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Abstract

This paper deals with direct transfers from the Earth to Halo orbits related to
the translunar point. The gravitational influence of the Sun as a fourth body is taken
under consideration by means of the Bicircular Problem (BCP), which is a periodic time
dependent perturbation of the Restricted Three Body Problem (RTBP) that includes
the direct effect of the Sun on the spacecraft. In this model, the Halo family is quasi-
periodic. Here we show how the effect of the Sun bends the stable manifolds of the
quasi-periodic Halo orbits in a way that it allows for direct transfers.
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1 Introduction

The translunar point, the L2 point in the Earth-Moon Restricted Three Body Problem
(RTBP) has interested the researchers from the late sixties, [SCAA68]. From those first
years, authors writing about the translunar point have in their sight the possibility of a
permanent station in the lunar far side. From all the families that drive the dynamics
nearby the translunar point, a particular one has always stood out as the favorite, the Halo
family (see [Far70]). The main reason is the geometry of the orbits integrating the family
as they are always visible from the Earth. This property allows permanent communication
with a spacecraft following a Halo orbit. A remarkable part of the efforts during these
decades has been devoted to the problem of constructing a path from the Earth to a Halo
orbit. That is, building a transfer orbit for the spacecraft to depart from the Earth and
inject onto the Halo orbit.

Mathematically speaking, the Halo family is a family of periodic orbits of the RTBP
that appears from a pitchfork bifurcation as the horizontal and vertical Lyapunov family
merge (see [JM99]). As periodic orbits, the trajectories in the Halo family have a linear
behaviour that encodes their stability property. In particular, the members of the standard
Halo family have linear behaviour of type centre×saddle. This implies that each of these
orbits have one stable and one unstable manifold that are tangent to the stable and unstable
eigenspaces of the linearized system around the orbit. These stable and unstable manifolds
provide connections with different places of the phase space and one can take advantage on
this fact to build transfer orbits.

The use of invariant manifolds to transport (and control) a spacecraft to a target orbit
was first analyzed in [GLMS85] and it has been extensively studied in the context of the
RTBP for both the Sun-Earth system, and the Earth-Moon system. For the Halos around
the L1 point of the Sun-Earth system the invariant manifolds are specially interesting be-
cause the stable manifold passes close to the Earth. In this case, a spacecraft in a parking
orbit can be inserted in the stable manifold of a target Halo orbit with only one maneuver.
Once the spacecraft is in the manifold, it coasts to the orbit associated to that manifold with
no need to perform extra maneuvers1. In the Earth-Moon RTBP, unfortunately, this is not
the case (see [BZTM04, Ale10]). Different approaches have been developed for the Earth-
Moon system, and these in general require two or more maneuvers. These approaches, along
with representative references, are outlined in Section 2.3.

The Earth-Moon RTBP, however, does not take into account the gravitational pull of the
Sun. It has been shown, in a number of papers, that solar gravitation plays an important role
in the Earth-Moon environment and that its inclusion as a perturbation of the Earth-Moon
RTBP leads to significant changes in the phase space. See [SGJM95, CJ00, Jor00] for results
regarding specifically the triangular points, [JJCR20] for the case of L1 and [JN20, JN21]
for the case of L3. Moreover, the case of the translunar point has been tackled in [RJJC21].

The main goal of this paper is to study this effect in the transfer from a parking orbit
around the Earth to the Halo family related to the translunar point. A natural question
arising from this context is whether the change on the phase space of the Earth-Moon RTBP
produced by the Sun is sufficient to bring the invariant manifolds of the Halo orbits close
to the Earth, allowing for one-maneuver transfers. During this paper we will see that the

1This statement is valid from a theoretical point of view, where maneuver execution is perfect and
instantaneous, the position and velocity of the spacecraft at the maneuver time is know with no error, and
the spacecraft is considered massless. In practice, however, none of these assumptions are true, and usually
it is required to perform small correction maneuvers.
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answer is positive.
There are, of course, several ways to model the influence of Sun’s gravity in the Earth-

Moon system. In this study, we focus on the Bicircular Problem (BCP), [Hua60, CRR64].
It is, broadly speaking, a pair of coupled RTBP (details on the construction of the model
are provided in Section 2.1). The BCP can be written as a periodic time perturbation of
the RTBP. Notice that this means that the dimension of the phase space is increased by
one. Also the invariant objects increase their dimension: the Lagrangian points no longer
exist as equilibria but they are replaced by periodic orbits with the same period as the
perturbation (in fact, in some cases the perturbation produced by the Sun is large enough
to produce bifurcations). Although the mathematics behind are much more involved, an
analogous situation holds for periodic orbits: they become, generically, two dimensional
quasi-periodic orbits, gaining the frequency of the perturbation [JV97]. In particular, the
translunar Halo family is integrated by quasi-periodic orbits in the BCP. Therefore, in this
paper, we use invariant manifolds attached to quasi-periodic orbits to build the transfers.

