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Abstract. The Nĕımark-Sacker bifurcation, or Hopf bifurcation for maps, is a well-known
bifurcation for smooth dynamical systems. At a Nĕımark-Sacker bifurcation a periodic orbit loses
stability and, except for certain so-called strong resonances, an invariant torus is born; the dynamics
on the torus can be either quasi-periodic or phase locked, which is organized by Arnol′d tongues
in parameter space. Inside the Arnol′d tongues phase-locked periodic orbits exist that disappear in
saddle-node bifurcations on the tongue boundaries. In this paper we investigate whether a piecewise-
smooth system with sliding regions may exhibit an equivalent of the Nĕımark-Sacker bifurcation. The
vector field defining such a system changes from one region in phase space to the next and the dividing
so-called switching surface contains a sliding region if the vector fields on both sides point towards
the switching surface. The existence of a sliding region has a superstabilizing effect on periodic
orbits interacting with it. In particular, the associated Poincaré map is non-invertible. We consider
the grazing-sliding bifurcation at which a periodic orbit becomes tangent to the sliding region. We
provide conditions under which the grazing-sliding bifurcation can be thought of as a Nĕımark-Sacker
bifurcation. We give a normal form of the Poincaré map derived at the grazing-sliding bifurcation
and show that the resonances are again organized in Arnol′d tongues. The associated periodic orbits
typically bifurcate in border-collision bifurcations that can lead to dynamics that is more complicated
than simple quasi-periodic motion. Interestingly, the Arnol′d tongues of piecewise-smooth systems
look like strings of connected sausages and the tongues close at double border-collision points. Since
in most models of physical systems non-smoothness is a simplifying approximation, we relate our
results to regularized systems. As one expects, the phase-locked solutions deform into smooth orbits
that, in a neighborhood of the Nĕımark-Sacker bifurcation, lie on a smooth torus. The deformation
of the Arnol′d tongues is more complicated; in contrast to the standard scenario, we find several
coexisting pairs of periodic orbits near the points where the Arnol′d tongues close in the piecewise-
smooth system. Nevertheless, the unfolding near the double border-collision points is also predicted
as a typical scenario for nondegenerate smooth systems.
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1. Introduction. Piecewise-smooth dynamical systems often arise when mod-
eling, say, mechanical systems that involve Coulomb friction, or electrical circuits
with relays and switches, as well as in many other areas of applications [10, 44, 46].
We focus here on systems of piecewise-smooth vector fields that have discontinuous
right-hand sides, that is, they are of the form

ẋ =
{

f1(x) if h(x) < 0,
f2(x) if h(x) > 0,

(1.1)

where f1, f2 ∈ Cr(Rn,Rn) are two different right-hand sides and h ∈ Cr(Rn,R) is the
event function. The velocity functions f1 and f2 are discontinuous along the (n− 1)-
dimensional manifold Σ = {x ∈ Rn : h(x) = 0}, called the switching surface. We
define the flow of (1.1) on Σ according to Filippov [17] in the following way. We
consider the product (∇h(x) · f1(x))(∇h(x) · f2(x)) on Σ, that is, we compare the
directions of the two vector fields with the normal ∇h(x) of Σ at a point x ∈ Σ.
If both vector fields point in the same direction as ∇h(x), that is, the product is
positive, then one velocity vector points into the region outside its domain of definition
and the other points inside its domain of definition. In this case, a trajectory just
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passes through Σ and there is no need to define additional dynamics. However, if
(∇h(x) · f1(x))(∇h(x) · f2(x)) ≤ 0 then the vector fields point in opposite directions
with respect to Σ. In particular when both vectors point into the regions outside
their respective domains of definition, the flow is pushed towards Σ on both sides and
we must make this part of Σ invariant under the dynamics. Such regions on Σ with
(∇h(x) · f1(x))(∇h(x) · f2(x)) ≤ 0 are called sliding regions. Filippov [17] describes
the dynamics on Σ in a sliding region by the sliding vector field

ẋ = λf1(x) + (1− λ)f2(x),

where λ is the unique solution to the invariance condition ∇h(x) · (λf1(x) + (1 −
λ)f2(x)) = 0. Hence, the velocity vector is the linear combination of the two velocity
vectors f1(x) and f2(x) such that the direction of the flow is tangent to Σ. There are
different ways of dealing with the sliding regions [6], but in most cases the definition
of Filippov agrees with the physics observed in experiments.

The presence of the switching surface Σ in Filippov systems induces many bi-
furcations in addition to what is known for smooth systems [10, 46]. Moreover, the
bifurcation analysis strongly depends on the system dimensions and the number and
relative location of the switching surfaces [10, 21, 25, 41]. We focus specifically on a
possible equivalent of the Nĕımark-Sacker bifurcation.

The Nĕımark-Sacker bifurcation of a periodic orbit of a smooth vector field is
well known [24]. The periodic orbit loses stability as a pair of Floquet multipliers
moves through the complex unit circle. By considering the Poincaré map on a (local)
section transverse to the periodic orbit, this corresponds to a Hopf bifurcation for a
diffeomorphism, where a pair of complex conjugate eigenvalues of the corresponding
fixed point of the Poincaré map moves through the complex unit circle. Unless the
argument µ of the Floquet multipliers (or eigenvalues) is of the form p

q with q ≤ 4,
which are called the strong resonances, the Nĕımark-Sacker bifurcation gives rise to
an invariant torus (an invariant circle for the map) [40]. The argument µ determines
the dynamics on the torus, which can be either quasi-periodic or phase locked. In
a two-parameter space one would have a curve of Nĕımark-Sacker bifurcations and
each point on it corresponds to a different value of µ. Off this curve emanate Arnol′d
tongues, also called resonance tongues, inside of which the dynamics is phase locked.
The tongue tips start on the Nĕımark-Sacker curve at rational values of µ = p

q and
widen to a two-dimensional resonance region containing a pair of periodic orbits with
rotation number p/q that disappear in saddle-node bifurcations along the tongue
boundary. Points on the Nĕımark-Sacker curve with µ irrational do not have Arnol′d
tongues associated with them. From such points codimension-one curves emanate
along which the dynamics is quasi-periodic with irrational rotation number µ.

The classical image of the Arnol′d tongue scenario is provided by a kind of nor-
mal form called the Arnol′d circle map [1]. This map describes the dynamics on an
invariant circle, where the tongue tips emanate from one of the parameter axes, but
this line does not actually correspond to a Nĕımark-Sacker bifurcation. It is perhaps
less well known that the Arnol′d circle map only provides part of the story on Arnol′d
tongues. For example, there are many additional bifurcations happening inside the
tongues that typically destroy the invariant torus [5, 32]. In more general systems,
the Nĕımark-Sacker curve typically contains so-called Chenciner points [8] where the
bifurcation changes from supercritical to subcritical. At such points the orientation of
the tips of the Arnol′d tongues changes, and tongues tend to bend back and cross the
Nĕımark-Sacker curve again at nonzero width. This behavior can be understood using
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singularity theory by viewing the Arnol′d tongues as projections of regular surfaces in
a higher-dimensional space; see [26, 27] and more recently [2]. We also refer to [34, 35]
for more details, applications and computational methods.

There is no systematic theory of a Nĕımark-Sacker-like bifurcation for piecewise-
smooth systems. As early as 1987, Yang and Hao [45] studied a piecewise-linear
version of the Arnol′d circle map and found that the structure of the Arnol′d tongues
in a two-parameter plane is very similar to the classical Arnol′d circle map. However,
while the Arnol′d tongues for the classical circle map grow wider as one moves further
away from the tongue tip, the Arnol′d tongues of the piecewise-linear circle map have
nonzero width at specific points in the parameter space. Yang and Hao called such
point shrinking points and likened the Arnol′d tongues to strings of sausages. An
exhaustive analysis of piecewise-linear circle maps can be found in Campbell et al. [7],
where the close-up of the resonance tongues is associated with a linear circle map of
unit slope.

