Regularity Properties of Critical Invariant Circles of Twist Maps

Nikola P. Petrov, University of Oklahoma Arturo Olvera, IIMAS-UNAM

November 28, 2008

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Leftarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle
\qquad

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability
tori the phase space

Hamiltonian flow $\Leftarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle
\qquad

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Leftrightarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle
\qquad

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Leftrightarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Leftarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Leftarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Longleftrightarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle

Global Stability of Mechanical Systems

- Two degree of freedom Hamiltonian System (2DFHS):

KAM \longrightarrow Topological barrier in \longrightarrow Global stability tori the phase space

Hamiltonian flow $\Leftarrow \Rightarrow$ Area Preserving Twist Map (APTM)

- Poincaré section: (2DFHS) \longrightarrow (APTM)
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $: \Rightarrow$ Critical Invariant Circle
- Critical Invariant Circles (CIC) exhibit remarkable scaling properties at the boundary of chaos (Shenker \& Kadanoff, 82)

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- $\mathrm{CIC} \longrightarrow$ Fractional regularity \longrightarrow Universal Property
- Critical Invariant Circles (CIC) exhibit remarkable scaling properties at the boundary of chaos (Shenker \& Kadanoff, 82)

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- $\mathrm{CIC} \longrightarrow$ Fractional regularity \longrightarrow Universal Property
- Critical Invariant Circles (CIC) exhibit remarkable scaling properties at the boundary of chaos (Shenker \& Kadanoff, 82)

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- $\mathrm{CIC} \longrightarrow$ Fractional regularity \longrightarrow Universal Property
- Critical Invariant Circles (CIC) exhibit remarkable scaling properties at the boundary of chaos (Shenker \& Kadanoff, 82)

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- $\mathrm{CIC} \longrightarrow$ Fractional regularity \longrightarrow Universal Property

Our goal: Compute the regularity of CIC

- Regularity of the conjugation:
- $\mathrm{CIC} \longrightarrow$ rigid rotation

- Regularity between the conjugations:
- $\mathrm{CIC}_{1} \longrightarrow \mathrm{CIC}_{2}$

Our goal: Compute the regularity of CIC

- Regularity of the conjugation:
- $\mathrm{CIC} \longrightarrow$ rigid rotation

- Regularity between the conjugations:
- $\mathrm{CIC}_{1} \longrightarrow \mathrm{CIC}_{2}$

Our goal: Compute the regularity of CIC

- Regularity of the conjugation:
- $\mathrm{CIC} \longrightarrow$ rigid rotation

- Regularity between the conjugations:
- $\mathrm{CIC}_{1} \longrightarrow \mathrm{CIC}_{2}$

Our goal: Compute the regularity of CIC

- Regularity of the conjugation:
- $\mathrm{CIC} \longrightarrow$ rigid rotation

- Regularity between the conjugations:
- $\mathrm{CIC}_{1} \longrightarrow \mathrm{CIC}_{2}$

- De la Llave and Petrov used Harmonic Analysis Methods to determine the regularity of Critical Circles Maps, $\mathbb{T} \mapsto \mathbb{T}$ (Llave \& Petrov,02)
- We extend this methodology to the study of CIC of APTM
- De la Llave and Petrov used Harmonic Analysis Methods to determine the regularity of Critical Circles Maps, $\mathbb{T} \mapsto \mathbb{T}$ (Llave \& Petrov,02)
- We extend this methodology to the study of CIC of APTM

Area Preserving Twist Maps (APTM)

- One parameter family of APTM $F_{\lambda}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}:$

$$
\begin{aligned}
& y_{n+1}=y_{n}+\lambda V\left(x_{n}\right) \\
& x_{n+1}=x_{n}+y_{n+1}
\end{aligned}
$$

where $V(x)=V(x+1)$ and has zero-average.

- Rotation number: $\rho=\lim _{n \rightarrow \pm \infty} \frac{x_{n}-x_{0}}{n}$
\qquad

Area Preserving Twist Maps (APTM)

- One parameter family of APTM $F_{\lambda}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}:$

$$
\begin{aligned}
& y_{n+1}=y_{n}+\lambda V\left(x_{n}\right) \\
& x_{n+1}=x_{n}+y_{n+1}
\end{aligned}
$$

where $V(x)=V(x+1)$ and has zero-average.