The paper is structured as follows: Section 2 is devoted to preliminaries. In there, we
introduce specific details on the BCP and provide a description of relevant aspects of the
Halo family in this model. The preliminaries end with Section 2.3, in which we provide a
summary of different approaches to compute transfers. In Section 3 we construct transfer
orbits from a parking orbits about the Earth to Quasi-Periodic Halo orbits in the BCP.
Finally, Section 4 we provide our conclusions and future work.

2 Preliminaries

In this section we review some previous results and techniques that have been used in the
paper. In particular, we focus on a description of the model and the basic ideas for the
transfer.

2.1 The Sun-Earth-Moon Bicircular model

A key aspect of the present work is to account for the gravitational pull of the Sun upon
the spacecraft. The effect of the Sun is twofold: First there is the direct effect, i.e., the
pull that the spacecraft receives directly from the Sun. Second, the indirect effect, i.e., the
different attraction on the spacecraft coming from the different motion of the Earth and the
Moon due to the effect of the Sun on the Earth and the Moon. To get a clear insight of the
dynamical aspects of the problem one should select the simplest models among the ones that
contain the desired phenomena. As we will see in this case the considered model include the
effect of the Sun in a quite simple way, that is, as a periodic time dependent perturbations
of the Restricted Three Body Problem (RTBP). When perturbing periodically the RTBP,
the complexity of the phase space increases, that is, the dimension of the invariant objects
is increased, generically, by one. This is a well-known fact that, moreover, is developed
with more detail in Section 2.2. As we will be dealing with a periodic time dependent
perturbation of the RTBP, we devote some words on recalling some basic properties of the
latter.

The RTBP is a model that describes the motion of a massless particle under the grav-
itational influence of two masses (the primaries). In the simplest of its versions the two
primaries revolve along circular orbits about its common barycentre. It is standard to use
specific units so that the distance between the primaries is equal to one, the sum of their
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Table 1: Values of the parameters of the BCP.

µ = 0.012150581623433 ms = 328900.55

ωs = 0.925195985518289 as = 388.811143023351121

masses is equal to one and their period of revolution is equal to 2π. With these units the uni-
versal gravitational constant is also equal to one. Moreover, it is also standard to consider a
rotational frame of reference (the synodic frame), fixing the two primaries in the horizontal
axis. With these conditions, the motion of an infinitessimal particle under the gravitational
attraction of the primaries is described by a three degrees of freedom Hamiltonian system,

HRTBP =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ
rPE

+
µ

rPM
, (1)

where r2PE = (x− µ)2 + y2 + z2, r2PM = (x− µ+ 1)2 + y2 + z2 and ẋ = px + y, ẏ = py − x,
ż = pz. The constant µ is called the mass parameter and represents the mass of the smallest
primary. In the case of the Earth-Moon system, the smallest primary is the Moon and has
a mass µ ≈ 0.012.

The BCP is among the simplest versions of the Restricted Four Body Problem. It is
assumed that two of the primaries (Earth and Moon) revolve around its common center
of mass and, at the same time, the barycentre of these two bodies and a third primary
(Sun) revolve also along circular orbits around the barycentre of the third primary and the
barycentre of the first two. The BCP is the study of the motion of an infinitesimal particle
under the attraction of these three masses. Notice that the motion of these masses is not
coherent, that is, the trajectories prescribed for the primaries do not follow Newton’s laws.
While this could be seen as an inconvenient, the BCP has been used to describe successfully
relevant aspects of the dynamics of the real Earth-Moon system, see [SGJM95, Jor00, JN20].

As a dynamical system, the BCP is a three and a half degrees of freedom Hamiltonian
system or, equivalently, it has three degrees of freedom and a periodic time dependence.
When written in the standard RTBP frame and units, the dynamics of the BCP is governed
by the following Hamiltonian function,

H =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ
rPE

− µ

rPM
− mS

a2S
(y sinϑ− x cosϑ)− mS

rPS
. (2)

Here, the quantities µ, rPE and rPM are the ones appearing in (1). The constant mS

denotes the mass the of Sun, aS is the averaged semi-major axis of the Sun, ϑ = ωSt,
ωS is the frequency of the Sun in the RTBP synodic frame, TS = 2π

ωS
is its period and

r2PS = (x − aS cosϑ)2 + (y − aS sinϑ)2 + z2. The value of these constants are given in
Table 1.

Notice that the Hamiltonian function of the BCP (2) is the Hamiltonian of the RTBP
(1) plus two extra terms, the first corresponds to the Coriolis term due to the motion of the
Earth-Moon barycentre and the second one due to the gravitational effect of the Sun.

2.2 The neighborhood of the translunar point

In the context of the RTBP, it is a very well known fact that the translunar point L2 is an
equilibrium point of type saddle×centre×centre. For each elliptic direction, there exist a
family of periodic orbits such that:
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• It is tangent to the elliptic eigensubspace at L2,

• near L2, it can be locally parameterized by the frequency,

• as the members of the family get close to the equilibrium point, their frequencies tend
to the corresponding normal mode (the frequency given by the complex eigenvalue)
of the equilibrium point.

