When α
starts increasing from zero, this bifurcation point starts moving towards the
equilibrium point and, when α = αcrit ≈ 0.507819585540, the branching of
Halo orbits takes place from the equilibrium point, which is in a 1:1 resonance.
Figures 14, 15 and 16 show the phase space before, at and after this resonance.
It is clear that the pitchfork bifurcation point crosses over the equilibrium point
and goes from the planar to the vertical family, so the horizontal and vertical
Poincaré sections interchange roles. A complete analysis of the dynamics near
α = αcrit by using the necessary number of parameters to unfold this resonance
is actually work in progress. In particular, we are interested in the (partial)
unfolding given when moving δ, and also in the effect of the parameter β. This
would describe the geometry of the phase space that a solar sail would find when
navigating near this point.
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Figure 15: Same as Figure 12 but for α = 0.5078195855399, δ = 0.
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7. Conclusions

We have discussed the use of dynamical systems tools to understand the
geometry of the phase space of a solar sail. As introduction, we have surveyed
some previous results of the authors and we have shown how to use the knowl-
edge of the phase space to control a sail in the Earth-Sun system. Then, we
have used the Augmented Hill problem as a model for a sail near the point L2 of
the asteroid-Sun system. As this is a 3 degree of freedom Hamiltonian system,
we have used the reduction to the centre manifold to describe the geometry of
the phase space near the point L2, showing the occurrence of periodic orbits,
bifurcations and quasi-periodic motions.
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Math., pp. 557–564.

[20] McInnes, C., 1999. Solar Sailing: Technology, Dynamics and Mission Ap-
plications. Springer-Praxis.

[21] McInnes, C., McDonald, A., Simmons, J., MacDonald, E., 1994. Solar sail
parking in restricted three-body system. Journal of Guidance, Control and
Dynamics 17, 399–406.

23



[22] Meyer, K., Hall, G., Offin, D., 2009. Introduction to Hamiltonian dynami-
cal systems and the N -body problem. volume 90 of Applied Mathematical
Sciences. Second ed., Springer, New York.
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