Regularity Properties of Critical Invariant Circles of Twist Maps

Nikola P. Petrov, University of Oklahoma Arturo Olvera, IIMAS-UNAM

November 28, 2008

(日) (部) (E) (E) E

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} & {\rm stability} \\ {\rm tori} & & {\rm the} & {\rm phase} & {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $:\Rightarrow$ Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} \; {\rm stability} \\ {\rm tori} & & {\rm the} \; {\rm phase} \; {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $:\Rightarrow$ Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} \; {\rm stability} \\ {\rm tori} & & {\rm the} \; {\rm phase} \; {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $:\Rightarrow$ Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} \; {\rm stability} \\ {\rm tori} & & {\rm the} \; {\rm phase} \; {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $:\Rightarrow$ Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} \; {\rm stability} \\ {\rm tori} & & {\rm the} \; {\rm phase} \; {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $:\Rightarrow$ Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} \; {\rm stability} \\ {\rm tori} & & {\rm the} \; {\rm phase} \; {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability : \Rightarrow Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} {\rm KAM} & \longrightarrow & {\rm Topological} & {\rm barrier} & {\rm in} & \longrightarrow & {\rm Global} \; {\rm stability} \\ {\rm tori} & & {\rm the} \; {\rm phase} \; {\rm space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability $:\Rightarrow$ Critical Invariant Circle

• Two degree of freedom Hamiltonian System (2DFHS):

 $\begin{array}{cccc} \mathrm{KAM} & \longrightarrow & \mathrm{Topological} & \mathrm{barrier} & \mathrm{in} & \longrightarrow & \mathrm{Global} & \mathrm{stability} \\ \mathrm{tori} & & \mathrm{the} & \mathrm{phase} & \mathrm{space} \end{array}$

- Poincaré section: $(2DFHS) \longrightarrow (APTM)$
- KAM torus (2DFHS) \longrightarrow Invariant Circle (APTM)
- One parameter family of APTM
- Border of stability \Rightarrow Critical Invariant Circle

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- CIC \longrightarrow Fractional regularity \longrightarrow Universal Property

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- CIC \longrightarrow Fractional regularity \longrightarrow Universal Property

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- CIC \longrightarrow Fractional regularity \longrightarrow Universal Property

- Renormalization Group Analysis explains scaling properties (MacKay, 83)
- Scale invariances determine the regularity of the CIC
- CIC \longrightarrow Fractional regularity \longrightarrow Universal Property

- Regularity of the conjugation:
 - CIC \longrightarrow rigid rotation

- Regularity between the conjugations:
 - $\operatorname{CIC}_1 \longrightarrow \operatorname{CIC}_2$

- Regularity of the conjugation:
 - CIC \longrightarrow rigid rotation

- Regularity between the conjugations:
 - $\operatorname{CIC}_1 \longrightarrow \operatorname{CIC}_2$

- Regularity of the conjugation:
 - CIC \longrightarrow rigid rotation

- Regularity between the conjugations:
 - $\operatorname{CIC}_1 \longrightarrow \operatorname{CIC}_2$

- Regularity of the conjugation:
 - CIC \longrightarrow rigid rotation

- Regularity between the conjugations:
 - $\operatorname{CIC}_1 \longrightarrow \operatorname{CIC}_2$

How to compute fractional regularity?

 De la Llave and Petrov used Harmonic Analysis Methods to determine the regularity of Critical Circles Maps, T → T (Llave & Petrov,02)

• We extend this methodology to the study of CIC of APTM

How to compute fractional regularity?

 De la Llave and Petrov used Harmonic Analysis Methods to determine the regularity of Critical Circles Maps, T → T (Llave & Petrov,02)

• We extend this methodology to the study of CIC of APTM

• One parameter family of APTM $F_{\lambda} : \mathbb{T} \times \mathbb{R} \to \mathbb{T} \times \mathbb{R}$:

$$y_{n+1} = y_n + \lambda V(x_n)$$

 $x_{n+1} = x_n + y_{n+1}$

where V(x) = V(x+1) and has zero-average.

• Rotation number: $\rho = \lim_{n \to \pm \infty} \frac{x_n - x_0}{n}$

• One parameter family of APTM $F_{\lambda} : \mathbb{T} \times \mathbb{R} \to \mathbb{T} \times \mathbb{R}$:

$$y_{n+1} = y_n + \lambda V(x_n)$$
$$x_{n+1} = x_n + y_{n+1}$$

where V(x) = V(x+1) and has zero-average.

• Rotation number: $\rho = \lim_{n \to \pm \infty} \frac{x_n - x_0}{n}$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ▲□▶

• Invariant Circle of rotation number ρ , IC_{ρ} is the graph of a Lipschitz function (Birkhoff,)

- If ρ is a Diophantine number \longrightarrow IC $_{\rho}$ depends analytically on λ
- Golden IC_{ρ} $\longrightarrow \rho = \sigma_G = [1, 1, 1, ...]$

• Invariant Circle of rotation number ρ , IC_{ρ} is the graph of a Lipschitz function (Birkhoff,)

- If ρ is a Diophantine number \longrightarrow IC $_{\rho}$ depends analytically on λ
- Golden IC_{ρ} $\longrightarrow \rho = \sigma_G = [1, 1, 1, ...]$

• Invariant Circle of rotation number ρ , IC_{ρ} is the graph of a Lipschitz function (Birkhoff,)

- If ρ is a Diophantine number \longrightarrow IC $_{\rho}$ depends analytically on λ
- Golden $\operatorname{IC}_{\rho} \longrightarrow \rho = \sigma_G = [1, 1, 1, \ldots]$

• If $\lambda \sup_x |V(x)| > 1 \longrightarrow \mathbb{A}$ any IC_{ρ}

• If $\lambda > 4/3 \longrightarrow \not\exists$ Golden IC_{ρ}

• Conjecture: For Diophantine ρ exists λ_{ρ} such that:

 $\exists \ \operatorname{IC}_{\rho} \qquad \text{if} \qquad |\lambda| < \bar{\lambda}_{\rho}$ and $\not\exists \ \operatorname{IC}_{\rho} \qquad \text{if} \qquad |\lambda| > \bar{\lambda}_{\rho}$

$$\lambda \longrightarrow \overline{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}$$

- If $\lambda \sup_x |V(x)| > 1 \longrightarrow \mathcal{A}$ any IC_{ρ}
- If $\lambda > 4/3 \longrightarrow \not\exists$ Golden IC_{ρ}

• Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$\lambda \longrightarrow \overline{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}$$

- If $\lambda \sup_x |V(x)| > 1 \longrightarrow \not\exists$ any IC_{ρ}
- If $\lambda > 4/3 \longrightarrow \not\exists$ Golden IC_{ρ}
- Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$\lambda \longrightarrow \overline{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}$$

- If $\lambda \sup_x |V(x)| > 1 \longrightarrow \not\exists$ any IC_{ρ}
- If $\lambda > 4/3 \longrightarrow \not\exists$ Golden IC_{ρ}
- Conjecture: For Diophantine ρ exists $\bar{\lambda}_{\rho}$ such that:

$$\lambda \longrightarrow \overline{\lambda}_{\rho} \Longrightarrow \mathrm{IC}_{\rho} \longrightarrow \mathrm{CIC}$$

• $R: \mathbb{T} \mapsto \mathbb{R}$ is the graph of IC_{ρ}

• Advance Map $g : \mathbb{T} \mapsto \mathbb{T}$ defined by

 $F(x, R(x)) = (g(x), R \circ g(x))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

• $R: \mathbb{T} \mapsto \mathbb{R}$ is the graph of IC_{ρ}

• Advance Map $g : \mathbb{T} \mapsto \mathbb{T}$ defined by

 $F(x, R(x)) = (g(x), R \circ g(x))$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ ● の ● ●

• Hull Map $\Psi : \mathbb{T} \mapsto \mathbb{T} \times \mathbb{R}$ such that:

 $F \circ \Psi(x) = \Psi(x + \rho)$

• Conjugation function $h: \pi_1 \circ \Psi : \mathbb{T} \mapsto \mathbb{T}$ where: $g \circ h(x) = h(x + \rho)$

• Hull Map $\Psi : \mathbb{T} \mapsto \mathbb{T} \times \mathbb{R}$ such that:

 $F \circ \Psi(x) = \Psi(x + \rho)$

• Conjugation function $h: \pi_1 \circ \Psi : \mathbb{T} \mapsto \mathbb{T}$ where: $g \circ h(x) = h(x + \rho)$

• Conjugating g to a rotation by $\sigma_{\rm G}$: $g \circ h(x) = h(x + \sigma_{\rm G})$

(g = thick line, h = thin line)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 りへで

Big Conjugacies

• Conjugation of two CIC, γ_1 and γ_2 :

$$G^{\gamma_1,\gamma_2} = g_{\gamma_1} \circ g_{\gamma_2}^{-1}$$

$$H^{\gamma_1,\gamma_2} = h_{\gamma_1} \circ h_{\gamma_2}^{-1}$$

▲□▶ ▲□▶ ▲王▶ ▲王 ● つへで

HÖLDER REGULARITY

For $\kappa = n + \xi$ with $n \in \mathbb{Z}$ and $\xi \in (0, 1)$:

The function $K : \mathbb{T} \to \mathbb{R}$ has global Hölder exponent κ $(K \in \Lambda_{\kappa}(\mathbb{T}))$ when K is n time differentiable and, for some constant C > 0:

$$|D^n K(\theta_1) - D^n K(\theta_0)| \le C |\theta_1 - \theta_0|^{\xi}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ★□▶ ▲□

 $\kappa(K) :=$ Is the Hölder regularity of K

HÖLDER REGULARITY

For $\kappa = n + \xi$ with $n \in \mathbb{Z}$ and $\xi \in (0, 1)$:

The function $K : \mathbb{T} \to \mathbb{R}$ has global Hölder exponent κ $(K \in \Lambda_{\kappa}(\mathbb{T}))$ when K is n time differentiable and, for some constant C > 0:

$$|D^n K(\theta_1) - D^n K(\theta_0)| \le C |\theta_1 - \theta_0|^{\xi}$$

 $\kappa(K) :=$ Is the Hölder regularity of K
HÖLDER REGULARITY

For $\kappa = n + \xi$ with $n \in \mathbb{Z}$ and $\xi \in (0, 1)$:

The function $K : \mathbb{T} \to \mathbb{R}$ has global Hölder exponent κ $(K \in \Lambda_{\kappa}(\mathbb{T}))$ when K is n time differentiable and, for some constant C > 0:

$$|D^n K(\theta_1) - D^n K(\theta_0)| \le C |\theta_1 - \theta_0|^{\xi}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ★□▶ ▲□

 $\kappa(K) :=$ Is the Hölder regularity of K

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:

 \exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator

- The regularity of R is a universal number $(\kappa(R))$
- The regularity of g, h and h^{-1} are universal numbers
- Regularity of "Big" conjugacies:

 $\kappa(h) < \kappa(R)$ $\kappa(h) < \kappa(H)$ $\kappa(g) < \kappa(G)$

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:

 \exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator

- The regularity of R is a universal number $(\kappa(R))$
- The regularity of g, h and h^{-1} are universal numbers
- Regularity of "Big" conjugacies:

 $\begin{aligned} \kappa(h) &< \kappa(R) \\ \kappa(h) &< \kappa(H) \\ \kappa(g) &< \kappa(G) \end{aligned}$

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
 - \exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator
 - The regularity of R is a universal number $(\kappa(R))$
 - The regularity of g, h and h^{-1} are universal numbers
 - Regularity of "Big" conjugacies:

 $\kappa(h) < \kappa(R)$ $\kappa(h) < \kappa(H)$ $\kappa(g) < \kappa(G)$

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
 - \exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator
 - The regularity of R is a universal number $(\kappa(R))$
 - The regularity of g, h and h^{-1} are universal numbers
 - Regularity of "Big" conjugacies:

 $\begin{aligned} \kappa(h) &< \kappa(R) \\ \kappa(h) &< \kappa(H) \\ \kappa(g) &< \kappa(G) \end{aligned}$

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
 - \exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator
 - The regularity of R is a universal number $(\kappa(R))$
 - The regularity of g, h and h^{-1} are universal numbers
 - Regularity of "Big" conjugacies:

 $\kappa(h) < \kappa(R)$ $\kappa(h) < \kappa(H)$ $\kappa(g) < \kappa(G)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ★□▶ ▲□

- Universality: A characteristic is universal when it takes the same value in a open set of functions
- Conjectures:
 - \exists ! Nontrivial fixed point of \Rightarrow Universal property renormalization operator
 - The regularity of R is a universal number $(\kappa(R))$
 - The regularity of g, h and h^{-1} are universal numbers
 - Regularity of "Big" conjugacies:

 $\begin{aligned} \kappa(h) &< \kappa(R) \\ \kappa(h) &< \kappa(H) \\ \kappa(g) &< \kappa(G) \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ★□▶ ▲□

Poisson kernel method

 $P_s($

• Poisson kernel (periodic case):

$$\begin{aligned} x) &= \sum_{k \in \mathbb{Z}} s^{|k|} e^{2\pi i k x} \\ &= \frac{1 - s^2}{1 - 2s \cos 2\pi x + s^2} , \quad s \in [0, 1) \end{aligned}$$

$$\left(e^{-t\sqrt{-\Delta}}h\right)(x) = \left(P_{\exp(-2\pi t)}*h\right)(x)$$

$$= \sum_{k \in \mathbb{Z}} \hat{h}_k e^{-2\pi t|k|} e^{2\pi i kx}$$

• Theorem ("Poisson kernel method"): $h \in \Lambda_{\alpha}(\mathbb{T})$ if and only if $\forall \eta \geq 0$

$$\left\| \left(\frac{\partial}{\partial t} \right)^{\eta} e^{-t\sqrt{-\Delta}} h \right\|_{L^{\infty}} \le C t^{\alpha - \eta}$$

Poisson kernel method

 P_s

• Poisson kernel (periodic case):

$$(x) = \sum_{k \in \mathbb{Z}} s^{|k|} e^{2\pi i k x}$$

= $\frac{1 - s^2}{1 - 2s \cos 2\pi x + s^2}$, $s \in [0, 1)$

$$\left(e^{-t\sqrt{-\Delta}}h\right)(x) = \left(P_{\exp(-2\pi t)}*h\right)(x)$$

$$= \sum_{k \in \mathbb{Z}} \hat{h}_k e^{-2\pi t|k|} e^{2\pi i kx}$$

• Theorem ("Poisson kernel method"): $h \in \Lambda_{\alpha}(\mathbb{T})$ if and only if $\forall \eta \geq 0$

$$\left\| \left(\frac{\partial}{\partial t} \right)^{\eta} e^{-t\sqrt{-\Delta}} h \right\|_{L^{\infty}} \le C t^{\alpha - \eta}$$

Poisson kernel method

• Poisson kernel (periodic case):

$$f_{s}(x) = \sum_{k \in \mathbb{Z}} s^{|k|} e^{2\pi i k x}$$

= $\frac{1 - s^{2}}{1 - 2s \cos 2\pi x + s^{2}}$, $s \in [0, 1)$

$$\left(e^{-t\sqrt{-\Delta}}h\right)(x) = \left(P_{\exp(-2\pi t)}*h\right)(x)$$

$$= \sum_{k \in \mathbb{Z}} \hat{h}_k e^{-2\pi t|k|} e^{2\pi i kx}$$

• Theorem ("Poisson kernel method"): $h \in \Lambda_{\alpha}(\mathbb{T})$ if and only if $\forall \eta \geq 0$

$$\left\| \left(\frac{\partial}{\partial t} \right)^{\eta} e^{-t\sqrt{-\Delta}} h \right\|_{L^{\infty}} \le C t^{\alpha - \eta}$$

Advantages of the "Poisson kernel method"

$$\log \left\| \left(\frac{\partial}{\partial t} \right)^{\eta} e^{-t\sqrt{-\Delta}} h \right\|_{L^{\infty}} \le \operatorname{const} + (\alpha - \eta) \log t$$

- the number of values of t is not limited;
- all known Fourier coefficients taken into account in calculating each point;
- different η values \rightarrow numerical tests.

Advantages of the "Poisson kernel method"

$$\log \left\| \left(\frac{\partial}{\partial t} \right)^{\eta} e^{-t\sqrt{-\Delta}} h \right\|_{L^{\infty}} \le \operatorname{const} + (\alpha - \eta) \log t$$

- the number of values of t is not limited;
- all known Fourier coefficients taken into account in calculating each point;
- different η values \rightarrow numerical tests.

Advantages of the "Poisson kernel method"

$$\log \left\| \left(\frac{\partial}{\partial t} \right)^{\eta} e^{-t\sqrt{-\Delta}} h \right\|_{L^{\infty}} \le \operatorname{const} + (\alpha - \eta) \log t$$

- the number of values of t is not limited;
- all known Fourier coefficients taken into account in calculating each point;
- different η values \rightarrow numerical tests.

Area Preserving Twist Maps (APTM) Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in [\rho_1, \rho_2]$ exists at least a pair of periodic orbits with rotation number ω .
- Aubry Mather: Let $\{\omega_i\}_{i=0}^{\infty}, \omega_i \in \mathbb{Q}, \text{ s.t.}$

 $\lim_{i \to \infty} \omega_i = \rho$

Area Preserving Twist Maps (APTM) Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in [\rho_1, \rho_2]$ exists at least a pair of periodic orbits with rotation number ω .
- Aubry Mather: Let $\{\omega_i\}_{i=0}^{\infty}, \omega_i \in \mathbb{Q}, \text{ s.t.}$

$$\lim_{i \to \infty} \omega_i = \rho$$

Area Preserving Twist Maps (APTM) Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in [\rho_1, \rho_2]$ exists at least a pair of periodic orbits with rotation number ω .
- Aubry Mather: Let $\{\omega_i\}_{i=0}^{\infty}, \omega_i \in \mathbb{Q}, \text{ s.t.}$

$$\lim_{i \to \infty} \omega_i = \rho$$

Area Preserving Twist Maps (APTM) Let X_{ω} be an orbit with rotation number ω then:

- Birkhoff: For any rational number $\omega \in [\rho_1, \rho_2]$ exists at least a pair of periodic orbits with rotation number ω .
- Aubry Mather: Let $\{\omega_i\}_{i=0}^{\infty}, \omega_i \in \mathbb{Q}, \text{ s.t.}$

$$\lim_{i \to \infty} \omega_i = \rho$$

Greene criterion to determine CIC with rotation number ρ :

• Let \mathcal{R}_i be the residue of an hyperbolic periodic orbits $\{X_{\omega_i}\}_{i=0}^{\infty}$, such that

$$\lim_{i \to \infty} \omega_i = \rho$$

- X_{ω_i} are the approximants of an IC_{ρ}
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto 0$ then $\exists \operatorname{IC}_{\rho}$
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -\infty$ then $\not \exists \ \operatorname{IC}_{\rho}$ (Cantorus)
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -0.25542...$ then IC_{ρ} is critical

Greene criterion to determine CIC with rotation number ρ :

• Let \mathcal{R}_i be the residue of an hyperbolic periodic orbits $\{X_{\omega_i}\}_{i=0}^{\infty}$, such that

 $\lim_{i\to\infty}\omega_i=\rho$

- X_{ω_i} are the approximants of an IC_{ρ}
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto 0$ then $\exists \operatorname{IC}_{\rho}$
- If $\lim_{i\to\infty} \mathcal{R}_i \mapsto -\infty$ then $\not \exists \ \operatorname{IC}_{\rho}$ (Cantorus)
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -0.25542...$ then IC_{ρ} is critical

Greene criterion to determine CIC with rotation number ρ :

• Let \mathcal{R}_i be the residue of an hyperbolic periodic orbits $\{X_{\omega_i}\}_{i=0}^{\infty}$, such that

$$\lim_{i \to \infty} \omega_i = \rho$$

- X_{ω_i} are the approximants of an IC_{ρ}
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto 0$ then $\exists \operatorname{IC}_{\rho}$
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -\infty$ then $\not \exists \ \operatorname{IC}_{\rho}$ (Cantorus)
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -0.25542...$ then IC_{ρ} is critical

Greene criterion to determine CIC with rotation number ρ :

• Let \mathcal{R}_i be the residue of an hyperbolic periodic orbits $\{X_{\omega_i}\}_{i=0}^{\infty}$, such that

 $\lim_{i \to \infty} \omega_i = \rho$

- X_{ω_i} are the approximants of an IC_{ρ}
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto 0$ then $\exists \operatorname{IC}_{\rho}$
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -\infty$ then $\not \exists \ \operatorname{IC}_{\rho}$ (Cantorus)
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -0.25542...$ then IC_{ρ} is critical

Greene criterion to determine CIC with rotation number ρ :

• Let \mathcal{R}_i be the residue of an hyperbolic periodic orbits $\{X_{\omega_i}\}_{i=0}^{\infty}$, such that

$$\lim_{i \to \infty} \omega_i = \rho$$

- X_{ω_i} are the approximants of an IC_{ρ}
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto 0$ then $\exists \operatorname{IC}_{\rho}$
- If $\lim_{i\to\infty} \mathcal{R}_i \mapsto -\infty$ then $\not\exists$ IC_{ρ} (Cantorus)
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -0.25542...$ then IC_{ρ} is critical

Greene criterion to determine CIC with rotation number ρ :

• Let \mathcal{R}_i be the residue of an hyperbolic periodic orbits $\{X_{\omega_i}\}_{i=0}^{\infty}$, such that

$$\lim_{i \to \infty} \omega_i = \rho$$

- X_{ω_i} are the approximants of an IC_{ρ}
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto 0$ then $\exists \operatorname{IC}_{\rho}$
- If $\lim_{i\to\infty} \mathcal{R}_i \mapsto -\infty$ then $\not\exists$ IC_{ρ} (Cantorus)
- If $\lim_{i \to \infty} \mathcal{R}_i \mapsto -0.25542...$ then IC_{ρ} is critical

We studied six APTM:

$$y_{n+1} = y_n + \lambda V(x_n)$$
$$x_{n+1} = x_n + y_{n+1}$$

• Standard map:

$$V(x) = \sin(2\pi x)$$

• Two harmonics map:

 $V(x) = \sin(2\pi x) + 0.03\sin(6\pi x)$

• Critical map:

We studied six APTM: {

$$y_{n+1} - y_n + \lambda v (x_n)$$

 $x_{n+1} = x_n + y_{n+1}$

W/m

• Standard map:

$$V(x) = \sin(2\pi x)$$

• Two harmonics map:

 $V(x) = \sin(2\pi x) + 0.03\sin(6\pi x)$

• Critical map:

We studied six APTM:

$$y_{n+1} = y_n + \lambda V(x_n)$$
$$x_{n+1} = x_n + y_{n+1}$$

• Standard map:

$$V(x) = \sin(2\pi x)$$

• Two harmonics map:

 $V(x) = \sin(2\pi x) + 0.03\sin(6\pi x)$

• Critical map:

We studied six APTM:

$$y_{n+1} = y_n + \lambda V(x_n)$$
$$x_{n+1} = x_n + y_{n+1}$$

• Standard map:

$$V(x) = \sin(2\pi x)$$

• Two harmonics map:

$$V(x) = \sin(2\pi x) + 0.03\sin(6\pi x)$$

• Critical map:

• Analytical map:

$$V(x) = \frac{\sin(2\pi x)}{1 - \beta \cos(2\pi x)} \qquad \beta = 0.2, 0.4$$

• Tent map:

$$V(x) = \sum_{j=1}^{17} c_j \sin(2\pi j x) \qquad c_j = \begin{cases} (-1)^{\frac{j+1}{2}} \frac{4}{\pi^2 j^2} & j \text{ odd} \\ 0 & j \text{ even} \end{cases}$$

▲□▶ <圖▶ < ≦ > < ≦ > < ⑤ < <</p>

• Analytical map:

$$V(x) = \frac{\sin(2\pi x)}{1 - \beta \cos(2\pi x)} \qquad \beta = 0.2, 0.4$$

• Tent map:

$$V(x) = \sum_{j=1}^{17} c_j \sin(2\pi j x) \qquad c_j = \begin{cases} (-1)^{\frac{j+1}{2}} \frac{4}{\pi^2 j^2} & j \text{ odd} \\ \\ 0 & j \text{ even} \end{cases}$$

- Rotation number(CIC) = Golden mean
- Rotation number of the approximants $\rho = 832040/1346269$
- CIC max error: 10^{-23} , Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta = 1, 2, 3, 4, 5$

- Rotation number(CIC) = Golden mean
- Rotation number of the approximants $\rho = 832040/1346269$
- CIC max error: 10^{-23} , Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta = 1, 2, 3, 4, 5$

- Rotation number(CIC) = Golden mean
- Rotation number of the approximants $\rho = 832040/1346269$
- CIC max error: 10^{-23} , Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta = 1, 2, 3, 4, 5$

- Rotation number(CIC) = Golden mean
- Rotation number of the approximants $\rho = 832040/1346269$
- CIC max error: 10^{-23} , Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta = 1, 2, 3, 4, 5$

- Rotation number(CIC) = Golden mean
- Rotation number of the approximants $\rho = 832040/1346269$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 りへで

- CIC max error: 10^{-23} , Residue max diff: 10^{-10}
- Fourier uniformly spaced grid $\rightarrow 2^{20}$ points
- CPL algorithm test: $\eta = 1, 2, 3, 4, 5$

CIC: $R(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana4 \rightarrow thick dashed. Tent \rightarrow dotted dashed.

200

Advance map: $g(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana4 \rightarrow thick dashed. Tent \rightarrow dotted dashed.

E 990
Hull map: $h(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana4 \rightarrow thick dashed. Tent \rightarrow dotted dashed.

200

æ

< □ > < □ > < □ > < □ > < □ >

Inverse hull map: $h^{-1}(\theta)$

Std \rightarrow thin solid. 2Har \rightarrow thick solid. CritMp \rightarrow dotted. Ana2 \rightarrow thin dashed. Ana4 \rightarrow thick dashed. Tent \rightarrow dotted dashed.

DQC

큰

(日) (문) (문) (문)

Big conjugacies: $H(\theta)$

▲□▶ ▲□▶ ▲王▶ ▲王 ● つへで

Self similarity of h

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Self similarity of h – Fourier spectrum

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少�?

CLP analysis

(T)

$$\log_{10} \left\| \left(\frac{\partial}{\partial t} \right)^{\eta} \mathbf{e}^{-t\sqrt{-\Delta}} K \right\|_{L^{\infty}}$$

versus $\log_{10}(t)$

DQC

æ

Hölder regularities \longrightarrow Numerical results

Мар	$\kappa(R)$	$\kappa(g)$	$\kappa(h)$	$\kappa(h^{-1})$
Standart	1.83 ± 0.09	1.83 ± 0.09	0.772 ± 0.001	0.92 ± 0.01
Two har-	1.79 ± 0.06	1.75 ± 0.09	0.721 ± 0.001	0.92 ± 0.01
monics				
Critical	1.83 ± 0.04	1.84 ± 0.09	0.724 ± 0.002	0.93 ± 0.02
Analytic	1.86 ± 0.08	1.86 ± 0.08	0.722 ± 0.001	0.92 ± 0.01
0.2				
Analytic	1.85 ± 0.05	1.85 ± 0.05	0.724 ± 0.002	0.93 ± 0.01
0.4				
Tent	1.85 ± 0.15	1.88 ± 0.12	0.726 ± 0.003	0.93 ± 0.02

Hölder regularities of "Big" Conjugacies

- We compute the regularities of all big conjugacies H between each of the six functions h_i
- We have thirty functions H
- Applying CLP method:

 $\kappa(H) = 1.80 \pm 0.15$

Hölder regularities of "Big" Conjugacies

- We compute the regularities of all big conjugacies H between each of the six functions h_i
- We have thirty functions H
- Applying CLP method:

 $\kappa(H) = 1.80 \pm 0.15$

Hölder regularities of "Big" Conjugacies

- We compute the regularities of all big conjugacies H between each of the six functions h_i
- We have thirty functions H
- Applying CLP method:

 $\kappa(H) = 1.80 \pm 0.15$

Hölder regularities for rotation number silver mean

- Silver mean $= \sigma_S = [2, 2, 2, 2, ...]$
- Maps: Standard and Two harmonics

 $\kappa(R_S) = 1.70 \pm 0.15$ $\kappa(g_S) = 1.75 \pm 0.15$ $\kappa(h_S) = 0.715 \pm 0.015$ $\kappa(h_S^{-1}) = 0.87 \pm 0.02$

 $\kappa(H_S) = 1.80 \pm 0.15$

Hölder regularities for rotation number silver mean

- Silver mean $= \sigma_S = [2, 2, 2, 2, ...]$
- Maps: Standard and Two harmonics

 $\kappa(R_S) = 1.70 \pm 0.15$ $\kappa(g_S) = 1.75 \pm 0.15$ $\kappa(h_S) = 0.715 \pm 0.015$ $\kappa(h_S^{-1}) = 0.87 \pm 0.02$ $\kappa(H_S) = 1.80 \pm 0.15$

• Shenker & Kadanoff (82):

- Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
- Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
- Asymptotic invariant behaviour:

 $\begin{array}{l} \Delta_i \theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den} \\ \text{and} \\ \Delta_i r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den}) \end{array} \text{ where } F_i = \begin{array}{l} \text{Fibonacci} \\ \text{numbers} \end{array}$

$$\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} \quad \frac{\Delta_{i+3}r}{\Delta_ir} \sim \theta$$

- Shenker & Kadanoff (82):
 - Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
 - Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
 - Asymptotic invariant behaviour:

 $\begin{array}{l} \Delta_i \theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den} \\ \text{and} \\ \Delta_i r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den}) \end{array} \text{ where } F_i = \begin{array}{l} \text{Fibonacci} \\ \text{numbers} \end{array}$

$$\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} \quad \frac{\Delta_{i+3}r}{\Delta_ir} \sim \theta$$

- Shenker & Kadanoff (82):
 - Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
 - Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
 - Asymptotic invariant behaviour:

$$\Delta_i \theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den}$$

and where $F_i =$ Fibonacci
 $\Delta_i r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den})$

$$\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} \quad \frac{\Delta_{i+3}r}{\Delta_ir} \sim$$

