Arnold's mechanism of diffusion in the spatial circular Restricted Three Body Problem

Pablo Roldán¹ (Amadeu Delshams¹, Marian Gidea²)

¹Universitat Politècnica de Catalunya, Barcelona

²Northeastern Illinois University, Chicago

WSIMS 2008

(ロ) (同) (三) (三) (三) (三) (○) (○)

Problem Setting

Main Result

Sketch of Proof

Diffusive Orbits in Practice

Spatial Circular RTBP

- Two primaries of masses μ, 1 μ rotate on circles about their common center of mass.
- Sun-Earth system $\mu \approx 3.04 \times 10^{-6}$.
- Infinitesimal particle moves in space under the gravitational influence of primaries.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Equations of Motion

Rotating system of coordinates (x, y, z)

$$\begin{aligned} \ddot{\mathbf{x}} &= \mathbf{2}\dot{\mathbf{y}} + \frac{\partial\omega}{\partial\mathbf{x}}, \\ \ddot{\mathbf{y}} &= -\mathbf{2}\dot{\mathbf{x}} + \frac{\partial\omega}{\partial\mathbf{y}}, \\ \ddot{\mathbf{z}} &= \frac{\partial\omega}{\partial\mathbf{z}}. \end{aligned}$$

- Effective potential: $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1 \mu}{r_1} + \frac{\mu}{r_2}$.
- Energy function $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z)$

► Jacobi integral: $C(x, y, z, \dot{x}, \dot{y}, \dot{z}) = -2H(x, y, z, \dot{x}, \dot{y}, \dot{z})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Equilibrium Points

Figure: The five equilibrium points of the RTBP.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Invariant Manifolds

- $L \in \{L_1, L_2, L_3\}$ is center \times center \times saddle.
- Center manifold about L.
- Energy manifold $M_c = \{(x, y, z, \dot{x}, \dot{y}, \dot{z}): C = c\}.$
- Stable/unstable invariant manifolds $W^{s}(\tilde{\Lambda}), W^{u}(\tilde{\Lambda})$ (4D).

• Typically, $W^{s}(\tilde{\Lambda}) \pitchfork W^{u}(\tilde{\Lambda})$ along a homoclinic manifold.

Description of the Problem

- For $C \simeq C_L$, $\tilde{\Lambda}$ is filled with many invariant 2D tori \mathcal{T} .
- ► Normal form on $\tilde{\Lambda}$: action-angle coordinates (I, J, ϕ, ψ) ,
 - I =out-of-plane amplitude,
 - J = in-plane amplitude (implicit from energy condition).
- Arnold's transition chain of invariant tori?

$$\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_n$$
: $W^u(\mathcal{T}_i) \pitchfork W^s(\mathcal{T}_{i+1}) \quad \forall i.$

- Shadowing trajectory?
- Symbolic dynamics?

Theorem (semi-numerical)

- Given 0 < I < I' < I_{max} and ε > 0, there exists a trajectory along which the action changes from ε-close to I to ε-close to I'.
- There exist 'chaotic' trajectories, which visit some given level sets of I in any prescribed order.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Idea of Proof

- $\tilde{\Lambda}$ is a 3D NHIM for the flow Φ_t with
 - inner dynamics $\Phi_t|_{\tilde{\Lambda}} \colon \tilde{\Lambda} \to \tilde{\Lambda}$,
 - outer dynamics $\tilde{S} : \tilde{\Lambda} \to \tilde{\Lambda}$.
- Fix a suitable Poincaré surface Σ with first return map F.
- Let $\Lambda = \tilde{\Lambda} \cap \Sigma$, a 2D NHIM for the map *F* with
 - inner dynamics $T = F|_{\Lambda} : \Lambda \to \Lambda$,
 - outer dynamics $S: \Lambda \to \Lambda$.

Lemma

If \exists windows $R_i \in \Lambda$ well aligned under successive iterates of T and S, then \exists a true orbit passing close to the windows.

► Find well aligned windows with increasing action $I \implies$ ∃ true orbit of *F* (hence of Φ_t) with increasing action *I*.

Local Approximation of Dynamics

High-order truncated normal form around L:

$$H = H_N(x_1y_1, I = \frac{x_2^2 + y_2^2}{2}, J = \frac{x_3^2 + y_3^2}{2}) + R_{N+1}.$$

- Implementation based on Lie series method [Jorba 1997], can be parallelized.
- Alternatively, use a partial normal form.