These families are known as the Lyapunov families of periodic orbits. As the linear be-
haviour of the translunar point is saddle×centre×centre, there are two Lyapunov families
that are born at the point, one contained in the (x, y) plane and named the horizontal Lya-
punov family, and one born in the (z, pz) direction and called the vertical Lyapunov family.
Both families are, near L2 of center×saddle type. The planar family, at some distance of
L2 undergoes a pitchfork bifurcation that produces a new family, the so called Halo orbits
(this description remains true for the collinear points L1 and L3).

When a time-dependent periodic perturbation (such as the influence of Sun’s gravity
introduced in the BCP) is considered, the translunar point is replaced by a periodic orbit
with the same period as the perturbation (this is a consequence of the Implicit Function
Theorem and these kind of orbits are known as dynamical equivalents). When the pertur-
bation is not small, this picture can change. In the BCP, the influence of Sun’s gravity is
strong enough to produce bifurcations and, in particular, merge the dynamical equivalent
of L2 and a resonant Lyapunov orbit with half the period of the Sun. In particular, there
is no direct replacement of L2 in the BCP.

The effect that the periodic perturbation has on the periodic orbits that populate the
neighborhood of the translunar point is analogous to the one on the point itself but much
more complicated. Periodic orbits, generically, gain a frequency and become invariant tori
with two frequencies (the one of the periodic orbit plus the one of the perturbation). More
generally, invariant tori of any dimension gain the frequency of the Sun, see [JV97]. The
last statement is not true whenever one of the frequencies of the unperturbed tori are a
rational multiple of the frequency of the Sun.

In [RJJC21], the authors study the effect of Sun’s gravity on the neighborhood of the
translunar point of the BCP. In particular, the most relevant families (horizontal and vertical
Lyapunov families and the Halo one) are considered. Notice that these classical families of
periodic orbits of the RTBP become, in the BCP, families of two dimensional invariant tori.
Special attention is given to the Halo family. In particular, two different two-dimensional
families of Halo-like invariant tori, labeled as Type I and Type II, are shown to exist in the
abovementioned work. Type I family is the family that replaces the classic Halo family of
the RBTP in the BCP. Type II family comes from a 1:2 resonant Quasi-Halo orbit: that
is, a family of two dimensional tori which is locally tangent to the elliptic eigenspace of the
main Halo family that has ωS/2 as one of its inner frequencies. Representative examples of
a member of each of these families can be found in Figure 1.

2.3 Approaches to compute transfers

In this section we review some of the main techniques to transfer a spacecraft from a parking
orbit to Halo or Lissajous orbits around L1/L2. This is not meant to be an exhaustive review
of the literature, but just a short overview of the main approaches. These techniques have
been mainly divided in two groups, with a main focus on transfers from a parking orbit
around the Earth to a Halo orbit around L2.

2 These are summarized in the following

2A similar argument applies to L1, but for the sake of clarity, we focus our attention to L2.
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Figure 1: Examples of members of the Type I and Type II families. Left: Projection of a
member of Type I family onto the plane y-z. Right: Projection of a member of Type II
Family onto the plane y-z.

paragraphs:

• Direct Transfer: This approach is a purely ballistic transfer, and it requires two ma-
neuvers: one to leave the parking orbit, and the second one to insert the spacecraft
in the target orbit. This approach requires in general an expensive maneuver to leave
the Earth (approximately 3300-3500 m/s), and a less expensive maneuver but still
relatively big to insert into the Halo orbit (500-700 m/s). The main benefit of this
approach is that the time of travel spans between 4 and 13 days. Previous works that
document this approach can be found in [Rau05, LBKRLD14].

• Invariant manifolds: This approach uses the invariant manifold of the target Halo
orbit to provide a low-cost transfer. The use of invariant manifolds has been proved
to be useful in the Sun-Earth system, where the invariant manifolds get very close
to the sphere of influence of the Earth. Hence, to insert a spacecraft from a parking
orbit to the target orbit is relatively cheap. However, in the Earth-Moon system the
invariant manifolds of the Halo orbits do not pass close to the Earth. In order to try
to take advantage of the natural dynamics of the system provided by the invariant
manifolds, in [BZTM04] the authors develop an algorithm for the solution of the
Lambert’s three-body problem that leaves the transfer time free and tries to minimize
the cost of the insertion maneuver in the invariant manifold. This is, they target a
point in the invariant manifold that requires minimum fuel expenditure, and not its
associated Halo orbit. Once in the invariant manifold, the spacecraft coast to the
target Halo orbit. The total cost of these transfers from a LEO orbit varies between
3100-3200 m/s with a transfer time between 40 and 255 days. Another implementation
of the use of invariant manifolds can be found in [Ale10, LZ10]. In [Ale10] the author
computes transfers from a LEO orbit to a square Lissajous orbit around L1 or L2.
The ∆v costs documented in [Ale10] are are also in the 3000-4000 m/s range. It is
worth noting that in [Ale10] the transfers from a LEO to a Lissajous around L2 are
not direct: first, the goal is to go to an orbit around L1, and then using an heteroclinic
connection to go to a target orbit around L2. In [LZ10] the authors study indirect
transfers to the L1 libration point with a three-maneuver approach with a total cost
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of 3439.8m/s and a travel time of 22.9 days.

