Nonlinear dynamics near equilibrium points for a Solar Sail

Ariadna Farrés
ari@maia.ub.es

Àngel Jorba
angel@maia.ub.es

Universitat de Barcelona
Departament de Matemàtica Aplicada i Anàlisi

Contents

- Introduction to Solar Sails.
- Families of Equilibria.
- Periodic Motion around Equilibria.
- Reduction to the Centre Manifold.

What is a Solar Sail?

- It is a proposed form of spacecraft propulsion that uses large membrane mirrors.
- The impact of the photons emitted by the Sun onto the surface of the sail and its further reflection produce momentum.
- Solar Sails open a new wide range of possible mission that are not accessible for a traditional spacecraft.

Some Definitions

- The effectiveness of the sail is given by the dimensionless parameter β, the lightness number.
- The sail orientation is given by the normal vector to the surface of the sail (\vec{n}), parametrised by two angles, α and δ, where $\alpha \in[-\pi / 2, \pi / 2]$ and $\delta \in[-\pi / 2, \pi / 2]$.

Equations of Motion (RTBPS)

- We consider that the sail is perfectly reflecting. So the force due to the sail is in the normal direction to the surface of the sail \vec{n}.

$$
\vec{F}_{\text {sail }}=\beta \frac{m_{s}}{r_{p s}^{2}}\left\langle\vec{r}_{s}, \vec{n}\right\rangle^{2} \vec{n}
$$

- We consider the gravitational attraction of Sun and Earth: we use the RTBP adding the radiation pressure to model the motion of the sail.

Equations of Motion (RTBPS)

The equations of motion are:

$$
\begin{aligned}
\ddot{x} & =2 \dot{y}+x-(1-\mu) \frac{x-\mu}{r_{p s}^{3}}-\mu \frac{x+1-\mu}{r_{p e}^{3}}+\beta \frac{1-\mu}{r_{p s}^{2}}\left\langle\vec{r}_{s}, \vec{n}\right\rangle^{2} n_{x} \\
\ddot{y} & =-2 \dot{x}+y-\left(\frac{1-\mu}{r_{p s}^{3}}+\frac{\mu}{r_{p e}^{3}}\right) y+\beta \frac{1-\mu}{r_{p s}^{2}}\left\langle\vec{r}_{s}, \vec{n}\right\rangle^{2} n_{y} \\
\ddot{z} & =-\left(\frac{1-\mu}{r_{p s}^{3}}+\frac{\mu}{r_{p e}^{3}}\right) z+\beta \frac{1-\mu}{r_{p s}^{2}}\left\langle\vec{r}_{s}, \vec{n}\right\rangle^{2} n_{z}
\end{aligned}
$$

where,

$$
\begin{aligned}
n_{x} & =\cos (\phi(x, y)+\alpha) \cos (\psi(x, y, z)+\delta), \\
n_{y} & =\sin (\phi(x, y, z)+\alpha) \cos (\psi(x, y, z)+\delta), \\
n_{z} & =\sin (\psi(x, y, z)+\delta),
\end{aligned}
$$

with $\phi(x, y)$ and $\psi(x, y, z)$ defining the Sun - Sail direction in spherical coordinates ($\left.\vec{r}_{s}=\vec{r}_{p s} / r_{p s}\right)$.

Equilibrium Points

- The RTBP has 5 equilibrium points $\left(L_{i}\right)$. For small β, these 5 points are replaced by 5 continuous families of equilibria, parametrised by α and δ.
- For a fixed and small β, these families have two disconnected surfaces, S_{1} and S_{2}. It can be seen that S_{1} is diffeomorphic to a sphere and S_{2} is diffeomorphic to a torus around the Sun.
- All these families can be computed numerically by means of a continuation method.

Equilibrium Points

Equilibrium points in the $\{x, y\}$-plane

Equilibrium points in the $\{x, z\}$ - plane

Some Interesting Missions

- Observations of the Sun provide information of the geomagnetic storms, as in the Geostorm Warning Mission.

