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Fourier analysis

Introduction

Setting
We are given an analytic, quasi–periodic function

f (t) =
∑
k∈Zm

akei2π〈k,ω〉t,

satisfying the Cauchy estimates

|ak| ≤ Ce−δ|k|
(
∃C > 0, δ > 0, |k| = |(k1, . . . , km)| = |k1|+ · · ·+ |km|

)
and with a vector of basic frequencies ω = (ω1, . . . , ωm) satisfying a
Diophantine condition

|〈k,ω〉| > D
|k|τ

,
(
∃D, τ > 0

)
.

We want to numerically compute the frequencies {〈k,ω〉}maxor
|k|=0 and

amplitudes ak from the values of f .
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Introduction

Fourier Transform

The Fourier Transform will be denoted as

f (t) F−→ F
(
f (t)
)
(ω) = f̂ (ω) =

∫ ∞
−∞

f (t)e−i2πωtdt

If f (t) is quasi–periodic, its Fourier transform is a discrete set of impulses
based at the frequencies:

f (t) =
∑
k∈Zm

akei2π〈k,ω〉t F−→ f̂ (ω) =
∑
k∈Zm

akδ〈k,ω〉(ω)
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Example: f (t) = cos(2π0.1t) + 0.5 cos(2π0.2t) + 0.4 cos(2π0.35t)
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Introduction

Time truncation −→WFT
Graphical development (E.O. Brigham, 1988)

Time truncation gives rise to the phenomenon known as leakage.
Example: T = 40, f (t) = cos(2π0.1t) + 0.5 cos(2π0.2t) + 0.4 cos(2π0.35t).
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The maxima of the WFT (bottom right) are displaced from the true
frequencies.
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Introduction

Time truncation −→WFT
Explicit formulae

I Windowed Fourier Transform:

φf ,T(ω) :=
1
T
F
(
χ[0,T]f (t)

)
(ω)

=
1
T

∫ T

0
χ[0,T](t)f (t)e−i2πωtdt.

I Leakage of a complex exponential term.

|φei2πνt,T(ω)| =
∣∣∣∣ei2π(ν−ω)T − 1

i2π(ν − ω)T

∣∣∣∣
=

∣∣∣∣ sinπ(ν − ω)T
π(ν − ω)T

∣∣∣∣
= | sinc((ν − ω)T)|
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Introduction

Reducing leackage
There are two strategies:

I Increase the window length.

|φei2πνt,T(ω)| = | sinc((ν − ω)T)| =
∣∣∣∣ sinπ(ν − ω)T
π(ν − ω)T

∣∣∣∣
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Introduction

Reducing leackage
There are two strategies:

I Use a smoother window.
We use Hanning’s:

Hnh
T (t) = qnh

(
1− cos

2πt
T

)nh

.

being qnh = nh!/
(
(2nh − 1)!!

)
.

The corresponding WFT is denoted by

φnh
f ,T(ω) := F

(
Hnh f

)
(ω) =

1
T

∫ T

0
Hnh

T (t)f (t)e−i2πωtdt,
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Introduction

Reducing leackage
There are two strategies:

I Use a smoother window.

φei2πνt,T(ω) =
ei2π(ν−ω)T − 1
i2π(ν − ω)T

= O
(

1
(ν − ω)T

)
,

vs

φnh
ei2πνt,T(ω) =

(−1)nh(nh!)2
(
ei2π(ν−ω)T − 1

)
i2π
∏nh

j=−nh

(
(ν − ω)T + j

) = O
(

1(
(ν − ω)T

)1+2nh

)
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Discretization −→ DFT
Graphical development (E.O. Brigham, 1988)

T = 40,N = 32, f (t) = cos(2π0.1t) + 0.5 cos(2π0.2t) + 0.4 cos(2π0.35t)
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Sampling −→ DFT
Explicit formulae

I DFT of {f (j T
N )}N−1

j=0 defined as {Ff ,T,N(k)}N−1
k=0 , being

Ff ,T,N(k) :=
1
N
F
(∑

j∈Z
χ[0,T]

(
j
T
N

)
f
(

j
T
N

)
δj T

N

)( k
T

)

=
1
N

N−1∑
j=0

f
(

j
T
N

)
e−i2πkj/N .