- Rotation number: $\rho=\lim _{n \rightarrow \pm \infty} \frac{x_{n}-x_{0}}{n}$
\qquad

Area Preserving Twist Maps (APTM)

- Invariant Circle of rotation number ρ, IC_{ρ} is the graph of a Lipschitz function (Birkhoff,)

- If ρ is a Diophantine number $\longrightarrow \mathrm{IC}_{\rho}$ depends analytically on λ
- Golden $\mathrm{IC}_{\rho} \longrightarrow \rho=\sigma_{G}=[1,1,1, \ldots]$

Area Preserving Twist Maps (APTM)

- Invariant Circle of rotation number ρ, IC_{ρ} is the graph of a Lipschitz function (Birkhoff,)

- If ρ is a Diophantine number $\longrightarrow \mathrm{IC}_{\rho}$ depends analytically on λ
- Golden $\mathrm{IC}_{\rho} \longrightarrow \rho=\sigma_{G}=[1,1,1, \ldots]$

Area Preserving Twist Maps (APTM)

- Invariant Circle of rotation number ρ, IC_{ρ} is the graph of a Lipschitz function (Birkhoff,)

- If ρ is a Diophantine number $\longrightarrow \mathrm{IC} \rho$ depends analytically on λ
- Golden $\mathrm{IC}_{\rho} \longrightarrow \rho=\sigma_{G}=[1,1,1, \ldots]$

Existence of Invariant Circles

- If $\lambda \sup _{x}|V(x)|>1 \longrightarrow \nexists$ any IC_{ρ}
- If $\lambda>4 / 3 \longrightarrow \nexists$ Golden IC_{ρ}
- Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$
\begin{array}{lcc}
\exists \mathrm{IC}_{\rho} & \text { if } & |\lambda|<\bar{\lambda}_{\rho} \\
& \text { and } & \\
\nexists \mathrm{IC}_{\rho} & \text { if } & |\lambda|>\bar{\lambda}_{\rho}
\end{array}
$$

- Critical Invariant Circle (CIC)

$$
\lambda \longrightarrow \bar{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}
$$

Existence of Invariant Circles

- If $\lambda \sup _{x}|V(x)|>1 \longrightarrow \nexists$ any IC_{ρ}
- If $\lambda>4 / 3 \longrightarrow \nexists$ Golden IC_{ρ}
- Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$
\begin{array}{lcc}
\exists \mathrm{IC}_{\rho} & \text { if } & |\lambda|<\bar{\lambda}_{\rho} \\
& \text { and } & \\
\nexists \mathrm{IC}_{\rho} & \text { if } & |\lambda|>\bar{\lambda}_{\rho}
\end{array}
$$

- Critical Invariant Circle (CIC)

$$
\lambda \longrightarrow \bar{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}
$$

Existence of Invariant Circles

- If $\lambda \sup _{x}|V(x)|>1 \longrightarrow \nexists$ any IC_{ρ}
- If $\lambda>4 / 3 \longrightarrow \nexists$ Golden IC_{ρ}
- Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$
\begin{array}{lcc}
\exists \mathrm{IC}_{\rho} & \text { if } & |\lambda|<\bar{\lambda}_{\rho} \\
& \text { and } & \\
\nexists \mathrm{IC}_{\rho} & \text { if } & |\lambda|>\bar{\lambda}_{\rho}
\end{array}
$$

- Critical Invariant Circle (CIC)

$$
\lambda \longrightarrow \bar{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}
$$

- If $\lambda \sup _{x}|V(x)|>1 \longrightarrow \nexists$ any IC_{ρ}
- If $\lambda>4 / 3 \longrightarrow \nexists$ Golden IC_{ρ}
- Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$
\begin{array}{lcc}
\exists \mathrm{IC}_{\rho} & \text { if } & |\lambda|<\bar{\lambda}_{\rho} \\
& \text { and } & \\
\nexists \mathrm{IC}_{\rho} & \text { if } & |\lambda|>\bar{\lambda}_{\rho}
\end{array}
$$

- Critical Invariant Circle (CIC)

$$
\lambda \longrightarrow \bar{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}
$$

Description of CIC:

- $R: \mathbb{T} \mapsto \mathbb{R}$ is the graph of IC_{ρ}

- Advance Map $g: \mathbb{T} \mapsto \mathbb{T}$ defined by

$$
F(x, R(x))=(g(x), R \circ g(x))
$$

Description of CIC:

- $R: \mathbb{T} \mapsto \mathbb{R}$ is the graph of IC_{ρ}

- Advance Map $g: \mathbb{T} \mapsto \mathbb{T}$ defined by

$$
F(x, R(x))=(g(x), R \circ g(x))
$$

Description of CIC:

- Hull Map $\Psi: \mathbb{T} \mapsto \mathbb{T} \times \mathbb{R}$ such that:

$$
F \circ \Psi(x)=\Psi(x+\rho)
$$

- Conjugation function $h: \pi_{1} \circ \Psi: \mathbb{T} \mapsto \mathbb{T}$ where:

$$
g \circ h(x)=h(x+\rho)
$$

Description of CIC:

- Hull Map $\Psi: \mathbb{T} \mapsto \mathbb{T} \times \mathbb{R}$ such that:

$$
F \circ \Psi(x)=\Psi(x+\rho)
$$

- Conjugation function $h: \pi_{1} \circ \Psi: \mathbb{T} \mapsto \mathbb{T}$ where:

$$
g \circ h(x)=h(x+\rho)
$$

Description of CIC:

- Conjugating g to a rotation by σ_{G} :

$$
g \circ h(x)=h\left(x+\sigma_{\mathrm{G}}\right)
$$

$$
(g=\text { thick line }, h=\text { thin line })
$$

Big Conjugacies

- Conjugation of two CIC, γ_{1} and γ_{2} :

$$
\begin{aligned}
& G^{\gamma_{1}, \gamma_{2}}=g_{\gamma_{1}} \circ g_{\gamma_{2}}^{-1} \\
& H^{\gamma_{1}, \gamma_{2}}=h_{\gamma_{1}} \circ h_{\gamma_{2}}^{-1}
\end{aligned}
$$

HÖLDER REGULARITY

For $\kappa=n+\xi$ with $n \in \mathbb{Z}$ and $\xi \in(0,1)$:

The function $K: \mathbb{T} \rightarrow \mathbb{R}$ has global Hölder exponent κ $\left(K \in \Lambda_{\kappa}(\mathbb{T})\right)$ when K is n time differentiable and, for some constant $C>0$:

$$
\left|D^{n} K\left(\theta_{1}\right)-D^{n} K\left(\theta_{0}\right)\right| \leq C\left|\theta_{1}-\theta_{0}\right|^{\xi}
$$

$\kappa(K):=$ Is the Hölder regularity of K

HÖLDER REGULARITY

For $\kappa=n+\xi$ with $n \in \mathbb{Z}$ and $\xi \in(0,1)$:

The function $K: \mathbb{T} \rightarrow \mathbb{R}$ has global Hölder exponent κ $\left(K \in \Lambda_{\kappa}(\mathbb{T})\right)$ when K is n time differentiable and, for some constant $C>0$:

$$
\left|D^{n} K\left(\theta_{1}\right)-D^{n} K\left(\theta_{0}\right)\right| \leq C\left|\theta_{1}-\theta_{0}\right|^{\xi}
$$

$\kappa(K):=$ Is the Hölder regularity of K

HÖLDER REGULARITY

For $\kappa=n+\xi$ with $n \in \mathbb{Z}$ and $\xi \in(0,1)$:

The function $K: \mathbb{T} \rightarrow \mathbb{R}$ has global Hölder exponent κ $\left(K \in \Lambda_{\kappa}(\mathbb{T})\right)$ when K is n time differentiable and, for some constant $C>0$:

$$
\left|D^{n} K\left(\theta_{1}\right)-D^{n} K\left(\theta_{0}\right)\right| \leq C\left|\theta_{1}-\theta_{0}\right|^{\xi}
$$

$\kappa(K):=$ Is the Hölder regularity of K

CIC and Universality

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
\exists ! Nontrivial fixed point of \Rightarrow Universal property
renormalization operator
- The regularity of R is a universal number $(\kappa(R))$
- The regularity of g, h and h^{-1} are universal numbers
- Regularity of "Big" conjugacies:

$$
\begin{aligned}
& \kappa(h)<\kappa(R) \\
& \kappa(h)<\kappa(H) \\
& \kappa(g)<\kappa(G)
\end{aligned}
$$

CIC and Universality

－Universality：A characteristic is universal when it takes the same value in a open set of functions
－Conjectures：
\exists ! Nontrivial fixed point of \Rightarrow Universal property
renormalization operator
－The regularity of R is a universal number $(\kappa(R))$
－The regularity of g, h and h^{-1} are universal numbers
－Regularity of＂Big＂conjugacies：

$$
\begin{aligned}
& \kappa(h)<\kappa(R) \\
& \kappa(h)<\kappa(H) \\
& \kappa(g)<\kappa(G)
\end{aligned}
$$

CIC and Universality

－Universality：A characteristic is universal when it takes the same value in a open set of functions
－Conjectures：
－

$$
\exists!\text { Nontrivial fixed point of } \quad \Rightarrow \quad \text { Universal property }
$$ renormalization operator

－The regularity of R is a universal number $(\kappa(R))$
－The regularity of g, h and h^{-1} are universal numbers
－Regularity of＂Big＂conjugacies：

$$
\begin{aligned}
& \kappa(h)<\kappa(R) \\
& \kappa(h)<\kappa(H) \\
& \kappa(g)<\kappa(G)
\end{aligned}
$$

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
-

\exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator

- The regularity of R is a universal number $(\kappa(R))$
- The regularity of g, h and h^{-1} are universal numbers
- Regularity of "Big" conjugacies:

$$
\begin{aligned}
& \kappa(h)<\kappa(R) \\
& \kappa(h)<\kappa(H) \\
& \kappa(g)<\kappa(G)
\end{aligned}
$$

CIC and Universality

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
-

\exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator

- The regularity of R is a universal number $(\kappa(R))$
- The regularity of g, h and h^{-1} are universal numbers
- Regularity of "Big" conjugacies:

$$
\begin{aligned}
& \kappa(h)<\kappa(R) \\
& \kappa(h)<\kappa(H) \\
& \kappa(g)<\kappa(G)
\end{aligned}
$$

CIC and Universality

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
-

\exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator

- The regularity of R is a universal number $(\kappa(R))$
- The regularity of g, h and h^{-1} are universal numbers
- Regularity of "Big" conjugacies:

$$
\begin{aligned}
& \kappa(h)<\kappa(R) \\
& \kappa(h)<\kappa(H) \\
& \kappa(g)<\kappa(G)
\end{aligned}
$$

Poisson kernel method

- Poisson kernel (periodic case):

$$
\begin{aligned}
& P_{s}(x)=\sum_{k \in \mathbb{Z}} s^{|k|} \mathrm{e}^{2 \pi i k x} \\
&=\frac{1-s^{2}}{1-2 s \cos 2 \pi x+s^{2}}, \quad s \in[0,1) \\
&\left(\mathrm{e}^{-t \sqrt{-\Delta}} h\right)(x)=\left(P_{\exp (-2 \pi t)} * h\right)(x) \\
&=\sum_{k \in \mathbb{Z}} \hat{h}_{k} \mathrm{e}^{-2 \pi t|k|} \mathrm{e}^{2 \pi i k x}
\end{aligned}
$$

- Theorem ("Poisson kernel method"):
$h \in \Lambda_{\alpha}(\mathbb{T})$ if and only if $\forall \eta \geq 0$

$$
\left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} h\right\|_{L^{\infty}} \leq C t^{\alpha-\eta} .
$$

Poisson kernel method

- Poisson kernel (periodic case):

$$
\begin{aligned}
P_{s}(x) & =\sum_{k \in \mathbb{Z}} s^{|k|} \mathrm{e}^{2 \pi i k x} \\
& =\frac{1-s^{2}}{1-2 s \cos 2 \pi x+s^{2}}, \quad s \in[0,1)
\end{aligned}
$$

-

$$
\begin{aligned}
\left(\mathrm{e}^{-t \sqrt{-\Delta}} h\right)(x) & =\left(P_{\exp (-2 \pi t)} * h\right)(x) \\
& =\sum_{k \in \mathbb{Z}} \hat{h}_{k} \mathrm{e}^{-2 \pi t|k|} \mathrm{e}^{2 \pi i k x}
\end{aligned}
$$

- Theorem ("Poisson kernel method"): $h \in \Lambda_{\alpha}(\mathbb{T})$ if and only if $\forall \eta \geq 0$

$$
\left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} h\right\|_{L^{\infty}} \leq C t^{\alpha-\eta} .
$$

Poisson kernel method

- Poisson kernel (periodic case):

$$
\begin{aligned}
P_{s}(x) & =\sum_{k \in \mathbb{Z}} s^{|k|} \mathrm{e}^{2 \pi i k x} \\
& =\frac{1-s^{2}}{1-2 s \cos 2 \pi x+s^{2}}, \quad s \in[0,1)
\end{aligned}
$$

-

$$
\begin{aligned}
\left(\mathrm{e}^{-t \sqrt{-\Delta}} h\right)(x) & =\left(P_{\exp (-2 \pi t)} * h\right)(x) \\
& =\sum_{k \in \mathbb{Z}} \hat{h}_{k} \mathrm{e}^{-2 \pi t|k|} \mathrm{e}^{2 \pi i k x}
\end{aligned}
$$

- Theorem ("Poisson kernel method"): $h \in \Lambda_{\alpha}(\mathbb{T})$ if and only if $\forall \eta \geq 0$

$$
\left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} h\right\|_{L^{\infty}} \leq C t^{\alpha-\eta}
$$

Advantages of the "Poisson kernel method"

$$
\log \left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} h\right\|_{L^{\infty}} \leq \text { const }+(\alpha-\eta) \log t
$$

- the number of values of t is not limited;
- all known Fourier coefficients taken into account in calculating each point;
- different η values \rightarrow numerical tests.

Advantages of the "Poisson kernel method"

$$
\log \left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} h\right\|_{L^{\infty}} \leq \text { const }+(\alpha-\eta) \log t
$$

- the number of values of t is not limited;
- all known Fourier coefficients taken into account in calculating each point;
- different η values \rightarrow numerical tests.

Advantages of the "Poisson kernel method"

$$
\log \left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} h\right\|_{L^{\infty}} \leq \text { const }+(\alpha-\eta) \log t
$$

- the number of values of t is not limited;
- all known Fourier coefficients taken into account in calculating each point;
- different η values \rightarrow numerical tests.

Numerical computation of CIC

Area Preserving Twist Maps (APTM) Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in\left[\rho_{1}, \rho_{2}\right]$ exists at least a pair of periodic orbits with rotation number ω.
- Aubry Mather: Let $\left\{\omega_{i}\right\}_{i=0}^{\infty}, \omega_{i} \in \mathbb{Q}$, s.t.

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

then the limit set of $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$ converges to an IC_{ρ} (or a Cantorus)

Numerical computation of CIC

Area Preserving Twist Maps (APTM)

Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in\left[\rho_{1}, \rho_{2}\right]$ exists at least a pair of periodic orbits with rotation number ω.
- Aubry Mather: Let $\left\{\omega_{i}\right\}_{i=0}^{\infty}, \omega_{i} \in \mathbb{Q}$, s.t.

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

then the limit set of $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$ converges to an IC_{ρ} (or a Cantorus)

Area Preserving Twist Maps (APTM)
Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in\left[\rho_{1}, \rho_{2}\right]$ exists at least a pair of periodic orbits with rotation number ω.
- Aubry Mather: Let $\left\{\omega_{i}\right\}_{i=0}^{\infty}, \omega_{i} \in \mathbb{Q}$, s.t.

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

then the limit set of $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$ converges to an IC_{ρ} (or a Cantorus)

Numerical computation of CIC

Area Preserving Twist Maps (APTM)
Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in\left[\rho_{1}, \rho_{2}\right]$ exists at least a pair of periodic orbits with rotation number ω.
- Aubry Mather: Let $\left\{\omega_{i}\right\}_{i=0}^{\infty}, \omega_{i} \in \mathbb{Q}$, s.t.

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

then the limit set of $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$ converges to an IC_{ρ} (or a Cantorus)

Greene's residues method

Greene criterion to determine CIC with rotation number ρ :

- Let \mathcal{R}_{i} be the residue of an hyperbolic periodic orbits $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$, such that

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

- $X_{\omega_{i}}$ are the approximants of an IC_{ρ}
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto 0$ then $\exists \mathrm{IC}_{\rho}$
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-\infty$ then $\nexists \mathrm{IC}_{\rho}$ (Cantorus)
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-0.25542 \ldots$ then IC_{ρ} is critical
\qquad
\qquad

Greene's residues method

Greene criterion to determine CIC with rotation number ρ :

- Let \mathcal{R}_{i} be the residue of an hyperbolic periodic orbits $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$, such that

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

- $X_{\omega_{i}}$ are the approximants of an IC_{ρ}
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto 0$ then $\exists \mathrm{IC}_{\rho}$
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-\infty$ then $\nexists \mathrm{IC}_{\rho}$ (Cantorus)
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-0.25542 \ldots$ then IC_{ρ} is critical

Greene's residues method

Greene criterion to determine CIC with rotation number ρ :

- Let \mathcal{R}_{i} be the residue of an hyperbolic periodic orbits $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$, such that

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

- $X_{\omega_{i}}$ are the approximants of an IC_{ρ}
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto 0$ then $\exists \mathrm{IC}_{\rho}$
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-\infty$ then $\nexists \mathrm{IC}_{\rho}$ (Cantorus)
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-0.25542 \ldots$ then IC_{ρ} is critical

Greene's residues method

Greene criterion to determine CIC with rotation number ρ :

- Let \mathcal{R}_{i} be the residue of an hyperbolic periodic orbits $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$, such that

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

- $X_{\omega_{i}}$ are the approximants of an IC_{ρ}
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto 0$ then $\exists \mathrm{IC}_{\rho}$
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-\infty$ then $\nexists \mathrm{IC}_{\rho}$ (Cantorus)
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-0.25542 \ldots$ then IC_{ρ} is critical
\qquad

Greene's residues method

Greene criterion to determine CIC with rotation number ρ :

- Let \mathcal{R}_{i} be the residue of an hyperbolic periodic orbits $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$, such that

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

- $X_{\omega_{i}}$ are the approximants of an IC_{ρ}
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto 0$ then $\exists \mathrm{IC}_{\rho}$
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-\infty$ then $\nexists \mathrm{IC}_{\rho}$ (Cantorus)
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-0.25542 \ldots$ then IC_{ρ} is critical

Greene's residues method

Greene criterion to determine CIC with rotation number ρ :

- Let \mathcal{R}_{i} be the residue of an hyperbolic periodic orbits $\left\{X_{\omega_{i}}\right\}_{i=0}^{\infty}$, such that

$$
\lim _{i \rightarrow \infty} \omega_{i}=\rho
$$

- $X_{\omega_{i}}$ are the approximants of an IC_{ρ}
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto 0$ then $\exists \mathrm{IC}_{\rho}$
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-\infty$ then $\nexists \mathrm{IC}_{\rho}$ (Cantorus)
- If $\lim _{i \rightarrow \infty} \mathcal{R}_{i} \mapsto-0.25542 \ldots$ then IC_{ρ} is critical

Numerical Experiments

We studied six APTM: $\left\{\begin{array}{c}y_{n+1}=y_{n}+\lambda V\left(x_{n}\right) \\ x_{n+1}=x_{n}+y_{n+1}\end{array}\right.$

- Standard map:

$$
V(x)=\sin (2 \pi x)
$$

- Two harmonics map:

$$
V(x)=\sin (2 \pi x)+0.03 \sin (6 \pi x)
$$

- Critical map:

$$
V(x)=\sin (2 \pi x)-0.5 \sin (4 \pi x)
$$

Numerical Experiments

We studied six APTM: $\left\{\begin{array}{l}y_{n+1}=y_{n}+\lambda V\left(x_{n}\right) \\ x_{n+1}=x_{n}+y_{n+1}\end{array}\right.$

- Standard map:

$$
V(x)=\sin (2 \pi x)
$$

- Two harmonics map:

$$
V(x)=\sin (2 \pi x)+0.03 \sin (6 \pi x)
$$

- Critical map:

$$
V(x)=\sin (2 \pi x)-0.5 \sin (4 \pi x)
$$

Numerical Experiments

We studied six APTM: $\left\{\begin{array}{c}y_{n+1}=y_{n}+\lambda V\left(x_{n}\right) \\ x_{n+1}=x_{n}+y_{n+1}\end{array}\right.$

- Standard map:

$$
V(x)=\sin (2 \pi x)
$$

- Two harmonics map:

$$
V(x)=\sin (2 \pi x)+0.03 \sin (6 \pi x)
$$

- Critical map:

$$
V(x)=\sin (2 \pi x)-0.5 \sin (4 \pi x)
$$

Numerical Experiments

We studied six APTM: $\left\{\begin{array}{l}y_{n+1}=y_{n}+\lambda V\left(x_{n}\right) \\ x_{n+1}=x_{n}+y_{n+1}\end{array}\right.$

- Standard map:

$$
V(x)=\sin (2 \pi x)
$$

- Two harmonics map:

$$
V(x)=\sin (2 \pi x)+0.03 \sin (6 \pi x)
$$

- Critical map:

$$
V(x)=\sin (2 \pi x)-0.5 \sin (4 \pi x)
$$

- Analytical map:

$$
V(x)=\frac{\sin (2 \pi x)}{1-\beta \cos (2 \pi x)} \quad \beta=0.2,0.4
$$

- Tent map:
$V(x)=\sum_{j=1}^{17} c_{j} \sin (2 \pi j x) \quad c_{j}= \begin{cases}(-1)^{\frac{j+1}{2} \frac{4}{\pi^{2} j^{2}}} & j \text { odd } \\ 0 & j \text { even }\end{cases}$

- Analytical map:

$$
V(x)=\frac{\sin (2 \pi x)}{1-\beta \cos (2 \pi x)} \quad \beta=0.2,0.4
$$

- Tent map:
$V(x)=\sum_{j=1}^{17} c_{j} \sin (2 \pi j x)$

$$
c_{j}= \begin{cases}(-1)^{\frac{j+1}{2}} \frac{4}{\pi^{2} j^{2}} & j \text { odd } \\ 0 & j \text { even }\end{cases}
$$

- Rotation number(CIC) $=$ Golden mean
- Rotation number of the approximants $\rho=832040 / 1346269$
- CIC max error: 10^{-23}, Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta=1,2,3,4,5$
- Rotation number(CIC) $=$ Golden mean
- Rotation number of the approximants $\rho=832040 / 1346269$
- CIC max error: 10^{-23}, Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta=1,2,3,4,5$
- Rotation number(CIC) $=$ Golden mean
- Rotation number of the approximants $\rho=832040 / 1346269$
- CIC max error: 10^{-23}, Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta=1,2,3,4,5$
- Rotation number(CIC) $=$ Golden mean
- Rotation number of the approximants $\rho=832040 / 1346269$
- CIC max error: 10^{-23}, Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta=1,2,3,4,5$
- Rotation number(CIC) $=$ Golden mean
- Rotation number of the approximants $\rho=832040 / 1346269$
- CIC max error: 10^{-23}, Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta=1,2,3,4,5$

CIC: $R(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana $4 \rightarrow$ thick dashed. Tent \rightarrow dotted dashed.

Advance map: $g(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana $4 \rightarrow$ thick dashed. Tent \rightarrow dotted dashed.

Hull map: $h(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana $4 \rightarrow$ thick dashed. Tent \rightarrow dotted dashed.

Inverse hull map: $h^{-1}(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana $4 \rightarrow$ thick dashed. Tent \rightarrow dotted dashed.

Big conjugacies: $H(\theta)$

Self similarity of h

$4 \square$ - 㖛

Self similarity of $h-$ Fourier spectrum

CLP analysis

$$
\log _{10}\left\|\left(\frac{\partial}{\partial t}\right)^{\eta} \mathrm{e}^{-t \sqrt{-\Delta}} K\right\|_{L^{\infty}(T)} \quad \text { versus } \quad \log _{10}(t)
$$

Hölder regularities \longrightarrow Numerical results

Map	$\kappa(R)$	$\kappa(g)$	$\kappa(h)$	$\kappa\left(h^{-1}\right)$
Standart	1.83 ± 0.09	1.83 ± 0.09	0.772 ± 0.001	0.92 ± 0.01
Two har- monics	1.79 ± 0.06	1.75 ± 0.09	0.721 ± 0.001	0.92 ± 0.01
Critical	1.83 ± 0.04	1.84 ± 0.09	0.724 ± 0.002	0.93 ± 0.02
Analytic 0.2	1.86 ± 0.08	1.86 ± 0.08	0.722 ± 0.001	0.92 ± 0.01
Analytic 0.4	1.85 ± 0.05	1.85 ± 0.05	0.724 ± 0.002	0.93 ± 0.01
Tent	1.85 ± 0.15	1.88 ± 0.12	0.726 ± 0.003	0.93 ± 0.02

Hölder regularities of "Big" Conjugacies

- We compute the regularities of all big conjugacies H between each of the six functions h_{i}
- We have thirty functions H
- Applying CLP method:

$$
\kappa(H)=1.80 \pm 0.15
$$

Hölder regularities of "Big" Conjugacies

- We compute the regularities of all big conjugacies H between each of the six functions h_{i}
- We have thirty functions H
- Applying CLP method:

$$
\kappa(H)=1.80 \pm 0.15
$$

Hölder regularities of "Big" Conjugacies

- We compute the regularities of all big conjugacies H between each of the six functions h_{i}
- We have thirty functions H
- Applying CLP method:

$$
\kappa(H)=1.80 \pm 0.15
$$

Hölder regularities for rotation number silver mean

- Silver mean $=\sigma_{S}=[2,2,2,2, \ldots]$
- Maps: Standard and Two harmonics

$$
\begin{aligned}
\kappa\left(R_{S}\right) & =1.70 \pm 0.15 \\
\kappa\left(g_{S}\right) & =1.75 \pm 0.15 \\
\kappa\left(h_{S}\right) & =0.715 \pm 0.015 \\
\kappa\left(h_{S}^{-1}\right) & =0.87 \pm 0.02 \\
\kappa\left(H_{S}\right) & =1.80 \pm 0.15
\end{aligned}
$$

Hölder regularities for rotation number silver mean

- Silver mean $=\sigma_{S}=[2,2,2,2, \ldots]$
- Maps: Standard and Two harmonics

$$
\begin{aligned}
\kappa\left(R_{S}\right) & =1.70 \pm 0.15 \\
\kappa\left(g_{S}\right) & =1.75 \pm 0.15 \\
\kappa\left(h_{S}\right) & =0.715 \pm 0.015 \\
\kappa\left(h_{S}^{-1}\right) & =0.87 \pm 0.02 \\
\kappa\left(H_{S}\right) & =1.80 \pm 0.15
\end{aligned}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{\text {den }}=\left(\theta_{\text {den }}, R\left(\theta_{\text {den }}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{gathered}
\Delta_{i} \theta:=g^{F_{n+3}\left(\theta_{\text {den }}\right)-\theta_{\text {den }}} \begin{array}{l}
\text { and } \\
\Delta_{i} r:=R\left(g^{F_{n+3}}\left(\theta_{\text {den }}\right)\right)-R\left(\theta_{\text {den }}\right)
\end{array} \quad \text { where } F_{i}=\begin{array}{l}
\text { Fibonacci } \\
\text { numbers }
\end{array} \\
\bullet \quad \begin{array}{r}
\Delta_{i+3} \theta \\
\Delta_{i} \theta
\end{array} \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
\text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{gathered}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{\text {den }}=\left(\theta_{\text {den }}, R\left(\theta_{\text {den }}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{aligned}
& \Delta_{i} \theta:=g^{F_{n+3}}\left(\theta_{\text {den }}\right)-\theta_{\text {den }} \\
& \text { and } \quad \text { where } F_{i}= \\
& \text { Fibonacci } \\
& \text { numbers } \\
& \Delta_{i} r:=R\left(g^{F_{n+3}}\left(\theta_{\text {den }}\right)\right)-R\left(\theta_{d e n}\right) \\
& \frac{\Delta_{i+3} \theta}{\Delta_{i} \theta} \sim \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
& \text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{aligned}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{d e n}=\left(\theta_{d e n}, R\left(\theta_{d e n}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{aligned}
& \Delta_{i} \theta:=g^{F_{n+3}}\left(\theta_{\text {den }}\right)-\theta_{\text {den }} \\
& \text { and where } F_{i}= \\
& \text { Fibonacci } \\
& \text { numbers } \\
& \Delta_{i} r:=R\left(g^{\left.F_{n+3}\left(\theta_{d e n}\right)\right)-R\left(\theta_{d e n}\right)}\right. \\
& \frac{\Delta_{i+3} \theta}{\Delta_{i} \theta} \sim \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
& \text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{aligned}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{d e n}=\left(\theta_{d e n}, R\left(\theta_{d e n}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{gathered}
\Delta_{i} \theta:=g^{F_{n+3}\left(\theta_{\text {den }}\right)-\theta_{\text {den }}} \begin{array}{l}
\text { and } \\
\Delta_{i} r:=R\left(g^{F_{n+3}}\left(\theta_{\text {den }}\right)\right)-R\left(\theta_{\text {den }}\right)
\end{array} \quad \text { where } F_{i}=\begin{array}{l}
\text { Fibonacci } \\
\text { numbers }
\end{array} \\
\bullet \quad \begin{array}{r}
\Delta_{i+3} \theta \\
\Delta_{i} \theta
\end{array} \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
\text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{gathered}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{d e n}=\left(\theta_{d e n}, R\left(\theta_{d e n}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{aligned}
& \Delta_{i} \theta:=g^{F_{n+3}}\left(\theta_{\text {den }}\right)-\theta_{\text {den }} \\
& \text { and } \quad \text { where } F_{i}= \\
& \text { Fibonacci } \\
& \Delta_{i} r:=R\left(g^{F_{n+3}}\left(\theta_{\text {den }}\right)\right)-R\left(\theta_{\text {den }}\right) \\
& \text { numbers } \\
& \frac{\Delta_{i+3} \theta}{\Delta_{i} \theta} \sim \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
& \text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{aligned}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{d e n}=\left(\theta_{d e n}, R\left(\theta_{d e n}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{aligned}
& \Delta_{i} \theta:=g^{F_{n+3}}\left(\theta_{\text {den }}\right)-\theta_{\text {den }} \\
& \text { and } \\
& \Delta_{i} r:=R\left(g^{F_{n+3}}\left(\theta_{d e n}\right)\right)-R\left(\theta_{d e n}\right) \\
& \text { where } F_{i}=\text { Fibonacci } \\
& \text { where } F_{i}=\text { numbers } \\
& \frac{\Delta_{i+3} \theta}{\Delta_{i} \theta} \sim \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
& \text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{aligned}
$$

Hölder regularity and scaling factors

- Shenker \& Kadanoff (82):
- Let $\theta_{\text {den }} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{d e n}=\left(\theta_{d e n}, R\left(\theta_{d e n}\right)\right)$ are more dense around $p_{\text {den }}$.
- Asymptotic invariant behaviour:

$$
\begin{aligned}
& \Delta_{i} \theta:=g^{F_{n+3}}\left(\theta_{\text {den }}\right)-\theta_{\text {den }} \\
& \text { and } \\
& \Delta_{i} r:=R\left(g^{F_{n+3}}\left(\theta_{d e n}\right)\right)-R\left(\theta_{d e n}\right) \\
& \text { where } F_{i}=\text { Fibonacci } \\
& \text { where } F_{i}=\text { numbers } \\
& \text { - } \\
& \frac{\Delta_{i+3} \theta}{\Delta_{i} \theta} \sim \alpha_{3}^{-1} \quad \frac{\Delta_{i+3} r}{\Delta_{i} r} \sim \beta_{3}^{-1} \\
& \text { where } \alpha_{3} \sim-4.84581 \text { and } \beta_{3} \sim-16.8597
\end{aligned}
$$

Hölder regularity and scaling factors

- Hölder regularity of $R \longrightarrow|\Delta r| \sim|\Delta \theta|^{\kappa}$
- Asymptotical scaling: $\left|\beta_{3} \Delta r\right| \sim\left|\alpha_{3} \Delta \theta\right|^{\kappa}$
- $k(R) \leq \frac{\log \left(\beta_{3}\right)}{\log \left(\alpha_{3}\right)} \sim 1.7901$
- This bound is saturated.

Hölder regularity and scaling factors

- Hölder regularity of $R \longrightarrow|\Delta r| \sim|\Delta \theta|^{\kappa}$
- Asymptotical scaling: $\left|\beta_{3} \Delta r\right| \sim\left|\alpha_{3} \Delta \theta\right|^{\kappa}$
- $k(R) \leq \frac{\log \left(\beta_{3}\right)}{\log \left(\alpha_{3}\right)} \sim 1.7901$
- This bound is saturated.

Hölder regularity and scaling factors

- Hölder regularity of $R \longrightarrow|\Delta r| \sim|\Delta \theta|^{\kappa}$
- Asymptotical scaling: $\left|\beta_{3} \Delta r\right| \sim\left|\alpha_{3} \Delta \theta\right|^{\kappa}$
- $k(R) \leq \frac{\log \left(\beta_{3}\right)}{\log \left(\alpha_{3}\right)} \sim 1.7901$
- This bound is saturated.

Hölder regularity and scaling factors

- Hölder regularity of $R \longrightarrow|\Delta r| \sim|\Delta \theta|^{\kappa}$
- Asymptotical scaling: $\left|\beta_{3} \Delta r\right| \sim\left|\alpha_{3} \Delta \theta\right|^{\kappa}$
- $k(R) \leq \frac{\log \left(\beta_{3}\right)}{\log \left(\alpha_{3}\right)} \sim 1.7901$
- This bound is saturated.

Conclusions

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h^{-1} and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa\left(h^{-1}\right)$ by a confortable margin

Conclusions

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h^{-1} and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa\left(h^{-1}\right)$ by a confortable margin

Conclusions

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h^{-1} and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa\left(h^{-1}\right)$ by a confortable margin

Conclusions

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h^{-1} and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa\left(h^{-1}\right)$ by a confortable margin

Conclusions

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h^{-1} and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa\left(h^{-1}\right)$ by a confortable margin

Thank you

Gràcies

