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What is splitting?

Given the initial value problem

x ′ = f (x), x0 = x(0) ∈ RD (1)

with f : RD −→ RD and solution ϕt (x0), suppose that

f =
m∑

i=1

f [i], f [i] : RD −→ RD

such that

x ′ = f [i](x), x0 = x(0) ∈ RD, i = 1, . . . ,m (2)

can be integrated exactly, with solutions x(h) = ϕ
[i]
h (x0) at t = h.

Then
χh = ϕ

[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ
[1]
h (3)

verifies χh(x0) = ϕh(x0) +O(h2). First order approximation
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What is splitting?

Three steps in splitting:
1 choosing the set of functions f [i] such that f =

∑
i f [i]

2 solving either exactly or approximately each equation
x ′ = f [i](x)

3 combining these solutions to construct an approximation for
x ′ = f (x)

Remark: equations x ′ = f [i](x) should be simpler to
integrate than the original system.
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Some advantages of splitting methods

Simple to implement.
They are, in general, explicit.
Their storage requirements are quite modest.
They preserve structural properties of the exact solution:
symplecticity, volume preservation, time-symmetry and
conservation of first integrals

Splitting methods constitute an important class of geometric
numerical integrators
Aim of geometric numerical integration: reproduce the
qualitative features of the solution of the differential equation
being discretised, in particular its geometric properties.
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More on geometric integration

Properties of the system are built into the numerical
method.
This gives the method an improved qualitative behaviour,
but also allows for a significantly more accurate long-time
integration than with general-purpose methods.
Important aspect: theoretical explanation of the
relationship between preservation of the geometric
properties and the observed favourable error propagation
in long-time integration (backward error analysis).
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Example 1: symplectic Euler and leapfrog

Hamiltonian H(q,p) = T (p) + V (q), q,p ∈ Rd .
Equations of motion: q′ = Tp(p), p′ = −Vq(q)

Euler method:

qn+1 = qn + hTp(pn)
pn+1 = pn − hVq(qn).

(4)

H is the sum of two Hamiltonians, the first one depending
only on p and the second only on q with equations

q′ = Tp(p)
p′ = 0

and
q′ = 0
p′ = −Vq(q)

(5)
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Example 1: symplectic Euler and leapfrog

Solution:

ϕ
[T ]
t :

q(t) = q0 + t Tp(p0)
p(t) = p0

(6)

ϕ
[V ]
t :

q(t) = q0
p(t) = p0 − t Vq(q0)

Composing the t = h flows gives the scheme

χh ≡ ϕ
[T ]
h ◦ ϕ

[V ]
h :

pn+1 = pn − h Vq(qn)
qn+1 = qn + h Tp(pn+1).

(7)

χh is a symplectic integrator, since it is the composition of
flows of two Hamiltonians: symplectic Euler method
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Example 1: symplectic Euler and leapfrog

By composing in the opposite order, ϕ[V ]
h ◦ ϕ[T ]

h , another
first order symplectic Euler scheme:

χ∗h ≡ ϕ
[V ]
h ◦ ϕ[T ]

h :
qn+1 = qn + h Tp(pn)
pn+1 = pn − h Vq(qn+1).

(8)

(8) is the adjoint of χh.
Another possibility: ‘symmetric’ version

S [2]
h ≡ ϕ

[V ]
h/2 ◦ ϕ

[T ]
h ◦ ϕ

[V ]
h/2, (9)

Strang splitting, leapfrog or Störmer–Verlet method

Observe that S [2]
h = χh/2 ◦ χ∗h/2 and it is also symplectic

and second order.



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Backward error analysis

Example 2: Simple harmonic oscillator

H(q,p) = 1
2(p2 + q2), where now q,p ∈ R.

Equations:

x ′ ≡
(

q′

p′

)
=
[( 0 1

0 0

)
︸ ︷︷ ︸

A

+

(
0 0
−1 0

)
︸ ︷︷ ︸

B

]( q
p

)
= (A+B) x .

Euler scheme:(
qn+1
pn+1

)
=

(
1 h
−h 1

) (
qn
pn

)
,

Symplectic Euler method:(
qn+1
pn+1

)
=

(
1 h
−h 1− h2

) (
qn
pn

)
= ehBehA

(
qn
pn

)
.
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Example 2: Simple harmonic oscillator

Both render first order approximations to the exact solution
x(t) = eh(A+B)x0, but there are important differences
Symplectic Euler is area preserving and

1
2

(p2
n+1 + hpn+1qn+1 + q2

n+1) =
1
2

(p2
n + hpnqn + q2

n).

Symplectic Euler is the exact solution at t = h of the
perturbed Hamiltonian system

H̃(q,p,h) =
2 arcsin(h/2)

h
√

4− h2
(p2 + h p q + q2) (10)

=
1
2

(p2 + q2) + h
(

1
2

p q +
1

12
h(p2 + q2) + · · ·

)
.
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Example 2: Simple harmonic oscillator

How these features manifest in practice?

Initial conditions (q0,p0) = (4,0) and integrate with a time
step h = 0.1 (same computational cost) with Euler and
symplectic Euler
Two experiments:

1 Represent the first 5 numerical approximations
2 Represent the first 100 points in the trajectory
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Example 2: Simple harmonic oscillator
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Euler method (white circles) and the symplectic Euler method
(black circles) with initial condition (q0,p0) = (4,0) and h = 0.1.
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Example 3: The 2-body (Kepler) problem

Hamiltonian

H(q,p) = T (p)+V (q) =
1
2

(p2
1 +p2

2)−1
r
, r =

√
q2

1 + q2
2 .

Initial condition:

q1(0) = 1−e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e
1− e

,

0 ≤ e < 1 is the eccentricity of the orbit.
Total energy H = H0 = −1/2, period of the solution is 2π.
Two experiments with e = 0.6. We compare Euler and
symplectic Euler
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Example 3: The 2-body (Kepler) problem

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

The left panel shows the results for h = 1
100 and the first 3

periods and the right panel shows the results for h = 1
20 and the

first 15 periods.
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Explanation

Several symmetries: H, L = q1p2 − q2p1, etc. integrals of
motion.
Symmetry group: SO(4) (Laplace–Runge–Lenz vector
preserved).
Symplectic Euler method exactly conserves the angular
momentum.
Numerical solution is the exact solution of a slightly
perturbed Kepler problem, SO(4) is no longer the
symmetry group and the trajectories are not closed.

Again, backward error analysis.
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Example 3: The 2-body (Kepler) problem

Next we check how the error in the preservation of energy
and the global error in position propagates with time.
Methods: Euler, symplectic Euler, Heun (RK2), leapfrog
(SI2)
Step size chosen so that all the methods require the same
number of force evaluations
e = 1/5 and integrate for 500 periods
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Example 3: The 2-body (Kepler) problem
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Average error in energy does not grow for symplectic methods
and the error in positions grows only linearly with time, in
contrast with Euler and Heun schemes.
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More examples

Hamiltonian systems
Poisson systems
Lotka–Volterra eqs., ABC-flow, Duffing oscillator
(‘conformal Hamiltonian’)
PDEs discretized in space (Schrödinger eq., Maxwell
equations)

coming from
Celestial Mechanics
Molecular dynamics
Quantum physics
Electromagnetism
Particle accelerators
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Conclusions (until now)

Symplectic Euler and leapfrog provide a good qualitative
description including preservation of invariants and
structures in phase space.
Favourable error propagation in long-time integration
... although the order of accuracy is very low
Examples of geometric numerical integrators

Question: is it possible to build higher order schemes within this
class?
YES!
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Increasing the order by composition
Integrators and series of differential operators

Yoshida–Suzuki technique

From leapfrog S [2] : R2d → R2d (2nd order) one gets a 4th
order integrator S [4] : R2d → R2d as

S [4]
h = S [2]

αh ◦ S
[2]
βh ◦ S

[2]
αh, with α =

1
2− 21/3 , β = 1− 2α.