I With Hanning’s window:

Fnh
f ,T,N(k) =

1
N

N−1∑
j=0

Hnh
T

(
j
T
N

)
f
(

j
T
N

)
e−i2πkj/N .
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Sampling −→ DFT
Explicit formulae

I Relation with the WFT:

Ff ,T,N(k) = φf ,T,N

( k
T

)
+

∑
l∈Z\{0}

(
φf ,T,N

(k + lN
T

) + φf ,T,N

(k − lN
T

)

)
︸ ︷︷ ︸

error term

I The fundamental domain of the DFT for real signals is [0,T/(2N)].
T/(2N) is Nyquist’s critical frequency.
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Introduction

Sampling −→ DFT
Explicit formulae

I Relation with the WFT:

Ff ,T,N(k) = φf ,T,N

( k
T

)
+

∑
l∈Z\{0}

(
φf ,T,N

(k + lN
T

) + φf ,T,N

(k − lN
T

)

)
︸ ︷︷ ︸

error term

I The fundamental domain of the DFT for real signals is [0,T/(2N)].
T/(2N) is Nyquist’s critical frequency.

I The error term above can produce aliasing:
if a frequency of the signal is outside the fundamental domain of the
DFT, we will detect an alias of it.

I Aliasing is avoided increasing N.
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The method

Algorithm

Parameters: T (time length), N (number of samples), nh (Hanning index)
bmin minimum threshold, several tolerances.

1. Set an starting threshold for collecting peaks of the modulus of the
DFT of f (t).

2. Find initial approximations of the frequencies, starting from the
peaks of the DFT greater than the thresold.

3. Find the amplitudes of the frequencies found in the previous step, by
solving DFT(Qf ) = DFT(f ).

4. Simultaneously refine ALL the frequencies and amplitudes of the
current quasi–periodic approximation of f , by solving
DFT(Qf ) = DFT(f ).

5. Perform a DFT of the input signal minus the current quasi–periodic
approximation obtained in step 4, decrease the thresold and go back
to step 2.
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The method

Algorithm

Parameters: T (time length), N (number of samples), nh (Hanning index)
bmin minimum threshold, several tolerances.

1. Set an starting threshold for collecting peaks of the modulus of the
DFT of f (t).

2. Find initial approximations of the frequencies, starting from the
peaks of the DFT greater than the thresold.

3. Find the amplitudes of the frequencies found in the previous step, by
solving DFT(Qf ) = DFT(f ).

4. Simultaneously refine ALL the frequencies and amplitudes of the
current quasi–periodic approximation of f , by solving
DFT(Qf ) = DFT(f ).

5. Perform a DFT of the input signal minus the current quasi–periodic
approximation obtained in step 4, decrease the thresold and go back
to step 2.
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The method

An illustration of the algorithm
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
1. Starting thresold: 0.8
modulus of the DFT of the input data:
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⇒ peaks j = 61, j = 189.
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The method

An illustration of the algorithm
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
2. Approximation of frequencies:

peak 67 ⇒ frequency 0.130859375
peak 189 ⇒ frequency 0.369140625

3. Computation of amplitudes from known frequencies:

Frequency Cosine amplitude Sine amplitude
0.369140625 0.702312716711 0.136800713691
0.130859375 0.137731069235 0.699288924190

modulus of the DFT of the residual
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Fourier analysis

The method

An illustration of the algorithm
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
4. Iterative refinement:

Frequency Cosine amplitude Sine amplitude
0.369995932915 0.005462459021 1.000450861577
0.129998625183 0.999908805689 -0.002241420351

5. modulus of the DFT of input signal minus step 4:
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New threshold: 0.2
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The method

An illustration of the algorithm
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
5. modulus of the DFT of input signal minus step 4:
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 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

New threshold: 0.2
2. Approximation of frequencies:

peak 138 ⇒ frequency 0.26953125

3. Amplitudes from known frequencies:

Frequency Cosine amplitude Sine amplitude
0.369995932915 0.005462459021 1.000450861577
0.129998625183 0.999908805689 -0.002241420352
0.269531250000 -0.309714556917 -0.330986794067
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The method

An illustration of the algorithm
For f (t) = cos(2π0.13t)− 1

2 sin(2π0.27t) + sin(2π0.37t),
T = N = 512, nh = 0.
4. Iterative refinement:

Frequency Cosine amplitude Sine amplitude
0.3700000000000000 0.0000000000000009 1.0000000000000022
0.1300000000000000 0.9999999999999997 0.0000000000000010
0.2700000000000000 -0.0000000000000028 -0.4999999999999995

modulus of the DFT of the residual:
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The method

Computing amplitudes from known frequencies
We ask DFT(Qf ) = DFT(f ), being

Qf (t) = Ac
0 +

Nf∑
l=1

(
Ac

l cos(2π
νl

T
t) + As

l sin(2π
νl

T
t).

Since we work with real signals, we use the sine and cosine transforms:

cnh
f ,T,N(k) =

2
N

N−1∑
j=0

f (j T
N )Hnh

N (j) cos
(
2π k

N j
)
, k = 0, ..., N

2 ,

snh
f ,T,N(k) =

2
N

N−1∑
j=0

f (j T
N )Hnh

N (j) sin
(
2π k

N j
)
, k = 1, ..., N

2 − 1.

They are realted to the DFT in complex form by

Fnh
f ,T,N(k) =

1
2

(
cnh

f ,T,N(k)− isnh
f ,T,N(k)

)
, k = 0, . . . ,N/2.
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The method

Computing amplitudes from known frequencies
The system of equations to be solved is linear and (1 + 2Nf )× (1 + 2Nf ):

Ac
0cnh

1,T,N(0) +
Nf∑

l=1

(
Ac

l cnh
νl,N(0) + As

l c̃
nh
νl,N(0)

)
= cnh

f ,T,N(0)

Ac
0cnh

1,T,N(j) +
Nf∑

l=1

(
Ac

l cnh
νl,N(j) + As

l c̃
nh
νl,N(j)

)
= cnh

f ,T,N(j)

Nf∑
l=1

(
Ac

l snh
νl,T(j) + Ac

l s̃nh
νl,T(j)

)
= snh

f ,T,N(j)

where j = [νl + 0.5], l = 1÷ Nf (collocation harmonics), and

cnh
1 (j) = cnh

1,T,N(j),
cnh
νl,N(j) = cnh

cos( 2πνl
T ),T,N

(j), snh
νl,N(j) = snh

cos( 2πνl
T ),T,N

(j),

c̃nh
νl,N(j) = cnh

sin(
2πνl

T ),T,N
(j), s̃nh

νl,N(j) = snh

sin(
2πνl

T ),T,N
(j).
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The method

Simultaneous improvement of frequencies and amplitudes
We solve by Newton’s method the following (1 + 3Nf )× (1 + 3Nf )
non–linear system:

Ac
0cnh

1,T,N(0) +
Nf∑

l=1

(
Ac

l cnh
νl,N(0) + As

l c̃
nh
νl,N(0)

)
= cnh

f ,T,N(0)

Ac
0cnh

1,T,N(ji) +
Nf∑

l=1

(
Ac

l cnh
νl,N(ji) + As

l c̃
nh
νl,N(ji)

)
= cnh

f ,T,N(ji)

Nf∑
l=1

(
Ac

l snh
νl,N(ji) + As

l s̃
nh
νl,N(ji)

)
= snh

f ,T,N(ji)

Ac
0csnh

1,T,N(j+i ) +
Nf∑

l=1

(
Ac

l csnh
νl,N(j+i ) + As

l c̃snh
νl,N(j+i )

)
= csnh

f ,T,N(j+i )

being ji = [νi + 0.5], j+i = [νi] + 1− (j+i − [νi]).
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Error estimation

Strategy
Let us denote

I fr0 : the truncation of f to the frequencies we want to determine:

fr0(t) = Ac
0 +

∑
|k|≤r0−1
〈k,ω〉>0

(
Ac

k cos(2π〈k,ω〉t) + As
k sin(2π〈k,ω〉t)

)
.

I y = (A0, ν1,Ac
1,A

s
1, . . . , νNf ,A

c
Nf
,As

Nf
): the exact frequencies and

amplitudes.
I y + ∆y: the computed frequencies and amplitudes.

The system we solve for iterative improvement of frequencies and
amplitudes is

DFT(Qf )︸ ︷︷ ︸
g(y+∆y)

= DFT(fr0)︸ ︷︷ ︸
b

+ DFT(f − fr0)︸ ︷︷ ︸
∆b

We would get the exact frequencies and amplitudes if ∆b = 0.
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Error estimation

Strategy
I System for iterative improvement of frequencies and amplitudes:

Ac
0 +

NfX
l=1

`
Ac

l cnh
νl,N

(0) + As
lecnh
νl,N

(0)
´

= cnh
fr0 ,T,N

(0) + cnh
f−fr0 ,T,N

(0)

Ac
0cnh

1 (ji) +

NfX
l=1

`
Ac

l cnh
νl,N

(ji) + As
lecnh
νl,N

(ji)
´

= cnh
fr0 ,T,N

(ji) + cnh
f−fr0 ,T,N

(ji)

NfX
l=1

`
Ac

l snh
νl,N

(ji) + As
lesnh
νl,N

(ji)
´

= snh
fr0 ,T,N

(ji) + snh
f−fr0 ,T,N

(ji)

Ac
0csnh

1 (j+i ) +

NfX
l=1

`
Ac

l csnh
νl,N

(j+i ) + As
l ecsnh
νl,N

(j+i )
´

= csnh
fr0 ,T,N

(j+i ) + csnh
f−fr0 ,T,N

(j+i ).

where f − fr0 =
∑
|k|≥r0

akei2π〈k,ω〉t.
I The error term ∆b consists of DFT

I of periodic terms with frequencies not being computed,
I evaluated in harmonics corresponding to frequencies being computed.

Therefore, the error term ∆b can be considered leakage of the
remainder, f − fr0 .
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Error estimation

Strategy
I The error term ∆b can be considered leakage of the remainder

DFT(f − fr0) =
∑
|k|≥r0

ak DFT(ei2π〈ω,k〉t)

I The effect of the terms of the remainder on the error ∆b is
I The DFT of terms corresponding to low–order frequencies,
{〈k,ω〉}|k|&r0

, evaluated at the harmonics {ji, j+i }, will be small if the
harmonics T〈k,ω〉 are far from {ji, j+i }.
This can be achieved by increasing T as long as there is no aliasing.

I The DFT of terms corresponding to high–order frequencies may not be
small (T〈k,ω〉 can be made arbitrarily close to a ji for large enough |k|).
However, the corresponding amplitudes will be small due to the Cauchy
estimates

|ak| ≤ Ce−δ|k| ∀k ∈ Zm,

so they will be harmless.
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Error estimation

Bounding

I The system we solve for iterative improvement of frequencies and
amplitudes is

DFT(Qf )︸ ︷︷ ︸
g(y+∆y)

= DFT(fr0)︸ ︷︷ ︸
b

+ DFT(f − fr0)︸ ︷︷ ︸
∆b

We would get the exact frequencies and amplitudes if ∆b = 0.
I The error in frequencies and amplitudes is given, at first order, by

‖∆y‖∞ ≤ ‖Dg(y)−1‖∞‖∆b‖∞.

I Bounds can be obtained for ‖Dg(y)−1‖∞ and ‖∆b‖.
I Main idea: instead of the DFT,

I bound the WFT, and
I the difference WFT− DFT.
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Error estimation

Bound for ‖Dg(y)−1‖∞
We can write

Dg(y) =: M =

0BBB@
2 B0,1 . . . B0,Nf

0 B1,1 . . . B1,Nf

...
...

. . .
...

0 BNf ,1 . . . BNf ,Nf

1CCCA .

We split M = MD + MO,

M =

0BBB@
2 0 . . . 0
0 B1,1 . . . 0
...

...
. . .

...
0 0 . . . BNf ,Nf

1CCCA +

0BBB@
0 B0,1 . . . B0,Nf

0 0 . . . B1,Nf

0
...

. . .
...

0 BNf ,1 . . . 0

1CCCA .

M is close to block-diagonal, so the idea is to obtain bounds for ‖M−1
D ‖, ‖MO‖ and

use

‖(MD + MO)−1‖ ≤ ‖M−1
D ‖

1− ‖M−1
D ‖‖MO‖

.



Fourier analysis

Error estimation

Bound for ‖∆b‖∞
We have

‖∆b‖ ≤ 2C max
j∈J

∞∑
|k|=r0

e−δ|k||h̃nh
N (T〈k,ω〉 − j)|

where |h̃nh
N | is the envelope displayed below (N = 16, nh = 0).
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Fourier analysis

Error estimation

Bound for ‖∆b‖∞
We have

‖∆b‖ ≤ 2C max
j∈J

∞∑
|k|=r0

e−δ|k||h̃nh
N (T〈k,ω〉 − j)|

The Diophantine condition gives a lower bound for |T〈k, ω〉 − j|:

|T〈k,ω〉 − j| ≥ TD
(|〈k,ω〉|+ |kj|)τ

− 1.

For |k| small, |h̃nh
N (T〈k,ω〉 − j)| � 1.

After some order r∗, |h̃nh
N (T〈k,ω〉 − j)| may approach 1.

Therefore,

‖∆b‖ ≤ 2C
(

max
j∈J

r∗−1∑
|k|=r0

e−δ|k||h̃nh
N (T〈k,ω〉 − j)|+ max

j∈J

∞∑
|k|=r∗

e−δ|k|
)
.
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Error estimation

Bound for ‖∆b‖∞
In

‖∆b‖ ≤ 2C
(

max
j∈J

r∗−1∑
|k|=r0

e−δ|k||h̃nh
N (T〈k,ω〉 − j)|+ max

j∈J

∞∑
|k|=r∗

e−δ|k|
)
,

I The first term is bounded by replacing the DFT by the WFT. This
introduces an additional error term due to this approximation.

I All the sums are reduced to sums of the form
∑

j jαe−δj, which are
bounded by incomplete Gamma functions.
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Explicit bounds
Hypotheses:

1. Assume f (t) =
∑

k∈Zm akei2π〈k,ω〉t,
Cauchy estimates: |ak| ≤ Ce−δ|k|,
ω = (ω1, . . . , ωm) rac ind.,
Diophantine condition |〈k,ω〉| > D/|k|τ .

2. Apply the numerical Fourier analysis procedure with T,N, nh

with minimum “amplitude barrier” bmin.
−→ approximations Ã0, {(ν̃k, Ãc

k, Ã
s
k)}

Nf
k=1

(denote by A0, {(νk,Ac
k,A

s
k)}

Nf
k=1 the exact values)

3. Assume {T〈k,ω〉}r0
|k|=1 ⊂ {νk}

Nf
k=1, for some order r0,

4. T,N satisfy some technical (non–demanding) lower bounds.
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Error estimation

Explicit bounds
Then the error can be bounded in first–order as:

‖∆y‖ ≤ ‖M−1‖‖∆b‖,

with

I ‖M−1‖ ≤ Gnh

min(1,Amin)
+ small terms nh 0 1 2 3

Gnh 4.84 8.83 13.3 17.7

I ‖∆b‖ ≤ C1(nh,m,C, δ,D, τ, r0, r∗)
T1+2nh︸ ︷︷ ︸

leakage from orders r0, . . . , r∗

+
C2(nh,m,C, δ,D, τ, r0, r∗)

(D∗a)1+2nh︸ ︷︷ ︸
“aliasing” from orders r0, . . . , r∗

+ tail(nh,m,C, δ,D, τ, r∗))︸ ︷︷ ︸
harmless amplitudes

where D∗a := N − T(r0 + r∗ − 2)‖ω‖∞ − 1
is related to the distance of frequencies up to order r∗ to the right end of
the fundamental domain of the DFT.
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Error estimation

Rules of Thumb for high accuracy
1. Choose T such that the closest frequencies we want to determine are

several harmonics away.

2. Choose N such that the largest frequency we want to determine is away
from the right end of the fundamental domain of the DFT.

3. Take nh = 2.
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Error estimation

Rules of Thumb for high accuracy
1. Choose T such that the closest frequencies we want to determine are

several harmonics away.

2. Choose N such that the largest frequency we want to determine is away
from the right end of the fundamental domain of the DFT.

3. Take nh = 2.
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Accuracy test

Accuracy test
We consider the quasi–periodic function (ω = (1,

√
2), ϕ = (0.2, 0.3))

fµ(t) =
sin(2πω1t + ϕ1)

1− µ cos(2πω1t + ϕ1)
· sin(2πω2t + ϕ2)

1− µ cos(2πω2t + ϕ2)
, µ = 0.9.

Explicit formulae for frequencies and amplitudes can be obtained, as well as
the Cauchy estimates and the Diophantine condition.
We have performed Fourier analysis of this function for several T,N,
computing the first 20 frequencies (|k| ≤ 5).
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Accuracy test
Error in amplitudes only:
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lo
g 1

0(
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log2(T/N)

µ = 0.9

For these functions, the Cauchy estimates are equalitites:

fµ(t) =
∑
k∈Zm

akei2π〈k,ω〉t, m = 2, |ak| =
1
µ2 c|k| = 1.23 · (0.627)|k|

For |k| = 6, |ak| = 6.06× 10−2, but we get nearly full double–precision
accuracy in frequencies and amplitudes.



Fourier analysis

Study of the stability region around L5

Outline

Introduction

The method

Error estimation

Accuracy test

Study of the stability region around L5



Fourier analysis

Study of the stability region around L5

The circular, planar RTBP
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Equation of motion:

ẍ− 2ẏ = ∂xΩ(x, y),
ÿ + 2ẋ = ∂yΩ(x, y),

where

r1 =
√

(x− µ)2 + y2,

r2 =
√

(x− µ+ 1)2 + y2.

Ω(x, y) =
1
2

(x2 + y2) +
1− µ

r1
+
µ

r2
+

1
2
µ(1− µ).

Mass parameter: µ =
m1

m1 + m2
.
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Data for the Sun–Jupiter case
I Sun–Jupiter mass parameter:

µSJ = 1/1048.3486 = 9.5388 118× 10−4

I L5 is center × center: Spec Df(L5) = {ωL5
long, ω

L5
short},

ωL5
long =

(
1−

√
1− 27µ(1− µ)

2

)1/2

= 0.08046412,

ωL5
short =

(
1 +

√
1− 27µ(1− µ)

2

)1/2

= 0.99675750.
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Study of the stability region around L5

Data for the Sun–Jupiter case
I Sun–Jupiter mass parameter:

µSJ = 1/1048.3486 = 9.5388 118× 10−4

I L5 is center × center: Spec Df(L5) = {ωL5
long, ω

L5
short},

ωL5
long = 0.08046412, ωL5

short = 0.99675750.