The interested reader in transfers from the Earth to the Moon is referred to [PA14],
where the authors survey thousands of low-energy transfers form the Earth to different
orbits around the Moon.

Note that all of the above approaches are either limited to the Earth-Moon RTBP, or
consider the decoupled Sun-Earth RTBP and Earth-Moon RTBP. Thus, the contribution of
the Sun’s gravitational effect either is completely neglected, or it is considered only partially
during specific parts of the transfer. As mentioned in the previous section, the approach
taken here accounts directly for the effect of the Sun’s gravity as modeled in the BCP model.
The numerical experiments and the results are discussed in Section 3.

2.4 The stroboscopic map

As it has been mentioned before, the BCP is a model that depends periodically on time. To
cope with this kind of models it is standard to use the so-called stroboscopic map PTS which
is defined, for an initial condition of the phase space at time t = 0, as the flow evaluated at
time TS . Periodic orbits of period TS appear as fixed points of the stroboscopic map. In a
similar way, the two dimensional invariant tori whose one of their frequencies is ωS , appear
as invariant curves. In the following sections, we focus on several members of Type I and
Type II families of quasi-periodic orbits that are treated as invariant curves.

3 Transfers in the BCP

In this section we study the transfer from parking orbits around the Earth to three Type I
Halo orbits, and three Type II Halo orbits in the BCP. The only parameters fixed in the
parking orbit are the semi-major axis and the eccentricity. The semi-major axis is set to be
equal to the radius of the Earth, RE = 6400 km, plus 200 km. We define R = RE+200. The
eccentricity is set equal to zero. That is, we consider the family of circular orbits around
the Earth traveling at approximately 200 km above the Earth’s surface. This family can
be interpreted as a sphere with center in the center of the Earth, and radius equal to the
radius of the Earth plus 200 km. From now on, we will refer to this sphere as the LEO
sphere.

Note that for practical applications we would also be concerned about the inclination of
the parking orbit. Ideally, the inclination should be close to the latitude of the launching
facility. For this analysis, this has been intentionally omitted given that the main focus is to
study whether or not in the BCP the invariant manifold of the Halo-like orbits considered
here intersect with the LEO sphere.

The idea is the following: given a target Halo-like orbit (Type I or Type II), a suitable
mesh of initial conditions on the stable manifold are integrated backard in time. When one
of these trajectories intersects the LEO sphere, then it is considered that there is a valid
transfer. In that event, the ∆v between the parking orbit in the LEO sphere corresponding
to the intersection point, and the corresponding point in the unstable manifold is computed.
This gives an initial measure of the total ∆v transfer cost. The total transfer time ∆t is
also recorded, as well as longitude and latitude of the intersection point in the LEO sphere.
The latitude gives a first approximation of the parking orbit inclination. The computation
of the ∆v and ∆t are given in physical units (km/s and days, respectively).
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3.1 The stable manifold

To get a local representation of the potential transfers we use a parametrization of the
linear approximation of the stable manifold close to the invariant curve: if θ ∈ [0, 2π)
parametrizes the invariant curve and h is a small real value, the linear approximation to
the stable manifold is

ps0(h, θ) = x(θ) + hψs(θ), (3)

where x is a parameterization of the invariant curve, ψs is the eigenfunction associated to
the stable eigenvalue λs (see [RJJC21] for the computation of ψs and λs). The value h is
selected such that |h| < h0/|λs|, for a fixed value h0 ∈ R+ such that h0/|λs| is small (for
example, on the order of 10−6 or 10−7), so that the error of this approximation is O(h20).
Positive and negative values of h correspond to each of the two sides of the manifold. From
one on, we will refer as the positive (resp. negative) side of the manifold as the side generated
with a px > 0 for ps0(0), and a positive (resp. negative) value of h. As reference, the positive
side is in the direction towards the Moon from the invariant curve.

Roughly speaking, a fundamental set of a manifold is a set of initial conditions on the
manifold such that the orbits starting there generate, forward and backward in time, the
full manifold. In this case and for the stroboscopic map, the fundamental sets are cylinders.
As λs > 0, given a positive real number h0 we can define a fundamental cylinder for the
linear approximation (3) as the set of points corresponding to [h0, h0/λs] × [0, 2π). If h0
is small enough, this is a good approximation to a fundamental cylinder of the manifold.
Note that, in this case, the circle at the bottom {h0} × [0, 2π) is mapped to the top circle
of the cylinder {h0/λs} × [0, 2π) by the inverse of the stroboscopic map.

Once we have defined the fundamental cylinder, we create a grid of N × N points on
[0, 2π)× [h0, h0/λs]. The value of h0 has been selected such that

max
i

(
‖P−1

T (x(θi))− x(θi − ρ)− h0
λs
ψs(θi − ρ)‖

)
< δ, θi =

2π · i
N

, i = 0, ..., N − 1,

where P−1
Ts

is the inverse of the stroboscopic map at time Ts, Ts is the period of the Sun in
the normalized frame, and ρ is the rotation number of the associated invariant curve. For
this analysis we used N = 2000 and δ = 10−6.

