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June 2018
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Abstract

This paper discusses two alternative models to the Restricted Three Body Prob-
lem (RTBP) for the study of a massless particle in the Earth-Moon system. These
models are the Bicircular Problem (BCP) and the Quasi-Bicircular Problem (QBCP).
While the RTBP is autonomous, the BCP and the QBCP are periodically time de-
pendent due to the inclusion of the Sun’s gravitational potential. Each of the two
alternative models is suitable for certain regions of the phase space. More concretely,
we show that the BCP is more adequate to study the dynamics near the triangular
points while the QBCP is more adequate for the dynamics near the collinear points.
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1 Introduction

During the last years, the scientific community has increased its interest in the natural
motions occurring in the Earth-Moon system. The list of possible applications is vast, for
instance: the study of the far side of Moon and the relation with the translunar point L2;
the aim to exploit the cis-lunar space and the convenience of using the invariant structures
related to L1.

We have mentioned a couple which are specifically related to the Lagrangian points
but, obviously, the list goes on covering a wide range of interests. Efficient mission designs
depend ultimately on the understanding of the natural dynamics. To fulfill this goal, it is
advisable to use simplified models. Simple models allow us to understand the underlying
mechanisms that lead to interesting phenomena. From the dynamical systems point of
view, the comprehension of the invariant structures and their stability of simple models
has helped to shed light on difficult problems such as the motion of asteroids through the
solar system, station keeping of spacecraft and taking advantage on the natural dynamics
to design spacecraft missions. Perhaps the most illustrative example for the purpose of
this work is the existence of the Trojan asteroids that can be predicted using the effective
stability of the triangular points of the Sun-Jupiter Restricted Three Body Problem. This
example is convenient for the purposes of this work because the existence of objects in the
triangular points has a counterpart in the Earth-Moon system: the Kordylewsky clouds.
We shall come back to this example during this work (Section 4.3)but, for the moment
being, we want to stress that the existence of these clouds cannot be established by using
the same theoretical mechanisms as the Trojan asteroids [GJL05, PL15, PE17]. In fact,
the literature related to the Kordylewsky clouds has been stumbling around the existence
or nonexistence of objects in the Earth-Moon triangular points, mostly because of the lack
of observations. Therefore it is convenient to analyze whether a simple model is suitable
for the problem we want to study.

The Earth-Moon Restricted Three Body Problem (RTBP) is the most used simple
model for the motion of a small body in the Earth-Moon system. There is, however, a
remarkable number of works that take into account the presence of Sun’s gravitation (see,
for instance, [GJMS91b, GJMS91a, GJMS93, GLMS01, GLMS85]). The most relevant
effect ignored by the Earth-Moon RTBP is the gravitational attraction of Sun. In this
respect, a simple model to study the dynamics near the Earth-Moon system needs to
take into account Solar gravity. The problem has a natural non-autonomous periodic
time dependence formulation. An advantage of the periodic models is that they can be
handled by means of a stroboscopic map i. e. the map defined by the evaluation of the
flow at the period of the vectorfield. This is crucial because, while the complexity of the
system increases, the study of maps (even if they are numerically defined) is, in some
aspects, more comfortable than the study of flow. In periodic time dependent systems,
the simplest invariant objects, the ones the dynamics is organized from, are the periodic
orbits with the same period as the vectorfield. These periodic orbits appear as fixed
points of the stroboscopic maps and their robustness is assured by the classical Implicit
Function Theorem. We would like to remark that, in quasi-periodic models the simplest
invariant objects are invariant tori. The computation and study of these objects is more
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difficult. The discussion in this paragraph vindicates a closer look to periodic models
for the Earth-Moon system. We have selected two among the literature, the Bicircular
Problem and the Quasi-Bicircular Problem. Both models include Sun’s gravity and can
be written as periodic perturbations of the RTBP.

The Bicircular Problem (BCP) is a restricted four body problem [Hua60, CRR64].
There are three primaries and a fourth, massless, test particle. In our case, the three
primaries are Earth, Moon and Sun. However, this model has been utilized in other cases
[BGMO16]. It is assumed that Earth and Moon move as in the RTBP, that is, along a
circular orbit around its common centre of masses. Let us name CEM this barycentre.
Name CSEM the centre of masses of the Sun-CEM system. As Moon and Earth move, it
is assumed that Sun and CEM move in another circular orbit around CSEM . We refer to
[GJMS91c] for a detailed derivation of the equations of motion. The (BCP) is a periodic
perturbation of the RTBP that takes into account the direct gravitational effect of a third
primary (in our case, Sun) on the particle. This model captures the non-stable character
of the triangular points. Henceforth, it is suitable to use it when studying problems
related with these locations (see, for instance, [CJ00, Jor00]). A remarkable shortcoming
of the BCP is its lack of coherence i. e. the motion assumed for the primaries does not
verify Newton’s laws. Moreover, the BCP has no translunar dynamical structure. This
justifies the seek for a more complex model for the study of, at least, the L2 point.

The Quasi-Bicircular Problem (QBCP) is a version of the four body problem. It
is conceived to be a coherent counterpart of the BCP. This model was introduced by C.
Simó, and it has been used in several works, see [And98, AS00, And02] and, more recently,
[BMGLD17]. A characteristic of the BCP is the lack of coherence of the bicircular solution
assumed for the primaries. However, there exist solutions of the three body problem which
are close to bicircular [SM71]. To build the QBCP it is necessary to compute a quasi-
bicircular solution of the three body problem, in this case, for the Earth-Moon-Sun case.
There are several ways to do such a thing. In [And98, AS00, And02] the authors build a
specific algebraic manipulator and compute directly the Fourier coefficients of the quasi-
bicircular solution. In [Gab03, GJ01, GJR04] the authors use a continuation scheme to
compute the desired solution starting from a solution of the two body problem. After
that, a Fourier transform is applied to get the Fourier coefficients of the solution. The
QBCP is suitable for the study of the collinear points, especially L1 and L2.