I We’ll work with frequencies in cycles per unit of synodic time:

νL5
short = ωL5

short/(2π) = 0.01280626,
νL5

long = ωL5
long/(2π) = 0.15863888,

I NOTE: νL5
short/ν

L5
long = 12.3876.
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The stability domain
Numerical computation (G. Gómez, À. Jorba, J.J. Masdemont, C. Simó, ESA report 1993)
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Parametrize the neighborhood of L5 by(
x
y

)
=
(
µ
0

)
+(1+ρ)

(
cos(2πα)
sin(2πα)

)
For a grid of values of α, ρ, take i.c.

x0 = µ+ (1 + ρ) cos(2πα),
y0 = (1 + ρ) sin(2πα),
ẋ0 = ẏ0 = 0.

Try to integrate up to time Tmax, satisfying:
I Projection on (x, y) not encircling the main primary.
I Not too close aproaches to primaries.
I y > yc = −0.5.
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The stability domain
Refinement (C. Simó, 2006, 2008)

I First run: up to Tmax = 220(2π).
Subsisting points: 215673.

I Second run: try the previous
points up to Tmax = 224(2π).
Not all points are tested, but:

I From the border to the inside.
I Stop testing when 5

consecutive points stay for 224

Jupiter revolutions.

Subsisting points: 215115.

Note: This is not the phase portrait on an area-preserving map. The initial
conditions correspond to different energy levels.
Goal: to relate the frontier of the domain of stability and the island structure
to resonances.
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The stability domain
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Fourier exploration
I The Fourier analysis procedure has been applied to each of the

subsisting points, with

T = 65536, N = 262144, nh = 2, Nmax = 100, bmin = 10−6

I Total computing time: 352.52 hours
(using 28 processors: 12.59 hours)

I Statistics:
status #analyses

OK 205 779 95.41%
frequencies too close 8 722 4.04%
refinement did not converge 878 0.41%
the two of the above 294 0.14%
TOTAL 215 673 100%
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Basic frequencies

I Left:
I Blue: freq. of maximum amplitude. It is close to νL5

long
−→ νlong

I Red: frequency of maximum amplitude inside [0.155, 0.165].
It is close to νL5

short
−→ νshort

I Right: the quotient νshort/νlong for ρ = 4950.
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Results
A basic set has been extracted from each set of frequencies, and all
frequencies have been written as linear combinations of the basic set.
This allows to classify all the points in 4 groups:

1. Analyses ending with an error code.
9894 (4.54%)

2. Error in determination of linear combinations ≥ 10−10.
20416 (9.47%)

3. νshort is not a rational multiple of νlong.
170389 (79.09%)

4. νshort is a rational multiple of νlong.
14914 (6.91%)

1 + 2 : diffusing (chaotic) orbits.
3 : regular, non–resonant motion.
4 : regular, resonant motion.
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Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong



Fourier analysis

Study of the stability region around L5

Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong



Fourier analysis

Study of the stability region around L5

Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong



Fourier analysis

Study of the stability region around L5

Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong



Fourier analysis

Study of the stability region around L5

Graphical representation

I Blue:
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error > 10−10 in
determination of linear
combinations

I Red:
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Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong

Resonances: 14:1, 29:2
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Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong

Resonances: 14:1, 29:2, 15:1
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Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
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Graphical representation

I Blue:
all the analyses

I Dark gray:
ended with error code

I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong

Resonances: 14:1, 29:2, 15:1, 31:2, 16:1
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Graphical representation
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ended with error code
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error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong

Resonances: 14:1, 29:2, 15:1, 31:2, 16:1, 33:2
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Graphical representation

I Blue:
all the analyses
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I Green:
error > 10−10 in
determination of linear
combinations

I Red:
νshort not resonant with νlong
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Graphical representation
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combinations

I Red:
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Resonances: 14:1, 29:2, 15:1, 31:2, 16:1, 33:2, 17:1, 35:2, 18:1
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Graphical representation
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Graphical representation

I Blue:
all the analyses
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& that’s it
Thank you!!
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