•
$$x_1 = y_1 = 0$$
: Center manifold.

Equations of motion on center manifold

$$\dot{I} = 0, \qquad \dot{\phi} = \omega(I, J)$$

 $\dot{J} = 0, \qquad \dot{\psi} = \nu(I, J).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Normally Hyperbolic Invariant Manifold

•
$$x_1 = y_1 = 0$$
, energy condition $C = 3.00087$
 $I(t) = I_0$, $\phi(t) = \omega t + \phi_0$,
 $\psi(t) = \nu t + \psi_0$.

• $\tilde{\Lambda}$ is a family of invariant 2D tori: $\bigcup_{I \in (0, 0.072)} \mathcal{T}(I)$.

Stable and Unstable Manifolds

- $x_1 = 0$: Local stable invariant manifold $W^s_{loc}(\tilde{\Lambda})$.
- $y_1 = 0$: Local unstable invariant manifold $W^u_{loc}(\tilde{\Lambda})$.
- x₁ = 0, x₊ = (I, φ, ψ) ∈ Λ̃: Local stable preserved foliation W^s_{loc}(x₊).
- x₂ = 0, x_− = (I, φ, ψ) ∈ Λ̃: Local unstable preserved foliation W^u_{loc}(x_−).
- Use normal form inside 10⁻⁵-neighborhood of Λ.
- Use numerical integration outside 10⁻⁵-neighborhood (local error 10⁻¹⁴).

Homoclinic Manifold

- ► We follow [Masdemont 2005].
- Integrate st/unst manifolds of tori W^s(T₊), W^u(T_−) up to surface of section {y = 0}.

► Find 'common' points within margin of error (10⁻⁹) → 'First cut' homoclinics.

Homoclinic Manifold

• Repeat varying T_-, T_+ (parallel computation).

Scattering Map

▶ Introduced by [A. García], [Delshams, de la Llave & Seara].

►
$$S: \Lambda \to \Lambda$$
, $S(x_-) = x_+$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Computation of Scattering Map

- Follow [Delshams, Masdemont & Roldán 2007].
- For any point in the intersection, record initial conditions x_s, x_u ∈ Λ and integration times t_s, t_u.
- Integrate x_u forward in Λ̃ for the time t_u → x_−. Integrate x_s backwards in Λ̃ for the time t_s → x₊.
- Scattering map:

$$x_{-} \xrightarrow{\tilde{S}} x_{+}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reduced Model

 $\blacktriangleright \Lambda = \tilde{\Lambda} \cap \Sigma.$

 \blacktriangleright The dynamics associated to $\tilde{\Lambda}$ for the flow

$$\begin{split} \Phi_t|_{\tilde{\Lambda}} \colon \tilde{\Lambda} &\to \tilde{\Lambda}, \\ \tilde{S} \colon \tilde{\Lambda} &\to \tilde{\Lambda} \end{split}$$

induce dynamics associated to Λ for the map:

$$T = F|_{\Lambda} \colon \Lambda \to \Lambda$$
 twist map (2D),
 $S \colon \Lambda \to \Lambda$ scattering map (2D).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) (日) (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) (日) (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) ・ (日) ・ (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

ヘロト ヘ戸ト ヘヨト

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

< ∃⇒

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix and a matrix

ъ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

ъ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix and a matrix

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

ъ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix and a matrix

ъ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

• • • • • • • •

ъ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix and a matrix

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

• • • • • • • • •

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

Image: A matrix and a matrix

ъ

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

-

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

∃⇒

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

< □ > < □ > < □ > < □ >

< ∃⇒

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

ヘロト ヘ戸ト ヘヨト

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) (日) (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) (日) (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) ・ (日) ・ (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) ・ (日) ・ (日)

э

► 8 homoclinic orbits → 8 local scattering maps continued to 2 maximal scattering maps.

