Multiplication of polynomials

M. Gastineau

IMCCE - Observatoire de Paris - CNRS UMR&028

77, avenue Denfert Rochereau
75014 PARIS
FRANCE

gastineau@imcce.fr

CENTRE NATIONAL ' .
DE LA RECHERCHE I . vatoire
SCIENTIFIQUE

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

http://www.imcce.fr/Equipes/ASD/trip/trip.html
http://www.imcce.fr/Equipes/ASD/trip/trip.html

Different products

=€

“€c

€

Full

e All terms are computed

Truncated in the partial or total degree of the variables

Special truncation to select terms satisfying a rule

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Available methods

€

€

€

Naive method

o cfficient for low degree or for sparse polynomials

Karatsuba’s algorithm

e efficient for intermediate degree and dense polynomials
e reduce the number of multiplications

FFT method

e cfficient only for large degree

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Naive multiplication

“€c

*6c

damam dbmaaz
E a;x’ and B(x g b; "
z—damm 'If—dbmzn

Perform the multiplication of all terms

C(x) = E ez’ with ¢, = g a;b;

if A, B and C, have r, s and ¢ terms
e rs multiplications and rs-¢ additions

e complexity : O(rs)

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for univariate polynomials stored as vector

Algorithm 1: Compute the full product of univariate polynomials A and
B represented with a dense vector

Input: A: polynomial {da,iyn, dGmq., array of coefficients a }
Input: B: polynomial {db,,;n, dbmas, array of coefficients b }
Output: C: polynomial {dc,in, dCmas, array of coefficients ¢ }

dcmin S damin =+ dbmzn

dcmax . damaa: =+ dbmax

C' + create a polynomial with minimal degree dc,,;, and maximal degree
dcmaa:

for k < dc,,,;, to dc,,,, do

clk] «— aldain] X bk — damin]

for 7 «— da,,in + 1 to day,q. do

clk] — clk] + a[j] x blk — j]

end

end
return C

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for

recursive dense vector |/2

Function mulfull (A4,B) Compute the full product of multivariate poly-
nomials A and B represented with a recursive dense vector

Input: A: multivariate polynomial {da,iyn, dGmas, array of coefficients a}
Input: B: multivariate polynomial {db,in, dbymas, array of coefficients b}
Output: C: multivariate polynomial {dc,,in, dCpmaz, array of coefficients

Cy

dcmin — damin + dbmzn
dcmam — damaa: + dbmam

C' + create a polynomial with minimal dc,,;, and maximal dc,,., degree

for k <— dc,,,;, to dc,,,, dO
clk] < mulfull (a|damin],b

| fmafull (alj],blk — j],c
end

end
return C

k — damin))

for j «— da,,in + 1 to da,,.,; do

k)

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for recursive dense vector 2/2

Procedure fmafull(A,B,C') Compute the full fused multiplication-
addition C = C + A x B with A, B and C multivariate polynomials
represented as recursive dense vector

Input: A: multivariate polynomial {da,ipn, d@maz, array of coefficients a}
Input: B: multivariate polynomial {db,,;n, dbimas, array of coefficients b}
Input: C: multivariate polynomial {dc,,in, dCmas, array of coefficients ¢ }
Output: C: multivariate polynomial

newdcmin < Amin + dbmin

newdcmar <— Amaz + Abmaz

if newdc,,in < dcpin 0T dCmar < newdc,,,, then
dCppin <—min(newdcmin, ACmin)
dCmazr —max(newdcmaz, dCmaz)

resize C
end

for k <+ dc,,;n, to dc,q, dO
clk] «+ mulfull (a[damin], blk — damin])
for j «— da,,in + 1 to da,,q, do
| tmatull (alj],blk — k)
end

end

if ¢ contains 0 at its beginning or at its end then
adjust dc,in

adjust dcmaz

resize C
end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for univariate polynomials stored as list

Function mulfull (A,B) Compute the full product of univariate polyno-
mials A and B represented with a list

Input: A: polynomial { list of (coefficients a , degree §,) }
Input: B: polynomial { list of (coefficients b , degree d;) }
Output: C: polynomial { list of (coefficients ¢ , degree d.)}