- Observations of the Earth's poles, as in the Polar Observer.

- C. McInnes, " Solar Sail: Technology, Dynamics and Mission Applications.", Springer-Praxis, 1999.
- D. Lawrence and S. Piggott, " Solar Sailing trajectory control for Sub-L1 stationkeeping", AIAA 2005-6173.
- J. Bookless and C. McInnes, "Control of Lagrange point orbits using Solar Sail propulsion.", 56th Astronautical Conference 2005.
- A. Farrés and À. Jorba, "Solar Sail surfing along familes of equilibrium points.", Acta Astronautica Volume 63, Issues 1-4, July-August 2008, Pages 249-257.
- A. Farrés and À. Jorba, "A dynamical System Approach for the Station Keeping of a Solar

Sail.", Journal of Astronautical Science. (to apear in 2008)

From now on ...

We fix $\alpha=0$ and $\beta=0.051689$.

- Here, we have 3 families of equilibrium points on the $\{x, z\}$ - plane parametrised by the angle δ.
- The linear behaviour for all these equilibrium points is of the type centre \times centre \times saddle.
- We want to study the families of periodic orbits that appear around these equilibrium points for a fixed δ.
- For practical reasons we focus on the region around $S L_{1}$.

Family of equilibrium points around $S L_{1}$ for $\alpha=0$ and $\beta=0.051689$

Motion around the equilibrium points

- As we have said, the linear behaviour around the fixed point is centre \times centre \times saddle.
- So up to first order the solutions around the fixed point are:

$$
\begin{aligned}
\phi(t) & =A_{0}\left[\cos \left(\omega_{1} t+\psi_{1}\right) \vec{v}_{1}+\sin \left(\omega_{1} t+\psi_{1}\right) \vec{u}_{1}\right] \\
& +B_{0}\left[\cos \left(\omega_{2} t+\psi_{2}\right) \vec{v}_{2}+\sin \left(\omega_{2} t+\psi_{2}\right) \vec{u}_{2}\right] \\
& +C_{0} e^{\lambda t} \vec{v}_{\lambda}+D_{0} e^{-\lambda t} \vec{v}_{-\lambda}
\end{aligned}
$$

Where,

- $\pm \mathrm{i} \omega_{1}$ eigenvalues with $\vec{v}_{1} \pm \mathrm{i} \vec{u}_{1}$ as eigenvectors.
- $\pm \mathrm{i} \omega_{2}$ eigenvalues with $\vec{v}_{2} \pm \mathrm{i} \vec{u}_{2}$ as eigenvectors.
$\circ \pm \lambda$ eigenvalues with $\vec{v}_{\lambda}, \vec{v}_{-\lambda}$ as eigenvectors.

Motion around the equilibrium points

- We take the linear approximation to compute an initial periodic orbit for each family. We then use a continuation method to compute the rest of the family.
- Planar family: $A_{0}=\gamma$ and $B_{0}=D_{0}=E_{0}=0$.
- Vertical family : $B_{0}=\gamma$ and $A_{0}=D_{0}=E_{0}=0$.
- We use a parallel shooting method to compute the periodic orbits.
- We have done this for different values of δ.

Planar Family of Periodic Orbits

- We have computed the planar family for $\delta=0$. (i.e. sail perpendicular to Sun).

Continuation of the Planar Family

- We have computed the planar family for $\delta=0.001$.

Continuation of the Planar Family

Planar Family of Periodic Orbits

Periodic Orbits for $\delta=0$.

Periodic Orbits for $\delta=0.01$.

Planar Family of Periodic Orbits

Familly for $\delta=0$

Familly for $\delta=0.01$

Vertical Family of Periodic Orbits

delta $=0$

delta $=0.005$

delta $=0.001$

delta $=0.01$

Reduction to the Centre Manifold

Using an appropriate linear transformation, the equations around the fixed point can be written as,

$$
\begin{aligned}
& \dot{x}=A x+f(x, y), \quad x \in \mathbb{R}^{4} \\
& \dot{y}=B y+g(x, y), \quad y \in \mathbb{R}^{2}
\end{aligned}
$$

where A is an elliptic matrix and B an hyperbolic one, and $f(0,0)=g(0,0)=0$ and $D f(0,0)=D g(0,0)=0$.

