A numerical study of the Trojan dynamics

Philippe Robutel ASD/IMCCE, Observatoire de Paris

Collaborations with:

J. Bodossian (Paris) F. Gabern (Barcelona) A. Jorba (Barcelona) J. Laskar (Paris)

Restricted "several" bodies-problem

Different models:

asteroid + Sun + 8 planets asteroid + Sun + 4 giant planets asteroid + Sun + Jup + Sat

From
$$3+8*3 = 24$$
 to $3+2*3 = 9$
d. f.

But even 9 D.F. imply numerical studies: num. integrations of the trajectories +

Analysis of the Traj.: Lypunov exponents, Fourier analysis, Frequency Analysis...

Sun & planets are given

Sun & planets are given $a \in [0.38:90] A.U.$ small body: $e \in [0:0.9]$ I = 0

 $(\lambda, \varpi, \Omega)$ Fixed

Sun & planets are given $a \in [0.38:90] A.U.$ small body: $e \in [0:0.9]$ I = 0

 $(\lambda, \varpi, \Omega)$ Fixed

Overlap of MMR above coll. lines: Global chaos

Sun & planets are given $a \in [0.38:90] A.U.$ small body: $e \in [0:0.9]$ I = 0

 $(\lambda, \varpi, \Omega)$ Fixed

Overlap of MMR above coll. lines: Global chaos

Projection of the observed inner solar system's objects on the ecliptic

Main asteroids belt (~400000)

Terrestrial planet's crossers (~5000) Comets

(~200)

Jupiter's trojans (~2000)

Trojans can orbit far from L4 or L5 (2 to 2.5 A.U.)

Kepler (1609)

- $oldsymbol{\omega}$: argument of the perihelion
- e : eccentricity
- M : mean anomaly

 $\lambda=M+arpi$: mean longitude

a : semi-major axis

 $\varpi=\omega+\Omega~$: longitude of the perihelion

~ actions
$$\left(egin{array}{ccc} a, \ e, \ i, \end{array} & \mathbf{M} = nt \end{array}
ight.$$
 ~ angles $\mathbf{M}, \ \mathbf{\omega}, \ \mathbf{\Omega} \end{array}
ight)$

 \varOmega : longitude of the node

i : inclination

fundamental Frequencies (proper frequencies)

3 frequencies for the Trojan: (n, g, s)

Orbital motions: periods 12 years for Jupiter 164 years for Neptune 1000 years at 100 A.U.

Secular motions: periods > 25000 years

fundamental Frequencies (proper frequencies)

If Q.P. solution (evolves on a KAM torus)

3 frequencies for the Trojan: (n,g,s)

Orbital motions: periods 3 months for Mercury 12 years for Jupiter 164 years for Neptune 1000 years at 100 A.U.

Secular motions: periods > 25000 years

fundamental Frequencies (proper frequencies)

If Q.P. solution (evolves on a KAM torus)

3n-I planetary frequencies: (n_j, g_j, s_j) one of the $s_j = 0$ 3 frequencies for the Trojan: (n, g, s)

	3 months for Mercury	
periods	12 years for Jupiter	
periods	164 years for Neptune	
	1000 years at 100 A.U.	
	periods	

Secular motions: periods > 25000 years

 $H(I,\theta) = H_0(I) + \varepsilon H_1(I,\theta)$ H real analytic for $(I,\theta) \in B^n \times \mathbb{T}^n$

 $H(I,\theta) = H_0(I) + \varepsilon H_1(I,\theta)$ H real analytic for $(I,\theta) \in B^n \times \mathbb{T}^n$

If $\varepsilon = 0$

$$F: B^n \longmapsto \Omega \subset \mathbb{R}^n$$
$$I \longmapsto \nu(I) = \nabla H_0(I)$$

if
$$det\left(\frac{\partial^2 H_0(I)}{\partial I^2}\right) \neq 0$$

F is a diffeo. (loc.)

