Arnold's mechanism of diffusion in the spatial circular Restricted Three Body Problem

Pablo Roldán ${ }^{1}$
(Amadeu Delshams ${ }^{1}$, Marian Gidea ${ }^{2}$)
${ }^{1}$ Universitat Politècnica de Catalunya, Barcelona
${ }^{2}$ Northeastern Illinois University, Chicago

WSIMS 2008

Outline

Problem Setting

Main Result

Sketch of Proof

Diffusive Orbits in Practice

Spatial Circular RTBP

- Two primaries of masses $\mu, 1-\mu$ rotate on circles about their common center of mass.
- Sun-Earth system $\mu \approx 3.04 \times 10^{-6}$.
- Infinitesimal particle moves in space under the gravitational influence of primaries.

Equations of Motion

- Rotating system of coordinates (x, y, z)

$$
\begin{aligned}
& \ddot{x}=2 \dot{y}+\frac{\partial \omega}{\partial x} \\
& \ddot{y}=-2 \dot{x}+\frac{\partial \omega}{\partial y} \\
& \ddot{z}=\frac{\partial \omega}{\partial z}
\end{aligned}
$$

- Effective potential: $\omega(x, y, z)=\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}$.
- Energy function

$$
H(x, y, z, \dot{x}, \dot{y}, \dot{z})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\omega(x, y, z)
$$

- Jacobi integral: $C(x, y, z, \dot{x}, \dot{y}, \dot{z})=-2 H(x, y, z, \dot{x}, \dot{y}, \dot{z})$

Equilibrium Points

Figure: The five equilibrium points of the RTBP.

Invariant Manifolds

- $L \in\left\{L_{1}, L_{2}, L_{3}\right\}$ is center \times center \times saddle.
- Center manifold about L.
- Energy manifold $M_{c}=\{(x, y, z, \dot{x}, \dot{y}, \dot{z}): C=c\}$.
- Restriction of center manifold to M_{c} is a normally hyperbolic invariant manifold $\tilde{\Lambda} \quad$ (3D).
- Stable/unstable invariant manifolds $W^{s}(\tilde{\Lambda}), W^{u}(\tilde{\Lambda}) \quad$ (4D).
- Typically, $W^{s}(\tilde{\Lambda}) \pitchfork W^{u}(\tilde{\Lambda})$ along a homoclinic manifold.

Description of the Problem

- For $C \simeq C_{L}, \tilde{\Lambda}$ is filled with many invariant 2D tori \mathcal{T}.
- Normal form on $\tilde{\Lambda}$: action-angle coordinates (I, J, ϕ, ψ),
- $I=$ out-of-plane amplitude,
- $J=$ in-plane amplitude (implicit from energy condition).
- Arnold's transition chain of invariant tori?

$$
\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots, \mathcal{T}_{n}: \quad W^{u}\left(\mathcal{T}_{i}\right) \pitchfork W^{s}\left(\mathcal{T}_{i+1}\right) \quad \forall i
$$

- Shadowing trajectory?
- Symbolic dynamics?

Main Result

Theorem (semi-numerical)

- Given $0<I<I^{\prime}<I_{\max }$ and $\epsilon>0$, there exists a trajectory along which the action changes from ϵ-close to I to ϵ-close to I^{\prime}.
- There exist 'chaotic' trajectories, which visit some given level sets of I in any prescribed order.

Idea of Proof

- $\tilde{\Lambda}$ is a 3D NHIM for the flow Φ_{t} with
- inner dynamics $\left.\Phi_{t}\right|_{\tilde{\Lambda}}: \tilde{\Lambda} \rightarrow \tilde{\Lambda}$,
- outer dynamics $\tilde{S}: \tilde{\Lambda} \rightarrow \tilde{\Lambda}$.
- Fix a suitable Poincaré surface Σ with first return map F.
- Let $\Lambda=\tilde{\Lambda} \cap \Sigma$, a 2D NHIM for the map F with
- inner dynamics $T=\left.F\right|_{\wedge}: \Lambda \rightarrow \Lambda$,
- outer dynamics $S: \wedge \rightarrow \Lambda$.

Lemma

If \exists windows $R_{i} \in \wedge$ well aligned under successive iterates of T and S, then \exists a true orbit passing close to the windows.

- Find well aligned windows with increasing action $I \Longrightarrow$ \exists true orbit of F (hence of Φ_{t}) with increasing action I.