Then, we integrate this initial data backward in time to span stable manifold, and
check whether or not these trajectories intersect with the LEO sphere. Moreover, we check
collisions with the Moon, and for trajectories that leave the sphere of influence of the Earth-
Moon system. For the latter, we stop the integration if the distance to the Earth-Moon
barycentre exceed at any point during the integration 6 units of distance in the normalized
frame. This is equivalent to approximately 2.3 millions of kilometers. Of course, we also
need to set a maximum integration time. For this analysis, the maximum integration
time was set to 6Ts. This corresponds to approximately 191.5 days of physical time. We
acknowledge that this number is somehow arbitrary, but it is justified in the sense that are
looking for reasonable transfer times.

As a summary, we have defined a fundamental cylinder on the linear approximation
of the stable manifold that is very close to the invariant curve, we have chosen a mesh of
points on this fundamental cylinder and we have integrated them backward in time looking
for one of the following four events:

1. The stable manifold intersects the LEO sphere.

2. The stable manifold collides with the Moon.
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Figure 2: Invariant curves IC11, IC12, IC13 of the famliy of Type I orbits in the BCP.

3. The stable manifold leaves the sphere of influence of the Earth-Moon system; this is,
the distance of the computed state to the Earth-Moon barycentre, exceeds 6 times
the distance from the Earth to the Moon.

4. After 6Ts units of time in the normalized frame, none of the above occur (these will
be referred as wandering trajectories).

As it has been mentioned before, for this analysis we have chosen three Type I and three
Type II quasi-periodic Halo orbits around L2 of the BCP and run the process described in
the previous paragraphs. The projections of the invariant curves of the three Type I orbits
are shown in Figure 2. These are referred as IC11 (green), IC12 (blue), and IC13 (red).
The three corresponding of the Type II are in Figure 3. These are labeled as IC21 (green),
IC22 (blue), and IC23 (red). Note that the invariant curves IC21 and IC23 in Figure 3 are
very close to each other. These were intentionally chosen to assess the sensitivity in the
transfers with respect to the distance of target orbits. Tables 2 and 3 contain the rotation
number associated to each of the trajectories selected and the unstable eigenvalues.

Table 2: Type I invariant curves characteristics

Invariant Curve rotation number λ−1
s = λu

IC11 3.239814740891185 1407.242345974658

IC12 1.658983813333736 19619.97458514797

IC13 0.645906459334160 179352.0342756758

The results of the analysis are shown in Figures 4 and 5. The color code is the following:
red corresponds to those trajectories on the unstable manifold that intersect with the LEO
sphere; green denotes trajectories that collide with the Moon; yellow the trajectories that
escape the Earth/Moon sphere of influence; and black the trajectories that do not meet any
of the previous criteria. The horizontal axis corresponds to the angle associated to a point on
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Figure 3: Invariant curves IC21, IC22, IC23 of the famliy of Type II orbits in the BCP.

Table 3: Type II invariant curves characteristics

Invariant Curve rotation number λ−1
s = λu

IC21 3.097097182626015 24082.25237481578

IC22 3.128958892611009 23104.95771489475

IC23 2.085220044971505 93487.30771525634

the invariant curve. The vertical axis corresponds to the signed height of the fundamental
cylinder, where the sign denotes the side of the manifold. As a general comment that
applies to both Figure 4 and Figure 5, notice that all figures are periodic with respect to
the horizontal axis (this is, the left side of the plot matches with the right side). About
the vertical axis note that, by construction, the bottom and top rows are related by the
stroboscopic map at time equal to the period of the Sun, Ts. For the sake of clarity, let’s
consider the positive side of the manifold. The bottom row corresponds to the trajectories
obtained fixing h = min([h0, h0/λs]) = h0, and changing the angle θ ∈ [0, 2π). The top
row corresponds to the trajectories associated to h = max([h0, h0/λs]) = h0/λs, where
λs is the eigenvalue corresponding to the stable component of the hyperbolic part. By
construction, the top row is the image of the bottom row by the stroboscopic map. With
that, it would be expected the top row to be equal to the bottom one plus a shift equal to
the rotation number of the invariant torus under consideration (see, for example, [JN20]).
Looking at Figures 4 and 5 this is clearly not the case. The reason is that we are using a
total integration time equal to 6Ts, and this is relatively short. Using a short integration
time has the following effect: when we integrate backward an initial condition on the stable
manifold at distance h0 from the invariant curve, we check for events that happen in that
period of time (intersection with the LEO sphere, collision with the Moon, escape, or none
of the previous). When we repeat this process for the initial conditions of the top row, we
know that these are the image of the initial conditions of the bottom row. In other words,
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is as if we have already integrated a total of Ts units of time. Hence, the results of the top
row are the same as if we integrated 7Ts units of time the initial conditions of the bottom
row. This may cause that the events we observe are different for the bottom and top rows.
If we were to integrate an infinite (or a large enough) amount of time, we would observe
that shift.

3.2 Transfer trajectories

The first row in Figure 4 contains the results for the invariant curve IC11, the second row for
the invariant curve IC12, and the third one for the invariant curve IC13. The first column
is the negative side of the stable manifold, and the second one the positive side. For both
the positive and negative sides of the manifold, the distance from the invariant curves as
defined in at the beginning of this section (this is, the value h0/λs) is equal to 3 × 10−7

units of distance in the normalized coordinates (or approximately 115 meters) for IC11 and
IC12, and equal to 4 × 10−7 units of distance in the normalized frame (or approximately
150 meters) for IC13.

It is observed that in all cases except of the IC11, positive side case, there are small
regions (colored in red) where the stable manifold intersects the LEO sphere. For the
IC11, positive side case, there are also connections via the stable manifold, but there are
not clearly perceived in the image. In all cases the dominant outcomes are either when
the particle leaves the Earth-Moon sphere of influence (colored in yellow) or it follows a
wandering trajectory for the time-span integrated (colored in black). In all cases there are
also collisions with the Moon (regions colored in green), although in some cases is barely
noticeable. It is in the cases IC12 and IC13, positive side in both cases, where there are
large regions where the stable manifold collides with the Moon (recall that the positive side
of the manifold is the one oriented towards the Moon). It also noted that the closest the
target orbit is to the Moon, the more collisions exist (in this order, for farthest to closest:
IC11, IC12, and IC13).

The scenario for the Type II trajectories is captured in Figure 5. The first row contains
the results for the invariant curve IC21, the second row for the invariant curve IC22, and
the third one for the invariant curve IC23. As for the Type I case, the first column is the
negative side of the stable manifold, and the second one the positive side. The distances
from the invariant curves in this case are 10−6 units of distance in the normalized frame
(or approximately 3.8 km) for IC21, 5× 10−7 units of distance in the normalized frame (or
approximately 190 m) for IC22, and 7 × 10−7 units of distance in the normalized frame
(or approximately 270 m) for IC23. In all cases these values are for both the positive and
negative sides of the manifold.

In this case, there are very few transfers that intersect with the LEO sphere, and these
are barely noticeable in the figures. For the case of the invariant curves IC21, IC22, and
IC23, there are almost no trajectories of the unstable manifold that intersect the LEO
sphere. In the negative side there are small regions where the trajectories collide with
the Moon, while in the positive side there are quantitatively more (again, this is the side
oriented towards the Moon). Most of the trajectories, either leave the Earth-Moon’s sphere
of influence, or wander around during the total time of the integration.
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Figure 4: Fundamental cylinders for Type I orbits. Valid transfers are colored in red,
trajectories where a particle leaves the Earth/Moon system are colored in yellow, collisions
with the Moon are green, and none of the previous cases in black. See text for details.
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Figure 5: Fundamental cylinders for Type II orbits. Valid transfers are colored in red,
trajectories where a particle leaves the Earth/Moon system are colored in yellow, collisions
with the Moon are green, and none of the previous cases in black. See text for details.
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3.3 Transfer costs

For each one of the cases analyzed, the transfers that minimize three different cost functions
have been computed. These three cost functions are, as mentioned before:

• J1(θ, h) = ∆v(θ, h)

• J2(θ, h) = ∆t(θ, h)

• J3(θ, h) =
√

∆v(θ, h)2 + ∆t(θ, h)2

When doing this analysis, it is important to define how the ∆v was computed, and what
is meant by “transfer time” and it was calculated. The total ∆v was computed the same
way as in [Ale10]. This is, if v̂ is velocity of the spacecraft when it intersects with the
LEO sphere, the first step is to convert this vector from conjugated momentum to synodic
velocity. Let us call this velocity v. Note that in theory we should also convert this velocity
from the rotating frame to the inertial frame. However, because this transformation does
no change the module of the vector, we can skip it. With that, the ∆v is computed as
follows,

∆v =

√
‖v‖2 + v2s − 2‖v‖ cos

(
π

2
− β

)
,

where β is the angle between the velocity vector v and the normal to the LEO sphere.
The value vs is the module of the velocity of a circular orbit on the LEO sphere, and it is
computed using the vis-viva equation,

vs =

√
1− µ
R

.

Note that as the LEO sphere is close to the Earth, it is natural to assume a Keplerian
motion for the parking orbit.

The computation of the total transfer time is a matter of convention. Note that, in
theory, if we follow stable manifold, the total time needed to arrive to the invariant curve
is infinite. This is because the dynamics on the stable manifold tends asymptotically to
the invariant curve. However, for practical purposes we define a threshold such that if
the distance to the invariant curve is below it, we consider the transfer completed. This
threshold is (within reason) arbitrary, and here we have chosen a distance equal to D = 100
km as a threshold. The next question is how to estimate time tD at which the particle will
be a distance D to the invariant curve. This is not as straightforward as, let us say, a point
in space where computing the distance is not difficult. The approach we took is to estimate
the time tD is to use the linear flow in a vicinity of the invariant curve. Let us define

λ̄ =
log λs
Ts

This value λ̄ < 0 is the eigenvalue associated to the flow on the stable manifold near the
invariant curve, and it a measure of the rate at which, locally, an initial condition close of
the invariant curve approaches the curve or, if the time goes backwards, the rate at which
an orbit on the manifold departs. The evolution of the distance d to the invariant curve
can be modeled, at first order, by the differential equation ḋ = λ̄d. Then, the time needed
to go between distances h and D is given by

tD =
1

λ̄
log
(D
h

)
.
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Table 4: Transfer cost to Type I Halo orbits

Invariant
Curve

Manifold
Side

Cost
Function

∆v
(km/s)

∆t
(days)

Latitude
(deg)

IC11 + J1 3.2669 142.0661 13.439409

IC11 – J1 3.1641 138.3457 12.037744

IC11 + J2 4.0805 141.6628 -5.295561

IC11 – J2 3.2158 118.6235 1.816246

IC11 + J3 3.5347 141.9145 1.483374

IC11 – J3 3.2158 118.6235 1.816246

IC12 + J1 3.1970 124.5192 -7.529808

IC12 – J1 3.2180 122.3772 8.693360

IC12 + J2 6.4304 113.8526 11.245034

IC12 – J2 4.3185 112.5306 -28.175822

IC12 + J3 6.4304 113.8526 11.245034

IC12 – J3 4.3185 112.5306 -28.175822

IC13 + J1 3.1734 110.3284 -3.869638

IC13 – J1 3.1617 141.6146 -5.502472

IC13 + J2 3.2671 110.3107 -7.639184

IC13 – J2 3.3344 100.2958 7.040290

IC13 + J3 3.1734 110.3284 -3.869638

IC13 – J3 3.3344 100.2958 7.040290

Hence, if T is the total time of integration from the distance h to the invariant curve, and
tD the time to reach a distance equal to D, the total transfer time ∆t is defined as

∆t = T − tD

This is the time reported in the rest of the section with, again, a value of D = 100 km.
The results for each case, for a parking orbit traveling at 200 km above the Earth’s

surface, are summarized in Table 4 for Type I orbits, and in Table 5 for Type II orbits.
The first column of Table 4 and Table 5 states the invariant curve associated to the target
orbit, the second column is the manifold side (positive/negative), the third the cost function
minimized, the fourth and fifth columns the ∆v and the total transfer time ∆t associated
to the cost function, and the last column the latitude of the intersection point in the LEO
sphere.

Looking at the results in Table 4 it is observed that the cheapest transfer in terms of
∆v corresponds to the case {IC13, –, J1} (meaning: IC13 invariant curve, negative side of
the invariant manifold, and J1 cost function) with a total of 3.1617 km/s. This transfer,
however, takes almost 142 days to reach the target orbit. In terms of total transfer time,
the cheapest corresponds to the cases {IC13, –, J2} and {IC13, –, J3} with slightly over 100
days. For this option, the total cost terms of ∆v is 3.3344 km/s, making this transfer very
reasonable. It is a good idea to look at other options that are a trade-off between a cheap
maneuver and a reasonable transfer time. In these category, we have the cases {IC13, +,
J1}, and {IC13, +, J3}, where the total ∆v cost is 3.1634 km/s, and the total travel time
is around 110 days. This provide a saving of around 161 m/s at the expense of an increase
in travel time of approximately 100 days. Another important aspect is the latitude at the
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Table 5: Transfer cost to Type II Halo orbits

Invariant
Curve

Manifold
Side

Cost
Function

∆v
(km/s)

∆t
(days)

Latitude
(deg)

IC21 + J1 3.1841 161.5869 5.645610

IC21 – J1 3.2668 152.9112 -8.222948

IC21 + J2 5.1727 127.4293 -24.409394

IC21 – J2 3.3851 144.9792 -18.574485

IC21 + J3 4.3772 127.8258 -31.131620

IC21 – J3 3.3851 144.9792 -18.574485

IC22 + J1 3.4450 170.1543 -0.049602

IC22 – J1 3.2184 153.3855 5.282887

IC22 + J2 8.9775 132.5925 66.012057

IC22 – J2 3.5173 145.8660 -22.626341

IC22 + J3 5.3619 133.2474 13.593364

IC22 – J3 3.5173 145.8660 -22.626341

IC23 + J1 4.1184 122.0862 -17.195273

IC23 – J1 3.1231 132.0245 9.329800

IC23 + J2 6.0772 121.4934 27.102303

IC23 – J2 4.1081 104.1051 -11.507359

IC23 + J3 3.1744 124.6729 -7.456677

IC23 – J3 4.1081 104.1051 -11.507359

LEO sphere. In all the cases, the latitude are below 7.1 degrees, which is also a reasonable
value.

Table 5 shows some transfers for Type II Halo orbits. In this scenario, the case {IC23, –,
J1} is the cheapest transfer in terms of ∆v with a total of 3.1231 km/s, and a total transfer
time of around 132 days to reach the target orbit. The shortest transfers in this case are
{IC23, –, J2} and {IC23, –, J3}, with a total transfer time of approximately 104 days, but
with a total ∆v cost of more than 4.1 km/s. As the in the case for the Type I case, we
can look for trade-offs. However, after looking at the data, it seems that the option that
minimizes the total ∆v is the best, given the low latitude intersection with the LEO sphere,
and how the total transfer time compares with the other options.

Overall, and as a main takeaway, it can be concluded that there are transfers in the
BCP comparable in total ∆v and transfer time with other techniques such as the Indirect
Transfer, but with the main advantage that only one maneuver is required.

Let us have a closer look at the IC13 case. Figure 6 shows the trajectory followed by
the transfer {IC13, –, J2}. This trajectory corresponds to the stable manifold of the target
orbit IC13; this is, is the trajectory that a spacecraft would follow after departing from the
Earth to the target orbit. It can be seen that the trajectory circles twice the Earth and the
Moon before converging to the target orbit. This phenomena is similar to what is observed
when the equilibrium point around L2 in the RTBP is continued to the BCP, where the
resulting periodic orbit circles twice (geometrically defined) L2 point. This ‘bending’ of the
invariant manifold is due to the direct gravitational effect of the Sun.

Figure 7 shows different zoomed projections of the transference to the target orbit. The
black circle corresponds to the radius of the Moon, and blue circle to the LEO sphere (this
is, the radius of the Earth plus 200 km). It can be seen that for the IC13 orbit there is no
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Figure 6: Trajectory followed by the transfer {IC13, –, J2}.
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Figure 7: Zoom around the target orbit Trajectory followed by the transfer {IC13, –, J2}.

Moon occultation. This is relevant because for communications purposes it is important
that the Earth-Satellite line-of-sight is not blocked by the Moon.

Moreover, and for the sake of completeness, it is interesting to see how the different
parameters computed during the analysis relate to each other. For example, from the data
collected we can see how the ∆v changes as function of the total transfer time. This is shown
in Figure 8a. It can it is observed that there is a concentration of transfer trajectories that
take less than 125 days, and that there are relatively cheap transfers that take a long time.
Also, it can be observed that the total maneuver cost is between 3.1617 km/s (the minimum
computed in this case) and slightly more than 13 km/s. Another interesting plot is total
∆v as function of the latitude at which the transfer intersects with the LEO sphere. Figure
8b displays that information, and shows that the majority of the transfers with less than 4
km/s are concentrated between a latitude of -20deg and 40deg. It also shows that at low
latitudes the range of ∆v is very high, as opposed to high latitudes.

4 Conclusions and further work

In this work we have studied the potential use of invariant manifolds attached to quasi-
periodic Halo orbits to coast from the Earth to a neighborhood of the translunar point. A
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Figure 8: Plots of transfer time against total ∆v (left) and ∆v against latitude in the LEO
Sphere (right).

relevant aspect of our study is the consideration of the Sun’s gravitational pull as well as
the effect of the Earth and the Moon, that is, we have coped the problem with a restricted
four body problem approach.

We have based the study on the use of the BCP model, a non-coherent and simple
model that assumes a bicircular motion for the Sun, the Earth and the Moon. The BCP
can be written as a periodically time dependent perturbation of the classical RTBP. In
this context, the classical Halo orbits gain, generically, the frequency of the perturbation
becoming two-dimensional invariant tori. Following the nomenclature of [RJJC21], we have
labeled these two-dimensional tori as Halo orbits of Type I. On the other hand, the two
dimensional quasi-periodic Halo orbits of the RTBP whose frequency is resonant with the
one of the Sun, remain two-dimensional tori once the perturbation is turned on. Those
orbits are named, also according to [RJJC21], as Halo orbits of Type II.

The strategy has been to compute the stable manifold of several Halo orbits of Type I
and Type II of the BCP noticing that there are some parts of those manifolds that intersect
with the LEO sphere of parking orbits around the Earth. Then, one-maneuver transfers
can be designed where the total cost comes from the insertion into a parking orbit of 200
km above the Earth. We would like to remark that this kind of single maneuver transfers
have never been shown to exist in the RTBP. Therefore, the Sun gravity is an essential
ingredient to model these trajectories. Moreover, in all cases, it has been shown that the
total cost, in terms of ∆v and transfer time, is comparable to other techniques requiring
two or more maneuvers.

Further steps in this research line would require to numerically demonstrate that these
transfers can be refined in high fidelity models.
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[SGJM95] C. Simó, G. Gómez, À. Jorba, and J. Masdemont. The Bicircular model near
the triangular libration points of the RTBP. In A.E. Roy and B.A. Steves,
editors, From Newton to Chaos, pages 343–370, New York, 1995. Plenum
Press.

21


	Introduction
	Preliminaries
	The Sun-Earth-Moon Bicircular model
	The neighborhood of the translunar point
	Approaches to compute transfers
	The stroboscopic map

	Transfers in the BCP
	The stable manifold
	Transfer trajectories
	Transfer costs

	Conclusions and further work
	References