More recent studies consider Arnol′d tongues for Filippov systems of the form (1.1)
that do not exhibit sliding, that is, (∇h(x) · f1(x))(∇h(x) · f2(x)) > 0 for all x ∈ Σ; an
overview can be found in [48]. Some kind of Nĕımark-Sacker bifurcation occurs when a
complex pair of Floquet multipliers of a periodic orbit jump from inside to outside the
complex unit circle. By varying two parameters, Arnol′d tongues emanate from the
corresponding bifurcation curve, though their boundaries are border-collision bifur-
cations, rather than saddle-node bifurcations. The dynamics near this analog of the
Nĕımark-Sacker bifurcation exhibits similar features as for smooth systems, but often
the situation is much more complicated. A (discrete-time) piecewise-linear normal
form of this scenario is presented in [30] and the resulting phase-locked solutions have
been studied in [36, 37, 46, 47]. Using brute-force computational methods, these works
present two-parameter diagrams with Arnol′d tongues containing the phase-locked so-
lutions, along with regions that exhibit more complicated dynamics, including chaos.
As in [45], the tongues contain shrinking points and the attracting periodic orbit from
one sausage to the next in the string differs by having one point move through the
switching surface. Hence, the tongues do not actually cross at a shrinking point.
Rather, one should interpret a shrinking point as a point where four different border-
collision curves meet [37].

In contrast to the research discussed above, we consider Filippov systems of the
form (1.1) that do exhibit sliding on the switching surface. The presence of slid-
ing makes the analysis rather different, because trajectories that contain a sliding
segment cannot be followed backward in time. Attracting sliding segments have
stabilizing effects on the system dynamics. In particular, if a periodic orbit of a
two-dimensional system becomes tangent to an attracting sliding region, that is, it
undergoes a grazing-sliding bifurcation, then the emanating branch of periodic orbits
that contain a sliding segment is always stable even if the periodic orbit was unstable
before the tangency [25]. We focus on the grazing-sliding bifurcation as a possible
candidate for the Nĕımark-Sacker bifurcation in piecewise-smooth systems. Our mo-
tivation comes from the model of a piecewise-smooth friction oscillator that exhibits
precisely this type of bifurcation [16]. The grazing-sliding bifurcation is defined as
a tangency of a periodic orbit with an attracting sliding region and we assume that
the periodic orbit before the grazing-sliding bifurcation is an unstable focus. We al-
ready studied this example and derived a normal-form map in [39]. We found that a
polygon-shaped attractor coexists with the focus-type unstable periodic orbit before
the grazing-sliding bifurcation. In [39] we explained how the number of sides of this
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polygon-shaped attractor depends on the system parameters and already observed
that the dynamics on the attractor can be chaotic. In this paper we describe the
Arnol′d tongues that organize the phase-locked dynamics on the attractor. As was
pointed out in [39], the attractor is not necessarily a topological polygon, because
the dynamics on its sides may take place on the opposite sides of the vertices. We
find that this can also be the case when the dynamics is phase locked, so that the
situation cannot be reduced to the dynamics on a circle map. Fortunately, we are able
to reduce the system to a one-dimensional induced map based on the construction of
Hofbauer towers [20, 22]. The phase-locked solutions can then be found in a way that
is similar to the approach in [36], but the use of the induced map avoids the need for
checking admissibility of these solutions.

This paper is organized as follows. In the next section we recall the basic features
of the piecewise-smooth friction oscillator that was introduced in [39]. We explain
the model and derive the normal form used in this paper. We also recall the prop-
erties of the polygon-shaped set that contains the attractor which exists before the
grazing-sliding bifurcation. Section 3 introduces the one-dimensional induced map
and explains how we determine the boundaries of the Arnol′d tongues. Here, we
also relate the closing of an Arnol′d tongue to a double border-collision bifurcation
and show that such a double border collision happens each time when an Arnol′d
tongue crosses a curve where the number of sides of the polygon-shaped invariant set
changes. We also prove that at a double border-collision bifurcation a certain iterate
of the one-dimensional induced map is equal to the identity. In Sec. 4 we consider stiff
smooth systems that are obtained by smoothing either the vector field or the normal
form map. As expected from the literature, the shrinking points of piecewise-smooth
systems are degeneracies that do not carry over to their smoothed counterparts. The
boundaries of the Arnol′d tongues unfold in a manner as predicted by the theory [2].
We end with conclusions in Sec. 5.

2. The piecewise-smooth friction oscillator. We briefly recall the motivat-
ing example of a one degree-of-freedom friction oscillator. A schematic of the oscillator
is shown in Fig. 1. The oscillator consists of a block mass m that is riding on a con-
stantly moving belt. The displacement of the block mass is denoted by x. The block
mass is attached to a damper c that is anchored at the other end, and to a spring s that
is harmonically forced with amplitude u0 and angular frequency ω. We assume a lin-
early changing friction force with slope κ, that is Ffriction = Fs sgn(ẋ−v0)−κ (ẋ−v0),
where v0 is the speed of the belt, and Fs is the static friction force. We rescale time,
so that the velocity changes to ẋ 7→ ẋ/

√
sm, and replace the parameters Fs 7→ Fs/s,

v0 7→ v0/
√

sm, and ω 7→ ω
√

m/s. Then we obtain the equation of motion

ẋ =
(

0 1
−1 −2ζ + κ

)
x +

(
0

−Fs sgn(ẋ− v0)− κ v0 + u0 cos ωt

)
, (2.1)

where x = (x, ẋ)T and ζ = c/(2
√

sm) is the relative damping.
The animation associated with Fig. 1 shows an example of stick-slip motion [9,

16, 18, 33, 29]. Here, ζ = 0.005, v0 = 1, κ = 1.1152, Fs = 1, u0 = 1.078, and
ω = 1.6650. While the relative velocity ẋ − v0 between the block mass and the belt
is nonzero the block mass is slipping on the belt, which generates a reactive friction
force. Note that the mass can slip such that the block moves to the left or right,
depending on the sign of ẋ, but the friction force in this case always points to the
right. As soon as ẋ− v0 becomes zero, the block sticks to the belt until the inertia of
the mass together with the forces of the damper and the spring overcome Fs. Note
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Fig. 1. Example of stick-slip motion for a piecwise-smooth friction oscillator. The block mass
m forms a one-degree-of-freedom oscillator with the spring s and damper c. The block rides on
a belt moving with constant speed v0, and is forced through the spring s with amplitude u0 and
angular frequency ω = 2π/T . The velocity profile shows an attracting 5T -periodic solution with two
stick-phases that exists for ζ = 0.005, v0 = 1, κ = 1.1152, Fs = 1, u0 = 1.078, and ω = 1.6650.
The accompanying animation stickslip-stable.gif shows what this solution means in terms of
the friction oscillator.

that, in the terminology of Filippov systems, the stick-phase of the motion takes place
on the switching surface and corresponds to the dynamics of the sliding vector field;
while this may be confusing, we will use the Filippov terminology, unless we are in
the specific context of the piecewise-smooth friction oscillator.

The piecewise-smooth friction oscillator (2.1) undergoes a grazing-sliding bifur-
cation at a critical value u0 of the forcing amplitude. For u0 < u0 system (2.1) has
a unique periodic orbit with ẋ − v0 < 0 at all times, that is, the mass is sliding on
the belt in an oscillating manner and never sticks. We assume that this periodic orbit
is unstable with complex Floquet multipliers, which means that 0 < κ − 2ζ < 2. If
u0 = u0 then there is a single point on the periodic orbit with ẋ(t) = v0 and we say
that the periodic orbit is grazing the switching surface Σ := {(x, ẋ, t) ∈ R3 : ẋ = v0}.
For u0 > u0 the periodic orbit persists as a stable periodic orbit with stick-slip motion.
We showed in [39] that, for u0 < u0, an attractor exists on a tubular polygon-shaped
invariant set that scales linearly with u0 − u0 and surrounds the (by assumption
unstable) periodic orbit. We briefly review this in the next section.

2.1. The Poincaré return map with a discontinuity correction. In order
to analyze the dynamics in a neighborhood of the grazing-sliding bifurcation we use
a carefully chosen Poincaré return map defined on a section transverse both to the
periodic orbit and the switching surface Σ. The Poincaré map models the local dy-
namics near grazing and incorporates the effects of discontinuity due to sliding. The
technique for deriving a Poincaré map was introduced by Nordmark [28] and later
refined for grazing-sliding by di Bernardo et al. [12].