Local Approximation of Dynamics

- High-order truncated normal form around L :

$$
H=H_{N}\left(x_{1} y_{1}, I=\frac{x_{2}^{2}+y_{2}^{2}}{2}, J=\frac{x_{3}^{2}+y_{3}^{2}}{2}\right)+R_{N+1}
$$

- Implementation based on Lie series method [Jorba 1997], can be parallelized.
- Alternatively, use a partial normal form.
- $x_{1}=y_{1}=0$: Center manifold.
- Equations of motion on center manifold

$$
\begin{array}{ll}
\dot{I}=0, & \dot{\phi}=\omega(I, J) \\
\dot{J}=0, & \dot{\psi}=\nu(I, J)
\end{array}
$$

Normally Hyperbolic Invariant Manifold

- $x_{1}=y_{1}=0, \quad$ energy condition $C=3.00087$

$$
\begin{array}{ll}
I(t)=I_{0}, & \phi(t)=\omega t+\phi_{0}, \\
& \psi(t)=\nu t+\psi_{0} .
\end{array}
$$

- $\tilde{\Lambda}$ is a family of invariant 2 D tori: $\quad \bigcup_{t \in(0,0.072)} \mathcal{T}(I)$.

Stable and Unstable Manifolds

- $x_{1}=0$: Local stable invariant manifold $W_{\text {loc }}^{s}(\tilde{\Lambda})$.
- $y_{1}=0$: Local unstable invariant manifold $W_{\text {loc }}^{u}(\tilde{\Lambda})$.
- $x_{1}=0, \quad x_{+}=(I, \phi, \psi) \in \tilde{\Lambda}$: Local stable preserved foliation $W_{\text {loc }}^{s}\left(x_{+}\right)$.
- $x_{2}=0, \quad x_{-}=(I, \phi, \psi) \in \tilde{\Lambda}$:

Local unstable preserved foliation $W_{\text {loc }}^{u}\left(x_{-}\right)$.

- Use normal form inside 10^{-5}-neighborhood of $\tilde{\Lambda}$.
- Use numerical integration outside 10^{-5}-neighborhood (local error 10^{-14}).

Homoclinic Manifold

- We follow [Masdemont 2005].
- Integrate st/unst manifolds of tori $W^{s}\left(\mathcal{T}_{+}\right), W^{u}\left(\mathcal{T}_{-}\right)$up to surface of section $\{y=0\}$.

- Find 'common' points within margin of error $\left(10^{-9}\right) \rightarrow$ 'First cut' homoclinics.

Homoclinic Manifold

- Repeat varying $\mathcal{T}_{-}, \mathcal{T}_{+}$(parallel computation).

Scattering Map

- Introduced by [A. García], [Delshams, de la Llave \& Seara].
- $S: \Lambda \rightarrow \Lambda, \quad S\left(x_{-}\right)=x_{+}$.

Computation of Scattering Map

- Follow [Delshams, Masdemont \& Roldán 2007].
- For any point in the intersection, record initial conditions $x_{s}, x_{u} \in \tilde{\Lambda}$ and integration times t_{s}, t_{u}.
- Integrate x_{u} forward in $\tilde{\Lambda}$ for the time $t_{u} \longrightarrow x_{-}$. Integrate x_{s} backwards in $\tilde{\Lambda}$ for the time $t_{s} \longrightarrow x_{+}$.
- Scattering map:

$$
x_{-} \xrightarrow{\tilde{s}} x_{+}
$$

Reduced Model

- $\Lambda=\tilde{\Lambda} \cap \Sigma$.
- The dynamics associated to $\tilde{\Lambda}$ for the flow

$$
\begin{aligned}
\left.\Phi_{t}\right|_{\tilde{\Lambda}}: \tilde{\Lambda} & \rightarrow \tilde{\Lambda} \\
\tilde{S}: \tilde{\Lambda} & \rightarrow \tilde{\Lambda}
\end{aligned}
$$

induce dynamics associated to Λ for the map:

$$
\begin{array}{rlrl}
T=\left.F\right|_{\Lambda}: & \Lambda & \rightarrow \Lambda & \\
\text { twist map } \quad(2 \mathrm{D}) \\
S: & \rightarrow \Lambda & & \text { scattering map } \quad(2 \mathrm{D}) .
\end{array}
$$

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Effect of Scattering Map on Action Level Sets

- 8 homoclinic orbits $\rightarrow 8$ local scattering maps continued to 2 maximal scattering maps.
- Diffusion is non-uniform in I.