- We want to obtain $y=v(x)$, with $v(0)=0, D v(0)=0$, the local expression of the centre manifold.
- The flow restricted to the invariant manifold is

$$
\dot{x}=A x+f(x, v(x)) .
$$

Approximating the Centre Manifold

To find $y=v(x)$ we substitute this expression on the differential equations.
So $v(x)$ must satisfy,

$$
\begin{equation*}
D v(x) A x-B v(x)=g(x, v(x))-D v(x) f(x, v(x)) . \tag{1}
\end{equation*}
$$

We take,

$$
v(x)=\left(\sum_{|k| \geq 2} v_{1, k} x^{k}, \sum_{|k| \geq 2} v_{2, k} x^{k}\right), \quad k \in(\mathbb{N} \cup\{0\})^{4},
$$

its expansion as power series.
The left hand side is a linear operator w.r.t $v(x)$ and the right hand side is non-linear.

Approximating the Centre Manifold

The left hand side of equation (1),

$$
L(x)=D v(x) A x-B v(x),
$$

diagonalizes if A and B are diagonal.

In particular, if $A=\operatorname{diag}\left(\mathrm{i} \omega_{1},-\mathrm{i} \omega_{1}, \mathrm{i} \omega_{2},-\mathrm{i} \omega_{2}\right)$ and $B=\operatorname{diag}(\lambda,-\lambda)$ then,

$$
L(x)=\binom{\sum_{|k| \geq 2}\left(\mathrm{i} \omega_{1} k_{1}-\mathrm{i} \omega_{1} k_{2}+\mathrm{i} \omega_{2} k_{3}-\mathrm{i} \omega_{2} k_{4}-\lambda\right) v_{1, k} x^{k}}{\sum_{|k| \geq 2}\left(\mathrm{i} \omega_{1} k_{1}-\mathrm{i} \omega_{1} k_{2}+\mathrm{i} \omega_{2} k_{3}-\mathrm{i} \omega_{2} k_{4}+\lambda\right) v_{2, k} x^{k}} .
$$

Approximating the Centre Manifold

The right hand side of equation (1),

$$
h(x)=g(x, v(x))-D v(x) f(x, v(x)),
$$

can be expressed as,

$$
h(x)=\left(\sum_{|k| \geq 2} h_{1, k} x^{k}, \sum_{|k| \geq 2} h_{2, k} x^{k}\right)^{T},
$$

where $h_{i, k}$ depend on $v_{i, j}$ in a known way $(i=1,2)$.

- It can be seen that for a fixed degree $|k|=n$, the $h_{i, k}$ depend only on the $v_{i, j}$ such that $|j|<n$.

Approximating the Centre Manifold

Now we can solve equation (1) in an iterative way, equalising the left and the right hand side degree by degree. We have to solve a diagonal system at each degree.

Notice:

- It is important to have a fast way to find the $h_{i, k}$ to get up to high degrees.
- We do not recommend to expand $f(x, y)$ y $g(x, y)$, and then compose with $y=v(x)$. One should find other alternative ways, faster in terms of computational time.
- The matrixes A and B don't have to be diagonal, but then one must solve a larger linear system at each degree.