We begin by choosing a Poincaré section Π that is perpendicular to the periodic
orbit as well as the switching surface Σ at the moment of the grazing-sliding bifurca-
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tion, that is, for u0 = u0. This means that any (unstable) periodic orbit with u0 < u0

is transverse to Π as long as u0 is close enough to u0. We now choose a u0-dependent
coordinate system y = (y1, y2)T ∈ Π that places the intersection of the periodic orbit
with Π for each u0 at the origin. Furthermore, K0 := Σ ∩ Π = {y ∈ Π : y2 = 1} de-
fines the switching line on Π. In these u0-dependent coordinates the distance between
the periodic orbit and Σ, which is small for system (2.1), is scaled to 1. Therefore,
the Poincaré map is valid only for u0 < u0 close enough to u0 and it does not describe
the grazing-sliding bifurcation itself.

The Poincaré return map models the local dynamics that is induced by the
grazing-sliding bifurcation and it is well defined also for orbits close to the periodic
orbit that do interact with Σ. Indeed, Nordmark [28] expresses the presence of the
switching surface in terms of a discontinuity map that is applied only when orbits
interact with Σ. For points y with y2 ≤ 1 the Poincaré map is defined as the stan-
dard return map of a smooth vector field. As shown in [39], this map is essentially an
expanding rotation defined by the matrix

M = eβ

(
cos α sin α

− sin α cos α

)
,

where we assume β > 0. If y2 > 1, however, the point corresponds to an orbit of (2.1)
with a stick-phase. The discontinuity map amounts to a correction step that projects
the point along a particular fixed angle to the switching line K0. Indeed, the stick-
phase of the block mass always ends at a point in phase space with velocity v0 and
the projection angle is determined by the duration of the stick-phase, which to first
approximation depends linearly on the distance from the switching line. After the
projection, the rotation matrix M can be applied as normal. For our purposes it is
more natural to swap the order of projection and rotation. As before, we apply the
rotation matrix M to a point with y2 ≤ 1, but now we check whether this should be
followed by a projection or not. The resulting normal form map then becomes

y 7→
{

My, if eβ(y2 cos α− y1 sin α) ≤ 1,
ŷ + JMy, if eβ(y2 cos α− y1 sin α) ≥ 1,

(2.2)

where

J =
(

1 γ
0 0

)
, and ŷ =

( −γ
1

)
.

While this normal form is different from the one defined in [39], it produces entirely
equivalent dynamics that now takes place on or below K0.

The normal form (2.2) is a good approximation of the Poincaré map for the
piecewise-smooth friction oscillator (2.1) in a neighborhood of the grazing-sliding bi-
furcation. The values of the parameters are found as follows:

α =
2π

√
1− ζ2

r

ω
, β = − ζrα√

1− ζ2
r

and γ =
β

α
, (2.3)

with ζr = ζ−κ/2. Figure 2 compares the normal form (2.2) and the Poincaré map on
Π that is obtained from direct integration of the vector field (2.1). Panel (a) shows
the dynamics of the Poincaré map using ζ = 0.01, κ = 0.03, Fs = 1.0, v0 = 0.103,
u0 = 0.2115, and ω = 2.5125. Iterates quickly converge to a five-sided polygon-shaped
chaotic attractor. Since we are close to the grazing-sliding bifurcation, all lines appear



ARNOL′D TONGUES ARISING FROM A GRAZING-SLIDING BIFURCATION 7

Fig. 2. An attractor (blue dots) for the Poincaré return map of the piecewise-smooth friction
oscillator (2.1) with ζ = 0.01, κ = 0.03, Fs = 1.0, v0 = 0.103, u0 = 0.2115, and ω = 2.5125 is
entirely located in the region below and including the switching surface Σ, where the relative velocity
ẋ − v0 changes sign (a). Panel (b) shows superimposed the dynamics of the corresponding normal
form (2.2) (red dots) in the original coordinates on the section Π in projection onto the (x, ẋ)-plane.

straight. However, the end of the sliding region in Σ is defined by {ẋ = v0, ẍ = 0},
which gives x = Fs − 2ζv0 + u0 cosωt on Σ, where we use sgn(ẋ − v0) = −1; this
defines the intersection curve K0 = Σ∩Π. The other sides of the polygon are forward
iterates of K0. Figure 2(b) shows the polygon-shaped attractor in Π projected onto
the (x, ẋ)-plane (blue dots). Superimposed is the attractor for the normal form (2.2)
using α = 0.398× 2π, β = 0.002, and γ = 0.005 (red dots); the iterates of the normal
form are transformed back into the original coordinates on Π for comparison. While
the normal form (2.2) distorts location of the iterates a little bit, the actual dynamics
and shape of the attractor are identical.

2.2. The polygon-shaped attractor. We showed in [39] that the dynamics of
the normal form (2.2) essentially takes place on a polygon-shaped attracting invariant
set that is obtained by iterating K0. Indeed, the normal form (2.2) has an unstable
fixed point, that is, β > 0, so that every initial point with y2 < 1 will, after finitely
many iterations, be mapped to a point with y2 > 1. This implies that the final rotation
step will be followed by a projection and the image will lie on K0 = Σ ∩ Π = {y ∈
R2 : y2 = 1}. Hence, after finitely many steps all the dynamics will be restricted to
K0 and its forward iterates Ki := M iK0. We definine the mininal polygon Pf as the
smallest polygon that is formed by the collection {Ki}i≥0. The minimal polygon has
q sides, for some 3 ≤ q < ∞, and Kq or any higher iterate of K0 does not intersect
Pf . To distinguish different types of polygons we associate a rational number p/q to
every polygon, such that q is the number of sides and p reflects the order of the sides.
If β = 0, then Pf for α = 2π p

q is symmetric and the sides are mapped onto each
other with rotation number p/q. For β > 0 every polygon is a deformed version of a
symmetric minimal polygon, so that it inherits the rotation number of the symmetric
polygon with the same number and order of sides.

The number of sides of Pf depends only on the parameters α and β, because the
location of Ki does not depend on the projection direction parameterized by γ. As
was explained in [39], the number of sides of Pf changes when three lines Kn1 ,Kn2

and Kn3 intersect at the same point and this point is on the minimal polygon. For a
q-sided polygon with p/q side ordering the side removal is organized by the curves in
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parameter space defined by

eq2β sin (q1 − q2)α + e(q2−q1)β sin q2α− sin q1α = 0. (2.4)

Here, q1 and q2 are such that p/q is the Farey sum of the two neighboring rationals
p1
q1

and p2
q2

on the Farey-tree, that is,

p

q
=

p1 + p2

q1 + q2
; (2.5)

see [15, 19] for more details. The side-removal curves are shown in red in Fig. 4; see
also [39].

The purpose of this paper is to investigate the phase-locked dynamics on the
polygon-shaped attractor as a function of the parameters α, β and γ. As we already
found in [39], we cannot assume that the attractor is topologically a closed curve,
because the dynamics takes place on either side of the vertices of Pf .

3. Arnol′d tongues of the piecewise-smooth system. In order to find phase-
locked orbits on the attractor, we consider a one-dimensional map that describes
how points on K0 map back to K0; see also [39]. This map will be an induced map
constructed using the Hofbauer towers [20, 22]. We subdivide the line K0 into intervals
from which different numbers of iterations with M are necessary to come back to K0.
For each interval there is a return map fm that is composed of m expanding rotation
steps followed by one projection step. This map is linear and given by

u 7→ fm(u) := a(m)u + b(m),

where a(m) = emβ(cosmα − γ sin mα), b(m) = −γ + emβ(sinmα + γ cosmα) and
u = y1 parameterizes K0. Any phase-locked orbit will be the fixed point of a finite
composition

fm(u) := fmN ◦ · · · ◦ fm2 ◦ fm1 ,

for a sequence of iterations m = (m1,m2, . . . mN ). Indeed, the function

u 7→ fm(u) :=

[
N∏

i=1

a(mi)

]
u +

[
N−1∑

i=1

b(mi)

] 


N∏

j=i+1

a(mj)


 + b(mN ). (3.1)

generically has the unique fixed point

u?
m =

[∑N−1
i=1 b(mi)

] [∏N
j=i+1 a(mj)

]
+ b(mN )

1−
[∏N

i=1 a(mi)
] .

