Efficient numerical implementation of integrability criteria based on high order variational equations

Regina Martínez¹ & Carles Simó²

⁽¹⁾ Dept. Matemàtiques, UAB

 $^{(2)}$ Dept. Matemàtica Aplicada i Anàlisi, UB

reginamb@mat.uab.cat, carles@maia.ub.es

Workshop on Stability and Instability in Mechanical Systems: Applications and Numerical Tools

Institut de Matemàtiques

Universitat de Barcelona 0812051230

The problem

To study the integrability of a Hamiltonian H(q, p) real analytic on some domain Ω of \mathbb{R}^{2n} . We consider the extension to a complex domain $\hat{\Omega}$ of \mathbb{C}^{2n} . If $x = \{q, p\} \in \mathbb{C}^{2n}$ we consider solutions x(t) with $t \in \hat{D} \subset \mathbb{C}$. The image of \hat{D} by x is a **Riemann surface** Γ . We shall **complete** Γ adding fixed points, singularities and points at infinity to obtain $\overline{\Gamma}$.

We shall consider integrability in the **Liouville-Arnol'd** sense:

There exist n first integrals f_1, f_2, \ldots, f_n independent almost everywhere and in involution. Usually it is taken $f_1 = H$. In general the functions f_1, f_2, \ldots, f_n will be considered **meromorphic in a neighbourhood** of a given solution x(t).

Typically Hamiltonian systems are **non-integrable**.

The problem is how to detect/prove the non-integrability.

Theoretical results: using first order variational equations

We present results based of **differential Galois theory** because:

- 1) They do not require to be in the **perturbative setting** $H = H_0 + \varepsilon H_1$,
- 2) They can be extended to **variational equations of higher order**.

Consider the **ODE** $\dot{x} = f(x(t)), x(t_0) = x_0$ a **regular** point of $f, x \in \mathbb{C}^m$. Let x(t) be a **solution**.

The **first VE** along x(t) is $\frac{d}{dt}A = Df(x(t))A$, $A(t_0) = Id$.

Consider **closed paths**, γ , on Γ with base point x_0 . One can associate to each γ the corresponding monodromy matrix M_1^{γ} . The set of all these matrices form the **monodromy group** M_1 .

In general let

$$\frac{d}{dt}A = B(t)A(t),$$

with the entries of B in a suitable field of functions K, the meromorphic functions on $\overline{\Gamma}$, and let $\xi_{i,j}$ be the elements of a fundamental matrix. Consider the extension $L = K(\xi_{1,1}, \xi_{2,1}, ..., \xi_{m,m})$. $G = \text{Gal}(L \mid K)$ denotes the Galois group of the extension. The **closure** of the monodromy group is the Galois group.

Theorem 1 (Morales–Ramis Meth. & Appl. of Analysis 8, 2001) Under the assumptions above if a Hamiltonian is integrable in a neighbourhood of Γ then the **identity component** G^0 of the Galois group of the first order VE along Γ is **commutative**.

 G^0 commutative \implies nothing against integrability.

This can happen, typically, for families of Hamiltonian systems depending on parameters, for some exceptional sets of parameters.

This suggests to try to detect **non-integrability** using **higher order variational equations**, methods introduced recently.

Recalling some concepts

Galois group $G = \text{Gal}(L \mid K)$: automorphisms of L which leave K invariant.

It is an **algebraic group**: The elements satisfy some algebraic conditions (polynomials in an ideal in $\mathbb{C}[X_1, ..., X_m]$) and the group operation and passing to the inverse are algebraic.

Whenever we refer to some topological concept (closure, component,...) one should understand that the **Zariski's topology** is used.

The closed sets are the zeros of an ideal. Note that any two open sets are not disjoint. In particular it is not Hausdorff.