 $H(I,\theta) = H_0(I) + \varepsilon H_1(I,\theta)$ H real analytic for $(I,\theta) \in B^n \times \mathbb{T}^n$

 $H(I,\theta) = H_0(I) + \varepsilon H_1(I,\theta)$ H real analytic for $(I,\theta) \in B^n \times \mathbb{T}^n$

If $\varepsilon \neq 0$ but small enough

There exists Ω_{ε} set of diophanine frequiencies \leftrightarrow KAM tori

 $H(I,\theta) = H_0(I) + \varepsilon H_1(I,\theta) \qquad H \text{ real analytic for } (I,\theta) \in B^n \times \mathbb{T}^n$

If $\varepsilon \neq 0$ but small enough There exists Ω_{ε} set of diophanine frequiencies \leftrightarrow KAM tori

Pöschel (1982),: There exists a diffeo. Ψ and a coord. syst. (φ, ν) such that $\Psi: \mathbb{T}^n \times \Omega \longrightarrow \mathbb{T}^n \times B^n$ Ψ is analytical/ φ and C^{∞} / ν $(\varphi, \nu) \longmapsto (\theta, I)$ The flow is linear on: $\mathbb{T}^n \times \Omega_{\varepsilon}$: $\dot{\nu} = 0$, $\dot{\varphi} = \nu$

 $H(I, \theta) = H_0(I) + \varepsilon H_1(I, \theta)$ H real analytic for $(I, \theta) \in B^n \times \mathbb{T}^n$ If $\varepsilon \neq 0$ but small enough There exists Ω_{ε} set of diophanine frequiencies \leftrightarrow KAM tori

Pöschel (1982),: There exists a diffeo. Ψ and a coord. syst. (φ, ν) such that $\Psi: \mathbb{T}^n \times \Omega \longmapsto \mathbb{T}^n \times B^n \qquad \Psi$ is analytical/ φ and C^{∞} / ν $(\varphi, \nu) \longmapsto (\theta, I) \qquad \text{The flow is linear on: } \mathbb{T}^n \times \Omega_{\varepsilon}: \quad \dot{\nu} = 0, \dot{\varphi} = \nu$

For fix
$$\theta \in \mathbb{T}^n$$
: $\theta = \theta_0$
 $F_{\theta_0} : B^n \longrightarrow \Omega$; $I \longrightarrow p_2(\Psi^{-1}(\theta_0, I))$

The frequency map F_{θ_0} is a smooth diffeo. from, the actions space to the frequencies space

Goal

to obtain numerically a frequency map:

defined on B^n

which coincide with F_{θ_0} , up to numerical accuracy, on the set of KAM tori

numerical tool: Frequency analysis (J.Laskar, 1988, 1990)

Quasi-periodic decomposition of $ae^{i\lambda} = \sum_k \alpha_k e^{if_k}$

$\begin{vmatrix} \alpha_j \\ (AU) \end{vmatrix}$	f_j rad/yr	combinations
46.183882	.02005033	n
.259757	.52968580	n_5
.058931	.21330868	n_6
.049411	.02004870	$n-g_8+g$
.040885	.02005196	$n+g_8-g$
.038045	.01808704	$-n+n_8+g$
.031431	.02201360	$3n - n_8 - g$
• • •	• •	