Obviously, any cyclic permutation of m describes the same periodic orbit, but starting
with a different point on K0. Note that the number N of elements in m determines
how many points there are on K0, that is, how many sliding segments (stick-phases)
the solution contains.

Let us first concentrate on periodic orbits that originate from the family at β = 0
and illustrate this with an example for q = 5. Consider the trivial composition with
N = 1, so that m = (q). Solving u = f(q)(u), we find the unique fixed point

u?
(q) =

b(q)
1− a(q)

=
eqβ(sin qα + γ cos qα)− γ

1− eqβ(cos qα− γ sin qα)
.
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Fig. 3. Velocity profiles for the vector field (2.1) illustrating periodic solutions of the normal
form (2.2) inside and on the boundaries of the 2/5 Arnol′d tongue. The parameters used in (2.1)
are the same as in Fig. 1 for panels (a) and (b), which corresponds to α = 0.404×2π and β = 0.268,
and ζ and ω are chosen such that α = 0.397 × 2π and β = 0.263 in panel (c), and α = 0.411 × 2π
and β = 0.273 in panel (d). Panels (a) and (b) show a pair of coexisting saddle and stable periodic
orbits inside the 2/5 Arnol′d tongue, respectively. These solutions correspond to u?

(q)
= u?

(5)
and

u?
(q1,q2)

= u?
(2,3)

that merge in a (left) border collision in panel (c). Panel (d) illustrates the (right)

border collision, where u?
(q)

= u?
(5)

merges with the equivalent periodic orbit u?
(q2,q1)

= u?
(3,2)

. The

accompanying animation stickslip-unstable.gif shows what the solution in panel (a) means in
terms of the piecewise-smooth friction oscillator; see also the animation stickslip-stable.gif

accompanying Fig. 1 that corresponds to panel (b).

Note that f ′(q)(u
?
(q)) = a(q) = eqβ(cos qα − γ sin qα), so that u?

(q) is unstable (of
saddle type) for α close to 2π p

q and β > 0. The velocity profile for a solution of the
piecewise-smooth friction oscillator (2.1) that corresponds to u?

(q) with q = 5 is shown
in Fig. 3(a). Here, we used the same parameters as in Fig. 1, which is equivalent to
using α ≈ 0.404 × 2π, β ≈ 0.268, and γ = β/α. For this choice of parameters the
minimal polygon Pf has q = 5 sides and p/q = 2/5 side ordering. Hence, the solution
in Fig. 3(a) corresponds to a periodic orbit of (2.2) with rotation number 2/5. Note
that the velocity profile has been shifted in time so that the stick-phase is happening
in the middle of the first return [0, T ], where T is the forcing period 2π/ω. The
stick-phase, or sliding segment where ẋ = 1 (marked in red), takes place only during
the [0, T ] interval, and ẋ < 1 for the next four returns. The animation associated
with Fig. 3(a) illustrates the motion of the mass on the belt that corresponds to this
solution.

The (saddle) periodic orbit u?
(q) = u?

(5) coexists with the stable periodic orbit
of Fig. 1, which is reproduced in Fig. 3(b). This stable periodic orbit is the unique
fixed point u?

(q1,q2)
= u?

(2,3) with m = (q1, q2) formed by the denominators of the
Farey neighbors p1

q1
= 1

2 > p2
q2

= 1
3 of p

q , i.e., q1 + q2 = q. The stability of u?
(q1,q2)

is
determined by f ′(q1,q2)

(u?
(q1,q2)

) = a(q1)a(q2). Using q2 = q − q1, we have

a(q1)a(q2) = eq1β(cos q1α− γ sin q1α) e(q−q1)β(cos (q − q1)α− γ sin (q − q1)α)
= eqβ

(
[1− (1 + γ2) sin2 q1α] cos qα + [−γ + 1

2 (1 + γ2) sin 2q1α] sin qα
)
.
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Let us first consider α = 2π p
q , that is, cos qα = 1 and sin qα = 0. Note that q1α =

2π(p1 − 1
q ), because any Farey sequence p2

q2
< p

q < p1
q1

satisfies q1p − p1q = −1 and
q2p− p2q = 1; see [15, 19]. Hence, the equation becomes

a(q1)a(q2)|α=2π p
q

= eqβ
(
1− (1 + γ2) sin2 [ 2π

q ]
)

,

so that u?
(q1,q2)

is stable for α = 2π p
q and β sufficiently small, provided −1 < γ < 1,

which is the case for the piecewise-smooth friction oscillator (2.1). Clearly, stability
is then also preserved for α close to 2π p

q .
The two periodic orbits u?

(q) = u?
(5) and u?

(q1,q2)
= u?

(2,3) form a pair of phase-locked
periodic orbits on Pf . Since their rotation numbers are 2/5, the orbits correspond
to a point inside the 2/5 Arnol′d tongue. Using a brute-force method, we could now
scan the entire (α, β)-parameter space for a fixed choice of γ and find how the Arnol′d
tongues organize parameter space. This is the method used in [36, 47, 48]. However,
in the spirit of dynamical systems theory, it is much more efficient to compute the
boundaries of these tongues. If we follow the periodic orbits in Figs. 3(a) and (b)
in the direction of decreasing α, we find that they merge into the solution shown
in Fig. 3(c); here α = 0.397 × 2π and β = 0.263, that is, we used the values as in
Fig. 1, but adjusted ζ and ω to match the new values of α and β; note that again
γ = β/α. Figure 3(c) shows how the second sliding segment of u?

(q1,q2)
= u?

(2,3) in
the third forcing period has contracted to a single point; similarly, the periodic orbit
u?

(q) = u?
(5) of Fig. 3(a) has developed a tangency with K0 in the third forcing period.

In terms of the normal form (2.2) this means that α, β and γ are such that the
q1th = 2nd of the q iterations with M starting with headpoint u?

(q) = u?
(5) on the

line K0 = {(y1, y2)T ∈ R2 : y2 = 1} falls exactly on K0. Similarly, if we follow the
periodic orbits in Figs. 3(a) and (b) in the direction of increasing α, they merge into
the solution shown in Fig. 3(d), where α = 0.411 × 2π and β = 0.273. Note that
u?

(q) = u?
(5) has now developed a tangency with K0 in the fourth forcing period, that

is, the q2th = 3rd iteration with M falls exactly on K0.
The merging and subsequent disappearance of a pair of stable and saddle peri-

odic orbits as described above in a piecewise-linear system is called a border-collision
bifurcation of creation-annihilation type [11]. The border-collision bifurcations form
the boundaries of the Arnol′d tongues for β > 0 small enough. As also happens for
smooth systems [5, 32], additional bifurcations may happen inside the Arnol′d tongues
for larger β. However, similar to what was reported in [37, 47, 48], the boundaries of
the Arnol′d tongues are characterized by border-collision bifurcations of phase-locked
pairs of periodic orbits. We make this more precise in the next section.

3.1. Border collisions as boundaries of Arnol′d tongues. A periodic orbit
undergoes a border-collision bifurcation if one of the iterates with M of the headpoint
u?
m falls on the line K0 = {(y1, y2)T ∈ R2 : y2 = 1}. This condition is stipulated by

the equation

BC(u?
m, k) = ekβ(cos kα− u?

m sin kα)− 1 = 0. (3.2)

Note that this condition can only be applied as long as 0 < k ≤ m1. Therefore, for
higher iterates a different headpoint must be selected using a cyclic permutation of
m and this way all the points of the orbit can be checked.

Recall the coexisting pair of periodic orbits u?
(q) and u?

(q1,q2)
on Pf with q sides

and p/q side ordering; let us assume that q1 < q2. The pair exists for α close to 2π p
q
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Fig. 4. Arnol′d tongues in the (α, β)-plan for the normal form (2.2) with γ = 0. The Arnol′d
tongues originate from the line β = 0 and close up each time when they cross the side-removal
curves as defined in (2.4) (shown in red). The first levels (sausages) of the strongest resonance
tongues are shaded blue, the second green, the third orange and the fourth magenta.

and β > 0 small. (We lose uniqueness for β = 0, because then fm is the identity.)
We claimed that q1 and q2 must be the denominators of the Farey neighbors of p

q .
Indeed, at the boundary of its existence u?

(q) undergoes a border-collision bifurcation
with another orbit that has one more point on K0. Hence, at the border-collision
bifurcation, u?

(q) must get an additional point on K0 from a neighboring side of Pf .
Using (2.4), we know that the sides of Pf adjacent to K0 are Kq1 and Kq2 , where q1

and q2 are as above. Therefore, the border-collision bifurcations are defined by

BC(u?
(q), q1) = 0 and BC(u?

(q), q2) = 0, (3.3)

that is, m = (q) and k = q1, q2 in (3.2). This automatically means that the defining
map of the other periodic orbit is f(q1,q2) or, equivalently, f(q2,q1). At the border-
collision bifurcation with BC(u?

(q), q1) = 0, the unique fixed point u?
(q1,q2)

of f(q1,q2)

is identical to the unique fixed point u?
(q) of f(q), because one of their points lies on

K0 ∩ Kq1 . For the border-collision bifurcation with bc(u?
(q), q2) = 0, we must switch

to the other headpoint of u?
(q1,q2)

and use the point u?
(q2,q1)

that is determined as
the unique fixed point of f(q2,q1) instead. At the moment of this border-collision
bifurcation u?

(q) has an additional point on K0 that lies on the intersection with Kq2 .
Using the above procedure, we can systematically find the boundaries of Arnol′d

tongues, say, up to any given level in the Farey tree. Figure 4 gives an impression
of how the tongues are organized in the (α, β)-plane for γ = 0. We find that all
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tongues appear to have tips at β = 0 generated by transverse intersections of pairs
of border-collision curves (3.3). With the exception of the strong resonances 1/2, 1/3
and 1/4, each pair of border-collision curves has another transverse intersection for
some value of β 6= 0; the first six sausage-shaped regions enclosed by the curves (3.3)
are shaded blue in Fig. 4. We call the points where the Arnol′d tongues close double
border-collision points. Note that this first set of (blue) sausages closes up precisely
when a sausage meets the (red) side-removal curves (2.4); we discuss this in detail in
Sec. 3.2.

Beyond a double border-collision point, any periodic orbit with headpoint u?
(q1,q2)

continues to exist, but is now of saddle type. Since we also crossed a side-removal
curve, u?

(q1,q2)
resides on a q2-sided polygon with side ordering p2/q2 (we assume q2 >

q1); its rotation number is still p/q. The coexisting stable periodic orbit can be found
in the same way as before: u?

(q1,q2)
undergoes a (creation-annihilation) border-collision

bifurcation and an additional point of the orbit moves onto K0. The two border-
colliding points are uniquely defined as the points closest to K0 on the neighboring
sides of Pf , which are determined by the Farey neighbors p3

q3
and p4

q4
of p2

q2
, two levels

up from p
q in the Farey tree. Obviously, q3, q4 < q2 = q3 + q4, such that the left

and right border-collision bifurcations are defined using m = (q2, q1) and k = q3, q4

in (3.2), namely

BC(u?
(q2,q1)

, q3) = 0 and BC(u?
(q2,q1)

, q4) = 0

Hence, u?
(q2,q1)

collides with the stable periodic orbit u?
(q3,q4,q1)

in the left border-
collision bifurcation (assume q3 < q4) and with the equivalent periodic orbit u?

(q4,q1,q3)

in the left border-collision bifurcation. The solutions to these implicit equations give
the next level of the Arnol′d tongues, which are shaded green in Fig. 4. Again, at this
second level the tongues close up, except when p2/q2 ∈ {1/2, 1/3, 1/4}.

Additional levels of the Arnol′d tongues can be found similarly; the next two levels
are shaded orange and magenta, respectively. In general, we assume that we have a
periodic orbit u? with rotation number p

q and N points on K0. The q points of the
orbit are ordered according to its rotation number, that is, the consecutive points on
Pf are a permutation {n0, . . . , nq−1} of the successive iterates i = 0, . . . q − 1 of the
headpoint, which are determined by

nk = i, with k = i p (mod q), 0 ≤ i < q.

Here, n0 = 0 represents the headpoint and the first N points {n0, . . . , nN−1} lie on K0.
The function fm that has u? as its fixed point is determined as follows. We sort the
numbers {n0, . . . , nN−1} in increasing order to obtain {n̂0 = 0 < n̂1 < · · · < n̂N−1}.
The sequence of iterations m = (m1,m2, . . . mN ) is determined by the number of
iterations needed each time to return to K0. Hence, m1 = n̂1 − n̂0, m2 = n̂2 − n̂1,
and so on, until mN = q − n̂N−1.

A border-collision bifurcation happens when a point from a neighboring side of
Pf lies on K0. Note that we cannot assume that Pf has q sides. The minimal polygon
Pf will have qk sides and pk/qk side ordering, where pk

qk
is a Farey neighbor of p

q higher
up in the Farey tree. Suppose that the Farey neighbors of pk

qk
on the same level in the

Farey tree are pk−1
qk−1

and pk+1
qk+1

, that is, pk−1+pk+1 = pk and qk−1+qk+1 = qk. Then the
sides adjacent toK0 areKqk−1 andKqk+1 and they contain the points nq−1 and nN that
are the neighbors of n0 and nN−1, respectively. Hence, there exists an integer l such
that 0 < qk−1 ≤ ml+1 and the point nl on K0, after qk−1 = nq−1−

∑l
i=1 mi iterations,
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maps to K0∩Kqk−1 (we assume qk−1 < qk+1). The border-collision bifurcation is then
defined implicitly as

BC(u?
m̃, qk−1) = 0,

where m̃ is the permutation of m that starts with ml+1. A similar argument holds
for nN and Kqk+1 to find the other border-collision bifurcation curve.

3.2. Closing of Arnol′d tongues at double border-collision points. As
we already discussed in the introduction, the closing of Arnol′d tongues in piecewise-
linear systems has been observed before [36, 45, 47]. In fact, this phenomenon has
also been observed in smooth systems in the context of reversible systems. Sausage-
shaped regions, referred to as instability pockets, have been reported for a class of
Mathieu equations (in particular, in Hill’s equations) [2, 3, 4]. The closing of Arnol′d
tongues is structurally stable due to the reversibility of these systems, but for general
dissipative systems it is degenerate; see Fig. 6 in [3] and Figs. 5 and 7 in [4]. Simpson
and Meiss [37] suggest that the closing of the Arnol′d tongues in piecewise-smooth
systems is structurally stable only in the piecewise-linear normal form. However,
we believe that in systems with sliding the phenomenon is generic. As illustrated
in Fig. 2, the dynamics of the normal form (2.2) is extremely similar to that of
the friction oscillator (2.1) and the piecewise-smooth polygon-schaped invariant set
appears to behave in the same way as the piecewise-linear polygon of the normal form.

The closing of the Arnol′d tongues in piecewise-smooth systems with sliding is
mediated by a double border-collision bifurcation. As an example, consider again the
2/5 Arnol′d tongue in Fig. 4. We discussed the border-collision bifurcations for a pair
of periodic orbits in the blue shaded sausage by moving towards the boundaries of
the tongue in the direction of decreasing and increasing α; see Fig. 3. This scenario
is illustrated again in the first row of Fig. 5 for a cross-section with constant β = 0.23
and γ = 0; see panels (a)–(c). The stable and saddle periodic orbits are denoted by
blue triangles and green crosses, respectively. Figure 5(b) shows a phase portrait that
corresponds to a situation similar to Figs. 3(a) and (b). The periodic orbits lie on a
five-sided minimal polygon Pf and the stable orbit has two points on K0. Note that
the dynamics appears to take place on a topological circle. The left border-collision
bifurcation is shown in Fig. 5(a) and the right border-collision bifurcation in Fig. 5(c).
The accompanying animation tongue2-5first.gif shows how the configuration of
the two periodic orbits changes as α increases from 2.45566, approximately at the
left border-collision bifurcation, to 2.5562, approximately at the right border-collision
bifurcation. This reconfiguration is the same as what happens for smooth systems;
for example, see [35].

A similar scenario is shown in Figs. 5(d)–(f), where β = 0.4; we have moved up
higher in the Arnol′d tongue, but are still inside the first blue shaded sausage. Note
that the intersection points for two sides of Pf are much closer together and Pf is
about to lose these sides as β is increased further. In the accompanying animation
tongue2-5closeDBC.gif one observes that the saddle periodic orbit hardly moves at
all, but otherwise, the situation is equivalent to that in the first row of Fig. 5. In
particular, the dynamics still takes place on a topological circle. Note that the length
of the segment of K0 on which the periodic orbits reside virtually does not change.

The third row of Fig. 5 shows the situation for β = 0.52, which is inside the
second green shaded sausage. The pair of period-5 orbits now resides on a three-sided
polygon and the stable orbit has three points on K0. Interestingly, the points of the
stable periodic orbit no longer lie on the topological circle generated by a three-sided
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Fig. 5. Configurations of stable (blue triangles) and saddle (green crosses) periodic points inside
and at the boundaries of the 2/5 Arnol′d tongue for γ = 0. From top to bottom, each row represents
a cross-section for constant β = 0.23, β = 0.4, and β = 0.52, respectively. The values for α are
2.45566 2.50596, 2.5562, 2.47611, 2.49321, 2.51031, 2.46905, 2.48274, and 2.49643 for panels (a)–(i),
respectively. The first and third columns correspond to left and right border-collision bifurcations,
respectively, and the middle column shows a phase portrait inside the tongue. The cross-section
illustrated in panels (a)–(c) is inside the first sausage; that in panels (d)–(f) is also inside the first
sausage, but very close to the double border-collision point; and that in panels (g)–(i) is inside the
second sausage. The accompanying animations tongue2-5first.gif, tongue2-5closeDBC.gif, and
tongue2-5second.gif are for the respective cross-sections in rows one to three.

minimal polygon Pf . As we already reported in [39], this phenomenon may give rise
to complex behavior, including chaos, and the stable periodic orbit may well lose
stability through other bifurcations as we move higher up inside the tongue. We do
not investigate such other bifurcations here. Moreover, note that tongues overlap in
Fig. 4, which also gives rise to more complex dynamics and which we do not investigate
further.

Figures 4 and 5 suggest that whenever a border-collision curve crosses a side-
removal curve, the Arnol′d tongue closes up. In fact, this is always the case and we
have the following theorem.

Theorem 3.1. Suppose (2.2) has a periodic orbit u? with rotation number p
q that
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resides on a qk-sided minimal polygon Pf with side ordering pk/qk. Assume further
that α and β in (2.2) are such that u? undergoes a border-collision bifurcation and
at the same time Pf has a triple intersection point. Then u? undergoes a double
border-collision bifurcation.

Proof. Recall that a triple intersection point of Pf is defined by the implicit
equation (2.4), where the values for q1 and q2 must be taken as the denominators of
the Farey neighbors of pk/qk. Let us denote these by ql and qr, with ql + qr = qk.
As we discussed before, the left and right neighbors of K0 are then Kql

and Kqr
,

respectively. If u? undergoes a left border-collision bifurcation then there is a point
of u? on K0 that is mapped after ql iterates onto the intersection point K0 ∩ Kql

;
similarly, if u? undergoes a right border-collision bifurcation then there is a point of
u? on K0 that is mapped after qr iterates onto K0 ∩ Kqr . Note that the headpoints
used in these iterations need not be the same. Let us assume that u? undergoes a
right border-collision bifurcation and the defining equation uses the iteration sequence
m starting with headpoint u?

m. Hence, using (3.2),

BC(u?
m, qk+1) = eqk+1β(cos qk+1α− u?

m sin qk+1α)− 1 = 0

⇔ u?
m =

eqk+1β cos qk+1α− 1
eqk+1β sin qk+1α

.

However, we are on a side-removal curve and using (2.4) for qk−1 and qk+1, we have

eqk+1β sin (qk−1 − qk+1)α + e(qk+1−qk−1)β sin qk+1α− sin qk−1α = 0
⇔ eqk+1β sin qk−1α cos qk+1α− sin qk−1α

= eqk+1β sin qk+1α cos qk−1α− e(qk+1−qk−1)β sin qk+1α

⇔ eqk+1β cos qk+1α− 1
eqk+1β sin qk+1α

=
eqk−1β cos qk−1α− 1

eqk−1β sin qk−1α
.

Hence, BC(u?
m, qk−1) = 0 as well, that is, the headpoint for the right border collision

is also u?
m and the two border-collision bifurcations happen for the same values of α

and β.
As can be seen in Fig. 4, the double border-collision bifurcations generally occur

on side-removal curves, although they may occur elsewhere in the parameter space.
For example the Arnol′d tongue in between the 1/6 and the 1/5 tongues (this is the
2/11 tongue) has an additional double border-collision bifurcation in the region where
the periodic orbits reside on a five-sided minimal polygon. Effectively, this means that
there are at least two iterates of a fixed point u?

m on a side that will be removed at
the next side-removal curve. These points will land on K0 for different values of α
and β and only the last one will fall on the side-removal curve.

If there is a double border-collision bifurcation, then the dynamics on the polygon
is a rigid rotation. This is the same phenomenon that occurs in piecewise-linear
continuous circle maps [7, 45] and also for reversible systems [2].

Theorem 3.2. Suppose (2.2) has a periodic orbit u? with rotation number p
q

residing on a minimal polygon Pf , and the parameters α and β are such that a double
border-collision bifurcation occurs. Then the qth iterate of (2.2) on Pf is the identity.

Proof. The periodic orbit u? consists of q points that are ordered according to the
rotation number p

q . At a double border-collision bifurcation there are N +1 points of
u? on K0, the first and last of which are on the intersections of K0 with its neighboring
sides. As before, we label the points of u? by the their iteration numbers i = 0, . . . q−1
to obtain the permutation {n0, . . . , nq−1}, where n0 = 0 corresponds to the first point
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Fig. 6. The non-smooth (a) and smoothed (b) friction forces as a function of the relative
velocity vrel = ẋ− v0.

on K0 and {n0, . . . , nN} with ni = ni−1 + p are all points on K0. Using only the first
N points on K0, we now construct the sequence of iterations m = (m1,m2, . . . mN )
that are needed to return to these first N points on K0. Since we are at a double
border-collision bifurcation, one of these first N headpoints maps to the point with
label nN . More precisely, there exists 0 ≤ r < N such that the point with label nr on
K0, which maps back to one of the first N points on K0 after mr iterates, also maps
to nN already after qr iterates for some 0 < qr ≤ mr. Hence, the periodic orbit u? can
be viewed as the fixed point u?

m with label n0 of the map fm defined in (3.1). Now
consider the last N points {n1, . . . , nN} on K0. Since the number of points on K0 is
the same and {n1, . . . , nN} = {n0 + p, . . . , nN−1 + p}, the map (3.1) that generates
the fixed point with label n1 must be the exact same map fm that generates the fixed
point u?

m with label n0. Hence, fm has two distinct fixed points. Since fm is linear
it must be the identity. Note that the points with labels n0 and n1 are always two
different points on K0, because the length of the segment on K0 on which u? resides
is always nonzero.

4. Regularizations of the piece-wise smooth friction oscillator. It is often
overlooked in the literature that piecewise-smooth models arise as simplifications of
the actual underlying physics. Instead of an actual discontinuity in the vector field,
one should probably consider a smooth transition, albeit with a very steep slope.
Hence, the regularization of piecewise-smooth systems typically leads to systems with
multiple time scales. Particularly in the context of systems with sliding, there have
been ideas on how to view the sliding surface as a slow manifold [6, 42, 43].

We consider two different ways of smoothing the discontinuity in the friction force
for the friction oscillator (2.1), namely, in the next section we smooth this friction
force directly and in Sec. 4.2 we consider a smoothed version of the normal form (2.2)
as the approximation of a smoothed Poincaré return map. It may come as no surprise
that these two approaches lead to different results, but we find that the smoothing
of the normal form also brings out the essence of sliding versus piecewise-smooth
dynamics without sliding.

4.1. Smoothed vector field. The only nonsmooth part in the governing equa-
tion of the vector field (2.1) is the friction force Ffriction = Fs sgn(ẋ− v0)−κ (ẋ− v0).
Figure 6(a) shows the graph of Ffriction versus the relative velocity vrel = ẋ− v0. We
replace this function with the smooth function depicted in Fig. 6(b), where the signum
function is approximated by an appropriately scaled analytic tanh function; this idea
was also used in [25]. The smoothed vector field is then given by

ẋ =
(

0 1
−1 −2ζr

)
x +

(
0

−Fs tanh C(ẋ− v0)− κ v0 + u0 cosωt

)
, (4.1)



ARNOL′D TONGUES ARISING FROM A GRAZING-SLIDING BIFURCATION 17

with ζr = ζ−κ/2 as before. Equation (4.1) is now solvable with conventional ordinary
differential equation solvers, although the dynamics is rather stiff in the regions where
the friction force changes sign. The parameter C is a smoothing parameter that
controls this stiffness; it is kept constant at C = 3000 in our calculations. The other
parameters we use are κ = 0.005, Fs = 1 and v0 = 1, while ω and ζr are the bifurcation
parameters. Note that sliding is not possible in (4.1). In order to control the distance
of the periodic orbit from the switching surface Σ we introduce another parameter %
that scales the forcing amplitude from the zero-amplitude periodic orbit at % = 0 to
the grazing orbit at % = 1, that is,

u0 = −% v0

√
(1− ω−2)2 + 4ζ2

r .

The two parameters C and % have opposite effects in terms of smoothing. If we increase
% the interesting dynamics will occur in a smaller neighborhood of Σ. However, the
neighborhood of Σ in which the dynamics is smoothed is determined by C. Therefore,
the effect of large C diminishes if % is increased, leading to locally smoother dynamics.
Hence, the closer % is to 1 the more challenging it becomes to overcome the stiffness
of the system.

Our aim is to compare Arnol′d tongues computed for the Poincaré return map
of (4.1) with those for the normal form (2.2). The normal form and, in particular,
the projection matrix J provide a good approximation if the sliding segments of the
grazing-sliding orbits are short, which is the case near grazing. Hence, in order to
obtain a good comparison between the smoothed vector field and the normal form,
we must set % as close to 1 as possible. We found that % = 0.95 was the largest value
we could use to reliably compute the periodic orbits, but this restricts the range of
|ζr| and, consequently, the range of β.

Since (4.1) is now a smooth vector field, the boundaries of the Arnol′d tongues
are saddle-node bifurcations. We used PDDE-CONT [38] to follow these saddle-node
bifurcation curves in the two parameters ζr and ω and transformed the result back
into the (α, β)-plane using (2.3). Figure 7 shows the results of our computation
superimposed on the Arnol′d tongues of the normal form computed with varying
γ = β/α; note that the use of a non-constant γ does not really alter the structure
of the Arnol′d tongues, though the two-parameter diagram is slightly different from
that in Fig. 4 where we used γ = 0. The saddle-node bifurcation curves of (4.1) are
black and the corresponding border-collision bifurcation curves of (2.2) are red. The
green curves are other border-collision bifurcation curves of (2.2). For small values
of β the Arnol′d tongues agree well, but for larger β-values they diverge. This is
primarely due to the increasing length of the sliding segments for which the projection
matrix J in (2.2) cannot account. We also encountered other bifurcations higher up
in the tongues that correspond to non-smooth bifurcations other than grazing-sliding
bifurcations.

The enlargments in Figs. 7(b) and (c) show that the Arnol′d tongues do not close
in the smoothed vector field. This deformation is very similar to what happens for
nonreversible perturbations of Hill’s equations; see Fig. 5 in [4].

4.2. Smoothed map. Instead of regularizing the vector field directly, one can
also consider smoothing the normal form (2.2). We achieve this by using the same tanh
function as in (4.1) to smooth the transition from pure rotation to pure projection:

y 7→ (1 + tanh C(1− y2))
2

M y +
(1 + tanhC(y2 − 1))

2
(ŷ + M Jε y), (4.2)
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Fig. 7. Comparison between the (black) saddle-node bifurcation curves for the smoothed vec-
tor field (4.1) and the border-collision bifurcation curves (red and green) for the piecewise-smooth
normal form (2.2). Enlargements in the neighborhood of double border-collision points are shown in
panels (b) and (c).

where

Jε = J +
(

0 0
0 ε

)
.

(Note that the order of rotation and projection is as in [39], but this does not affect
the geometry of the Arnol′d tongues at all.) The parameter ε controls the invertibility
of (4.2). For fixed C > 0 and ε > 0 large enough the map (4.2) is a diffeomorphism,
but for small ε ≥ 0 it is only an endomorphism, that is, the map is not invertible.

The map (4.2) is non-invertible if there are points y ∈ R2 for which the de-
terminant of the Jacobian vanishes. After some algebra, we find that this happens
when

1 + eν + ν + ε + ε e−ν − ν ε = 0, (4.3)

where ν = 2C (1− y2). This equation has a minimum at ν = log ε, which substituted
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Fig. 8. Phase portraits for α = 0.333492 × 2π and β = 0.12 in the smoothed non-invertible
map (4.2) with ε = 0 in panels (a) and (b) and ε = 0.090776 ≈ ε in panels (c) and (d). Shown
are stable (blue triangles) and saddle (green crosses) periodic orbits of period three together with the
one-dimensional unstable manifold (red) of the saddle that connects the two periodic orbits. The
enlargements in panels (b) and (d) illustrate self-intersections of the manifold for ε < ε that go away
as soon as the map becomes invertible (ε > ε).

back into (4.3) gives

2 + 2ε + log ε− ε log ε = 0.

Hence, the invertibility of the map does not depend on the smoothing parameter C.
We find that there is a unique ε ≈ 0.090776 so that the map (4.2) is a diffeomorphism
for ε > ε. Throughout this section, we use C = 10 and γ = β/α.

Let us first investigate the effect of the parameter ε by considering the point
(α, β) = (0.333492× 2π, 0.12), which lies well inside the 1/3 Arnol′d tongue. For the
normal form (2.2) the values correspond to a system that has a three-sided minimal
polygon Pf with 1/3 side ordering. The stable period-three orbit is located outside
the polygon formed by the three intersection points of Pf . Hence, we expect that
a pair of stable and saddle period-three orbits exists and the unstable manifold of
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the saddle periodic orbit forms a connection between the two period-three orbits that
is similar to a three-sided polygon on Pf . This heteroclinic cycle is not necessarily
smooth, that is, the periodic orbits do not reside on a smooth invariant torus; see
also [23]. Figure 8 shows the period-three orbits and the unstable manifolds for the
endomorphism with ε = 0 (top row) and at the critical boundary ε = 0.090776 ≈ ε
(bottom row). The stable periodic orbit is marked with blue triangles and the saddle
periodic orbit with green crosses; the unstable manifold is red. Panels (a) and (c)
show the entire heteroclinic cycle and panels (b) and (d) show an enlargment near
the top-right point of the stable periodic orbit (blue triangles). Two branches of the
unstable manifold (red) go to this point and since they approach the point from the
same side, the closed curve is not a normally hyperbolic invariant manifold. In fact,
the two branches intersect, a feature that can only happen for unstable manifolds
in non-invertible systems [14]. If we take ε = ε at the boundary of invertibility the
unstable manifold is tangent to itself; see Figs. 8(c) and (d). The manifolds form a
topological circle as soon as ε > ε, but the connection does not form a smooth torus.

Let us now consider the Arnol′d tongues of the smoothed map (4.2) and compare
them with those for the normal form (2.2). We computed the boundaries of the
tongues as fold bifurcation of periodic orbits in the continuation package AUTO [13]
using ε = 0. The result is shown in Fig. 9(a). As before, the saddle-node bifurcation
curves are black and the corresponding border-collision curves are red; the other
border-collision curves are green. At first glance, the agreement between the two maps
is very good, because we hardly see any red. Of course, one can expect that a direct
smoothing of the normal form leads to a better agreement than the Poincaré map
of the smoothed vector field. However, there are discrepancies in the neighborhood
of the double border-collision points. The typical unfolding that we would expect is
inspired by studies in the context of quasi-periodically forced systems [31]. Locally
each sausage transforms into a curve with a cusp point a little away from the border-
collision point, such that a region with two coexisting pairs of stable and saddle
periodic orbits is created, that is, the Arnol′d tongue can be viewed as two tongues
that overlap.

The typical scenario that we find is shown in the enlargement in Fig. 9(b), which
illustrates a slightly more complicated case. The part of the (red) Arnol′d tongue
below the double border-collision point has transformed into a (black) cusped curve
with a cusp near (α, β) = (0.283213 × 2π, 0.1317). The (red) part above the double
border-collision, however, has transformed into a (black) curve with three cusps cre-
ating regions with two and thee coexisting pairs of stable and saddle periodic orbits.
Such unfoldings correspond to swallowtail singularities and are typical in smooth sys-
tems [2]; they have been studied extensively in the context of quasi-periodically forced
systems [31]. Figure 9(c) shows a slightly different unfolding, where the swallowtail
forms part of the tongue boundary. Rather than a “top-bottom” split of the tongue
boundaries, the boundaries split “left-right” and the right boundary has two cusp
points such that again an overlapping region is created with two coexisting pairs of
stable and saddle periodic orbits.

We find that the Arnol′d tongues do not change qualitatively for ε > ε, except
that more cases occur where the double border-collision points unfold as in Figs. 7(b)
and (c). Figure 10 shows several continuations of branches of periodic orbits along
cross-sections with β fixed for ε = 0. The vertical axis is the AUTO L2-norm of the
periodic orbit. The black lines are the saddle-node bifurcation curves that match those
shown in Figs. 9(b) and (c). Each panel shows four cross-sections with β increasing
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Fig. 9. Comparison between the (black) saddle-node bifurcation curves for the smoothed non-
invertible map (4.2) with ε = 0 and the border-collision bifurcation curves (red and green) for the
piecewise-smooth normal form (2.2). Enlargements in the neighborhood of double border-collision
points are shown in panels (b) and (c).

from green to red.
Figure 10(a) corresponds to Fig. 9(b). The first (green) cross-section shows a pair

of stable and saddle periodic orbits born in a saddle-node bifurcation on the right in
the picture (for large α). The fold point lies on a curve that forms the bottom part of
the Arnol′d tongues and has a cusp at β ≈ 0.1317. There is a second fold point on this
same curve on the other side of the cusp point. These two saddle-node bifurcations
mark the tongue boundary at this β-value. The two additional fold points create a
region with another coexisting pair of stable and saddle periodic orbits. The yellow
cross-section is for a slightly larger value of β and the situation is topologically the
same. For a slightly larger β-value we encounter a cusp point and an additional two
fold points are created; the blue cross-section contains a small range of α for which
there are three coexisting pairs of stable and saddle periodic orbits. This region ends
at the next cusp bifurcation that corresponds to the point with the excessive dip
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Fig. 10. Contination of the branch of periodic orbits through several horizontal (β constant)
cross-sections of two Arnol′d tongues of the smoothed map (4.2) with ε = 0. The parameter β is
increasing from green, yellow, blue, to red. The black lines are saddle-node bifurcation curves that
mark the tongue boundaries; panels (a) and (b) match the projections shown in Figs. 9(b) and (c),
respectively.

in L2-norm. The red curve shows again a case with only two coexisting pairs, but
compared to the first green curve it is the other pair of saddle-node bifurcations that
mark the boundary of the Arnol′d tongue.

Figure 10(b) corresponds to Fig. 9(c). The left boundary of the Arnol′d tongue
enters and exits through the plane with α constant on the left, running from the top
left corner in the back plane with β constant to (somewhat) top left on the front.
The other tongue boundary comes up from the bottom plane and creates three cusp
points before leaving through the right side of the image. Here, there are always at
most two coexisting pairs of stable and saddle periodic orbits. As in Fig. 10(a), the
first green cross-section has four fold points with the left-most and right-most points
forming the tongue boundary. The yellow cross-section is topologically equivalent in
the sense that all fold points are still on the same curves on the same sides of the cusp
points. The next blue cross-section shows how the right fold point that was inside the
tongue takes over as the right tongue boundary, which is shown more clearly for the
last red cross-section. In contrast to Fig. 10(a), there are only two coexisting pairs of
stable and saddle periodic orbits throughout the transition, but the two fold points
that play the role of tongue boundaries change more frequently and in a different
manner.

5. Conclusions. We studied the formation of Arnol′d tongues at a grazing-
sliding bifurcation of an unstable focus-type periodic orbit of a Filippov system. This
setting is motivated by the example of a piecewise-smooth friction oscillator. Based
on the equations for the friction oscillator, we derived a normal form in [39] in a neigh-
borhood of the grazing-sliding bifurcation that describes the behavior on a Poincaré
section transverse to the unstable periodic orbit as well as the switching surface. The
dynamics on the section can be expressed in terms of a piecewise-linear map that
includes the dynamics induced by sliding. As we showed in [39], the normal form has
an attracting invariant set that resides on what we call the minimal polygon that con-
sists of the switching line K0 and its first q− 1 forward iterates; the minimal polygon
then has q sides. We showed in this paper that the normal form gives rise to pairs
of stable and saddle periodic orbits on the minimal polygon that are organized by
Arnol′d tongues. We analyze the Arnol′d tongues in the (α, β)-parameter plane.
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The boundaries of the Arnol′d tongues are border-collision bifurcations that open
up for β = 0 at rational values α

2π = p
q of the ratio between the intrinsic frequency of

the system and the forcing frequency. Except for the strong resonances 1/2, 1/3 and
1/4, the Arnol′d tongues close up again at double border-collision bifurcation points,
forming a string of sausages. Inside the first sausage, the phase-locked orbits contain
one and two sliding segments (stick-phases of the friction oscillator), respectively. For
β > 0 small enough and −1 < γ < 1, the periodic orbit with two sliding segments is
stable and the periodic orbit with one sliding segment is of saddle type. Inside the
second sausage, the orbit with two sliding segments coexists with a periodic orbit that
has three sliding segments; and so on. In principle, the periodic orbit with the most
sliding segments is stable and the other of saddle type, but as β increases, additional
bifurcations may occur that change the stability of these orbits. The parameter space
is divided into regions bounded by side-removal curves at which the number of sides
of the minimal polygon changes. We showed that a double-border collision takes place
each time when an Arnol′d tongue crosses a side-removal curve.

The organization of the Arnol′d tongues in a neighborhood of a grazing-sliding
bifurcation is very similar to the organization of the tongues in a neighborhood of
an ordinary grazing bifurcation in a Filippov system without sliding [36, 37, 46, 47].
However, the presence of a sliding region gives rise to a projection term in the normal
form that renders it non-invertible. We used this property to show that an attracting
invariant set resides on the minimal polygon that necessarily contains the switching
line K0. We also expressed the dynamics on the minimal polygon in terms of an
induced map defined on K0. The periodic orbits generated by the induced map are
automatically admissible solutions of the normal form. Furthermore, the induced
map allows for the formulation of implicit equations that define the border-collision
bifurcations that bound the Arnol′d tongues. We believe that the sliding region has
the effect that double-border collision bifurcations, where the Arnol′d tongues close
up, are structurally stable and not merely due to the absence of higher-order terms
in the normal form.

We compared the structure of the Arnol′d tongues for the normal form with
smoothed versions of the friction oscillator; we considered both the smoothing of
the friction term in the vector field itself and the smoothing of the normal form.
The closing of Arnol′d tongues is not structurally stable for smooth systems, so we
expected that the double border-collision points would unfold. Their unfoldings are
entirely in line with what was predicted in [2].

We found that the periodic orbits do not always reside on the actual polygon
formed by the segments in between the vertices of the minimal polygon. That is, the
dynamics on the minimal polygon is not always topologically equivalent to that of
a circle map. For such cases, the smoothed normal form does not have a normally
hyperbolic invariant torus, not even when the smoothed map is invertible; see Fig. 8.
The location of the phase-locked orbits relative to the vertices of the minimal poly-
gon may hold the key to what constitutes a normally hyperbolic invariant torus for
a piecewise-smooth system. The periodic orbits lie inside the vertices for parameter
values inside the first sausage of an Arnol′d tongue, as long as β > 0 is small. Fur-
thermore, it seems that some points of the periodic orbit move to the other sides of
the vertices as soon as the tongue crosses a side-removal curve. The precise nature of
this phenomenon and the nature of normal hyperbolicity will be the topic of future
research.
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