With this paper, we aim to provide a general insight about the dynamics of these
models for a particle in the Earth-Moon system. We care about (practical) stable motion
near the triangular points and, to do so, we use the BCP. We also study invariant manifolds
related to the collinear points in the QBCP. We believe that the value of this work is,
precisely, giving a wide perspective and help the interested reader to choose a suitable
simple model to face a first exploration related to a problem concerning the Earth-Moon
system.

The paper is organized as follows: Section 2 is devoted to a brief description of the
RTBP. We explain how the phase space near the Lagrangian points is organized refer-
encing some remarkable works and mentioning the techniques used to study the problem.
In Section 3 we give some words on the stroboscopic maps and periodic time-dependent
Hamiltonian systems. We also explain how to compute high order unstable manifolds re-
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lated to fixed points using the parameterization method with single and parallel shooting.
Section 4 describes how the BCP can be used to study the motion near the triangular
points. The advantage of this model with respect to the RTBP is that it captures the
unstable character of the triangular points in the real system. The results presented are
mainly devoted to stable motion in an extended vicinity of the triangular points. In
Section 5 we describe results concerning the QBCP. We focus on the unstable manifolds
related to the periodic orbits that replace the collinear points. Finally, Section 6 is devoted
to conclusions and Section 7 to technical details.

2 Restricted Three Body Problem

The (Circular) Restricted Three Body Problem (RTBP) is a simplified model for the
motion of a massless particle under the gravitational attraction of two massive bodies,
the so-called primaries [Sze67]. The primaries are assumed to revolve along circular orbits
around their common centre of masses. It is usual to take units of masses so the sum of
the masses of the primaries is equal to one. The units of length are taken so the distance
between the primaries is equal to one and the units of time are taken so the period of
the revolution of the primaries is equal to 2π. It is also standard to take a rotating frame
of reference that fixes the primaries at the horizontal axis. The RTBP is an autonomous
Hamiltonian system with three degrees of freedom. The Hamiltonian function writes as:

HRTBP =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ
rPE

+
µ

rPM
, (1)

where r2PE = (x − µ)2 + y2 + z2 and r2PM = (x − µ + 1)2 + y2 + z2. The parameter µ
is called the mass parameter and it is the mass of the smallest primary. In the case of
the Earth-Moon system µ ≈ 0.012. It is well known that the RTBP has five equilibrium
points. Three of them, the collinear points, are located in the horizontal axis. The other
two, the triangular points, are located at the third vertex of an equilateral triangle whose
other two vertices are the position of the primaries.

The only integral of motion of the RTBP is its Hamiltonian. In many texts, this
integral of motion is presented under a slightly different form as the Jacobi integral. Each
surface level of this integral is a five dimensional manifold. If the velocities are set to zero,
this defines the so-called Zero Velocity Surface. These surfaces separate the configuration
space in different regions. The trajectories of the system cannot cross the boundary
between two of these regions. The shape of these regions change with the value of the
Jacobi integral. As the Lagrangian equilibrium points are critical points of the Jacobi
integral, the topology of these regions change when the energy value crosses the value
associated to one of the Lagrangian points (for more details, see [Sze67]).

The three collinear points are of type saddle×centre×centre. This means that, under
generic conditions, a 4-dimensional centre manifold emerges from each of these points.
These manifolds are tangent to the elliptic eigendirections at the points. There exist, as
well, one dimensional stable and unstable directions emerging tangentially to the hyper-
bolic eigendirections. Moreover:
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Figure 1: The Restricted Three Body Problem.

• By the Lyapunov Centre Theorem [MH92], two families of periodic orbits, the Lya-
punov families, emanate from the equilibria. One of the families is born tangent
to the (z, pz) plane so it is called vertical family. The other family is contained in
the (x, y, px, py) plane and it is called horizontal family. One can parametrize each
families by the amplitude of the orbits. The horizontal families related to L1 and L3

can be continued up to trajectories which collide with Earth. The horizontal family
related to L2 can be followed up to collisions with Moon. The vertical families end
up in bifurcating planar orbits [Mon01, GJMS91c].

• The Lyapunov families can be regarded as the non-linear continuation of the har-
monic oscillator given by each elliptic direction of the linearization around the equi-
libria. When the amplitude tends to zero, the frequency of the family tends to the
normal modes of the equilibria.

• As the frequency varies, the horizontal family undergo a 1 : 1 resonance and the
Halo [FK73, BB79, GJMS91c, CPS15] family are originated (by means of a pitchfork
bifurcation). Secondary families of Halo-type orbits appear by duplication and
triplication of the main family [GM01, Bro68].

The centre manifold can be computed by means of normal form techniques [Jor99, JM99b,
JM99a], with the parametrization method [HL05a, HL05b, FJ10a, FJ10b] and also nu-
merically [GM01]. The dynamics restricted to the centre manifold can be described by
a Hamiltonian with two degrees of freedom. By fixing a level of energy and taking a
Poincaré section, one can reduce the problem to the study of a family of area preserving
maps. This methodology suffices to observe the phase space during the bifurcation that
give rise to the Halo families.
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2.1 Motion near the Triangular points

The Earth-Moon triangular points of the RTBP are linearly stable [Sze67]. KAM theory
can be used to establish the existence of a dense set of Lagrangian invariant tori close
enough to the equilibria [MS86]. This has important consequences on the nonlinear sta-
bility of the triangular points. If we restrict ourselves to the planar case, these KAM tori
(of dimension two) act as barriers for the dynamics in a fixed level of energy. Therefore,
KAM tori enclose stable motion for initial conditions which are close enough to the trian-
gular points. This argument based on KAM theory falls apart in the spatial case. Indeed,
Lagrangian tori have, in that case, dimension three and the phase space, for a fixed level
of energy, is five dimensional. There is, in general, no way to avoid Arnold diffusion
[Arn64] . However, using normal form techniques, it is possible to derive bounds on the
diffusion time [GDF+89] (these techniques can be extended to the periodic [JV98] and the
quasi-periodic case [GJL05]). These, make us think about regions of practical stability
i. e. regions in which the motion is non-stable but initial conditions take a long time,
maybe longer than the expected age of the solar system, to escape. These theoretical
results are valid for a small region near the triangular points and numerical simulations
provide evidences of large regions of practical stability [SSST13].

It is natural to look for other invariant structures that play a remarkable role to
define the shape of the (numerically computed) region. In this regard, [SSST13] provides
numerical evidence on the role of the centre-unstable and centre-stable manifolds of the
collinear point L3. These manifolds are of dimension five and act as barriers of the
dynamics. Obviously, the motion driven by these manifolds escape from the vicinity of
the triangular points at some moment, but, again, the required time to do so can be large.

3 Periodic time-dependent Hamiltonians and strobo-

scopic maps

The alternatives to the Restricted Three Body Problem presented in this paper, the Bicir-
cular Problem and the Quasi-Bicircular Model are both periodic time dependent Hamil-
tonian systems that can be seen as perturbations of the RTBP. Because of this periodic
time-dependence, the Lagrangian points are no longer equilibria but they are replaced
by minimal periodic orbits i.e. periodic orbits with the same period as the perturba-
tion. These periodic orbits are known as the dynamical equivalents of the Lagrangian
points. The usual tools to study numerically the RTBP are the combination of fixing
suitable energy levels and suitable Poincaré sections. We note that, in time dependent
models like the BCP and the QBCP the Hamiltonian is no longer preserved. A standard
tool to deal with these periodic time-dependent systems is the so called stroboscopic map:
Let U ⊂ Rn be an open set, T the period of the vectorfield and ϕ : [0, T ]× R× U 7→ Rn,
where ϕ(t0, t, x0) stands for the solution which, at time t0 lies at x0 evaluated at time
t, the flow of the differential equation. We define the stroboscopic map for x ∈ U as
f(x) = ϕ(0, T, x). In this work we care about Hamiltonian differential equations. In this
case, the stroboscopic map is symplectic.
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Invariant Structures: The simplest invariant objects of the original system are
periodic orbits with the same period as the vectorfield. These appear as fixed point
of the stroboscopic map. The monodromy matrix associated to these periodic orbits is
the differential of the stroboscopic map. The eigenvalues of this matrix determine the
linear behaviour around the fixed points and, under generic conditions, give some insight
about the local non-lineal dynamics. In the symplectic case, under generic conditions,
each elliptic direction give rise to a family of invariant curves which can be parametrized
by the frequency ([JV97b]). This frequency approaches to the normal mode responsible
form the birth of the family at the fixed point. Along the hyperbolic directions, unstable
(stable) manifolds depart (arrive) from the fixed points. These invariant objects are
crucial to understand the dynamics of the system.

In this paper we focus on the information that can be extracted from the computation
of invariant curves and high order approximations of unstable invariant manifolds. While
it is quite common, in the literature related astrodynamics, to find discussions on the
computation of invariant tori of maps [CJ00, JO04, Jor01] it is not so usual for high order
approximations of stable/unstable manifolds.

3.1 High order approximation of unstable manifolds using the
parametrization method

Let U ⊂ Rn be an open set and assume that we are given a map f : U 7→ Rn induced
by the evaluation at time T of a flow of some ordinary differential equation (stroboscopic
map). The following discussion can be done for any Poincaré map as well. Here we
assume that the section is temporal for simplicity of the exposition and because it is the
natural section to chose in a periodically perturbed autonomous system. Let us suppose
also that x̄ ∈ U is a fixed point i.e. f(x̄) = x̄. Obviously x̄ is an initial condition for a
T -periodic orbit of the original flow. The linearized normal behaviour around the fixed
point is given by the eigenvalues of the differential of the map evaluated at the point.
Assume specDf = {λ, λ2, . . . , λn} with |λ| > 1. Under generic conditions, we know that
there exist a 1-dimensional unstable invariant manifold related to the fixed point. That
is, there exist an open interval I ⊂ R and a map x : I 7→ U such that x(0) = x̄ and

f(x(s)) = x(λs). (2)

Equation (2) is known as the invariance equation of the invariant manifold. The parametriza-
tion method [CFdlL03a, CFdlL03b, CFdlL05, Sim90] is a powerful tool to, both, prove
the existence of the manifold and compute it. The idea is to expand the parameterization
of the manifold in Taylor series at s = 0 and solve equation (2) order by order. This
makes sense in the case when both the map and the manifold are analytic. This assump-
tion is fulfilled by the applications we are interested in. Hence, the goal is to compute a
semi-analytic approximation of a parametrization of the invariant manifold. Let us name

x(s) =
∞∑
j=0

ajs
j.
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We are interested in numerically compute the coefficients aj for j = 0, . . . , d for a given
degree d. This is achieved by an online scheme in which we solve equation (2) order by
order:

• Order 0 is given by the coordinates of the fixed point.

• Order 1 is given by the eigenvector related to λ.

• For k > 0, order k + 1 is given by the solution of the following linear system:

(Df(0)− λk+1I)ak+1 = −bk+1.

Here, bk+1 is the k + 1-th term of the evaluation of the manifold up to degree k by
the map f , that is:

f≤k+1(x≤k(s)) =
k∑
j=0

bjs
j + bk+1s

k+1,

where the subindices (·)≤k+1 denote the truncation of the power expansion of (·) at
order k + 1.

Notice that it is mandatory to have a method to compose power expansions of the manifold
with the map itself. Sometimes, when, the map is explicit, one is able to find a suitable
recurrence expression to compute the terms of this composition. If a recurrence is not
available one can compute higher order terms by automatic differentiation1. In the case
we are interested, the map is not given explicitly but comes from a numerical integration
of a differential equation. Here, the only reasonable strategy seems to use Jet Transport.
This technique is based in the idea of, instead of integrating a single point, integrate a
function given by its expansion in Taylor series. That is, one transports the jet, the set
of derivatives of the function at a given point, up to a given order. It is straightforward
to construct an integrator of jets from an integrator of numbers. It is only a matter of
replacing the standard floating arithmetic by a polynomial arithmetic [FGJ+18].

There is another obstacle that can appear when dealing with Poincaré maps: if the
orbit is very unstable, the hyperbolic direction may lead to a huge error propagation. This
problem can be avoided by using parallel shooting. The idea behind parallel shooting is
to enlarge the dimension of the system in order to decrease the time of integration. Let
us denote by ϕ

tf
t0 (x) the solution of the differential equation with initial condition (t0, x)

evaluated at time tf . Fix k ∈ N, the number of sections, and set h = T/k. For i = 0, . . . k,
we define τi = ih. If m = nk, we define the function F : V 7→ Rm

F :


x1
x2
...
xk

 7→


fk(xk)
f1(x1)

...
fk−1(xk−1)

 .

1In principle, one could also use numerical differentiation but it is a bad approach in terms of efficiency
and accuracy
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Figure 2: The Bicircular model.

Here V = Uk is an open set of Rm, and, for x ∈ U , fj(x) = ϕ
τj
τj−1(x). The differential map

DF is given by

DF =


0 . . . . . . Dfk

Df1 . . . . . .
...

... . . . . . .
...

0 . . . Dfk−1 0

 .

For x̄ ∈ U , name y = (x1, . . . , xk) where x1 = x̄ and xj = fj(xj−1) if 1 < j ≤ k. Then:

1. y is a fixed point of F if and only if x̄ is a fixed point of f .

2. The duple (ζ, v = (v1, . . . , vk)), ζ ∈ C and vk ∈ Cn is a pair eigenvalue/eigenvector
of DF (y) if and only if (ζk, v1) is a pair eigenvalue/eigenvector of Df(x̄).

3. The projection to the first coordinate of the invariant manifold of F related to ζ
coincides with the invariant manifold of f related to ζk = λ.

4 The Bicircular Problem and the triangular points

The BCP is a perturbation of the RTBP. It is usual to take the units and the synodic
coordinates of the Earth-Moon RTBP (see Figure 2). The BCP is not coherent, that
is, the trajectories followed by the primaries do not obey Newton’s laws. This is not
an inconvenient since the model has been shown to be useful to describe the dynamics
near the triangular points [SGJM95]. As a dynamical system, the BCP is a Hamiltonian
system with three and a half degrees of freedom, i.e., a non-autonomous periodically time
dependent with three degrees of freedom. The Hamiltonian function, written in the RTBP
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coordinates and units, is given by

H =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ
rPE

− µ

rPM
− mS

a2S
(y sin θ − x cos θ)− mS

rPS
. (3)

Here µ, rPE and rPM denote the same quantities as in (1). Moreover, mS denotes the
mass of Sun, aS the averaged semi-major axis of Sun, θ = ωSt, ωS is the frequency of Sun
in this system of reference, TS = 2π

ωS
is its period and finally, r2PS = (x− aS cos θ)2 + (y −

aS sin θ)2 + z2. Notice that this Hamiltonian can be splitted in two parts:

HBCP = HRTBP (X) +HS(θ,X).

The time dependent part contains two terms, the Coriolis effect due to the rotating frame
of coordinates and Sun’s gravitational potential. The Taylor expansion of the potential
starts with

1

aS

(
1 +

x cos θ − y sin θ

aS

)
.

Therefore, the Hamiltonian, if we truncate the Sun’s potential at linear order is written
as

H<2
BCP = HRTBP −

mS

aS
.

So, the Coriolis term and the truncated Sun’s potential cancel out and the dynamics is the
one of the RTBP. This is to say that the contribution due to Sun’s potential starts at order
two, that is, the BCP is a periodic time dependent perturbation with sizeO(mS

a3S
) ≈ 0.0056.

Anyhow, it is large enough to produce remarkable changes on the dynamics, especially
near the triangular points. In Figures 3 (left) and 6 (left) we display continuations from
the RTBP to the BCP. The vertical axis in these plots represent an artificial parameter
ε which multiplies the mass of Sun. Therefore, when ε = 0 the model corresponds to
the RTBP and, when ε = 1 the model corresponds to the BCP. We shall comment these
figures in detail in the next sections.

4.1 Dynamical equivalents of the Triangular points

First of all let us mention that, due to a symmetry, the dynamics near L4 is the same as
the dynamics near L5 (in fact, this symmetry maps orbits in the region y > 0 to orbits
in the region y < 0). A feature of the BCP to be stressed is that the region around the
geometrically defined triangular points is unstable. The influence of Sun’s potential is
enough to produce a bifurcation in the periodic orbit that replaces L4 (i.e., L5). It is
well known [SGJM95] that each triangular point is replaced by three periodic orbits with
the same period as Sun. One small and unstable (the actual replacement of L4) and two
which are stable. We have named these orbits PO1, PO2 and PO3. See Figure 3 (left) a
continuation diagram from the RTBP to the BCP. The two additional periodic orbits are
produced by an imperfect pitchfork bifurcation (i.e., a pitchfork bifurcation broken due
to a loss of symmetry).
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Figure 3: Left: Continuation of L4 as a periodic orbit with respect to the mass of Sun.
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the BCP. The red curve for the truncated version of the BCP. See text for more details.
Right: Vertical families of 2D tori for the BCP. The horizontal axis is the pz coordinate
and the vertical axis displays the frequency. See text for more details.
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One may ask which is the model that displays the perfect bifurcation and which is the
broken symmetry. To address this question we take a look at the order two of the Taylor
expansion of Sun’s gravitational potential. We have

H2
S(θ, x, y, z) =

1

a3S

(3

2
T (x, y, θ)2 − 1

2
(x2 + y2)

)
.

We have named T (x, y, θ) = −x cos θ+y sin θ. We would like to stress again that H2
S is the

first contributing non-autonomous term in the model due to the cancellation produced
by the Coriolis acceleration. This term is invariant under the symmetry (x, y, x, θ) 7→
(x,−y, x,−θ). The order three of the expansion is given by:

H3
S =

1

aS

((
ρ

aS

)3 5
2
T 3 − 3

2
T

aSρ

)
.

Here ρ2 = x2+y2. The polynomial in T is no longer even. This breaks the symmetry and,
hence, the pitchfork bifurcation. The non-autonomous model that displays the perfect
bifurcation is:

H≤2BCP = HRTBP (X) +H2
S(X, θ).

The perfect (non broken) pitchfork bifurcation in Figure 3 (left, curve in red) shows the
continuation diagram from the RTBP to this simplified version of the BCP. Due to the
symmetry, periodic orbits PO2 and PO3 only differ on the phase on the orbit.

4.2 Phase space of the stroboscopic map near the triangular
points

The three periodic orbits appear as fixed points of the stroboscopic map. We recall that
their linear normal behaviour is of type saddle×centre×centre for PO1 and totally elliptic
for PO2 and PO3. There are several ways to justify that, from the elliptic directions of
each fixed point, there is a family of invariant curves whose frequency tends to the normal
modes of the fixed points [JV97b, JV97a].

Therefore, we have a family of invariant curves for each elliptic direction, that is,
two for PO1 (HF1 in the horizonal plane and V F1 in the vertical direction), three
for PO2 (HF2F1 and HF2F2 are horizontal, and V F2 is vertical) and three for PO3
(HF3F1 and HF3F2 horizontal, and V F3 vertical). The remaining eigendirection of
PO1 is hyperbolic. There exist stable and unstable one-dimensional invariant manifolds
associated to these hyperbolic directions. Initial conditions near the triangular points
shadow the unstable manifold which wonder some time around the periodic orbits PO2
and PO3 and finally abandon the vicinity of the triangular points. These manifolds are
of special interest if one plans to put or take out objects near L4 and L5. The stable
and unstable manifolds related to PO1 can be computed up to high order directly on the
stroboscopic map (Section 3.1 and [FGJ+18]). In Figure 5 we observe a projection of the
phase portrait of the map. The three points displayed with crosses correspond to PO1
(in the middle), PO2 and PO3. It is displayed as well, semianalytical approximations of
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Figure 4: Stroboscopic map near the triangular points: Horizontal axis x. Vertical axis
y. See text for more details.

the stable and unstable invariant manifolds. We have used an approximation of order 64.
The width curve are the pieces given by the parameterization. The thin curve correspond
to some iterations of these pieces. It can be observed, also, some invariant curves growing
from PO2 and PO3. These invariant curves are totally elliptic near the fixed points.

4.3 Regions of effective stability near the triangular points

As we have observed, the triangular points are replaced by three periodic orbits, one
of them unstable. This is the reason why the BCP is an interesting model [GJMS91c].
Indeed, the unstable manifold of the triangular periodic orbit takes initial conditions
away from the vicinity of the triangular points. However, we can pursue on the seek for
regions of (effective) stability out of the plane of motion of the primaries. The mechanism
that suggest the existence of regions of effective stability is the stickiness of normally
elliptic low dimensional invariant tori. See [JV98, JV97a]. As we discussed before, there
are families of invariant tori emanating from the periodic orbits PO2 and PO3. These
families are elliptic close enough to the fixed points. This results on two small regions
of effective stability in the plane of motion of the primaries related to the totally elliptic
orbits.

We put our attention on the vertical families (one for each orbit) of invariant tori. In
Figure 3, Right, we display how these families vary when they grow out of the plane of
motion of the primaries. We observe that the three families display a broken pitchfork
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symmetry, analogous to the one of the periodic orbits. The linear normal behaviour of the
tori is the same as the periodic orbit near the plane. As a consequence of the pitchfork
bifurcation, at some some distance of the plane, the surviving family is totally elliptic.
Therefore, the tori are sticky and regions of effective stability are to be expected. We label
these families V F1, V F2 and V F3 after the corresponding periodic orbits. The families
V F1 and V F2 are connected, as it happens with PO1 and PO2. On the other hand
V F3 reaches high amplitudes in the (z, pz) plane. It is known that, skipping resonances,
the three families have the same stability as the corresponding periodic orbits. Therefore
the tori of V F1 have hyperbolic directions while the ones of V F2 are normally elliptic
(except for small intervals of instability produced by resonances involving internal and
normal frequencies). Recall that both families are connected and the change of stability
takes place at a turning point. The tori of V F3 are normally elliptic up to very high
values (again, except for resonances).

Normally elliptic lower dimensional tori induce regions of effective stability. Numerical
estimations of the shape and the size of these regions show that, in the case of V F2, the
regions are small and narrow while in the case of V F3 large regions exist for sufficiently
high values of the vertical amplitude. In Figure 5 we show two stability regions out of the
horizontal plane. These regions seem to persist in the real model for time spans of 1000
years [Jor00, HXSW15]. The effect of Solar Radiation Pressure on the effective stability
regions of the BCP is discussed in [JCFJ15].
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Figure 5: Stability regions with initial conditions on the tori of the V F3 identified by
pz = 0.5 and pz = 0.8. Horizontal axis: α. Vertical axis r. See text for more details.

Let us explain how Figure 5 is obtained. Each of the vertical family of invariant tori
can be identified by the value of the coordinate pz when z = 0 and pz > 0. Denote
by a(pz) ∈ R6 the coordinates of the point that identifies a torus. We have to select a
set of initial conditions near a(pz) and integrate them for a long time span. Let us be
more precise on how to select the initial conditions. We use a two dimensional grid, the
coordinates z, px, py and pz will be fixed by the corresponding values of a(pz). To adapt
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to the shape of the regions, we use a polar-like grid, centered at Earth:{
xij = ri cosαj + µ, ri = 1 + ihr,

yij = ri sinαj, αj = 2πjhα,

where hr and hα are used to control the density of the grid. The computation goes as
follows. Take a point of the grid and integrate the vector field 15000 Moon revolutions.
At each integration step, we test if there is a collision with Earth or Moon. If there is
a collision, or the coordinate y becomes negative, we stop the integration (Recall that
we are interested in the points that remain close to L4). We have used hr = 0.001 and
hα = 0.0002. The difference on the sizes of these small quantities is aimed to produce a
nearly squared grid.

4.4 A weakness of the BCP

The translunar point is one of the most interesting locations at the Earth-Moon system.
The reason is that L2 seems suitable to observe the far side at Moon. Taking into account
that, a natural criticism to the BCP is that it does not have a dynamical replacement of
L2. In Figure 6 (left) it is displayed a continuation of L2 as a periodic orbit from the RTBP
to the BCP. The periodic orbits are identified by their coordinates as fixed points of the
Stroboscopic map. These orbits have been computed by means of the parallel shooting
method. Again, the vertical axis is an additional parameter, ε, multiplying the mass of
Sun. The point L2 is the middle crossing of the characteristic curve with the homotopy
level corresponding to the RTBP, at the bottom. The other two points of the RTBP
correspond to the same 1 : 2 resonant planar Lyapunov orbit but with different initial
times. We observe that the continuation of L2 reaches a turning point and it never reaches
the homotopy level of the BCP. The result is that the translunar dynamical structure is
lost in the BCP. This suggest that a more complex model needs to be used to analyze
the natural behaviour near the translunar point. The resonant Lyapunov orbit can be
continued to the BCP. The result is a large orbit that remains away from the translunar
point, see Figure 6 (right).

5 The Quasi-Bicircular Problem and the collinear points

The quasi-bicircular solution of the Earth-Moon-Sun system is planar i.e. the three bodies
move in the same plane. After the quasi-bicircular solution is computed one can write the
equations of motion of the test particle, prescribing the quasi-bicircular solution as motion
for the primaries. It is usual to compute the quasi-bicircular solution in the Jacobi frame,
however, if one has the purpose of describing the dynamics in the Earth-Moon vicinity,
it is suitable to use the frame of coordinates corresponding to the Earth-Moon RTBP.
To do so, one has to perform three different transformations. First, one has to use a
translation to move the origin from the global barycentre to Earth’s and Moon’s centre of
masses. Second, one has to use a rotating (synodic) frame to keep Earth and Moon fixed
on the horizontal axis. Third, the unit of length is scaled so the distance between Earth
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Figure 6: Left: Continuation of L2 as a periodic orbit with respect to the mass of the
Sun. Horizontal axis: x. Vertical axis: ε. See text for more details. Right: Periodic
orbit near L2 in the BCP. Horizontal axis: x. Vertical axis: y.

and Moon is equal to one. The units of mass and time which are usually selected in the
Earth-Moon RTBP can be imposed already in the Jacobi formulation of the Three Body
Problem.

The resulting model is a Hamiltonian system with three and a half degrees of freedom.
The Hamiltonian function can be written as

H =
1

2
α1(p

2
x+p

2
y+p

2
z)+α2(pxx+pyy+pzz)+α3(pxy−pyx)+α4x+α5y−α6

(
1− µ
rpe

+
µ

rpm
+
mS

rps

)
,

(4)
where, r2pe = (x−µ)2+y2+z2, r2pm = (x−µ+1)2+y2+z2, r2ps = (x−α7)

2+(y−α8)
2+z2,

and for i = 1, . . . , 8 αi : T 7→ R are periodic functions. That is,

αi(θ) = ai0 +
∑
k≥0

aik cos kθ +
∑
k≥0

bik sin kθ. (5)

Here, θ = ωSt and ωS is the frequency of Sun. Moreover, αi is odd for i = 1, 3, 4, 6, 7
and even for i = 2, 5, 8. Obviously one can only have a numerical approximation of these
functions. In this case, we take advantage on the computations done in [And98] and
take the same values for the Fourier coefficients of the periodic functions αi’s. To end,
and taking into account the properties of the functions αi’s, it is easy to see that the
Hamiltonian function (4) has the symmetry (θ, x, y, z, ẋ, ẏ, ż) 7→ (−θ, x,−y, z,−ẋ, ẏ,−ż),
ẋ = px + y, ẏ = py − x, ż = pz.

The meaning of these periodic functions is the following:

1. (α7, α8, 0) is the position of Sun in the plane of motion of the primaries.

2. α1, α2, α3 and α6 capture the fact that the distance between Earth and Moon is
not constant.

3. α4 and α5 take into account the Coriolis effect due to the rotating frame of reference.
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Figure 7: Dynamical equivalents of the collinear points. Left: L1. Centre: L2. Right:
L3. Horizontal axis: x. Vertical axis: y. See text for more details.

5.1 Dynamical equivalents of the collinear points

In this section we give some words about the minimal periodic orbits that replace the
collinear points in the QBCP. In Figure 7 we display the dynamical equivalents, from
left to right, of L1, L2 and L3. We observe that the orbits replacing L1 and L2 are
small, their maximal distance to the corresponding equilibrium point is of order O(10−6).
As the original equilibrium points, the linear normal behaviour of these orbits is of type
saddle×centre×centre. In Table 1 we display the eigenvalues of each orbit. We notice that
the unstable direction of L1 (of order 108) and the unstable direction of L2 (of order 106)
are large and this implies huge propagation of error near these orbits. On the other hand,
the dynamical equivalent of L3 has a very weak unstable direction, at least compared to
the other two.

L1 (real) (imag) L2 (real) (imag) L3 (real) (imag)

1 460182151.57 0 2397196.84 0 3.370855 0

2 −0.987151 0.159784 0.995818 0.0913562 0.863840 −0.503764

3 −0.963639 0.267205 0.917527 0.3976716 0.841148 0.5408042

Table 1: Eigenvalues of the three dynamical equivalents of L1, L2 and L3. We only put
three for each orbit. The rest are given by their inverses due to the symplectic character
of the stroboscopic map.
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5.2 Resonant orbits of low order

As the QBCP is a TS-periodic system, the simplest invariant objects are TS-periodic
orbits. We already have mentioned that the equilibrium points are replaced by these
periodic orbits of minimal period. Periodic orbits of the RTBP whose frequency is resonant
with the one of Sun also persist as TS-periodic orbits in the QBCP. The Lyapunov and
Halo families of periodic orbits related to the equilibrium points L1 and L2, are a source
for these kind of resonant orbits. In contrast with the families related with L3, the
families of the two first libration points are nourished with low order resonant orbits.
A relation of low order resonant periodic orbits of the RTBP can be found in [And98].
In [GM01] the authors show the ranges for the admissible periods for each family. The
families related to L3 are of relatively large period and there are not many periodic orbits
whose frequency are in low order rational relation with the frequency of Sun. There is,
however, a 1 : 1 resonant periodic orbit near the end of the vertical family. This orbit
is enormous in size and cannot be considered in the vicinity of L3. In Table 2 details of
the continuations of low order resonant orbits from the RTBP to the QBCP are given:
The first column corresponds to resonant periodic orbits of the RTBP. The label in this
first column consist in three numbers that encode each orbit. The first is a zero and
indicates that the orbit belongs to the RTBP (this is intended to distinguish them from
the orbits in the last column corresponding to the QBCP). The second number refers
to the libration point related to each orbit (all of them belong to Lyapunov and Halo
families related to L1 and L2). The third number is just an enumeration. The second
column indicates the order of the resonance. We stress that the influence of Sun is relevant
enough to produce bifurcating orbits in each of the continuations. The third column shows
how many orbits bifurcate from the original ones when they are continued to the QBCP.
Finally the last column contains the labels of the resulting orbits in the QBCP. Table 2
can be found originally in [And98]. We have added the order of the resonance and the
color code to indicate the linear normal behaviour of each orbit. Labels in blue stand for
orbits of type saddle×centre×centre. Labels in green denote linear character of the kind
saddle×saddle×centre. Names in cyan denote totally hyperbolic orbits. The color yellow
denotes totally elliptic orbits. The continuation for the orbits in red do not reach the
homotopy level of the QBCP and, therefore, are not considered.

5.3 High order approximation of the unstable manifolds of the
collinear periodic orbits

This section is devoted to the results of implementing the algorithm explained in Section
3.1 to the dynamical equivalents of the collinear points. Figure 8 shows pieces of the stable
(dashed) and unstable (solid) manifolds related to the three collinear periodic orbits (the
other branches can be obtained by symmetry). From left to right: the one related to
L1, the one related to L2 and the one related to L3. We would like to remark that
these pieces are obtained directly from the evaluation of the approximation (of order 64)
of the manifolds. The error is controlled by checking that the contribution of the last
term of the approximating polynomial is small. It is also checked that all the points
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RTBP RES BIF QBCP
012 1 : 2 2 12, 13
014 1 : 1 4 14, 15, 16, 17
018 1 : 1 4 18, 19, 1A, 1B
01C 1 : 3 2 1C, 1D
01E 1 : 3 2 1E, 1F
022 1 : 2 4 22, 23, 24, 25
026 1 : 6 4 26, 27, 28, 29
02A 1 : 2 4 2A, 2B, 2C, 2D
02E 1 : 3 2 2E, 2F
026 1 : 4 2 2G, 2H

Table 2: Continuation of the low order resonant orbits from the RTBP to the QBCP.
The first column contains the label of the orbits corresponding to the RTBP. The second
column contains the order of the resonance. The third columns contains number of bi-
furcating orbits. The fourth column contains the label of the orbits corresponding to the
QBCP. See [And98] for more details. See text for the color code.

in the pieces verify the invariance equation with hight accuracy. We can observe that
these approximations already give large excursions far away from the collinear points.
Especially in the case of L3, where the piece of the manifold passes very close to the
triangular points. The axes of Figure 8 show the x and y values. These pieces can be
mapped through the stroboscopic map to obtain larger pieces of the manifolds if it is
necessary. The point of giving high order approximations of the manifold is that, just a
fewer number of iterates are necessary. For the computation of the manifold related to
L3, a simple shooting method has been used. Indeed, the instability associated to this
libration orbit is very weak. For the computation of the manifold related to L2, multiple
shooting is required. We have used two sections. For the computation of the manifold
related to L1, the most unstable one, we have used a single shooting strategy but with
an extended precision arithmetic of 128 bits. This last approach makes the program far
slower but very simple to code. In Figure 9 (left) we show the resonant orbit 2G of Table
2. We display also (right) the stable (dashed) and unstable (manifolds).

6 Conclusions

We have presented two alternatives to the RTBP for the study of the motion of a test
particle in the Earth-Moon system. Both models, the BCP and the QBCP, depend
periodically on the time. We use the so-called stroboscopic map to study the minimal
periodic orbits of the systems and the invariant manifolds related to them.

The BCP is as useful model for the study of the triangular points. The simplicity of
the vectorfield is a strong point, especially in problems related to effective stability where
massive integrations are mandatory. We have also stressed its weakness: it is not suitable
to understand the dynamics around the collinear points. The BCP is useless to describe
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Figure 8: Approximation of order 64 of the stable (dashed) unstable (solid) manifolds of
L1, L2 and L3. Horizontal axis x. Vertical y.

the vicinity of the translunar point.
We have used the parametrization method to obtain high order approximations of the

unstable manifolds related to the minimal periodic orbits that replace the collinear points
in the QBCP. This is helpful to design long excursions between the two primaries and the
collinear points. The main novelty is that we have computed the manifolds directly on
the stroboscopic map. The QBCP is a complicated model with a numerically computed
vectorfield. This makes it a bad candidate (in front of the BCP) to be the model used to
face the problems involving massive simulations related to the triangular points.

We would like to stress that the BCP should be used to face problems related to the
triangular points. Especially if this problems involve large time integrations to seek for
regions of practical stability. The QBCP should be used when dealing with problems
involving the collinear points.

7 Technical details

All the computations appearing in the Figures of this paper, also the ones which appear
in the literature, have been performed by the authors. The integrations for the RTBP,
the BCP and the QBCP have used a Taylor method with variable order and stepsize. The
demanded accuracy for the standard double precision has been 10−16. The computations
in multiple accuracy have been done using the library mpfr. The LAPACK library has
also been used for some computations related to linear algebra. The rest of the programs
have been written by the authors in C and C++ languages from the scratch. Table 3
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contains the values of the parametres used for the computations.

µ aS mS ωS

0.012150581623433623 388.81114302335106 328900.54999999906 0.92519598551829646

Table 3: Values of the parametres used in this paper.
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α1 α2 α3 α4

k ak k ak k bk k ak
0 1.001841608924835e+00 0 0.e0 0 9.999999999999983e-01 0 -9.755242327484885e-04
1 5.767517726198399e-04 1 -2.644376028499938e-04 1 5.634125997553694e-04 1 2.154764362707107e+00
2 1.438777025507630e-02 2 -1.328686903400173e-02 2 1.889687440172882e-02 2 3.657484468968697e-04
3 -2.630362974972015e-06 3 9.386093208089751e-06 3 -9.911758802567132e-06 3 3.295673376166588e-03
4 1.176278356118933e-04 4 -1.218509057517414e-04 4 1.568708136031134e-04 4 3.301031400812427e-07
5 -8.068581391005552e-08 5 1.522127598557008e-07 5 -1.707762576173484e-07 5 1.278840687376320e-05
6 9.843249766501285e-07 6 -1.072102664277996e-06 6 1.319613679707437e-06 6 -2.623797952127926e-09
7 -1.172054394418197e-09 7 1.889371261374048e-09 7 -2.136550041985646e-09 7 6.533805514561511e-08
8 8.311905970879588e-09 8 -9.324985038927486e-09 8 1.117168916673893e-08 8 -3.891720707783511e-11
9 -1.408584238695393e-11 9 2.114490981280258e-11 9 -2.387253631031108e-11 9 3.812275838944432e-10

10 7.050713786466840e-11 10 -8.071111743144353e-11 10 9.490879622095902e-11 10 -3.907906049834876e-13
11 -1.494259634910463e-13 11 2.218118050420168e-13 11 -2.462732581558427e-13 11 2.407471187576443e-12
12 5.982418979451232e-13 12 -7.036155161882012e-13 12 8.101067708009743e-13

α5 α6 α7 α8

k bk k ak k ak k bk
0 0.e0 0 1.000907457708158e+00 0 -6.314069568006227e-02 0 0.e0
1 -2.192570751040067e+00 1 2.870921750053134e-04 1 3.885638623098048e+02 1 -3.897437256237654e+02
2 -3.337210485472868e-04 2 7.187177998612875e-03 2 1.736910203345558e-01 2 -1.734279166322518e-01
3 -3.295001430200974e-03 3 -2.351183147213254e-06 3 3.382908071669699e+00 3 -3.385696486642120e+00
4 -3.100635053052634e-07 4 4.585758971122060e-05 4 1.574837565380491e-04 4 -1.555886632413398e-04
5 -1.277777336854128e-05 5 -3.848683620107037e-08 5 2.936360489004438e-02 5 -2.937582671967532e-02
6 2.652806405498111e-09 6 3.270677504935666e-07 6 -1.224434550116014e-05 6 1.225851213107933e-05
7 -6.528479245085066e-08 7 -4.406966481041876e-10 7 2.538935434262443e-04 7 -2.539596887692642e-04
8 3.891720707783511e-11 8 2.452600662570259e-09 8 -2.278929040007574e-07 8 2.280029220202363e-07
9 -3.812275838944432e-10 9 -4.542938800673444e-12 9 2.190432706181655e-06 9 -2.190834624429040e-06

10 3.907906049834876e-13 10 1.892348855112616e-11 10 -3.033311961234353e-09 10 3.036109035120856e-09
11 -2.407471187576443e-12 11 -4.178420101480123e-14 11 1.886971545290216e-08 11 -1.887457647579322e-08

12 1.480048946961583e-13 12 -3.432375106898453e-11 12 3.432375106898453e-11
13 1.611513703999101e-10 13 -1.631723641506449e-10

Table 4: Coefficients of the functions αj, j = 1, . . . , 8, in (5). Due to the symmetries of
the model, each αj only contains either sin or cos terms, so we only list either the ak or
bk coefficients.

has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 734557.

References

[And98] M.A. Andreu. The quasi-bicircular problem. PhD thesis, U. Barcelona, 1998.

[And02] M.A. Andreu. Dynamics in the center manifold around L2 in the quasi-
bicircular problem. Celestial Mech., 84(2):105–133, 2002.

[Arn64] V.I. Arnold. Instability of dynamical systems with several degrees of free-
dom. Soviet Math. Dokl., 5:581–585, 1964.
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[CFdlL05] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for
invariant manifolds III: Overview and applications. Journal of Differential
Equations, 218(2):444 – 515, 2005.
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[GLMS01] G. Gómez, J. Llibre, R. Mart́ınez, and C. Simó. Dynamics and mission de-
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