Quasi-periodic decomposition of $z_5 = e_5 \exp i \varpi_5$

$$z_5(t) \approx \sum_{j=1}^N \alpha_j \exp\left(if_j t\right)$$

$$f_j = k_5 n_5 + k_6 n_6
 p_5 g_5 + p_6 g_6 + q_6 s_6$$

Quasi-periodic decomposition of $z_5 = e_5 \exp i \varpi_5$

$ lpha_j $	f_j ("/yr)	k_5	k_6	p_5	p_6
4.41×10^{-2}	$+4.027603 \times 10^{0}$	+0	+0	+1	+0
1.59×10^{-2}	$+2.800657 imes 10^{1}$	+0	+0	+0	+1
6.44×10^{-4}	$-2.126393 imes 10^4$	-1	+2	+0	+0
6.28×10^{-4}	$+5.198554 imes 10^{1}$	+0	+0	-1	+2
3.86×10^{-4}	$+1.411472 \times 10^{3}$	-2	+5	+0	-2
1.31×10^{-4}	$+2.270341 \times 10^{4}$	-1	+3	+0	-1
1.05×10^{-4}	$-8.652321 imes 10^4$	-2	+3	+0	+0
9.92×10^{-5}	$+1.387493 \times 10^{3}$	-2	+5	+1	-3
8.06×10^{-5}	$+4.399535 \times 10^{4}$	+0	+1	+0	+0
6.45×10^{-5}	$-4.255587 imes 10^4$	-2	+4	+0	-1
4.60×10^{-5}	$-2.123995 imes 10^4$	-1	+2	-1	+1
4.28×10^{-5}	-2.128791×10^4	-1	+2	+1	-1
3.66×10^{-5}	$-1.517825 imes 10^5$	-3	+4	+0	+0
3.49×10^{-5}	$+7.596451 \times 10^{1}$	+0	+0	-2	+3
3.45×10^{-5}	$+1.092546 \times 10^{5}$	+1	+0	+0	+0
2.54×10^{-5}	$+1.435452 \times 10^{3}$	-2	+5	-1	-1
2.01×10^{-5}	$-1.078152 imes 10^5$	-3	+5	+0	-1
1.93×10^{-5}	$-1.995139 imes 10^{1}$	+0	+0	+2	-1
1.85×10^{-5}	$+2.267943 \times 10^{4}$	-1	+3	+1	-2
1.82×10^{-5}	$+1.363514 \times 10^{3}$	-2	+5	+2	-4

$$z_5(t) \approx \sum_{j=1}^N \alpha_j \exp\left(if_j t\right)$$

$$f_j = k_5 n_5 + k_6 n_6$$
$$p_5 g_5 + p_6 g_6 + q_6 s_6$$

Dynamical Maps and Frequency Analysis

C.I. planets

$$(a_j, e_j, I_j, \lambda_j, \varpi_j, \Omega_j)$$
 Fixed

$$(n_j,g_j,s_j)$$
 given

Frequency Map (secular)

Main secular resonances in the asteroid belt

$$pg + qs + r_1g_5 + r_2g_6 + r_3s_6 = 0$$

Label	$\mid p$	q	r_1	r_2	r_3
1	1	0	0	-1	0
2	1	0	-1	0	0
3	0	1	0	0	-1
4	1	1	-1	0	-1
5	1	1	0	-1	-1
6	1	0	1	-2	0
7	0	1	-1	1	-1
8	2	-2	0	0	0
9	1	-1	-1	0	1
10	1	-1	0	-1	1
11	2	1	0	-2	1
12	1	-2	0	-1	2
13	1	0	2	-3	0
14	1	-1	1	-2	1
15	1	-3	0	-1	3
16	1	-3	-1	0	3
17	1	-4	0	-1	4
18	2	-3	0	-2	3
19	1	-4	-1	0	4

Jovian Trojans

Jupiter's trojans (~2000) Robutel, Gabern & Jorba (2005, 2006)

Robutel, Gabern & Jorba (2005, 2006)

Comparison of different models

R.4.B.P. (Sun+J+Sat+T)

Comparison of different models

R.4.B.P. (Sun+J+Sat+T)

E.R.T.B.P. (Sun+J+T)

Comparison of different models

- 5 planetary frequencies : $(n_5, n_6, g_5, g_6, s_6)$
 - 3 for a test-particle : (n,g,s)

Trojan : I:I orbital resonance $n_5 = n$

(
u, g, s)

- 5 planetary frequencies : $(n_5, n_6, g_5, g_6, s_6)$
 - 3 for a test-particle : (n,g,s)

Trojan : I:I orbital resonance $n_5 = n$

(
u, g, s)

 $u \in [7500,9200]$ arcsec/year $\ T_{
u} \in [140,155]$ years

- 5 planetary frequencies : $(n_5, n_6, g_5, g_6, s_6)$
 - 3 for a test-particle : (n,g,s)

Trojan : I:I orbital resonance $n_5 = n$

(
u,g,s)

$$u \in [7500,9200]$$
 arcsec/year $\ T_{
u} \in [140,155]$ years $g \in [230,450]$ arcsec/year $\ T_g \in [2880,5634]$ years

- 5 planetary frequencies : $(n_5, n_6, g_5, g_6, s_6)$
 - 3 for a test-particle : (n,g,s)

Trojan : I:I orbital resonance $n_5 = n$

(
u,g,s)

$$u \in [7500,9200]$$
 arcsec/year $T_{v} \in [140,155]$ years $g \in [230,450]$ arcsec/year $T_{g} \in [2880,5634]$ years $s \in [-50,5]$ arcsec/year $T_{s} > 25000$ years

2 obvious families of resonances

Family I $p\nu = n_5$

E.R.T.B.P. (Sun+J+T)
$$p\nu - n_5 + qg = 0$$

2 obvious families of resonances

Family I $p\nu = n_5$

E.R.T.B.P. (Sun+J+T)
$$p\nu - n_5 + qg = 0$$

Family III: Secular resonances

 $kg + ls + k_5g_5 + k_6g_6 + l_6s_6 = 0$

Quasi-periodic decomposition of $z_5 = e_5 \exp i \varpi_5$

$ lpha_j $	f_j ("/yr)	k_5	k_6	p_5	p_6
4.41×10^{-2}	$+4.027603 \times 10^{0}$	+0	+0	+1	+0
1.59×10^{-2}	$+2.800657 imes 10^{1}$	+0	+0	+0	+1
6.44×10^{-4}	$-2.126393 imes 10^4$	-1	+2	+0	+0
6.28×10^{-4}	$+5.198554 \times 10^{1}$	+0	+0	-1	+2
3.86×10^{-4}	$+1.411472 \times 10^{3}$	-2	+5	+0	-2
1.31×10^{-4}	$+2.270341 \times 10^{4}$	-1	+3	+0	-1
1.05×10^{-4}	-8.652321×10^4	-2	+3	+0	+0
9.92×10^{-5}	$+1.387493 \times 10^{3}$	-2	+5	+1	-3
8.06×10^{-5}	$+4.399535 \times 10^4$	+0	+1	+0	+0
6.45×10^{-5}	$-4.255587 imes 10^4$	-2	+4	+0	-1
4.60×10^{-5}	-2.123995×10^4	-1	+2	-1	+1
4.28×10^{-5}	-2.128791×10^4	-1	+2	+1	-1
3.66×10^{-5}	-1.517825×10^{5}	-3	+4	+0	+0
3.49×10^{-5}	$+7.596451 \times 10^{1}$	+0	+0	-2	+3
3.45×10^{-5}	$+1.092546 \times 10^{5}$	+1	+0	+0	+0
2.54×10^{-5}	$+1.435452 \times 10^{3}$	-2	+5	-1	-1
2.01×10^{-5}	-1.078152×10^{5}	-3	+5	+0	-1
1.93×10^{-5}	$-1.995139 imes 10^{1}$	+0	+0	+2	-1
1.85×10^{-5}	$+2.267943 \times 10^{4}$	-1	+3	+1	-2
1.82×10^{-5}	$+1.363514 \times 10^{3}$	-2	+5	+2	-4

$$z_5(t) \approx \sum_{j=1}^N \alpha_j \exp\left(if_j t\right)$$

Quasi-periodic decomposition of $z_5 = e_5 \exp i \varpi_5$

$ lpha_j $	f_j ("/yr)	k_5	k_6	p_5	p_6
4.41×10^{-2}	$+4.027603 \times 10^{0}$	+0	+0	+1	+0
$1.59 imes 10^{-2}$	$+2.800657 imes 10^{1}$	+0	+0	+0	+1
6.44×10^{-4}	-2.126393×10^4	-1	+2	+0	+0
6.28×10^{-4}	$+5.198554 imes 10^{1}$	+0	+0	-1	+2
3.86×10^{-4}	$+1.411472 \times 10^{3}$	-2	+5	+0	-2
1.31×10^{-4}	$+2.270341 \times 10^{4}$	-1	+3	+0	-1
1.05×10^{-4}	$-8.652321 imes 10^4$	-2	+3	+0	+0
9.92×10^{-5}	$+1.387493 \times 10^{3}$	-2	+5	+1	-3
8.06×10^{-5}	$+4.399535 \times 10^{4}$	+0	+1	+0	+0
6.45×10^{-5}	$-4.255587 imes 10^4$	-2	+4	+0	-1
4.60×10^{-5}	$-2.123995 imes 10^4$	-1	+2	-1	+1
4.28×10^{-5}	$-2.128791 imes 10^4$	-1	+2	+1	-1
3.66×10^{-5}	-1.517825×10^{5}	-3	+4	+0	+0
3.49×10^{-5}	$+7.596451 \times 10^{1}$	+0	+0	-2	+3
3.45×10^{-5}	$+1.092546 \times 10^{5}$	+1	+0	+0	+0
2.54×10^{-5}	$+1.435452 \times 10^{3}$	-2	+5	-1	-1
2.01×10^{-5}	$-1.078152 imes 10^5$	-3	+5	+0	-1
1.93×10^{-5}	$-1.995139 imes 10^{1}$	+0	+0	+2	-1
1.85×10^{-5}	$+2.267943 \times 10^{4}$	-1	+3	+1	-2
1.82×10^{-5}	$+1.363514 \times 10^{3}$	-2	+5	+2	-4

$$z_5(t) \approx \sum_{j=1}^N \alpha_j \exp\left(if_j t\right)$$

$$n_5 - 2n_6$$

$$\frac{2}{5}(n_5 - 2n_6) \approx 8500"/yr$$
$$\nu \in [7500, 9200]"/yr$$

Family II

Quasi-periodic decomposition of $z_5 = e_5 \exp i \varpi_5$

$ \alpha_i $	f_i ("/yr)	k_5	k_6	p_5	p_6	~_(+
4.41×10^{-2}	$+4.027603 \times 10^{0}$	+0	+0	<u>+1</u>	+0	$\sim 5(l)$
1.59×10^{-2}	$+2.800657 \times 10^{1}$	+0	+0	+0	+1	
6.44×10^{-4}	-2.126393×10^4	-1	+2	+0	+0	γ
6.28×10^{-4}	$+5.198554 \times 10^{1}$	+0	+0	-1	+2	
3.86×10^{-4}	$+1.411472 \times 10^{3}$	-2	+5	+0	-2	2i
1.31×10^{-4}	$+2.270341 \times 10^{4}$	-1	+3	+0	-1	
1.05×10^{-4}	-8.652321×10^{4}	-2	+3	+0	+0	2
9.92×10^{-5}	$+1.387493 \times 10^{3}$	-2	+5	+1	-3	$\frac{2}{\pi}(\gamma$
8.06×10^{-5}	$+4.399535 \times 10^{4}$	+0	+1	+0	+0	
6.45×10^{-5}	$-4.255587 imes 10^4$	-2	+4	+0	-1	ν
4.60×10^{-5}	$-2.123995 imes 10^4$	-1	+2	-1	+1	
4.28×10^{-5}	$-2.128791 imes 10^4$	-1	+2	+1	-1	- F
3.66×10^{-5}	$-1.517825 imes 10^5$	-3	+4	+0	+0	
3.49×10^{-5}	$+7.596451 \times 10^{1}$	+0	+0	-2	+3	
3.45×10^{-5}	$+1.092546 \times 10^{5}$	+1	+0	+0	+0	
2.54×10^{-5}	$+1.435452 \times 10^{3}$	-2	+5	-1	-1	2n
2.01×10^{-5}	$-1.078152 imes 10^5$	-3	+5	+0	-1	
1.93×10^{-5}	$-1.995139 imes 10^{1}$	+0	+0	+2	-1	
1.85×10^{-5}	$+2.267943 \times 10^{4}$	-1	+3	+1	-2	
1.82×10^{-5}	$+1.363514 \times 10^{3}$	-2	+5	+2	-4	

