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Global Stability of Mechanical Systems

Two degree of freedom Hamiltonian System (2DFHS):

KAM
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−→ Topological barrier in
the phase space

−→ Global stability

Hamiltonian flow ⇐⇒ Area Preserving Twist Map (APTM)

Poincaré section: (2DFHS) −→(APTM)
KAM torus (2DFHS) −→Invariant Circle (APTM)
One parameter family of APTM
Border of stability :⇒ Critical Invariant Circle
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Critical Invariant Circles (CIC) exhibit remarkable scaling
properties at the boundary of chaos (Shenker & Kadanoff,
82)

Renormalization Group Analysis explains scaling
properties (MacKay, 83)
Scale invariances determine the regularity of the CIC
CIC −→Fractional regularity −→Universal Property
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Our goal: Compute the regularity of CIC
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How to compute fractional regularity?

De la Llave and Petrov used Harmonic Analysis Methods
to determine the regularity of Critical Circles Maps, T 7→ T
(Llave & Petrov,02)

We extend this methodology to the study of CIC of APTM
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Area Preserving Twist Maps (APTM)

One parameter family of APTM
Fλ : T× R→ T× R:

yn+1 = yn + λV (xn)
xn+1 = xn + yn+1

where V (x) = V (x+ 1) and has zero-average.

Rotation number: ρ = lim
n→±∞

xn − x0

n
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Area Preserving Twist Maps (APTM)

Invariant Circle of rotation number ρ, ICρ is the graph of a
Lipschitz function (Birkhoff,)

If ρ is a Diophantine number −→ICρ depends analytically
on λ
Golden ICρ −→ρ = σG = [1, 1, 1, . . . ]
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Existence of Invariant Circles

If λ supx |V (x)| > 1 −→6 ∃ any ICρ

If λ > 4/3 −→6 ∃ Golden ICρ

Conjecture: For Diophantine ρ exists λ̄ρ such that:

∃ ICρ if |λ| < λ̄ρ

and

6 ∃ ICρ if |λ| > λ̄ρ

Critical Invariant Circle (CIC)

λ −→λ̄ρ =⇒ ICρ −→CIC
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R : T 7→ R is the graph of ICρ

Advance Map g : T 7→ T defined by

F (x,R(x)) = (g(x), R ◦ g(x))
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Description of CIC:

Hull Map Ψ : T 7→ T× R such that:

F ◦Ψ(x) = Ψ(x+ ρ)

Conjugation function h : π1 ◦Ψ : T 7→ T where:
g ◦ h(x) = h(x+ ρ)
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Description of CIC:

Conjugating g to a rotation by σG:
g ◦ h(x) = h(x+ σG)

(g = thick line, h = thin line)



Big Conjugacies

Conjugation of two CIC, γ1 and γ2:

Gγ1,γ2 = gγ1 ◦ g−1
γ2

Hγ1,γ2 = hγ1 ◦ h−1
γ2



HÖLDER REGULARITY

For κ = n+ ξ with n ∈ Z and ξ ∈ (0, 1):

The function K : T→ R has global Hölder exponent κ
(K ∈ Λκ(T)) when K is n time differentiable and, for some
constant C > 0:

|DnK(θ1)−DnK(θ0)| ≤ C |θ1 − θ0|ξ

κ(K) := Is the Hölder regularity of K
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CIC and Universality

Universality: A characteristic is universal when it takes the
same value in a open set of functions
Conjectures:

∃! Nontrivial fixed point of
renormalization operator

⇒ Universal property

The regularity of R is a universal number (κ(R))

The regularity of g, h and h−1 are universal numbers

Regularity of ”Big” conjugacies:

κ(h) < κ(R)
κ(h) < κ(H)
κ(g) < κ(G)
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Poisson kernel method

Poisson kernel (periodic case):

Ps(x) =
∑
k∈Z

s|k| e2πikx

=
1− s2

1− 2s cos 2πx+ s2
, s ∈ [0, 1)

(
e−t
√
−∆ h

)
(x) =

(
Pexp(−2πt) ∗ h

)
(x)

=
∑
k∈Z

ĥk e−2πt|k| e2πikx .

Theorem (“Poisson kernel method”):
h ∈ Λα(T) if and only if ∀ η ≥ 0∥∥∥∥( ∂

∂t

)η
e−t
√
−∆ h

∥∥∥∥
L∞
≤ C tα−η .
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Advantages of the “Poisson kernel method”

log
∥∥∥∥( ∂

∂t

)η
e−t
√
−∆ h
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L∞
≤ const + (α− η) log t

the number of values of t is not limited;
all known Fourier coefficients taken into account in
calculating each point;
different η values → numerical tests.
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Numerical computation of CIC

Area Preserving Twist Maps (APTM)
Let Xω be an orbit with rotation number ω then:

Birkhoff: For any rational number ω ∈ [ρ1, ρ2] exists at
least a pair of periodic orbits with rotation number ω.
Aubry Mather: Let {ωi}∞i=0, ωi ∈ Q, s.t.

lim
i→∞

ωi = ρ

then the limit set of {Xωi}∞i=0 converges to an ICρ (or a
Cantorus)
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Greene’s residues method