Method of correctly aligned windows

- [Gidea \& Robinson, 2003], [Gidea \& Zgliczynski, 2004]
- A window - a homeomorphic copy of a multi-dimensional rectangle
- One window correctly aligns with another - Brouwer degree of the projection in the exit direction is non-zero
- Products of correctly aligned windows are correctly aligned

Theorem (detection of orbits)

Given a bi-infinite sequence of windows - if each window is correctly aligned with the next window $\Rightarrow \exists$ orbit that visits all windows
Given finitely many windows with correct alignments between any two of them $\Rightarrow \exists$ symbolic dynamics.

Topological Shadowing Lemma

Lemma
Let $\left\{R_{i}\right\}_{i \in \mathbb{Z}}$ be a bi-infinite sequence of $2 D$ windows in \wedge.
Assume the following:
(i) $R_{2 i} \subseteq \operatorname{dom}(S)$ and $R_{2 i+1} \subseteq \operatorname{codom}(S)$.
(ii) $R_{2 i}$ is correctly aligned with $R_{2 i+1}$ under the outer (scattering) map S.
(iii) $R_{2 i+1}$ is correctly aligned with $R_{2 i+2}$ under some iterate $T^{K_{i}}$ of the inner map T, with K_{i} sufficiently large.
Then, for every bi-infinite sequence of positive reals $\left\{\epsilon_{i}\right\}_{i \in \mathbb{Z}}$, there exists a 'true' orbit $F^{n}(z)$ that gets $\left(\epsilon_{i}\right)$-close to some appropriate iterates of R_{i}.

Align Windows by Scattering Map

- $T_{i}=\left\{I=I_{i}\right\}, T_{i+1}=\left\{I=I_{i+1}\right\}$, homoclinic orbit \Longrightarrow

$$
x_{-} \in T_{i} \xrightarrow{S} x_{+} \in T_{i+1}
$$

- Continuation: vary I_{i} and I_{i+1}

$$
R_{2 i} \subset \operatorname{dom}(S) \xrightarrow{S} R_{2 i+1} \subset \operatorname{codom}(S) .
$$

- Homoclinic excursions

$$
D_{2 i}=F^{-M_{i-1}}\left(R_{2 i}\right) \xrightarrow{F^{N_{i o}} \xrightarrow{S \circ F^{M_{i-1}}} D_{2 i+1}=F^{N_{i}}\left(R_{2 i+1}\right)}
$$

Two Jumps of Scattering Map

- Previous construction for T_{i} and T_{i+1} :

$$
R_{2 i} \xrightarrow{S} R_{2 i+1} .
$$

Two Jumps of Scattering Map

- Repeat the construction for T_{i+1} and T_{i+2} :

$$
R_{2 i+2} \xrightarrow{s} R_{2 i+3} .
$$

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{0} twist iterates.

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{1} twist iterates.

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{2} twist iterates.

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{3} twist iterates.

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{10} twist iterates.

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{11} twist iterates.

Align Windows by Twist Map

- Use high enough iterate $T^{K_{i}}$ to align windows

$$
R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} .
$$

- The twist is very weak, so K_{i} is very large.

Figure: Windows after T^{173} twist iterates.

Choose Windows

- Choose the windows to maximize the jump by the scattering map.
- This maximizes the initial tilt of the image window \Longrightarrow fewer iterates of the twist map ($K_{i} \approx 10$).

Existence of Diffusion Orbits

- Obtain a sequence of correctly aligned windows

$$
\longrightarrow R_{2 i} \xrightarrow{S} R_{2 i+1} \xrightarrow{T^{K_{i}}} R_{2 i+2} \longrightarrow
$$

- By our topological shadowing lemma, there exists a true orbit that goes ϵ_{i}-close to appropriate iterates of R_{i} for all i.
- End of proof.

How to Obtain Diffusive Orbits in Practice

- Recover homoclinic trajectories corresponding to scattering map (they go 10^{-5}-close to the windows).
- To get correct alignment of windows by the twist, homoclinics are pushed 10^{-50}-close to Λ due to hyperbolicity.
- We obtain a numerical orbit that goes ϵ-close to $T\left(l_{1}\right), T\left(l_{2}\right)$.
- True orbit from the numerical/applications point of view.

Example Diffusive Orbit (2 Jumps)

Conclusions

- Semi-numerical proof of existence of diffusive orbits near equilibrium points L_{1}, L_{2} in the spatial circular RTBP.
- Geometrical mechanism similar to [Arnold 1964].
- May be turned into a Computer Assisted Proof (in project).
- Numerical diffusive orbits for practical applications.
- Project: Show diffusion in larger domain that includes "large gaps" (see [Delshams, de la Llave \& Seara 2003]).

Acknowledgements

- Rafael de la Llave
- Josep Masdemont
- Piotr Zgliczynski
- Maciej Capiński
- Clark Robinson