$$z_{5}(t) \approx \sum_{j=1}^{N} \alpha_{j} \exp(if_{j}t)$$

$$n_{5} - 2n_{6}$$

$$2n_{5} - 5n_{6} (+2g_{6})$$

$$\frac{2}{5}(n_{5} - 2n_{6}) \approx 8500^{\circ}/yr$$

$$\nu \in [7500, 9200]^{\circ}/yr$$
Family II

$$\frac{2n_5 - 5n_6}{4} \approx 350"/yr$$

$$g \in [230, 450]"/yr$$
Family IV

Secondary resonances

Famille I: $pv - n_5 + qg + q_5g_5 + q_6g_6 = 0$

Famille II: $5v - 2(n_5 - 2n_6) + pg + p_5g_5 + p_6g_6 = 0$

Secondary resonances

Famille I: $pv - n_5 + qg + q_5g_5 + q_6g_6 = 0$

Famille II: $5v - 2(n_5 - 2n_6) + pg + p_5g_5 + p_6g_6 = 0$

Secular resonances

Famille III: $q s + q_6 s_6 + p_5 g_5 + p_6 g_6 = 0$

Secondary resonances

Famille I: $pv - n_5 + qg + q_5g_5 + q_6g_6 = 0$

Famille II: $5v - 2(n_5 - 2n_6) + pg + p_5g_5 + p_6g_6 = 0$

Secular resonances

Famille III: $q s + q_6 s_6 + p_5 g_5 + p_6 g_6 = 0$

G. I. + secular frequencies

Secondary resonances

Famille I: $pv - n_5 + qg + q_5g_5 + q_6g_6 = 0$

Famille II: $5v - 2(n_5 - 2n_6) + pg + p_5g_5 + p_6g_6 = 0$

Secular resonances

Famille III: $q s + q_6 s_6 + p_5 g_5 + p_6 g_6 = 0$

G. I. + secular frequencies

Secondary resonances

Famille I: $pv - n_5 + qg + q_5g_5 + q_6g_6 = 0$

Famille II: $5v - 2(n_5 - 2n_6) + pg + p_5g_5 + p_6g_6 = 0$

Secular resonances

Famille III: $q s + q_6 s_6 + p_5 g_5 + p_6 g_6 = 0$

G. I. + secular frequencies

Secondary resonances

Famille I: $pv - n_5 + qg + q_5g_5 + q_6g_6 = 0$

Famille II: $5v - 2(n_5 - 2n_6) + pg + p_5g_5 + p_6g_6 = 0$

Secular resonances

Famille III: $q s + q_6 s_6 + p_5 g_5 + p_6 g_6 = 0$

G. I. + secular frequencies

E.R.T.B.P (S+J+T)

$$12v - n_5 + qg = 0$$
 avec $q \in \{8, \dots, 13\}$
 $13v - n_5 + qg = 0$ avec $q \in \{-4, \dots, 8\}$
 $14v - n_5 + qg = 0$ avec $q \in \{-3, \dots, 3\}$

$$13\nu - n_{5} + qg + q_{5}g_{5} + q_{6}g_{6} = 0$$

$$14\nu - n_{5} + qg + q_{5}g_{5} + q_{6}g_{6} = 0$$

$$14\nu - n_{5} + qg + q_{5}g_{5} + q_{6}g_{6} = 0$$

$$5.25 \quad 5.30 \quad 5.35 \quad 5.40$$

$$5.25 \quad 5.50 \quad 5.35 \quad 5.40$$

$$5\nu - 2(n_{5} - 2n_{6}) - 0g + p_{5}g_{5} + p_{6}g_{6} = 0$$

$$5\nu - 2(n_{5} - 2n_{6}) - 1g + p_{5}g_{5} + p_{6}g_{6} = 0$$

$$5\nu - 2(n_{5} - 2n_{6}) - 2g + p_{5}g_{5} + p_{6}g_{6} = 0$$

Long-term stability

 $s = s_6$

 $s = s_6$

Regions where $\sigma > -3 \;$ (orange, red) are cleared in IGy except 2

 $s = s_6$

Regions where $\sigma > -3 \;$ (orange, red) are cleared in IGy except 2

Gap along $4g + (2n_5 - 5n_6) - g_6 = 0$

 $s = s_6$

Regions where $\sigma > -3 \;$ (orange, red) are cleared in IGy except 2

Gap along $4g + (2n_5 - 5n_6) - g_6 = 0$

 $s = s_6$

Regions where $\sigma > -3$ (orange, red) are cleared in IGy except 2

Gap along $4g + (2n_5 - 5n_6) - g_6 = 0$

Slow diffusion along

$$4g + (2n_5 - 5n_6) - g_5 = 0$$

Slow diffusion along

$$4g + (2n_5 - 5n_6) - g_5 = 0$$

during 600 My

then wandering for 200 Ma

and ejection at 800 My

Overlapping in family II

$$5v - 2(n_5 - 2n_6) - 0g + qg_5 - (q+2)g_6 = 0$$

bounded diffusion