- Shenker & Kadanoff (82):
 - Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
 - Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
 - Asymptotic invariant behaviour:

 $\begin{array}{l} \Delta_i \theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den} \\ \text{and} \\ \Delta_i r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den}) \end{array} \text{ where } F_i = \begin{array}{l} \text{Fibonacci} \\ \text{numbers} \end{array}$

$$\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} \quad \frac{\Delta_{i+3}r}{\Delta_i r} \sim \beta_3$$

- Shenker & Kadanoff (82):
 - Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
 - Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
 - Asymptotic invariant behaviour:

 $\Delta_i \theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den}$ and where $F_i =$ Fibonacci numbers $\Delta_i r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den})$

$$-\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} - \frac{\Delta_{i+3}r}{\Delta_i r} \sim \beta$$

- Shenker & Kadanoff (82):
 - Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
 - Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
 - Asymptotic invariant behaviour:

$$\Delta_{i}\theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den}$$

and where $F_{i} =$ Fibonacci
numbers $\Delta_{i}r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den})$

$$\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} \quad \frac{\Delta_{i+3}r}{\Delta_ir} \sim \beta_3^{-1}$$

- Shenker & Kadanoff (82):
 - Let $\theta_{den} \in \mathbb{T}$ stand the value around which the iterates of the function G are most dense.
 - Iteration of $p_{den} = (\theta_{den}, R(\theta_{den}))$ are more dense around p_{den} .
 - Asymptotic invariant behaviour:

$$\Delta_{i}\theta := g^{F_{n+3}}(\theta_{den}) - \theta_{den}$$

and where $F_{i} =$ Fibonacci
numbers $\Delta_{i}r := R(g^{F_{n+3}}(\theta_{den})) - R(\theta_{den})$

$$\frac{\Delta_{i+3}\theta}{\Delta_i\theta} \sim \alpha_3^{-1} \quad \frac{\Delta_{i+3}r}{\Delta_ir} \sim \beta_3^{-1}$$
where $\alpha_2 \sim -4.84581$ and $\beta_2 \sim -16.8597$

- Hölder regularity of $R \longrightarrow |\Delta r| \sim |\Delta \theta|^{\kappa}$
- Asymptotical scaling: $|\beta_3 \Delta r| \sim |\alpha_3 \Delta \theta|^{\kappa}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● り < ()

- $k(R) \leq \frac{\log(\beta_3)}{\log(\alpha_3)} \sim 1.7901$
- This bound is saturated.

• Hölder regularity of $R \longrightarrow |\Delta r| \sim |\Delta \theta|^{\kappa}$

• Asymptotical scaling: $|\beta_3 \Delta r| \sim |\alpha_3 \Delta \theta|^{\kappa}$

•
$$k(R) \leq \frac{\log(\beta_3)}{\log(\alpha_3)} \sim 1.7901$$

• This bound is saturated.

• Hölder regularity of $R \longrightarrow |\Delta r| \sim |\Delta \theta|^{\kappa}$

• Asymptotical scaling: $|\beta_3 \Delta r| \sim |\alpha_3 \Delta \theta|^{\kappa}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● り < ()

•
$$k(R) \leq \frac{\log(\beta_3)}{\log(\alpha_3)} \sim 1.7901$$

• This bound is saturated.

• Hölder regularity of $R \longrightarrow |\Delta r| \sim |\Delta \theta|^{\kappa}$

• Asymptotical scaling: $|\beta_3 \Delta r| \sim |\alpha_3 \Delta \theta|^{\kappa}$

•
$$k(R) \leq \frac{\log(\beta_3)}{\log(\alpha_3)} \sim 1.7901$$

• This bound is saturated.

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h⁻¹ and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa(h^{-1})$ by a confortable margin

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h⁻¹ and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa(h^{-1})$ by a confortable margin

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h⁻¹ and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa(h^{-1})$ by a confortable margin

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h⁻¹ and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- $\kappa(H)$ is greater than $\kappa(h)$ and $\kappa(h^{-1})$ by a confortable margin

- We accurately compute de golden critical invariant circles of six twist maps
- We obtain the Hölder regularity of R, g, h, h^{-1} and H
- Our numerical experiments lend credibility to our Conjetures concerning the universality of the regularities of R, g, h, h⁻¹ and H
- Our results seem to indicate that the regularities of R, h, h^{-1} saturate the upper bounds coming from previous studies of scaling exponents
- κ(H) is greater than κ(h) and κ(h⁻¹) by a confortable margin

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 りへで

Thank you

Gràcies