On the efficient computation of $h_{i, j}$

We recall that the equations of motion for $\alpha=0$ are,

$$
\begin{aligned}
& \ddot{x}=2 \dot{y}+x-\kappa_{s} \frac{x-\mu}{r_{p s}^{3}}-\kappa_{e} \frac{x+1-\mu}{r_{p e}^{3}}+\kappa_{\text {sail }} \frac{z(x-\mu)}{r_{p s}^{3} r_{2}}, \\
& \ddot{y}=-2 \dot{x}+y-\left(\frac{\kappa_{s}}{r_{p s}^{3}}+\frac{\kappa_{e}}{r_{p e}^{3}}\right) y+\kappa_{\text {sail }} \frac{z y}{r_{p s}^{3} r_{2}}, \\
& \ddot{z}=-\left(\frac{\kappa_{s}}{r_{p s}^{3}}+\frac{\kappa_{e}}{r_{p e}^{3}}\right) z-\kappa_{\text {sail }} \frac{r_{2}}{r_{p s}^{3}},
\end{aligned}
$$

where $\kappa_{s}=(1-\mu)\left(1-\beta \cos ^{3} \alpha\right), \kappa_{e}=\mu, \kappa_{\text {sail }}=\beta(1-\mu) \cos ^{2} \alpha \sin \alpha$.

- To expand the equations of motion we use the Legendre polynomials.

On the efficient computation of $h_{i, j}$

For example:

- $1 / r_{p s}$ can be expanded as,

$$
\sum_{n \geq 0} c_{n} T_{n}(x, y, z)
$$

where the $T_{n}(x, y, z)$ are homogeneous polynomials of degree n that are computed in a recurrent way.

$$
T_{n}=\frac{2 n-1}{n} x T_{n-1}-\frac{n-1}{n}\left(x^{2}+y^{2}+z^{2}\right) T_{n-2},
$$

with $T_{0}=1, \quad T_{1}=x$.

On the efficient computation of $h_{i, j}$

- The functions $f(\bar{x}, \bar{y})$ and $g(\bar{x}, \bar{y})$ can be computed in a reccurrent way as they are found after applying a linear transformation to the expansion of the system.
- Composing these recurrences with $v(\bar{x})$ we can compute the expansions of $f(\bar{x}, v(\bar{x}))$ and $g(\bar{x}, v(\bar{x}))$ in a recurrent way and so for the $h_{i, j}$.

For example:

$$
\begin{gathered}
T_{0}=1, \quad T_{1}=x(\bar{x}, v(\bar{x})) \\
T_{n}=\frac{2 n-1}{n} x(\bar{x}, v(\bar{x})) T_{n-1}-\frac{n-1}{n}\left(x(\bar{x}, v(\bar{x}))^{2}+y(\bar{x}, v(\bar{x}))^{2}+z(\bar{x}, v(\bar{x}))^{2}\right) T_{n-2} .
\end{gathered}
$$

Validation Test

- Given an initial condition v_{0}, we denote v_{1} and \tilde{v}_{1} to the integration at time $t=0.1$ of v_{0} on the centre manifold and the complete system respectively.
- The error behaves as: $\left|\tilde{v}_{1}-v_{1}\right|=c h^{n+1}$, where h is the distance to the origin of v_{0}.
- If we consider the centre manifold up to degree 8:

h	$\left\|\tilde{v}_{1}-v_{1}\right\|$	$n+1$
0.04	$2.3643547906724647 e-15$	
0.08	$1.2618898774811476 e-12$	9.059923
0.16	$6.9534006796827247 e-10$	9.105988
0.32	$3.9879163406855978 e-07$	9.163700

Results for $\delta=0$

We have computed the reduction of to the centre manifold around $\operatorname{Sub}-L_{1}$ up to degree 32. (it takes 17 min of CPU time)

- After this reduction we are in a four dimensional phase space $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
- We fix a Poincaré section $x_{3}=0$ to reduce the system to a three dimensional phase space.
- We have taken several initial conditions and computed their successive images on the Poincaré section.

Results for $\delta=0$

$$
x 4=0.01
$$

$x 4=0.11$

$x 4=0.05$

$x 4=0.17$

Results for $\delta=0$ (for a fixed energy level)

Results for $\delta=0.05$

Results for $\delta=0.05$

$x 4=0.28$

$x 4=0.7$

$x 4=0.49$

$x 4=0.84$

The End

Thank You !!!