Using higher order variational equations

Let $\varphi(t, x_0)$ be the solution of $\dot{x} = f(x(t))$ with $\varphi(0, x_0) = x_0$. We consider as **fundamental solutions of the** *k***-th order VE**, **VE**_{*k*} based on x_0 , the string

$$(\varphi^{(1)}(t),\varphi^{(2)}(t),\ldots,\varphi^{(k)}(t))$$

such that

$$\varphi(t, y_0) = \varphi(t, x_0) + \varphi^{(1)}(t)(y_0 - x_0) + \ldots + \varphi^{(k)}(t)(y_0 - x_0)^k + \ldots,$$

i.e., the coefficients of the k-jet.

 $\varphi^{(k)}(t)$ satisfy **linear non-homogeneous ODE**. $\frac{d}{dt}\varphi^{(k)}, k > 1$ depends on $\varphi^{(j)}$ for j < k in a **nonlinear way**. It can be made linear by **adding additional variables**.

Then one can introduce the *k*-th order Galois group G_k . Loosely we can talk about the *k*-th order monodromy M_k^{γ} along a path γ .

The **composition** of elements in M_k^{γ} as a group is equivalent to the **composition of jets**.

Theorem 2 (Morales–Ramis–S Ann. Scient. Éc. Norm. Sup. 4^e série 40, 2007) Under the assumptions above if a Hamiltonian is integrable in a neighbourhood of Γ then for any $k \geq 1$ the identity component $(G_k)^0$ of G_k is commutative.

This result gives rise to **non-integrability criteria to all orders**. Note that these criteria can depend strongly on the reference solution x(t) and on the paths taken on it.

A degenerate Hénon-Heiles problem

Hénon-Heiles family (HHF) (classical b = -1):

$$H = \frac{1}{2}(x_3^2 + x_4^2 + x_1^2 + x_2^2) + \frac{1}{3}x_1^3 + bx_1x_2^2,$$

non-integrable for all b except **four values**. For **3 of them** integrability is proved. Remaining case: b = 1/2, degenerate Hénon-Heiles **DHH**. Fixed points $P_{ee} = (0, 0, 0, 0)$, $P_{hp} = (-1, 0, 0, 0)$.

The global W_{hp}^c manifold. Coincides with a family of periodic orbits.

Separatrix Γ_0 on the invariant plane $\{x_2 = x_4 = 0\}$ and $H = h_0 = 1/6$:

$$x_1(t) = \frac{3/2}{\cosh^2(t/2)} - 1, \quad x_3(t) = \frac{-(3/2)\sinh(t/2)}{\cosh^3(t/2)}, \quad \text{singularity } t_* = \pi i.$$

Double-periodic solutions for $h < h_0$: ψ_1, ψ_2 paths along real, imaginary periods. Then

$$[M_k^{\psi_1}, M_k^{\psi_2}] = M_k^{\psi_2^{-1}} \circ M_k^{\psi_1^{-1}} \circ M_k^{\psi_2} \circ M_k^{\psi_1}$$

should be trivial. Path **can be deformed** to loop γ around t_* . Reduces to **local checks**: M_2^{γ} trivial, but some components of $\varphi^{(3)}$ are **different from zero**. E.g. $x_{2;2,2,2} = \frac{72}{5}2\pi i$.

In general we can have solutions with **several singularities** and we can have also **new singularities** in the coefficients of the variational equations. If $(G_1)^0$ or $(M_1)^0$ is commutative we have to go to **higher order varia-tional equations**.

A monodromy matrix
$$M$$
 is in $(G_1)^0$ if, for instance, $M = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

Solutions of VE_k , k > 1 are obtained from solutions of VE_1 by **quadrature**.

Problems in checking the necessary conditions

To apply **Theorem 2** to concrete systems several **difficulties** are found:

- To apply these methods one needs to use an **explicitly** known solution x(t).
- They require the choice of a **suitable path** for the complex time.
- In general it is **not possible to integrate analytically first and higher order variational equations** in a simple and efficient way.

The need of higher order VE to prove **non-integrability** can be independent of the existence of **large chaotic regions** in numerical simulations. **Simple enough** solutions can be more **degenerate** than a generic one.

Ergo \implies numerical check of the necessary conditions for integrability along arbitrary paths γ of $t \in \mathbb{C}$.

A method with a wide range of applications, based on **Taylor expansions both in time and in nearby initial conditions**, is presented. The integration of **arbitrary higher order VE along arbitrary paths** is easily automatized.

The Taylor method for the numerical integration of ODE

Problem: to integrate $\dot{x} = f(t, x), x(t_0) = x_0,$. f analytic in a neighbourhood of $(t_0, x_0) \in \Omega \subset \mathbb{R} \times \mathbb{R}^n$ or $\Omega \subset \mathbb{C} \times \mathbb{C}^n$. From $x(t_0 + h) = \sum_{j \ge 0} c_j h^j$ and $f(t_0 + h, x(t_0 + h)) = \sum_{j \ge 0} d_j h^j$ it follows $c_j = d_{j-1}/j$. It remains **to compute the** d_j . This is done in a **recurrent way**. Assume to evaluate f can be split in **simple expressions**:

$$\begin{array}{l} e_1 \,=\, g_1(t,x), \\ e_2 \,=\, g_2(t,x,e_1), \\ \vdots \\ e_j \,=\, g_j(t,x,e_1,\ldots,e_{j-1}), \\ \vdots \\ e_m \,=\, g_m(t,x,e_1,\ldots,e_{m-1}), \\ f_1(t,x) \,=\, e_{k_1}, \\ \vdots \\ f_n(t,x) \,=\, e_{k_n}, \end{array}$$

where each of the e_j contains a sum of arguments, a product or quotient of two arguments or an **elementary function** (like sin, cos, log, exp, $\sqrt{2}$, ...) of a **single argument**.

Inserting $c_0 = x_0$ in the e_j we obtain d_0 and then c_1 . Putting $x(t_0) = c_0 + c_1 h$ all the e_i can be obtained to order 1 in h. Then we have d_1 and hence c_2 . **Iterate to the desired order**. All the g_j can be seen as **operations** with (truncated) power series.

Examples: If $a(h) = \sum_{k\geq 0} a_k h^k$, $b(h) = \sum_{k\geq 0} b_k h^k$ $c = a \times b$: $c_n = \sum_{k=0}^n a_k b_{n-k}$ $c = a^{\alpha}, \ \alpha \in \mathbb{R}, \ a_0 \neq 0, \quad c_0 = a_0^{\alpha},$ $c_n = -\frac{1}{na_0} \sum_{k=0}^{n-1} c_k a_{n-k} [k - \alpha(n-k)], \ n > 0$ $c = \exp(a), \quad c_0 = \exp(a_0), \quad c_n = \frac{1}{n} \sum_{k=0}^{n-1} c_k a_{n-k} (n-k), \ n > 0$ **Suitable** for analytic (or regular enough) f, non-stiff.

Some interesting properties

- Under simple conditions **optimal stepsize** (concerning efficiency for fixed truncation error) \approx independent of the number of digits. h_{opt} close to $\rho(t)/\exp(2)$, where $\rho(t) = \text{local radius of convergece around } t$.
- optimal order $N_{\text{opt}} \approx$ linear in the number of digits.
- The **computational cost** to integrate from t_0 to t_f (measured in number of elementary operations) \approx quadratic in the number of digits.
- It is elementary to produce **dense output**.
- Very simple application to obtain **Poincaré sections**.
- Domain of **absolute stability** $\approx |z| < N/e$, $\operatorname{Re}(z) < 0$.
- Easy to reduce errors to the propagation of **round off**.

See paper and software by À. Jorba, M. Zou, *Experimental Mathematics* 14 (2005) 99–117. Also: C. Simó, Taylor method for the integration of ODE, Lecture notes, available at http://www.maia.ub.es/dsg/2007/.

Example of use of Taylor method: RTBP Sun-Jupiter-Trojan with initial z = 0.8. Worst case. Integration time=10⁹ Jupiter revolutions ≈ 2.6 times the age of the Solar System.