Greene criterion to determine CIC with rotation number ρ:

Let Ri be the residue of an hyperbolic periodic orbits
{Xωi}∞i=0, such that

lim
i→∞

ωi = ρ

Xωi are the approximants of an ICρ

If lim
i→∞
Ri 7→ 0 then ∃ ICρ

If lim
i→∞
Ri 7→ −∞ then 6 ∃ ICρ (Cantorus)

If lim
i→∞
Ri 7→ −0.25542 . . . then ICρ is critical
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Numerical Experiments

We studied six APTM:


yn+1 = yn + λV (xn)

xn+1 = xn + yn+1

Standard map:
V (x) = sin(2πx)

Two harmonics map:

V (x) = sin(2πx) + 0.03 sin(6πx)

Critical map:

V (x) = sin(2πx)− 0.5 sin(4πx)
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Analytical map:

V (x) =
sin(2πx)

1− β cos(2πx)
β = 0.2, 0.4

Tent map:
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Numerical results

Rotation number(CIC) = Golden mean
Rotation number of the approximants ρ = 832040/1346269

CIC max error: 10−23, Residue max diff: 10−10

Fourier uniformly spaced grid → 220 points
CPL algorithm test: η = 1, 2, 3, 4, 5
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CIC: R(θ)

Std → thin solid. 2Har → thick solid. CritMp → dotted. Ana2 →
thin dashed. Ana4 → thick dashed. Tent → dotted dashed.



Advance map: g(θ)

Std → thin solid. 2Har → thick solid. CritMp → dotted. Ana2 →
thin dashed. Ana4 → thick dashed. Tent → dotted dashed.



Hull map: h(θ)

Std → thin solid. 2Har → thick solid. CritMp → dotted. Ana2 →
thin dashed. Ana4 → thick dashed. Tent → dotted dashed.



Inverse hull map: h−1(θ)

Std → thin solid. 2Har → thick solid. CritMp → dotted. Ana2 →
thin dashed. Ana4 → thick dashed. Tent → dotted dashed.



Big conjugacies: H(θ)



Self similarity of h



Self similarity of h – Fourier spectrum



CLP analysis

log10
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∂t

)η
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√
−∆K

∣∣∣∣∣∣∣∣
L∞(T )

versus log10(t)



Hölder regularities −→ Numerical results

Map κ(R) κ(g) κ(h) κ(h−1)
Standart 1.83± 0.09 1.83± 0.09 0.772± 0.001 0.92± 0.01
Two har-
monics

1.79± 0.06 1.75± 0.09 0.721± 0.001 0.92± 0.01

Critical 1.83± 0.04 1.84± 0.09 0.724± 0.002 0.93± 0.02
Analytic
0.2

1.86± 0.08 1.86± 0.08 0.722± 0.001 0.92± 0.01

Analytic
0.4

1.85± 0.05 1.85± 0.05 0.724± 0.002 0.93± 0.01

Tent 1.85± 0.15 1.88± 0.12 0.726± 0.003 0.93± 0.02



Hölder regularities of ”Big” Conjugacies

We compute the regularities of all big conjugacies H
between each of the six functions hi
We have thirty functions H
Applying CLP method:

κ(H) = 1.80± 0.15
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Hölder regularities for rotation number silver
mean

Silver mean = σS = [2, 2, 2, 2, . . . ]
Maps: Standard and Two harmonics

κ(RS) = 1.70± 0.15

κ(gS) = 1.75± 0.15

κ(hS) = 0.715± 0.015

κ(h−1
S ) = 0.87± 0.02

κ(HS) = 1.80± 0.15
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Hölder regularity and scaling factors

Shenker & Kadanoff (82):

Let θden ∈ T stand the value around which the iterates of
the function G are most dense.

Iteration of pden = (θden, R(θden)) are more dense around
pden.

Asymptotic invariant behaviour:

∆iθ := gFn+3(θden)− θden
and

∆ir := R(gFn+3(θden))−R(θden)
where Fi =

Fibonacci
numbers

∆i+3θ

∆iθ
∼ α−1

3

∆i+3r

∆ir
∼ β−1

3

where α3 ∼ −4.84581 and β3 ∼ −16.8597
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Hölder regularity and scaling factors

Hölder regularity of R −→ |∆r| ∼ |∆θ|κ

Asymptotical scaling: |β3∆r| ∼ |α3∆θ|κ

k(R) ≤ log(β3)
log(α3) ∼ 1.7901

This bound is saturated.
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Hölder regularity of R −→ |∆r| ∼ |∆θ|κ

Asymptotical scaling: |β3∆r| ∼ |α3∆θ|κ

k(R) ≤ log(β3)
log(α3) ∼ 1.7901

This bound is saturated.



Conclusions

We accurately compute de golden critical invariant circles
of six twist maps
We obtain the Hölder regularity of R, g, h, h−1 and H

Our numerical experiments lend credibility to our
Conjetures concerning the universality of the regularities of
R, g, h, h−1 and H

Our results seem to indicate that the regularities of R, h,
h−1 saturate the upper bounds coming from previous
studies of scaling exponents
κ(H) is greater than κ(h) and κ(h−1) by a confortable
margin
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Thank you

Gràcies