(11)
In general,

S [2k+2]
h = S [2k ]

αh ◦ S
[2k ]
βh ◦ S

[2k ]
αh , (12)

with
α =

1
2− 21/(2k+1)

, β = 1− 2α, (13)

gives a method S [2k ]
h of order 2k (k ≥ 1).
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Increasing the order by composition
Integrators and series of differential operators

Yoshida–Suzuki technique

This technique can be applied to

x ′ = f (x) with f (x) =
m∑

i=1

f [i](x)

starting from the basic first order integrator

χh = ϕ
[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ
[1]
h , (14)

its adjoint
χ∗h = χ−1

−h = ϕ
[1]
h ◦ ϕ

[2]
h ◦ · · · ◦ ϕ

[m]
h

and finally
S [2]

h = χh/2 ◦ χ∗h/2 (15)
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Increasing the order by composition
Integrators and series of differential operators

More general compositions

More efficient schemes:

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h (16)

with appropriately chosen coefficients (α1, . . . , α2s) ∈ R2s.
When f = f [a] + f [b] and χh = ϕ

[b]
h ◦ ϕ

[a]
h , then (16) can be

rewritten as

ψh = ϕ
[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h, (17)

where b1 = α1 and for j = 1, . . . , s,

aj = α2j−1 + α2j , bj+1 = α2j + α2j+1 (18)

(with α2s+1 = 0). Conversely, any integrator of the form
(17) satisfying

∑s
i=1 ai =

∑s+1
i=1 bi can be expressed as

(16) with χh = ϕ
[b]
h ◦ ϕ

[a]
h .
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Increasing the order by composition
Integrators and series of differential operators

Mathematical formalism

Given the ODE x ′ = f (x) one has the vector field F such
that, for each function g

F [g](x) =
D∑

j=1

fj(x)
∂g
∂xj

(x). (19)

If ϕh is the h-flow of the ODE, then

g(ϕh(x)) = exp(hF )[g](x) = g(x)+
∑
k≥1

hk

k !
F k [g](x), x ∈ RD,

A one-step numerical integrator for a time step h,
ψh : RD −→ RD, is said to be of order r if

ψh = ϕh +O(hr+1) as h→ 0.
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Increasing the order by composition
Integrators and series of differential operators

Mathematical formalism

Analogously, for a basic integrator χh : RD → RD, we
consider the linear differential operators Xn (n ≥ 1) acting
as

Xn[g](x) =
1
n!

dn

dhn g(χh(x))|h=0 ,

so that formally g(χh(x)) = X (h)[g](x), where

X (h) = I +
∑
n≥1

hnXn,
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Increasing the order by composition
Integrators and series of differential operators

Alternatively, one may consider the series of vector fields

Y (h) =
∑
n≥1

hnYn = log(X (h))

that is,

Yn =
n∑

m≥1

(−1)m+1

m

∑
j1+···+jm=n

Xj1 · · ·Xjm ,

so that X (h) = exp(Y (h)), and
g(χh(x)) = exp(Y (h))[g](x). The basic integrator is of
order r if

Y1 = F , Yn = 0 for 2 ≤ n ≤ r .

For χ∗h = χ−1
−h, one gets g(χ∗h(x)) = e−Y (−h)[g](x). Thus, χh

is time-symmetric if and only if Y (h) = hY1 + h3Y3 + · · · ,
and time-symmetric methods are of even order.
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Increasing the order by composition
Integrators and series of differential operators

Series of differential operators

In the general case, for the composition method

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h

one has g(ψh(x)) = Ψ(h)[g](x), where
Ψ(h) = I + hΨ1 + h2Ψ2 + · · · is a series of differential
operators satisfying

Ψ(h) = X (−α1h)−1X (α2h) · · ·X (−α2s−1h)−1X (α2sh),

the series X (h) is associated with χh and X (h)−1 to χ∗h.
Alternatively, we may use

Ψ(h) = e−Y (−hα1) eY (hα2) · · · e−Y (−hα2s−1) eY (hα2s), (20)

to obtain log(Ψ(h)) =
∑

n≥1 hnFn, so that r th order
compositions methods obey the conditions

F1 = F , Fn = 0 for 2 ≤ n ≤ r . (21)
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Increasing the order by composition
Integrators and series of differential operators

For the splitting integrator

ψh = ϕ
[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h,

when f (x) = f [a](x) + f [b](x), the series Ψ(h) of differential
operators associated to the integrator ψh is

Ψ(h) = eb1hF [b]
ea1hF [a] · · · ebshF [b]

eashF [a]
ebs+1hF [b]

(22)

in terms of the Lie derivatives F [a] and F [b]
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Order conditions

Polynomial equations whose solutions provide the
coefficients in

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h

ψh = ϕ
[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h

Several procedures to obtain them (rooted trees, BCH
formula, Lyndon words)
BCH:

Z = log(eX eY ) = X + Y +
∞∑

m=2

Zm, (23)
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Procedure

1 Consider Ψh, expressed as a product of exponentials of
differential operators, i.e.,

Ψ(h) = e−Y (−hα1) eY (hα2) · · · e−Y (−hα2s−1) eY (hα2s),

Ψ(h) = eb1hF [b]
ea1hF [a] · · · ebshF [b]

eashF [a]
ebs+1hF [b]

2 Apply repeatedly the BCH formula to get the series
expansion log(Ψ(h)) =

∑
n≥1 hnFn

3 Impose conditions F1 = F , Fk = 0 for 2 ≤ k ≤ r .
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For the composition ψh = χα2sh ◦χ∗α2s−1h ◦ · · · ◦χα2h ◦χ∗α1h we get

log(Ψ(h)) = hw1Y1 + h2w2Y2 + h3(w3Y3 + w12[Y1,Y2])

+h4(w4Y4 + w13[Y1,Y3] + w112[Y1, [Y1,Y2]]) +O(h5)

wj1···jm are polynomials of degree n = j1 + · · ·+ jm in the
parameters α1, . . . , α2s:

w1 =
2s∑

i=1

αi , w2 =
2s∑

i=1

(−1)iα2
i , w3 =

2s∑
i=1

α3
i . (24)

Order conditions are w1 = 1, and wj1···jm = 0 whenever
2 ≤ j1 + · · ·+ jm ≤ r



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Backward error analysis

For the splitting scheme
ψh = ϕ

[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h one gets

analogous results
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Order conditions for composition methods with
symmetry

Order conditions for ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h
are simplified if

α2s−j+1 = αj , for all j .

Then the method is time-symmetric: ψ∗h = ψh.
Also if

α2j = α2j−1, ∀ j ,

one gets simplifications. In that case the scheme can be
rewritten as

ψh = S [2]
hβs
◦ · · · ◦ S [2]

hβ1
, (25)

where βj = 2α2j and S [2]
h = χh/2 ◦ χ∗h/2.
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Compositions satisfying both assumptions:

ψh = S [2]
hβs
◦ · · · ◦ S [2]

hβ1
,

with
βj = βs−j+1, ∀ j .

Symmetric compositions of symmetric schemes
Number of order conditions

k 1 2 3 4 5 6 7 8 9 10 11
nk 1 1 2 3 6 9 18 30 56 99 186
mk 1 0 1 1 2 2 4 5 8 11 17
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Simplifications also occur for systems with special structure,
e.g.

Separable Hamiltonians H(q,p) = T (p) + V (q)

RKN methods H(q,p) = 1
2pT Mp + V (q)

Generalized Harmonic Oscillator:
H(q,p) = 1

2pT Mp + 1
2qT Nq

Near-integrable systems: x ′ = f [a](x) + εf [b](x), with
|ε| � 1
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Different families

In consequence, different classes of integrators:
Near-integrable systems: x ′ = f [a](x) + εf [b](x). Since
ε� h, one only cancels error terms with small powers of ε
and not all the coefficients at an order hk (Mclachlan,
Laskar-Robutel)
Runge–Kutta–Nyström like methods. Appropriate for
y ′′ = g(y) and H(q,p) = 1

2pT Mp + V (q). In this case
[[[F [b],F [a]],F [b]],F [b]] = 0, which leads to additional
simplifications. Reduced number of evaluations
(Blanes-Moan)
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Near-integrable systems

For x ′ = f [a](x) + εf [b](x), the splitting technique is well
adapted. In this case

Ψ(h) = eb1hεF [b]
ea1hF [a] · · · ebshεF [b]

eashF [a]
ebs+1hεF [b]

.

so that,

log(Ψ(h)) = hvaF [a] + ε(hvbF [b] + h2vabF [ab] +

h3vabaF [aba] + h4vabaaF [abaa])

+ε2(h3vabbF [abb] + h4vabbaF [abba]) +

ε3h4vabbbF [abbb] +O(εh5).