・ロット (雪) (日) (日)

э

Method of correctly aligned windows

- ► [Gidea & Robinson, 2003], [Gidea & Zgliczynski, 2004]
- A window a homeomorphic copy of a multi-dimensional rectangle
- One window correctly aligns with another Brouwer degree of the projection in the exit direction is non-zero
- Products of correctly aligned windows are correctly aligned

Theorem (detection of orbits)

Given a bi-infinite sequence of windows – if each window is correctly aligned with the next window $\Rightarrow \exists$ orbit that visits all windows

Given finitely many windows with correct alignments between any two of them $\Rightarrow \exists$ symbolic dynamics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Topological Shadowing Lemma

Lemma

Let $\{R_i\}_{i \in \mathbb{Z}}$ be a bi-infinite sequence of 2D windows in Λ . Assume the following:

- (i) $R_{2i} \subseteq dom(S)$ and $R_{2i+1} \subseteq codom(S)$.
- (ii) R_{2i} is correctly aligned with R_{2i+1} under the outer (scattering) map S.
- (iii) R_{2i+1} is correctly aligned with R_{2i+2} under some iterate T^{K_i} of the inner map *T*, with K_i sufficiently large.

(日) (日) (日) (日) (日) (日) (日)

Then, for every bi-infinite sequence of positive reals $\{\epsilon_i\}_{i \in \mathbb{Z}}$, there exists a 'true' orbit $F^n(z)$ that gets (ϵ_i) -close to some appropriate iterates of R_i .

Align Windows by Scattering Map

► $T_i = \{I = I_i\}, T_{i+1} = \{I = I_{i+1}\},$ homoclinic orbit \Longrightarrow

$$x_{-} \in T_{i} \xrightarrow{S} x_{+} \in T_{i+1}$$

Continuation: vary I_i and I_{i+1}

$$R_{2i} \subset \operatorname{dom}(S) \stackrel{S}{\rightarrow} R_{2i+1} \subset \operatorname{codom}(S).$$

Homoclinic excursions

$$D_{2i} = F^{-M_{i-1}}(R_{2i}) \stackrel{F^{N_i} \circ S \circ F^{M_{i-1}}}{\longrightarrow} D_{2i+1} = F^{N_i}(R_{2i+1}).$$

ъ

Two Jumps of Scattering Map

• Previous construction for T_i and T_{i+1} :

$$R_{2i} \xrightarrow{S} R_{2i+1}.$$

▲□▶▲圖▶▲≣▶▲≣▶ = 更 - のへで

Two Jumps of Scattering Map

• Repeat the construction for T_{i+1} and T_{i+2} :

$$R_{2i+2} \xrightarrow{S} R_{2i+3}.$$

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

= 900

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

• Use high enough iterate T^{K_i} to align windows

$$R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2}.$$

• The twist is very weak, so K_i is very large.

Choose Windows

- Choose the windows to maximize the jump by the scattering map.
- ► This maximizes the initial tilt of the image window \implies fewer iterates of the twist map ($K_i \approx 10$).

Existence of Diffusion Orbits

Obtain a sequence of correctly aligned windows

$$\longrightarrow R_{2i} \xrightarrow{S} R_{2i+1} \xrightarrow{T^{K_i}} R_{2i+2} \longrightarrow$$

By our topological shadowing lemma, there exists a true orbit that goes e_i-close to appropriate iterates of R_i for all i.

End of proof.

How to Obtain Diffusive Orbits in Practice

- Recover homoclinic trajectories corresponding to scattering map (they go 10⁻⁵-close to the windows).
- ► To get correct alignment of windows by the twist, homoclinics are pushed 10⁻⁵⁰-close to Λ due to hyperbolicity.
- We obtain a numerical orbit that goes ϵ -close to $T(I_1), T(I_2)$.
- True orbit from the numerical/applications point of view.

(日) (日) (日) (日) (日) (日) (日)

Conclusions

- Semi-numerical proof of existence of diffusive orbits near equilibrium points L₁, L₂ in the spatial circular RTBP.
- Geometrical mechanism similar to [Arnold 1964].
- May be turned into a Computer Assisted Proof (in project).
- Numerical diffusive orbits for practical applications.
- Project: Show diffusion in larger domain that includes "large gaps" (see [Delshams, de la Llave & Seara 2003]).

(日) (日) (日) (日) (日) (日) (日)

Acknowledgements

- Rafael de la Llave
- Josep Masdemont
- Piotr Zgliczynski
- Maciej Capiński
- Clark Robinson

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ ...