# Splitting methods in geometric numerical integration of differential equations

#### Fernando Casas Fernando.Casas@mat.uji.es www.gicas.uji.es

Departament de Matemàtiques Universitat Jaume I Castellón, Spain

Barcelona, 3 December 2008

ヘロト ヘアト ヘヨト

#### Based on the paper Splitting and composition methods in the numerical integration of differential equations by

#### Ander Murua Universidad del País Vasco San Sebastián, Spain

Sergio Blanes Universidad Politécnica de Valencia Valencia, Spain

and F. C. Supported by MEC (Spain), project MTM2007-61572

### What is *splitting*?

Given the initial value problem

$$x'=f(x), \qquad x_0=x(0)\in\mathbb{R}^D$$
 (1)

with  $f : \mathbb{R}^D \longrightarrow \mathbb{R}^D$  and solution  $\varphi_t(x_0)$ , suppose that

$$f = \sum_{i=1}^{m} f^{[i]}, \qquad f^{[i]} : \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$$

such that

$$x' = f^{[i]}(x), \qquad x_0 = x(0) \in \mathbb{R}^D, \qquad i = 1, \dots, m$$
 (2)

can be integrated exactly, with solutions  $x(h) = \varphi_h^{[i]}(x_0)$  at t = h. Then

$$\chi_h = \varphi_h^{[m]} \circ \dots \circ \varphi_h^{[2]} \circ \varphi_h^{[1]}$$
(3)

verifies  $\chi_h(x_0) = \varphi_h(x_0) + \mathcal{O}(h^2)$ . First order approximation

### What is *splitting*?

- Three steps in splitting:
  - choosing the set of functions  $f^{[i]}$  such that  $f = \sum_i f^{[i]}$
  - solving either exactly or approximately each equation  $x' = f^{[i]}(x)$
  - combining these solutions to construct an approximation for x' = f(x)

イロト イヨト イヨト イ

• Remark: equations  $x' = f^{[i]}(x)$  should be simpler to integrate than the original system.

### Some advantages of splitting methods

- Simple to implement.
- They are, in general, explicit.
- Their storage requirements are quite modest.
- They preserve structural properties of the exact solution: symplecticity, volume preservation, time-symmetry and conservation of first integrals

## Splitting methods constitute an important class of *geometric numerical integrators*

Aim of geometric numerical integration: reproduce the qualitative features of the solution of the differential equation being discretised, in particular its geometric properties.

### More on geometric integration

- Properties of the system are built into the numerical method.
- This gives the method an improved qualitative behaviour, but also allows for a significantly more accurate long-time integration than with general-purpose methods.
- Important aspect: theoretical explanation of the relationship between preservation of the geometric properties and the observed favourable error propagation in long-time integration (backward error analysis).

### Example 1: symplectic Euler and leapfrog

- Hamiltonian  $H(q,p) = T(p) + V(q), \qquad q, p \in \mathbb{R}^d.$
- Equations of motion:  $q' = T_p(p)$ ,  $p' = -V_q(q)$
- Euler method:

$$q_{n+1} = q_n + hT_p(p_n)$$
  
 $p_{n+1} = p_n - hV_q(q_n).$ 
(4)

• *H* is the sum of two Hamiltonians, the first one depending only on *p* and the second only on *q* with equations

$$q' = T_p(p)$$
 and  $q' = 0$   
 $p' = 0$   $p' = -V_q(q)$  (5)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

### Example 1: symplectic Euler and leapfrog

- Hamiltonian  $H(q,p) = T(p) + V(q), \qquad q, p \in \mathbb{R}^d.$
- Equations of motion:  $q' = T_p(p)$ ,  $p' = -V_q(q)$
- Euler method:

$$q_{n+1} = q_n + hT_p(p_n)$$
  
 $p_{n+1} = p_n - hV_q(q_n).$  (4)

• *H* is the sum of two Hamiltonians, the first one depending only on *p* and the second only on *q* with equations

$$q' = T_p(p)$$
 and  $q' = 0$   
 $p' = 0$   $p' = -V_q(q)$  (5)

▲□▶▲圖▶▲≣▶▲≣▶ = 更 - のへで

### Example 1: symplectic Euler and leapfrog

- Hamiltonian  $H(q,p) = T(p) + V(q), \qquad q, p \in \mathbb{R}^d.$
- Equations of motion:  $q' = T_p(p)$ ,  $p' = -V_q(q)$
- Euler method:

$$q_{n+1} = q_n + hT_p(p_n)$$
  
 $p_{n+1} = p_n - hV_q(q_n).$  (4)

< ロ > < 同 > < 回 > < 回 > :

• *H* is the sum of two Hamiltonians, the first one depending only on *p* and the second only on *q* with equations

$$\begin{array}{rcl}
q' &=& T_{p}(p) \\
p' &=& 0 \\
\end{array}$$
 and  $\begin{array}{rcl}
q' &=& 0 \\
p' &=& -V_{q}(q) \\
\end{array}$  (5)

### Example 1: symplectic Euler and leapfrog

#### Solution:

$$\varphi_{t}^{[T]}: \begin{array}{l} q(t) = q_{0} + t T_{\rho}(p_{0}) \\ p(t) = p_{0} \end{array}$$

$$\varphi_{t}^{[V]}: \begin{array}{l} q(t) = q_{0} \\ p(t) = p_{0} - t V_{q}(q_{0}) \end{array}$$
(6)

• Composing the *t* = *h* flows gives the scheme

$$\chi_{h} \equiv \varphi_{h}^{[T]} \circ \varphi_{h}^{[V]} : \begin{array}{cc} p_{n+1} &=& p_{n} - h \, V_{q}(q_{n}) \\ q_{n+1} &=& q_{n} + h \, T_{p}(p_{n+1}). \end{array}$$
(7)

*χ<sub>h</sub>* is a symplectic integrator, since it is the composition of flows of two Hamiltonians: symplectic Euler method

### Example 1: symplectic Euler and leapfrog

By composing in the opposite order, φ<sub>h</sub><sup>[V]</sup> ∘ φ<sub>h</sub><sup>[T]</sup>, another first order symplectic Euler scheme:

$$\chi_{h}^{*} \equiv \varphi_{h}^{[V]} \circ \varphi_{h}^{[T]}: \quad \begin{array}{l} q_{n+1} = q_{n} + h T_{p}(p_{n}) \\ p_{n+1} = p_{n} - h V_{q}(q_{n+1}). \end{array}$$
(8)

(8) is the *adjoint* of  $\chi_h$ .

• Another possibility: 'symmetric' version

$$\mathcal{S}_{h}^{[2]} \equiv \varphi_{h/2}^{[V]} \circ \varphi_{h}^{[T]} \circ \varphi_{h/2}^{[V]}, \tag{9}$$

#### Strang splitting, leapfrog or Störmer-Verlet method

• Observe that  $S_h^{[2]} = \chi_{h/2} \circ \chi_{h/2}^*$  and it is also symplectic and second order.

### Example 2: Simple harmonic oscillator

- $H(q,p) = \frac{1}{2}(p^2 + q^2)$ , where now  $q, p \in \mathbb{R}$ .
- Equations:

$$x' \equiv \begin{pmatrix} q' \\ p' \end{pmatrix} = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{A} + \underbrace{\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}}_{B}\right] \begin{pmatrix} q \\ p \end{pmatrix} = (A+B) x.$$

• Euler scheme:

$$\left( egin{array}{c} q_{n+1} \\ p_{n+1} \end{array} 
ight) = \left( egin{array}{c} 1 & h \\ -h & 1 \end{array} 
ight) \left( egin{array}{c} q_n \\ p_n \end{array} 
ight),$$

• Symplectic Euler method:

$$\begin{pmatrix} q_{n+1} \\ p_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & h \\ -h & 1-h^2 \end{pmatrix} \begin{pmatrix} q_n \\ p_n \end{pmatrix} = e^{hB}e^{hA} \begin{pmatrix} q_n \\ p_n \end{pmatrix}.$$

### Example 2: Simple harmonic oscillator

- Both render first order approximations to the exact solution  $x(t) = e^{h(A+B)}x_0$ , but there are important differences
- Symplectic Euler is area preserving and

$$\frac{1}{2}(p_{n+1}^2+hp_{n+1}q_{n+1}+q_{n+1}^2)=\frac{1}{2}(p_n^2+hp_nq_n+q_n^2).$$

 Symplectic Euler is the exact solution at t = h of the perturbed Hamiltonian system

$$\tilde{H}(q,p,h) = \frac{2 \arcsin(h/2)}{h\sqrt{4-h^2}} (p^2 + hp q + q^2)$$
(10)  
=  $\frac{1}{2} (p^2 + q^2) + h \left(\frac{1}{2}p q + \frac{1}{12}h(p^2 + q^2) + \cdots\right).$ 

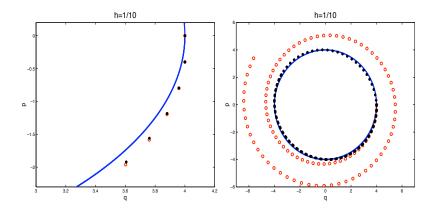
イロト イ理ト イヨト イヨト

### Example 2: Simple harmonic oscillator

How these features manifest in practice?

- Initial conditions (q<sub>0</sub>, p<sub>0</sub>) = (4, 0) and integrate with a time step h = 0.1 (same computational cost) with Euler and symplectic Euler
- Two experiments:
  - Represent the first 5 numerical approximations
  - 2 Represent the first 100 points in the trajectory

### Example 2: Simple harmonic oscillator



Euler method (white circles) and the symplectic Euler method (black circles) with initial condition  $(q_0, p_0) = (4, 0)$  and h = 0.1.

### Example 3: The 2-body (Kepler) problem

#### Hamiltonian

$$H(q,p) = T(p) + V(q) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{r}, \qquad r = \sqrt{q_1^2 + q_2^2}.$$

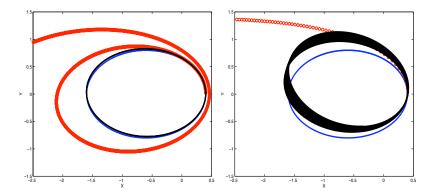
Initial condition:

$$q_1(0)=1-e, \quad q_2(0)=0, \quad p_1(0)=0, \quad p_2(0)=\sqrt{rac{1+e}{1-e}},$$

 $0 \le e < 1$  is the eccentricity of the orbit.

- Total energy  $H = H_0 = -1/2$ , period of the solution is  $2\pi$ .
- Two experiments with e = 0.6. We compare Euler and symplectic Euler

### Example 3: The 2-body (Kepler) problem



The left panel shows the results for  $h = \frac{1}{100}$  and the first 3 periods and the right panel shows the results for  $h = \frac{1}{20}$  and the first 15 periods.

### Explanation

- Several symmetries: H, L = q<sub>1</sub>p<sub>2</sub> q<sub>2</sub>p<sub>1</sub>, etc. integrals of motion.
- Symmetry group: SO(4) (Laplace–Runge–Lenz vector preserved).
- Symplectic Euler method exactly conserves the angular momentum.
- Numerical solution is the exact solution of a slightly perturbed Kepler problem, SO(4) is no longer the symmetry group and the trajectories are not closed.

Again, backward error analysis.

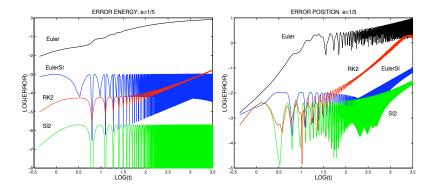
### Example 3: The 2-body (Kepler) problem

- Next we check how the error in the preservation of energy and the global error in position propagates with time.
- Methods: Euler, symplectic Euler, Heun (RK2), leapfrog (SI2)
- Step size chosen so that all the methods require the same number of force evaluations

イロト イヨト イヨト イ

• e = 1/5 and integrate for 500 periods

### Example 3: The 2-body (Kepler) problem



Average error in energy does not grow for symplectic methods and the error in positions grows only linearly with time, in contrast with Euler and Heun schemes.

### More examples

- Hamiltonian systems
- Poisson systems
- Lotka–Volterra eqs., ABC-flow, Duffing oscillator ('conformal Hamiltonian')
- PDEs discretized in space (Schrödinger eq., Maxwell equations)

イロト イヨト イヨト イ

coming from

- Celestial Mechanics
- Molecular dynamics
- Quantum physics
- Electromagnetism
- Particle accelerators

### Conclusions (until now)

- Symplectic Euler and leapfrog provide a good qualitative description including preservation of invariants and structures in phase space.
- Favourable error propagation in long-time integration
- ... although the order of accuracy is very low
- Examples of geometric numerical integrators

### Conclusions (until now)

- Symplectic Euler and leapfrog provide a good qualitative description including preservation of invariants and structures in phase space.
- Favourable error propagation in long-time integration
- ... although the order of accuracy is very low
- Examples of geometric numerical integrators

### Conclusions (until now)

- Symplectic Euler and leapfrog provide a good qualitative description including preservation of invariants and structures in phase space.
- Favourable error propagation in long-time integration
- ... although the order of accuracy is very low
- Examples of geometric numerical integrators

### Conclusions (until now)

- Symplectic Euler and leapfrog provide a good qualitative description including preservation of invariants and structures in phase space.
- Favourable error propagation in long-time integration
- ... although the order of accuracy is very low
- Examples of geometric numerical integrators

Increasing the order by composition Integrators and series of differential operators

### Yoshida-Suzuki technique

From leapfrog  $S^{[2]} : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$  (2nd order) one gets a 4th order integrator  $S^{[4]} : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$  as

$$\mathcal{S}_{h}^{[4]} = \mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]}, \quad \text{with} \quad \alpha = \frac{1}{2 - 2^{1/3}}, \qquad \beta = 1 - 2\alpha.$$
(11)

In general,

$$\mathcal{S}_{h}^{[2k+2]} = \mathcal{S}_{\alpha h}^{[2k]} \circ \mathcal{S}_{\beta h}^{[2k]} \circ \mathcal{S}_{\alpha h}^{[2k]}, \qquad (12)$$

with

$$\alpha = \frac{1}{2 - 2^{1/(2k+1)}}, \qquad \beta = 1 - 2\alpha,$$
 (13)

gives a method  $\mathcal{S}_{h}^{[2k]}$  of order  $2k \ (k \ge 1)$ .

Increasing the order by composition Integrators and series of differential operators

### Yoshida-Suzuki technique

This technique can be applied to

$$x' = f(x)$$
 with  $f(x) = \sum_{i=1}^{m} f^{[i]}(x)$ 

starting from the basic first order integrator

$$\chi_h = \varphi_h^{[m]} \circ \dots \circ \varphi_h^{[2]} \circ \varphi_h^{[1]}, \tag{14}$$

its adjoint

$$\chi_h^* = \chi_{-h}^{-1} = \varphi_h^{[1]} \circ \varphi_h^{[2]} \circ \dots \circ \varphi_h^{[m]}$$

and finally

$$S_{h}^{[2]} = \chi_{h/2} \circ \chi_{h/2}^{*} \tag{15}$$

(日) (四) (日) (日) (日)

Increasing the order by composition Integrators and series of differential operators

### More general compositions

More efficient schemes:

$$\psi_{h} = \chi_{\alpha_{2s}h} \circ \chi^{*}_{\alpha_{2s-1}h} \circ \dots \circ \chi_{\alpha_{2}h} \circ \chi^{*}_{\alpha_{1}h}$$
(16)

with appropriately chosen coefficients  $(\alpha_1, \ldots, \alpha_{2s}) \in \mathbb{R}^{2s}$ . When  $f - f^{[a]} + f^{[b]}$  and  $\chi_i = \alpha_i^{[b]} - \alpha_i^{[a]}$  then (16) can be