In practical applications ε� h, so that one eliminates error terms
with small powers of ε. If va = 1 = vb, vab = vaba = vabaa = vabb = 0,

log(Ψ(h))− hF = O(εh5 + ε2h4),
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Runge–Kutta–Nyström methods

Equation
y ′′ = g(y), (26)

is equivalent to x ′ = f [a](x) + f [b](x) with

f [a](y , v) = (v ,0), f [b](y , v) = (0,g(y)), (27)

Exact flows are computable:

ϕ
[a]
h (y , v) = (y + hv , v),

ϕ
[b]
h (y , v) = (y , v + hg(y)).

(28)
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In addition, [[[F [b],F [a]],F [b]],F [b]] = F [babb] = 0 identically.
Reduction in the number of order conditions:

k 2 3 4 5 6 7 8 9 10 11
nk 1 2 3 6 9 18 30 56 99 186
lk 1 2 2 4 5 10 14 25 39 69

For H(p,q) = 1
2pT Mp + 1

2qT Nq, only one independent
condition to increase the order from r = 2k − 1 to r = 2k ,
and two to increase the order from r = 2k to r = 2k + 1.
One can also use modified potentials to get more efficient
methods
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Processing

Idea: to enhance an integrator ψh (the kernel) with
πh : RD −→ RD (the post-processor) as

ψ̂h = πh ◦ ψh ◦ π−1
h .

Application of n steps leads to

ψ̂n
h = πh ◦ ψn

h ◦ π
−1
h ,

Advantageous if ψ̂h is more accurate than ψh and the cost
of πh is negligible, since it provides the accuracy of ψ̂h at
the cost of (the least accurate) ψh.
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Example

Störmer–Verlet method

ψh,2 = ϕ
[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ

[a]
h/2 = ϕ

[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ

[a]
h ◦ ϕ

[a]
−h ◦ ϕ

[a]
h/2

= ϕ
[a]
h/2 ◦ ψh,1 ◦ ϕ

[a]
−h/2 = πh ◦ ψh,1 ◦ π−1

h

with πh = ϕ
[a]
h/2.

Applying the first order method ψh,1 = ϕ
[b]
h ◦ ϕ

[a]
h with

processing yields a 2nd order of approximation.
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Processing

Very useful in geometric numerical integration
ψh is of effective order r if a post-processor πh exists for
which ψ̂h is of (conventional) order r , that is,

πh ◦ ψh ◦ π−1
h = ϕh +O(hr+1).

Many of the order conditions can be satisfied by πh, so that
ψh must fulfill a much reduced set of restrictions
If

ψh = ϕ
[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h

the number and complexity of the conditions to be verified
by ai , bi is reduced
Highly efficient processed methods (reduced number of
stages in the kernel)
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A collection of splitting and composition methods

More than 100 different integrators
Symmetric comp. of symmetric methods. Orders 4-10.
Compositions

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h

ψh = ϕ
[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h

Orders 3-6.
RKN splitting integrators. Order 4-8.
RKN splitting m. with modified potentials. Orders 3-8.
Splitting methods for near-integrable systems.
Also with processing
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Preserving properties and BEA

The treatment done for the linear oscillator can be
generalized to any nonlinear ODE.
Recall that each integrator ψh has associated a series
Ψ(h) = I + hΨ1 + h2Ψ2 + · · · , and
log(Ψ(h)) = hF1 + h2F2 + · · · , so that Fk [g] = g′(x)fk (x).
Therefore there exists a modified differential equation
(formal series in powers of h),

x̃ ′ = fh(x̃) ≡ f (x̃) + hf2(x̃) + h2f3(x̃) + · · · (29)

associated to the integrator ψh.
Then, xn = x̃(tn), with tn = nh.
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To study the long-time behaviour of the numerical
integrator we analyze the solutions of (29) viewed as a
small perturbation of x ′ = f (x).
for symmetric methods, the modified differential equation
only contains even powers of h;
for volume-preserving methods applied to a
divergence-free dynamical system, the modified equation
is also divergence-free;
for symplectic methods applied to a Hamiltonian system,
the modified differential equation is (locally) Hamiltonian.
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To study the long-time behaviour of the numerical
integrator we analyze the solutions of (29) viewed as a
small perturbation of x ′ = f (x).
for symmetric methods, the modified differential equation
only contains even powers of h;
for volume-preserving methods applied to a
divergence-free dynamical system, the modified equation
is also divergence-free;
for symplectic methods applied to a Hamiltonian system,
the modified differential equation is (locally) Hamiltonian.
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In the particular case of a symplectic integrator, there exist
smooth functions Hj : R2d −→ R for j = 2,3, . . ., such that
fj(x) = J∇Hj(x)

In consequence, there exists a modified Hamiltonian

H̃(q,p) = H(q,p)+hH2(q,p)+h2H3(q,p)+h3H4(q,p)+ · · ·

such that

q′ = ∇pH̃(q,p), p′ = −∇qH̃(q,p).

If the method is order r , say, then H̃ = H + hr Hr+1 + · · · .
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Remarks

The series in (29) does not converge in general.
One has to give bounds on fj(x) so as to determine an
optimal truncation index and estimate the difference
xn − x̃(h).
Rigourous proof that a symplectic method of order r with
constant h applied to H verifies that H(xn) = H(x0) +O(hr )
for exponentially long time intervals (Nekhorosev like
results).
The modified differential equation of a numerical scheme
depends explicitly on h. Then, a different modified
equation each time the step size h is changed.
Poor long time behavior observed in practice when a
symplectic scheme is implemented directly with a standard
variable step-size strategy.



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Backward error analysis

Some numerical examples

System: perturbed Kepler problem with Hamiltonian

H =
1
2

(p2
1 + p2

2)− 1
r
− ε

2r3

(
1− α3q2

1

r2

)
, (30)

(Dynamics of a satellite in the gravitational field produced
by an oblate planet)
Different families of methods can be tested and compared.
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H = T (p) + V (q). We can use symmetric compositions

ψh = S [2]
hβs
◦ · · · ◦ S [2]

hβ1
,

with S [2]
h the Störmer–Verlet method.

Also schemes

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h

ψh = ϕ
[b]
bs+1h ◦ ϕ

[a]
ash ◦ ϕ

[b]
bsh ◦ · · · ◦ ϕ

[b]
b2h ◦ ϕ

[a]
a1h ◦ ϕ

[b]
b1h

T (p) is quadratic in momenta⇒ RKN methods.
Finally,

H = H0 + εHI ,

where H0 corresponds to the Kepler problem, which is
exactly solvable⇒ methods for near-integrable systems.
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Schrödinger equation

Numerical solution of the time-dependent Schrödinger eq.:

i
∂

∂t
Ψ(x , t) =

(
− 1

2m
∇2 + V (x , t)

)
Ψ(x , t) (31)

One-dimensional problem x ∈ [x0, xN ]
(ψ(x0, t) = ψ(xN , t) = 0
Space discretization of ψ(x , t): [x0, xN ] is split in N parts of
length ∆x = (xN − x0)/N and u = (u0, . . . ,uN−1)T ∈ CN is
formed, with un = ψ(xn, t)
One ends up with a linear problem

i
d
dt

u(t) = H u(t), u(0) = u0 ∈ CN ,
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Morse potential

V (x) = D(1− e−αx )2

m = 1745, D = 0.2251, α = 1.1741
ψ0(x , t) = ρexp(−β(x − x̄)2), β =

√
Dmα2/2, x̄ = −0.1, ρ:

const.
t ∈ [0,20T ], T = 2π/(α

√
2D/m)

x ∈ [−0.8,4.32], split into N = 128 parts



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Backward error analysis

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8

−10

−8

−6

−4

−2

0

LOG(N. FFTs)

LO
G(

ER
R.

 N
OR

M)

SS12

SS34

SS218

RKN116

GM1212

T88

T1212
P382



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Backward error analysis

Moral of the tale

Splitting methods are very flexible: different schemes can
be used as basic integrator
Advice: try to incorporate as much information as possible
about your DE into your scheme
Other issues not treated here: stability, negative
coefficients, optimization strategies, highly oscillatory
problems, variable step size, . . .
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...And, of course,
S. Blanes, F.C., and A. Murua, Splitting and composition
methods in the numerical integration of differential
equations, arXiv:0812.0377 (1 December 2008)


	Introduction with examples
	Splitting and composition methods
	Increasing the order by composition
	Integrators and series of differential operators

	Order conditions of splitting and composition methods
	Backward error analysis