C' «+ create a empty polynomial

foreach element in A do
D < create a empty polynomial

foreach element in B do
| add to the tail of D an element (a X b, 6, +)
end

C—C+D
end

return C

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for recursive list

Procedure fmafull(A,B,C) Compute the full fused multiplication-
addition C = (C + A x B with A, B and C' multivariate polynomials
represented as recursive list

Input: A: polynomial { list of (coefficients a , degree ¢,) }
Input: B: polynomial { list of (coefficients b , degree d;) }
Input: C: polynomial { list of (coefficients ¢ , degree d.) }
Output: C: polynomial { list of (coefficients ¢ , degree §.) }

iter < head of C

foreach element in A do

// avoid to scan to C when the loop on B is finished
iterb «— iter

foreach element in B do

// find after iterb in C' if the degree 0, + I, is present

while current degree d. referenced by iterb < é, + 6, do
| iterb « next element after iterb

end
if 0. =90, + 0 then
fmafull (a, b, ¢)
if ¢ = 0 then remove the element referenced by iterb
else
| insert an element (mulfull (a, b), d, + &) just before iterb
end
if current element is the first element of B then
| iter «— iterb
end

end

end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for flat vector /2

variables exponents coefficients
X1 X, 1 2 m 1 2 m
1°* term 65" term 64* (m-1)+1 term
2™ term 66" term 64* (m-1)+2 term
64" term 128" term 64*m term

¢ How to sort terms ?

e search and shift operations too slow

* need an intermediate and adjustable storage : BURST TRIE

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Multiplication for flat vector 2/2

¢ Burst tries
e trie node = dense container

e leaf node = sparse container

34+ 524723+ 11y + 92y + 13zyx + 82°%x? + 924

Burst trie Coefficients
0

4

8 3
5
7

i v 5

8
9

N | — | O
b | W | O
N
(€

1
1
6

NN O

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block

dCLmaa; dbmaa:
A= > BHs(a) , B= > BH(b
5:damin 5:dbmzn

vy di vdo d,, ' al'1 al’2 d;@_ ' d1—|—al'1 alg—l—al'2 dn—i—d:%
a; XB XL X x b, XD X2 Xpm = agb, XPTH XY X

with
dcmz’n — damin + dbmzn

dcmam — damax + dbmax

BHs(c) =) BH;(a) x BH,(b)
i+j=4

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block

Function fmafull(BHs(a), BHs (b), BHs1s(c))
Compute the full fused multiplication-addition
BH5+5/(C) — BH5+5/(C) ain BH5(CL) X BH(;/(b)

Input: BHs(a) : homogeneous blocks { degree §, a : array of r coeff. }

Input: BHgs (b) : homogeneous blocks { degree ¢, b : array of s coeff. }
Input: BHs 45 (c) : homog. blocks { degree § + ¢’, ¢ : array of t coeff. }
Output: BHj,s(c) : homog. blocks { degree § + ¢’, ¢ : array of ¢ coeff.}

for : — 1 to r do
for j — 1 to s do

| +— get location of the term in BHgs. 4/ (c)

BHj . (c)[l] — BHj. g ()[l] + BHs(a)i] x BHy (b)[j
end

end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block using functions

Function fmafull(BHs(a), BHs (b), BHsys(c))

Compute the full fused multiplication-addition

BHs.5(c) = BHsys/(c) + BHs(a) x BHg (b) using functions to compute
location

Input: BHs(a) : homogeneous blocks { degree 9, a : array of r coeff. }

Input: BHs (b) : homogeneous blocks { degree ¢’, b : array of s coeff.s }
Input: BHs,5(c) : homog. blocks { degree é + ¢’, ¢ : array of t coeff. }
Output: BHs.s5(c) : homog. blocks { degree § + d’, ¢ : array of ¢ coeff.}

for i+ 1 to r do
expoa <+ get array of exponents from the location 7 in BHj

for j — 1 to s do
expob «— get array of exponents from the location j in BHj

expoc < expoa + expob

[< get location of the term with exponents expoc in BHg. s/
BHs.5(c)|l] «— BHsys(c)|l] + BHs(a)li]| x BHgs (b)[J]

end

end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block using addressing tables

¢ Construction of the addressing table for the product of blocks in 3
variables with exponent tables of degree 1 and 2.

Texpy + T'exps = T'exps
0O 0 3
0O 1 2
0 0 2 0 2 1
0 1 1 0 3 0
8 (1) é 0 2 0 1 0 2
T 0 0 1 0 1 1 1 1
1 1 0 1 2 0
2 0 O 2 0 1
2 1 0
3 0 0
Taddrl,g

™ Taddrg,l =t Tadd’l’j’g

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Execution time to build the tables of exponents

O
b 4

time (s)

build the tables of exponents for homogeneous blocks in 10 variables up to the degree 20

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

2

6 8 10 12
number of terms (in Millions)

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Execution time to build the addressing tables

time (s)

O
b 4

10

product of two homogeneous blocks in 5 variables up to the total degree 40

[
initialization
after initialization B
20+2Q
20+18
20+18§
20+17% 1
20+16
20+1
20+14 n
20+1
0+12
[| | |
20 40 60 80 100 120

muliplication operations (in Millions)

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Overhead to load the addressing tables from disk

execution time overhead (%)

30

25

20

15

10

20

22

28 30 32 34 36 38 40

total degree of the addressing table

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous blocks

BH(X,Y,Z)
BH | BH || BH_ ||BH,|[BH,
S
3 5 0 0 0
11 9 0 0
0 0 0 0
0 0 0
0 0 0
0 13 0
0 0
0 0
0 0
0 8
0
0
0
0
9

P(z,y,2) =345z +72° + 11y + 9yz + 13zyz + 8x°22 + 92*

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Compacted homogeneous blocks

BHC(X,Y,Z)
BHC | BHC | |BHC | BHC_ BHC,

W <

51 9 2 13 6 8 10

11 2 9 15

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block using addressing tables

Function fmafull(BHs(a), BHs (b), Taddrss, BHsis(c))
Compute the full fused multiplication-addition
BHs.5(c) = BHsys/(c) + BHs(a) x BHs/ (b) using the addressing table

Input: BHs(a) : homogeneous blocks { degree ¢, a : array of r coeff. }

Input: BHgs (b) : homogeneous blocks { degree ¢§’, b : array of s coeff. }

Input: BHs,45(c) : homog. blocks { degree 6 + ¢’, ¢ : array of ¢ coeff. }

Input: Taddrs s : addressing table of degree 9, ¢’

Output: BHs.s(c) : homog. blocks { degree § 4+ ¢’, ¢ : array of ¢
coefficients }

for 1 <— 1 to r do
for j «— 1 to s do

| — Taddrs s |,]

BHyy5(€)[l] — BHyy5(€)[l] + BHs(a)[i] x BHy (b)]]
end

end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block using addressing tables

Function fmafull(BHs(a), BHs (b), Taddrss, BHsis(c))
Compute the full fused multiplication-addition
BHs.5(c) = BHsys/(c) + BHs(a) x BHs/ (b) using the addressing table

Input: BHs(a) : homogeneous blocks { degree ¢, a : array of r coeff. }

Input: BHgs (b) : homogeneous blocks { degree ¢§’, b : array of s coeff. }

Input: BHs,45(c) : homog. blocks { degree 6 + ¢’, ¢ : array of t coeff. }

Input: Taddrs s : addressing table of degree 9, ¢’

Output: BHs.s(c) : homog. blocks { degree § 4+ ¢’, ¢ : array of ¢
coefficients }

for i — 1 to r do
for j «— 1 to s do
| «— Taddrs s;|BHCs(a).index|i], BHCy (b).index|j]]
BH;y5(c)[l] — BHsy5(c)[l] + BHs(a)[i] x BHz ()]
end

end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Homogeneous block using addressing tables

Function fmafull(BHs(a), BHs (b), Taddrss, BHsis(c))
Compute the full fused multiplication-addition
BHs.5(c) = BHsys/(c) + BHs(a) x BHs/ (b) using the addressing table

Input: BHs(a) : homogeneous blocks { degree ¢, a : array of r coeff. }

Input: BHgs (b) : homogeneous blocks { degree ¢§’, b : array of s coeff. }

Input: BHs,45(c) : homog. blocks { degree 6 + ¢’, ¢ : array of ¢ coeff. }

Input: Taddrs s : addressing table of degree 9, ¢’

Output: BHs.s(c) : homog. blocks { degree § 4+ ¢’, ¢ : array of ¢
coefficients }

for 1 <— 1 to r do
for j «— 1 to s do

| — Taddrs s |,]

BHyy5(€)[l] — BHyy5(€)[l] + BHs(a)[i] x BHy (b)]]
end

end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Cache blocking technique

BH.(a)

w

T
~
£

BH. (b)

YYYYYVYVYVYVVVY
BH. (b)

YYYY VYYVYY VYVYYVY

YYYY VYYVYY VYVYYVY

normal flow flow with cache blocking

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Cache blocking technique

Input: BHs(a) : homogeneous blocks { degree d, a : array of r coeff. }
Input: BHs (b) : homogeneous blocks { degree §’, b : array of s coeff. }
Input: Taddrs s : addressing table of degree 4, ¢’

Input: BHss(c) : homog. blocks { degree § + &', ¢ :
Input: chunksize : chunk size { arrays of two integers}
Output: BHs, 45 (c) : homog. blocks { degree § +d', ¢ :

1 iteri <« r/chunksize[l] /* number of chunks for the loop i */ /* if r not divisible by chunksize[l]
2 iterj < s/chunksize[2] /* number of chunks for the loop j */ */
3 for fC’L - .O tooizem:t_ 1' dol q 22 for i < iteri x chunksize[l] to r do
4 or ¢j < 0 to iterj — 1 do -
5 for bi — 1 to chunksize[l] do zz forlj:j}agzri (SE it
6 for bj < 1 to chunksize[2] do Y
7 1 «— ct X itert + bi 25 BHss (C) Uks BH5+.5/(C) i+
8 j cj x iterj + bj Bl 1) < By (@)
9 | — Taddrs,s i, j] 26 S16
10 BH5_|_5/ (C) [l] — BH5+5/(C) [l] S BHg(a)[i] X BHg/(b) []] 27 end
11 end
12 end
13 end
/* if s not divisible by chunksize[2] */
14 for bi — 1 to chunksize[l] do
15 for j < iterj x chunksize[2] to s do
16 1« ci X itert + bi
17 | — Taddrs.s i, j]
18 BH5+5/(C)[Z] — BHsy s (C)[l] =F BH(S(Q)[Z] X BH(;/(b)[j]
19 end
20 end
21 end

array of ¢ coeff. }

array of t coeff.}

Function fmafull(BHs(a), BHs (b), Taddrs s, chunksize, BHsi s (c))
Compute the full fused multiplication-addition using the addressing table

and cache blocking technique

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmark of the cache blocking technique

¢ Factor of the reduction of the execution time for the product of two
homogeneous blocks in 8 variables of degree 7

G5 processor Core2 duo processor
1000 — 1.1 1000 — 1.1
900 900
L1 1.05 -4 1.05
800 800
1 1
700 700
0.95 0.95
600 600
500 0.9 500 0.9
400 400
0.85 0.85
300 300
0.8 0.8
200 200
0.75 0.75
100 100
|
0 L l I l L L L L l 0.7 0] L l] l 1 L L 1 0.7

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmark of the cache blocking technique

¢ Factor of the reduction of the execution time of the product of two
homogeneous blocks in 8 variables of degree 9

double precision quadruple precision

1000 — 1.1 1000 — 1.1

900 900
- 1.05 -—4 1.05

800 800

1 1

700 700
0.95 0.95

600 600
500 0.9 500 0.9

400 400
0.85 0.85

300 300
0.8 0.8

200 200
0.75 0.75

100 100
0 l l 1 1 1 1 | | l 0.7 0 07

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmarks

sx(s+1)withs=(14+z+y+z+t+u)"