Jet transport

Problem: Given initial conditions $x_0 + \xi$ to obtain $\varphi(t; t_0, x_0 + \xi) = \varphi(t; t_0, x_0) + Q(t; t_0, x_0, \xi) = P(t; t_0, x_0, \xi) = \sum_m a_m(t)\xi^m$, where P is a **polynomial truncated at the desired order**.

Example: in \mathbb{R}^4 integrate to degree 3 in ξ . Using **variational equations** requires 4+16+64+256 = 320 equations, which reduce to 140 by symmetry.

A simpler method: Integrate using any method (e.g.Taylor) but replacing operations with numbers by operations with polynomials truncated at the desired order.

Strongly related to the **Taylor models** largely used by M. Berz, K. Makino and collaborators, see, e.g. http://bt.pa.msu.edu/berz.

If $P(\xi), Q(\xi)$ are polynomials up to (total) order k the recurrences mentioned in Taylor method can be used to obtain, to order k, the polynomials corresponding to $P \times Q$, P^{α} , $\exp(P)$,

Remark: in the selection of the **optimal step size** one has to take into account **all the** a_m **coefficients**.

Some systems requiring order k variational equations

As an extension of DHH consider, for $m \ge 2$, the **generalised degenerate HH** problem, GDHH, with Hamiltonian

$$H = \frac{1}{2}(x_3^2 + x_4^2) + \frac{1}{2}x_1^2 + \frac{1}{3}x_1^3 + (1+x_1)\frac{1}{n!}x_2^n.$$

For n = 2 gives DHH. Consider now $n \ge 3$. As proved in Martínez-S (2008a) these systems require to go to **order** n - 1 to detect **non-integrability** close to a separatrix like in the DHH case.

Singularities located at $t = (2k + 1)\pi i$; a suitable path is OABCDO, where: O = (0,0), A = (2,0), B = (2,6), C = (-2,6), D = (-2,0). Initial point: close to symmetric point on the separatrix, i.e., (r,0,0,0), $r \approx 1/2$.

Notation: $a_{i;k_1,...,k_n}(t) = \text{coefficient of } \xi_1^{k_1} \dots \xi_n^{k_n} \text{ in the } i\text{-th component}$ of $P(t; t_0, x_0, \xi)$. Simply $a_{i;k_1,...,k_n}$ at the end of path γ .

Results

If 1 < |k| < n - 1 only round off errors (e.g., $< 10^{-8}$ if n < 12). If n = 7 only non-zero for $i \in \{2, 4\}, k_1 = k_3 = 0, k_2 + k_4 = 6$.

$a_{2:0600}$	-0.52359878E-01 i		
$a_{2:0501}$	0.19739209E+01	$a_{4:0501}$	0.31415927E+00 i
$a_{2:0402}$	0.23254708E+02 i	$a_{4:0402}$	-0.49348022E+01
$a_{2:0303}$	-0.12987879E+03	$a_{4:0303}$	-0.31006277E+02 i
$a_{2:0204}$	-0.38252461E+03 i	$a_{4:0204}$	0.97409091E+02
$a_{2:0105}$	0.57683352E+03	$a_{4:0105}$	0.15300984E+03 i
$a_{2:0006}$	0.35236754E+03 i	$a_{4:0006}$	-0.96138919E+02

which **coincide with theoretical values** to all digits displayed.

Values of four non-zero coefficients of the jet at order 4 after a loop around the singularity for the GDHH problem with n = 5, as a function of the initial point $x_0 = (r, 0, 0, 0)$. The other two non-zero coefficients do not change with r.

Other systems with $x_1^2/2 + x_1^3/3$ replaced by **higher order polynomials** (up to degree 12) give similar results. Separatrix **not available analytically**.

A nonlinear spring-pendulum problem

The Hamiltonian

$$H = \frac{1}{2} \left(x_3^2 + \frac{x_4^2}{x_1^2} \right) - x_1 \cos(x_2) + \frac{k}{2} (x_1 - 1)^2 - \frac{a}{3} (x_1 - 1)^3, \ k > 0$$

Known results (Maciejewski-Przybylska-Weil, *J. Phys. A* **37**, 2004): If $k + a \neq 0$, k > 0 the system is **non-integrable**.

A simple solution for a = -k

$$x_1(t) = \rho + \frac{\alpha}{\cosh^2(\beta t)}, \quad x_3(t) = \dot{x}_1(t) \quad x_2 = x_4 = 0,$$

with ρ, α, β depending on k. It has a singularity at $t_* = \frac{\pi 1}{2\beta}$. MPW checked that for a = -k no obstruction appears up to order 7. But other singularities appear for the VE at $\pm \hat{t}$, where $x_1(\pm \hat{t}) = 0$.

$$\pm \hat{t} = \pm \frac{1}{\beta} \log \left(\sqrt{-\frac{\alpha}{\rho}} + \sqrt{-\frac{\alpha}{\rho} - 1} \right)$$

Path to study of the nonlinear spring pendulum around the three singularities of the variational equations. Equivalent to a **commutator path**.

Left: Sample of paths used for the jet transport and location of singularities. γ_+ around t_+ is OABCDO, γ_{\pm} around t_+ and t_- is OABCEFAO, and γ_* around t_* is OGHIJKO. Right: Computed sums of the norms of all terms in the jets at order n (upper curve) and value normalized by the maximum for every order, along γ_* . Vertical variable in \log_{10} scale.

Next step is to check the **jet transport along** γ_{\pm} . First we do it along γ_{\pm} . The results obtained are of the form

$$T_{\gamma_{+}}(\xi) = \begin{pmatrix} \xi_{1} \\ \xi_{2} + ai \, \xi_{2}^{3} - ci \, \xi_{2}^{2} \xi_{4} + 3di \, \xi_{2} \xi_{4}^{2} - ei \, \xi_{4}^{3} \\ \xi_{3} \\ \xi_{4} + bi \, \xi_{2}^{3} - 3ai \, \xi_{2}^{2} \xi_{4} + ci \, \xi_{2} \xi_{4}^{2} - di \, \xi_{4}^{3} \end{pmatrix} + \mathcal{O}(|\xi|^{4}),$$

with a, b, c, d, e > 0. Symplectic character is checked. Similar for γ_{-} . For γ_{\pm} only 0, 2b, 0, 2d, 0 subsist. Theoretical results (Martínez-S, 2008a) **agree qualitatively** (no explicit values could be computed theoretically).

Left: Values of $a_{2;0300}$ (upper curve) and $-a_{4;0003}$ (lower curve) as a function of k at the end of γ_{\pm} . Right: magnification in \log_{10} scale for $a_{2;0300} - 3$ and $-a_{4;0003}$.

The Swinging Atwood's Machine

A classical mechanical device. If we **include pulleys** the Hamiltonian is

$$H(r,\theta,p_r,p_\theta) = \frac{1}{2} \left[\frac{p_r^2}{M_t} + \frac{(p_\theta + Rp_r)^2}{mr^2} \right] + gr(M - m\cos\theta) + gR(m\sin\theta - M\theta),$$

where $M_t = M + m + 2\frac{I_p}{R^2}$.

Theorem (PPSRMWS, Swinging Atwood's machine: experimental and theoretical studies, preprint 2008):

For every physically consistent value of the parameters, the SAM with pulleys is meromorphically non-integrable.

This can be already detected using Theorem 1.

Without pulleys and normalising constants

$$H = (x_3^2/(1+\mu) + x_4^2 x_1^{-2})/2 + x_1(\mu - \cos(x_2)),$$

where μ is a mass ratio, $\mu > 1$ in the domain of interest.

Known to be **non-integrable if** $\mu \neq \mu_p$ where $\mu_p = 1 + \frac{4}{p^2 + p - 4}$, $p \in \mathbb{N}$, p > 2 and integrable if $\mu = \mu_2 = 3$. (Casasayas- Nunes-Tufillaro, *J. Physique* **51**, 1990).

It remains to study the **exceptional cases**, which can not be decided using Theorem 1. **Non-integrability proved** in Martínez-S, 2008b. A simple solution

$$x_1(t) = \frac{1}{a} \left(1 - t^2 \right), \quad x_2(t) = 0, \quad x_3(t) = (1 - \mu_p)t, \quad x_4(t) = 0,$$

where $a = p^2 + p - 2$. Note that $r(t_{\pm}) = r(\pm 1) = 0$. Several paths have been taken for the tests. We recall that **the path associated to the commutator** must travel around t_+ and t_- and then again around them reversing orientation: $\gamma_-^{-1} \circ \gamma_+^{-1} \circ \gamma_- \circ \gamma_+$.

Let $g^{(s)} = \sum_{i=1}^{4} \sum_{n \in 4, |n|=s} |a_{i;n_1,n_2,n_3,n_4}|$ a norm of the terms of order s and define a relative error $\varepsilon^{(s)} = g^{(s)}(t = t_{\text{final}}) / \max_{t \in \gamma_*} \{g^{(s)}(t)\}.$

One of the paths, OABCDAOEFGHEOADCBAOEHGFEO, used for tests.

Left: The norms $g^{(s)}$, of the terms of **order 1,2 and 3** for SAM as a function of μ . The lower (resp. upper) curve corresponds to s = 1 (resp. s = 3). For s = 1 we show the change with respect to the identity matrix. In the horizontal axis we display $\log(\mu - 1)$ while in the vertical one $\operatorname{arcsinh}(g^{(s)})$ is shown.

Right: For p = 2 we consider the values of $g^{(s)}$ at the end of Γ (lower curve) and of γ_+ (upper curve) divided by the maximal value of $g^{(s)}$ along the full path, as a function of s. For both curves in the vertical axis the \log_{10} scale has been used.

Plots similar to the previous one for p = 3 (left) and p = 4 (right). Now, in contrast with the case p = 2, the lower upper (lower curve), at least for large s, corresponds to the \log_{10} of the quotient of $g^{(s)}$ at the end of γ_+ (**at the end of** Γ) by the maximal value of $g^{(s)}$ along the full path. Note that now the final value (except for the known cases s = 1, 2) is only one or two orders of magnitude smaller than the maximal value.

Histograms of the **number of elements** $a_{i;n_1,n_2,n_3,n_4}$, $n \in \mathbb{N}^4$, |n| = s such that the log₁₀ of its **maximum value along** Γ is in a **given range**. On the top left (resp. right, bottom) appear the results for p = 2 (resp. p = 3, p = 4). In each plot the values for s = 5, 10, 15, 20 are shown.

Final considerations

We have used the **check of Theorem 2** as an application of **jet trans-port**.

- a) One can convert the computation into a **rigorous proof, CAP**, by using **interval arithmetic** and estimates of **remainder** in Taylor using Cauchy bounds.
- b) A **difficulty** shows up to extend this to **unbounded ranges** of parameters. **Analytical proofs** can not be avoided in general.
- c) Jet transport is **even efficient!**. On the plot for a range of μ in the SAM, the **average computing time** per value of μ is **24 ms**. In that time one can compute **only one hundred of Poincaré iterates!**

Some further applications of jet transport:

- 1) Transport of a **box of initial data** under the flow, assuming that the image is not too large. Otherwise, add the use of **subdivision** methods.
- 2) Transport of **probability distributions** under the same assumptions.
- 3) Computation of **high order approximations of return maps** associated to any type of connection.
- 4) Computation of **normal forms** around arbitrary orbits. Application to obtain **local expansions of** $W^{u,s,c}$, to study **higher order codimension bifurcations**, check assumptions for validity of **KAM theorems**, etc.