• When  $f = f^{[a]} + f^{[b]}$  and  $\chi_h = \varphi_h^{[b]} \circ \varphi_h^{[a]}$ , then (16) can be rewritten as

$$\psi_{h} = \varphi_{b_{s+1}h}^{[b]} \circ \varphi_{a_{s}h}^{[a]} \circ \varphi_{b_{s}h}^{[b]} \circ \cdots \circ \varphi_{b_{2}h}^{[b]} \circ \varphi_{a_{1}h}^{[a]} \circ \varphi_{b_{1}h}^{[b]}, \quad (17)$$

where  $b_1 = \alpha_1$  and for  $j = 1, \ldots, s$ ,

$$a_j = \alpha_{2j-1} + \alpha_{2j}, \qquad b_{j+1} = \alpha_{2j} + \alpha_{2j+1}$$
 (18)

(with  $\alpha_{2s+1} = 0$ ). Conversely, any integrator of the form (17) satisfying  $\sum_{i=1}^{s} a_i = \sum_{i=1}^{s+1} b_i$  can be expressed as (16) with  $\chi_h = \varphi_h^{[b]} \circ \varphi_h^{[a]}$ .

Increasing the order by composition Integrators and series of differential operators

### Mathematical formalism

Given the ODE x' = f(x) one has the vector field F such that, for each function g

$$F[g](x) = \sum_{j=1}^{D} f_j(x) \frac{\partial g}{\partial x_j}(x).$$
(19)

• If  $\varphi_h$  is the *h*-flow of the ODE, then

$$g(\varphi_h(x)) = \exp(hF)[g](x) = g(x) + \sum_{k\geq 1} \frac{h^k}{k!} F^k[g](x), \qquad x\in\mathbb{R}^D,$$

 A one-step numerical integrator for a time step h, ψ<sub>h</sub> : ℝ<sup>D</sup> → ℝ<sup>D</sup>, is said to be of order r if

$$\psi_h = \varphi_h + \mathcal{O}(h^{r+1})$$
 as  $h \to 0$ .

Increasing the order by composition Integrators and series of differential operators

### Mathematical formalism

Analogously, for a basic integrator χ<sub>h</sub> : ℝ<sup>D</sup> → ℝ<sup>D</sup>, we consider the linear differential operators X<sub>n</sub> (n ≥ 1) acting as

$$X_n[g](x) = \frac{1}{n!} \frac{d^n}{dh^n} g(\chi_h(x))|_{h=0},$$

so that formally  $g(\chi_h(x)) = X(h)[g](x)$ , where

$$X(h)=I+\sum_{n\geq 1}h^nX_n,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

Alternatively, one may consider the series of vector fields

$$Y(h) = \sum_{n \ge 1} h^n Y_n = \log(X(h))$$

that is,

$$Y_n = \sum_{m\geq 1}^n \frac{(-1)^{m+1}}{m} \sum_{j_1+\cdots+j_m=n} X_{j_1}\cdots X_{j_m},$$

so that  $X(h) = \exp(Y(h))$ , and  $g(\chi_h(x)) = \exp(Y(h))[g](x)$ . The basic integrator is of order *r* if

$$Y_1 = F$$
,  $Y_n = 0$  for  $2 \le n \le r$ .

• For  $\chi_h^* = \chi_{-h}^{-1}$ , one gets  $g(\chi_h^*(x)) = e^{-Y(-h)}[g](x)$ . Thus,  $\chi_h$  is time-symmetric if and only if  $Y(h) = hY_1 + h^3Y_3 + \cdots$ , and time-symmetric methods are of even order.

Increasing the order by composition Integrators and series of differential operators

### Series of differential operators

In the general case, for the composition method

$$\psi_{h} = \chi_{\alpha_{2s}h} \circ \chi^{*}_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_{2}h} \circ \chi^{*}_{\alpha_{1}h}$$

one has  $g(\psi_h(x)) = \Psi(h)[g](x)$ , where  $\Psi(h) = I + h\Psi_1 + h^2\Psi_2 + \cdots$  is a series of differential operators satisfying

$$\Psi(h) = X(-\alpha_1 h)^{-1} X(\alpha_2 h) \cdots X(-\alpha_{2s-1} h)^{-1} X(\alpha_{2s} h),$$

the series X(h) is associated with  $\chi_h$  and  $X(h)^{-1}$  to  $\chi_h^*$ . • Alternatively, we may use

$$\Psi(h) = e^{-Y(-h\alpha_1)} e^{Y(h\alpha_2)} \cdots e^{-Y(-h\alpha_{2s-1})} e^{Y(h\alpha_{2s})}, \quad (20)$$

to obtain  $log(\Psi(h)) = \sum_{n \ge 1} h^n F_n$ , so that *r*th order compositions methods obey the conditions

$$F_1 = F$$
,  $F_n = 0$  for  $2 \le n \le r$ . The set  $(21)$  such that  $F_1 = F$ ,  $F_n = 0$  for  $2 \le n \le r$ .

#### • For the splitting integrator

$$\psi_{h} = \varphi_{b_{s+1}h}^{[b]} \circ \varphi_{a_{s}h}^{[a]} \circ \varphi_{b_{s}h}^{[b]} \circ \cdots \circ \varphi_{b_{2}h}^{[b]} \circ \varphi_{a_{1}h}^{[a]} \circ \varphi_{b_{1}h}^{[b]},$$

when  $f(x) = f^{[a]}(x) + f^{[b]}(x)$ , the series  $\Psi(h)$  of differential operators associated to the integrator  $\psi_h$  is

$$\Psi(h) = e^{b_1 h F^{[b]}} e^{a_1 h F^{[a]}} \cdots e^{b_s h F^{[b]}} e^{a_s h F^{[a]}} e^{b_{s+1} h F^{[b]}}$$
(22)

in terms of the Lie derivatives  $F^{[a]}$  and  $F^{[b]}$ 

### Order conditions

 Polynomial equations whose solutions provide the coefficients in

$$\psi_{h} = \chi_{\alpha_{2s}h} \circ \chi^{*}_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_{2}h} \circ \chi^{*}_{\alpha_{1}h}$$
  
$$\psi_{h} = \varphi_{b_{s+1}h}^{[b]} \circ \varphi_{a_{s}h}^{[a]} \circ \varphi_{b_{s}h}^{[b]} \circ \cdots \circ \varphi_{b_{2}h}^{[b]} \circ \varphi_{a_{1}h}^{[a]} \circ \varphi_{b_{1}h}^{[b]}$$

Several procedures to obtain them (rooted trees, BCH formula, Lyndon words)

BCH:

$$Z = \log(e^{X} e^{Y}) = X + Y + \sum_{m=2}^{\infty} Z_{m},$$
 (23)

~

### Procedure

Consider Ψ<sub>h</sub>, expressed as a product of exponentials of differential operators, i.e.,

$$\begin{split} \Psi(h) &= e^{-Y(-h\alpha_1)} e^{Y(h\alpha_2)} \cdots e^{-Y(-h\alpha_{2s-1})} e^{Y(h\alpha_{2s})}, \\ \Psi(h) &= e^{b_1 h F^{[b]}} e^{a_1 h F^{[a]}} \cdots e^{b_s h F^{[b]}} e^{a_s h F^{[a]}} e^{b_{s+1} h F^{[b]}}, \end{split}$$

- 2 Apply repeatedly the BCH formula to get the series expansion  $log(\Psi(h)) = \sum_{n>1} h^n F_n$
- Impose conditions  $F_1 = F$ ,  $F_k = 0$  for  $2 \le k \le r$ .

For the composition 
$$\psi_h = \chi_{\alpha_{2s}h} \circ \chi^*_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_2h} \circ \chi^*_{\alpha_1h}$$
 we get

$$log(\Psi(h)) = hw_1 Y_1 + h^2 w_2 Y_2 + h^3 (w_3 Y_3 + w_{12}[Y_1, Y_2]) + h^4 (w_4 Y_4 + w_{13}[Y_1, Y_3] + w_{112}[Y_1, [Y_1, Y_2]]) + \mathcal{O}(h^5)$$

 $w_{j_1\cdots j_m}$  are polynomials of degree  $n = j_1 + \cdots + j_m$  in the parameters  $\alpha_1, \ldots, \alpha_{2s}$ :

$$w_1 = \sum_{i=1}^{2s} \alpha_i, \qquad w_2 = \sum_{i=1}^{2s} (-1)^i \alpha_i^2, \qquad w_3 = \sum_{i=1}^{2s} \alpha_i^3.$$
 (24)

Order conditions are  $w_1 = 1$ , and  $w_{j_1 \cdots j_m} = 0$  whenever  $2 \le j_1 + \cdots + j_m \le r$ 

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

# For the splitting scheme $\psi_h = \varphi_{b_{s+1}h}^{[b]} \circ \varphi_{a_sh}^{[a]} \circ \varphi_{b_sh}^{[b]} \circ \cdots \circ \varphi_{b_2h}^{[b]} \circ \varphi_{a_1h}^{[a]} \circ \varphi_{b_1h}^{[b]}$ one gets analogous results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## Order conditions for composition methods with symmetry

Order conditions for ψ<sub>h</sub> = χ<sub>α2sh</sub> ∘ χ<sup>\*</sup><sub>α2s-1h</sub> ∘ · · · ∘ χ<sub>α2h</sub> ∘ χ<sup>\*</sup><sub>α1h</sub> are simplified if

$$\alpha_{2s-j+1} = \alpha_j, \quad \text{ for all } j.$$

Then the method is time-symmetric:  $\psi_h^* = \psi_h$ .

Also if

$$\alpha_{2j} = \alpha_{2j-1}, \quad \forall j,$$

one gets simplifications. In that case the scheme can be rewritten as

$$\psi_{h} = \mathcal{S}_{h\beta_{s}}^{[2]} \circ \cdots \circ \mathcal{S}_{h\beta_{1}}^{[2]}, \tag{25}$$

where  $\beta_j = 2\alpha_{2j}$  and  $\mathcal{S}_h^{[2]} = \chi_{h/2} \circ \chi_{h/2}^*$ .

Compositions satisfying both assumptions:

$$\psi_{h} = \mathcal{S}_{h\beta_{s}}^{[2]} \circ \cdots \circ \mathcal{S}_{h\beta_{1}}^{[2]},$$

with

$$\beta_j = \beta_{s-j+1}, \quad \forall j.$$

Symmetric compositions of symmetric schemes

Number of order conditions

| k              | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 | 11        |
|----------------|---|---|---|---|---|---|----|----|----|----|-----------|
| n <sub>k</sub> | 1 | 1 | 2 | 3 | 6 | 9 | 18 | 30 | 56 | 99 | 186       |
| m <sub>k</sub> | 1 | 0 | 1 | 1 | 2 | 2 | 4  | 5  | 8  | 11 | 186<br>17 |

Simplifications also occur for systems with special structure, e.g.

- Separable Hamiltonians H(q, p) = T(p) + V(q)
- RKN methods  $H(q, p) = \frac{1}{2}p^T M p + V(q)$
- Generalized Harmonic Oscillator:  $H(q,p) = \frac{1}{2}p^{T}Mp + \frac{1}{2}q^{T}Nq$
- Near-integrable systems:  $x' = f^{[a]}(x) + \varepsilon f^{[b]}(x)$ , with  $|\varepsilon| \ll 1$

#### **Different families**

In consequence, different classes of integrators:

- Near-integrable systems: x' = f<sup>[a]</sup>(x) + εf<sup>[b]</sup>(x). Since ε ≪ h, one only cancels error terms with small powers of ε and not all the coefficients at an order h<sup>k</sup> (Mclachlan, Laskar-Robutel)
- Runge–Kutta–Nyström like methods. Appropriate for y'' = g(y) and  $H(q, p) = \frac{1}{2}p^T M p + V(q)$ . In this case  $[[[F^{[b]}, F^{[a]}], F^{[b]}], F^{[b]}] = 0$ , which leads to additional simplifications. Reduced number of evaluations (Blanes-Moan)

#### Near-integrable systems

For  $x' = f^{[a]}(x) + \varepsilon f^{[b]}(x)$ , the splitting technique is well adapted. In this case

$$\Psi(h) = \mathrm{e}^{b_1 h_{\varepsilon} F^{[b]}} \mathrm{e}^{a_1 h F^{[a]}} \cdots \mathrm{e}^{b_s h_{\varepsilon} F^{[b]}} \mathrm{e}^{a_s h F^{[a]}} \mathrm{e}^{b_{s+1} h_{\varepsilon} F^{[b]}}$$

so that,

$$\begin{split} \log(\Psi(h)) &= h v_a F^{[a]} + \varepsilon (h v_b F^{[b]} + h^2 v_{ab} F^{[ab]} + \\ & h^3 v_{aba} F^{[aba]} + h^4 v_{abaa} F^{[abaa]}) \\ & + \varepsilon^2 (h^3 v_{abb} F^{[abb]} + h^4 v_{abba} F^{[abba]}) + \\ & \varepsilon^3 h^4 v_{abbb} F^{[abbb]} + \mathcal{O}(\varepsilon h^5). \end{split}$$

In practical applications  $\varepsilon \ll h$ , so that one eliminates error terms with small powers of  $\varepsilon$ . If  $v_a = 1 = v_b$ ,  $v_{ab} = v_{aba} = v_{abaa} = v_{abb} = 0$ ,  $\log(\Psi(h)) - hF = O(\varepsilon h^5 + \varepsilon^2 h^4)$ ,

### Runge-Kutta-Nyström methods

#### Equation

$$y^{\prime\prime}=g(y), \qquad (26)$$

is equivalent to  $x' = f^{[a]}(x) + f^{[b]}(x)$  with

$$f^{[a]}(y,v) = (v,0), \qquad f^{[b]}(y,v) = (0,g(y)),$$
 (27)

#### Exact flows are computable:

$$\begin{array}{lll}
\varphi_{h}^{[a]}(y,v) &= (y+hv,v), \\
\varphi_{h}^{[b]}(y,v) &= (y,v+hg(y)).
\end{array}$$
(28)

- In addition,  $[[[F^{[b]}, F^{[a]}], F^{[b]}], F^{[b]}] = F^{[babb]} = 0$  identically.
- Reduction in the number of order conditions:

| k              | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 | 11        |
|----------------|---|---|---|---|---|----|----|----|----|-----------|
| n <sub>k</sub> | 1 | 2 | 3 | 6 | 9 | 18 | 30 | 56 | 99 | 186       |
| $I_k$          | 1 | 2 | 2 | 4 | 5 | 10 | 14 | 25 | 39 | 186<br>69 |

- For  $H(p,q) = \frac{1}{2}p^T Mp + \frac{1}{2}q^T Nq$ , only one independent condition to increase the order from r = 2k 1 to r = 2k, and two to increase the order from r = 2k to r = 2k + 1.
- One can also use modified potentials to get more efficient methods

## Processing

• Idea: to enhance an integrator  $\psi_h$  (the *kernel*) with  $\pi_h : \mathbb{R}^D \longrightarrow \mathbb{R}^D$  (the *post-processor*) as

$$\hat{\psi}_h = \pi_h \circ \psi_h \circ \pi_h^{-1}.$$

• Application of *n* steps leads to

$$\hat{\psi}_h^n = \pi_h \circ \psi_h^n \circ \pi_h^{-1},$$

Advantageous if ψ̂<sub>h</sub> is more accurate than ψ<sub>h</sub> and the cost of π<sub>h</sub> is negligible, since it provides the accuracy of ψ̂<sub>h</sub> at the cost of (the least accurate) ψ<sub>h</sub>.



#### Störmer–Verlet method

$$\psi_{h,2} = \varphi_{h/2}^{[a]} \circ \varphi_{h}^{[b]} \circ \varphi_{h/2}^{[a]} = \varphi_{h/2}^{[a]} \circ \varphi_{h}^{[b]} \circ \varphi_{h}^{[a]} \circ \varphi_{-h}^{[a]} \circ \varphi_{h/2}^{[a]}$$
  
=  $\varphi_{h/2}^{[a]} \circ \psi_{h,1} \circ \varphi_{-h/2}^{[a]} = \pi_{h} \circ \psi_{h,1} \circ \pi_{h}^{-1}$ 

with 
$$\pi_h = \varphi_{h/2}^{[a]}$$
.

• Applying the first order method  $\psi_{h,1} = \varphi_h^{[b]} \circ \varphi_h^{[a]}$  with processing yields a 2nd order of approximation.

## Processing

- Very useful in geometric numerical integration
- ψ<sub>h</sub> is of *effective order r* if a post-processor π<sub>h</sub> exists for which ψ̂<sub>h</sub> is of (conventional) order r, that is,

$$\pi_h \circ \psi_h \circ \pi_h^{-1} = \varphi_h + \mathcal{O}(h^{r+1}).$$

Many of the order conditions can be satisfied by π<sub>h</sub>, so that ψ<sub>h</sub> must fulfill a much reduced set of restrictions
 If

$$\psi_{h} = \varphi_{b_{s+1}h}^{[b]} \circ \varphi_{a_{s}h}^{[a]} \circ \varphi_{b_{s}h}^{[b]} \circ \cdots \circ \varphi_{b_{2}h}^{[b]} \circ \varphi_{a_{1}h}^{[a]} \circ \varphi_{b_{1}h}^{[b]}$$

the number and complexity of the conditions to be verified by  $a_i$ ,  $b_i$  is reduced

 Highly efficient processed methods (reduced number of stages in the kernel)

## A collection of splitting and composition methods

- More than 100 different integrators
- Symmetric comp. of symmetric methods. Orders 4-10.
- Compositions

$$\begin{split} \psi_h &= \chi_{\alpha_{2s}h} \circ \chi^*_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_{2}h} \circ \chi^*_{\alpha_{1}h} \\ \psi_h &= \varphi_{b_{s+1}h}^{[b]} \circ \varphi_{a_sh}^{[a]} \circ \varphi_{b_sh}^{[b]} \circ \cdots \circ \varphi_{b_2h}^{[b]} \circ \varphi_{a_1h}^{[a]} \circ \varphi_{b_1h}^{[b]} \end{split}$$

(日) (四) (日) (日) (日)

Orders 3-6.

- RKN splitting integrators. Order 4-8.
- RKN splitting m. with modified potentials. Orders 3-8.
- Splitting methods for near-integrable systems.
- Also with processing

### Preserving properties and BEA

- The treatment done for the linear oscillator can be generalized to *any* nonlinear ODE.
- Recall that each integrator  $\psi_h$  has associated a series  $\Psi(h) = I + h\Psi_1 + h^2\Psi_2 + \cdots$ , and
- $\log(\Psi(h)) = hF_1 + h^2F_2 + \cdots$ , so that  $F_k[g] = g'(x)f_k(x)$ .
- Therefore there exists a modified differential equation (formal series in powers of *h*),

$$\tilde{x}' = f_h(\tilde{x}) \equiv f(\tilde{x}) + hf_2(\tilde{x}) + h^2f_3(\tilde{x}) + \cdots$$
(29)

イロト イヨト イヨト イ

associated to the integrator  $\psi_h$ .

• Then, 
$$x_n = \tilde{x}(t_n)$$
, with  $t_n = nh$ .

- To study the long-time behaviour of the numerical integrator we analyze the solutions of (29) viewed as a small perturbation of x' = f(x).
- for symmetric methods, the modified differential equation only contains even powers of *h*;
- for volume-preserving methods applied to a divergence-free dynamical system, the modified equation is also divergence-free;
- for symplectic methods applied to a Hamiltonian system, the modified differential equation is (locally) Hamiltonian.

- To study the long-time behaviour of the numerical integrator we analyze the solutions of (29) viewed as a small perturbation of x' = f(x).
- for symmetric methods, the modified differential equation only contains even powers of *h*;
- for volume-preserving methods applied to a divergence-free dynamical system, the modified equation is also divergence-free;
- for symplectic methods applied to a Hamiltonian system, the modified differential equation is (locally) Hamiltonian.

- In the particular case of a symplectic integrator, there exist smooth functions  $H_j : \mathbb{R}^{2d} \longrightarrow \mathbb{R}$  for j = 2, 3, ..., such that  $f_j(x) = J \nabla H_j(x)$
- In consequence, there exists a modified Hamiltonian

$$\tilde{H}(q,p) = H(q,p) + hH_2(q,p) + h^2H_3(q,p) + h^3H_4(q,p) + \cdots$$

such that

$$q' = 
abla_{m{
ho}} ilde{H}(q,m{
ho}), \qquad m{
ho}' = -
abla_{m{
ho}} ilde{H}(q,m{
ho}).$$

• If the method is order *r*, say, then  $\tilde{H} = H + h^r H_{r+1} + \cdots$ .

#### Remarks

- The series in (29) does not converge in general.
- One has to give bounds on f<sub>j</sub>(x) so as to determine an optimal truncation index and estimate the difference x<sub>n</sub> x̃(h).
- Rigourous proof that a symplectic method of order *r* with constant *h* applied to *H* verifies that  $H(x_n) = H(x_0) + O(h^r)$  for exponentially long time intervals (Nekhorosev like results).
- The modified differential equation of a numerical scheme depends explicitly on *h*. Then, a different modified equation each time the step size *h* is changed.
- Poor long time behavior observed in practice when a symplectic scheme is implemented directly with a standard variable step-size strategy.

Some numerical examples

System: perturbed Kepler problem with Hamiltonian

$$H = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{r} - \frac{\varepsilon}{2r^3} \left(1 - \alpha \frac{3q_1^2}{r^2}\right), \quad (30)$$

- (Dynamics of a satellite in the gravitational field produced by an oblate planet)
- Different families of methods can be tested and compared.

• H = T(p) + V(q). We can use symmetric compositions

$$\psi_{h} = \mathcal{S}_{h\beta_{s}}^{[2]} \circ \cdots \circ \mathcal{S}_{h\beta_{1}}^{[2]},$$

with  $S_h^{[2]}$  the Störmer–Verlet method.

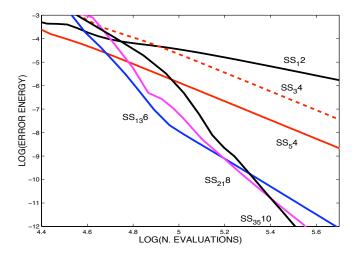
Also schemes

$$\psi_{h} = \chi_{\alpha_{2s}h} \circ \chi^{*}_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_{2}h} \circ \chi^{*}_{\alpha_{1}h}$$
  
$$\psi_{h} = \varphi^{[b]}_{b_{s+1}h} \circ \varphi^{[a]}_{a_{s}h} \circ \varphi^{[b]}_{b_{s}h} \circ \cdots \circ \varphi^{[b]}_{b_{2}h} \circ \varphi^{[a]}_{a_{1}h} \circ \varphi^{[b]}_{b_{1}h}$$

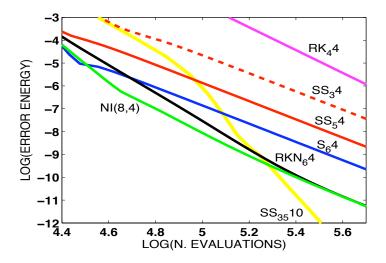
*T*(*p*) is quadratic in momenta ⇒ RKN methods.
Finally,

$$H=H_0+\varepsilon H_I,$$

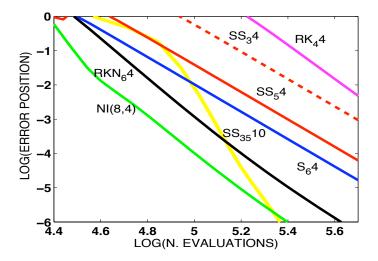
where  $H_0$  corresponds to the Kepler problem, which is exactly solvable  $\Rightarrow$  methods for near-integrable systems.



◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ 9 < ()・



## Schrödinger equation

Numerical solution of the time-dependent Schrödinger eq.:

$$i\frac{\partial}{\partial t}\Psi(x,t) = \left(-\frac{1}{2m}\nabla^2 + V(x,t)\right)\Psi(x,t)$$
(31)

- One-dimensional problem  $x \in [x_0, x_N]$  $(\psi(x_0, t) = \psi(x_N, t) = 0$
- Space discretization of ψ(x, t): [x<sub>0</sub>, x<sub>N</sub>] is split in N parts of length Δx = (x<sub>N</sub> x<sub>0</sub>)/N and **u** = (u<sub>0</sub>,..., u<sub>N-1</sub>)<sup>T</sup> ∈ C<sup>N</sup> is formed, with u<sub>n</sub> = ψ(x<sub>n</sub>, t)
- One ends up with a linear problem

$$i \frac{d}{dt} \mathbf{u}(t) = \mathbf{H} \, \mathbf{u}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0 \in \mathbb{C}^N,$$

イロト イヨト イヨト イ

#### Morse potential

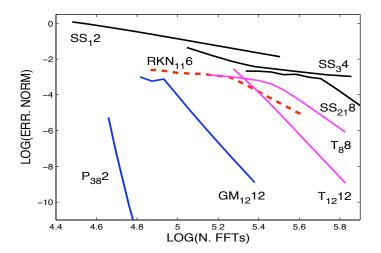
• 
$$V(x) = D(1 - e^{-\alpha x})^2$$

•  $\psi_0(x,t) = \rho \exp(-\beta(x-\bar{x})^2), \ \beta = \sqrt{Dm\alpha^2/2}, \ \bar{x} = -0.1, \ \rho$ : const.

э.

• 
$$t \in [0, 20T], T = 2\pi/(\alpha \sqrt{2D/m})$$

•  $x \in [-0.8, 4.32]$ , split into N = 128 parts



◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

#### Moral of the tale

- Splitting methods are very flexible: different schemes can be used as basic integrator
- Advice: try to incorporate as much information as possible about your DE into your scheme

(日) (四) (日) (日) (日)

• Other issues not treated here: stability, negative coefficients, optimization strategies, highly oscillatory problems, variable step size, ...

#### **Basic references**

- E. Hairer, C. Lubich, and G. Wanner, *Geometric Numerical* Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2nd edition), Springer Series in Computational Mathematics **31**, Springer-Verlag, (2006).
- B. Leimkuhler and S. Reich, *Simulating Hamiltonian Dynamics*, Cambridge University Press, Cambridge (2004).
- R.I. McLachlan and R. Quispel, Splitting methods, Acta Numerica 11 (2002), pp. 341-434.

#### **Basic references**

...And, of course,

 S. Blanes, F.C., and A. Murua, Splitting and composition methods in the numerical integration of differential equations, <u>arXiv:0812.0377</u> (1 December 2008)