CAS representation time (s)
Ginac 1.3.2 tree 4137
Maple 10 DAG 2899.70
Singular 3.0.2 list 144.27
Maxima 5.9.2 recursive list 443.95
Mathematica 5.2 | tree 766.65
TRIP 0.99 recursive vector 13.50
TRIP 0.99 recursive list 12.85
TRIP 0.99 flat vector 28.10
TRIP 0.99 homogeneous blocks (with initialization) 5.44

(after initialization) 0.57

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Effect of the sparsity of the polynomials

time (s)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

*€c

s X s with s containing some terms of (1 + x1 + x9 + 23 + x4 + x5)°

reé:ursive list
recursive vector
flat vector
homogeneous bloc
compacted homogeneous block

500

1000

1500 2000 2500 3000
number of terms

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

full product VxV with different representations

The serie V has 3052 terms and the result has 227453 terms

€

VX, X, XYY, X, X0,Y V) = 3 XBX Py by x X0y yrerliartha)

di +do+ds+dy+ds+ds+dr+dg =7

CAS representation time (s)
Maple 10 DAG 345.08
Mathematica 5.2 | tree 149.63
TRIP 0.99 recursive vector 2.91
TRIP 0.99 recursive list 2.32
TRIP 0.99 flat vector 1.97
TRIP 0.99 homogeneous blocks (with initialization) | 2468.10

(after initialization) | 2403.45
TRIP 0.99 compacted homogeneous blocks (with initialization) 17.07

(after initialization) 15.11
TRIP 0.99 d’alembert blocks (with initialization) 22.55

(after initialization) 8.55
TRIP 0.99 compacted d’alembert blocks (with initialization) 11.01

(after initialization) 1.25

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

full product VxV for different degrees

time (s)

300

250

200

150

100

50

recursive Ivector
recursive list
flat vector

BH

BHC

BHDAL

BHDALC

8 9 10 11 12

degree

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Karatsuba's algorithm

¢ Idea : one multiplication could be avoided for polynomial of degree 1
Let A and B polynomials

A(X)=a9p+ a1 X and B(X) =bg + 01 X
The naive multiplication C' = AB is

C(X) = agbg + (a0b1 + albo)Xl + a1b1X2
But the coefficient of X! could be written as

aobr + a1bg = (ap + a1)(bo + b1) — apby — a1b;

we need to perform 3 multiplications and 4 additions
instead of 4 multiplications and 1 addition.

€

could be applied recursively to polynomials of degree 2k-1

€c

€c

complexity O(n!-?)

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Karatsuba's algorithm

Algorithm 11: Compute the full product of two polynomials A and B using the
Karatsuba’s multiplication algorithm

Input: A : polynomial of degree at most n — 1 with n = 2* for k € N
Input: B : polynomial of degree at most n — 1
Output: C : polynomial

if n =1 then return C — AB
C, — AQBO) by a recursive call
Cy — A1) BA) by a recursive call
C3 — A0 4 A(Q)

Cy — BO) 1 B(1)

C5 «— (C3C4 by a recursive call
06 — C5 — 01 — CQ

C «— O +CeX™2 4+ Oy X7

return C

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Truncated product

€c

€

Univariate polynomials
(ag+ a1 X + ... + @, X"+ O(X™)) Q(bg + b1 X + ... + b, X"+ O(X™))

(co+ 1 X + ...+, X"+ 0O(X™))

Multivariate polynomials

* keep the term ;X X52.. X1 @b, X|" Xp®... X0

if dy+di+do+ds+...+d,+d, <T

 1if truncation 1s performed only on some variables,
truncated variables must be ordered

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Truncated product on polynomials stored as recursive list

Function fmatruncated(A,B,C, T) Compute the truncated fused multiplication-addition
C = (C+ Ax B with A, B and C multivariate polynomials represented as recursive list

Input: A: polynomial { list of (coefficients a , degree d,) }
Input: B: polynomial { list of (coefficients b , degree &) }
Input: C: polynomial { list of (coefficients ¢ , degree d.)}
Input: T degree of the truncation

Output: C: polynomial { list of (coefficients ¢ , degree d.)}

if variable of A is truncated then

-

2 iter < head of C
foreach element in A such that 6, < T do
/* avoid to scan to C when the loop on B is finished x/
iterb < iter
foreach celement in B such that 6, + 0, < T do
/* find after iterb in C' if the degree §, + J, is present */
6 while current degree 6. referenced by iterb < 6, + dp do
7 ‘ iterb <+ next element after iterd
8 end
9 if 6. = 0, + 0p then
10 fmatruncated (a,b,c,T — 6, + 0p)
11 if ¢ = 0 then remove the element referenced by iterb
12 else
13 ‘ insert an element (multruncated (a,b, T — 04+ p), da + Op) just before iterb
14 end
15 if current element is the first element of B then
16 ‘ iter « iterb
17 end
18 end
19 end
20 else
21 | fmafull (A,B,C)
22 end

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Truncated product on homogeneous blocks

€

=€

Let 4 =S"BH,() , B=Y BH0b)

Truncated product on the total degree

T
C=AQ)B=> BH;s(c) with BH;(c ZBH) x BHy_,,(b)

* use the full product of 2 homogeneous blocks

e use less addressing tables than for the full product

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Truncated product - benchmarks

600

500

400

300

200

100

recursive velctor
recursive list
flat vector

BH

BHC

BHDAL
BHDALC

12 14 16 18 20

degree

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Special truncated product in degree

“€c

=€

“€c

Perform the product of two Poisson series
but we only want to keep terms which have specific values
for ki and ko

e.g., 91 X S2 =5 we want only terms such that #1 =0and k2 =0

S = Z ainng?..X,g” expz(klAJ“k?)‘,)

very easy for the recursive representation if the series are
correctly ordered.

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Special truncated product on magnitude

d’ d! d . .
§ o XPXP X @b X1 X% Xa" is kept if laibj| > €

¢ brut-force method

Algorithm 1: Compute the truncated product of the series A and B in the amplitude of
their coefficients

Input: A: serie Y a;x" ordered by decreasing amplitude
Input: B: serie Y_ b;z* ordered by decreasing amplitude
Input: €p: thresold > 0

Output: C: series C' = AB with all coefficients greater than ¢

C' + create an empty polynomial
foreach coefficient a; such that |a;bg| > €y do
foreach coefficient b; such that |b;| > ey /|a;| do
‘ C—C+ aibja:'“rj
end
end
return C

N/

¢ order the series on the magnitude of the coefficient ?

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Special truncated product on magnitude

Let a variable €, and a small parameter €, such that €,” = ¢q with p € N.
Each coefficient a; of the serie A(x) could be written as

- log |a; a;
0 = alzie® with k = | 22191} and o = 2
v 1 / i k

Alle,x) = Z (Z a;-:cj)ek

A(aj) — A/(€67 [E)

The truncated product A(x) ® B(x) on the amplitude of the coefficient is transformed to a
truncated product A’ (e, x) @ B’ (e, x) on the variable e.
The degree of truncation is p.

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Special truncated product in amplitude

source code

s1=(1+0.05%x) " 3;

s2=(1+40.04%xx)"4;

/* introduce the variable eps in sl and s2 x/
sle=sereps(sl,eps, 0.1);

s2e=sereps(s2,eps, 0.1);

/% define the truncature on amplitude to (0.1)"2 x/
tr=({eps, 2});

usetronc (tr);

/xperform the product x*/

sde=slexs2e;

/*xremove the variable eps from s3e x/
s3=invsereps(s3e,eps,0.1);

Execution of the previous source code by trip

s1(x) =1 + 0.15%x + 0.0075*x**2 + 0.000125%x**3

s2(x) =1 + 0.16*%x + 0.0096*x**2 + 0.000256*x**3 + 2.56E-06*x**4

sle(x,eps) = 1 + 0.15%x + 0.75*xx**2%eps**2 + 0.125*x**3*keps**3

s2e(x,eps) = 1 + 0.16*x + 0.96*x**2%xeps**2 + 0.256%x**3*keps**3 + 0.256*x**4d*xeps**5

tr = ({ eps, 2 })

s3e(x,eps) = 1 + 0.31%x + 0.024*x**2 + 1.71*x**2%eps**2 + 0.264*x**3*keps**2
s3(x) =1 + 0.31%x + 0.0411*x**x2 + 0.00264*x**3

Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

