Efficient numerical implementation of integrability criteria based on high order variational equations

Regina Martínez ${ }^{1}$ \& Carles Simó ${ }^{2}$
${ }^{(1)}$ Dept. Matemàtiques, UAB
${ }^{(2)}$ Dept. Matemàtica Aplicada i Anàlisi, UB
reginamb@mat.uab.cat, carles@maia.ub.es

Workshop on
Stability and Instability in Mechanical Systems: Applications and Numerical Tools

Institut de Matemàtiques
Universitat de Barcelona 0812051230

The problem

To study the integrability of a Hamiltonian $H(q, p)$ real analytic on some domain Ω of $\mathbb{R}^{2 n}$. We consider the extension to a complex domain $\hat{\Omega}$ of $\mathbb{C}^{2 n}$. If $x=\{q, p\} \in \mathbb{C}^{2 n}$ we consider solutions $x(t)$ with $t \in \hat{D} \subset \mathbb{C}$. The image of \hat{D} by x is a Riemann surface Γ. We shall complete Γ adding fixed points, singularities and points at infinity to obtain $\bar{\Gamma}$.
We shall consider integrability in the Liouville-Arnol'd sense:
There exist n first integrals $f_{1}, f_{2}, \ldots, f_{n}$ independent almost everywhere and in involution. Usually it is taken $f_{1}=H$. In general the functions $f_{1}, f_{2}, \ldots, f_{n}$ will be considered meromorphic in a neighbourhood of a given solution $x(t)$.
Typically Hamiltonian systems are non-integrable.
The problem is how to detect/prove the non-integrability.

Theoretical results: using first order variational equations We present results based of differential Galois theory because:

1) They do not require to be in the perturbative setting $H=H_{0}+\varepsilon H_{1}$,
2) They can be extended to variational equations of higher order.

Consider the ODE $\dot{x}=f(x(t)), x\left(t_{0}\right)=x_{0}$ a regular point of $f, x \in \mathbb{C}^{m}$. Let $x(t)$ be a solution.
The first VE along $x(t)$ is $\frac{d}{d t} A=D f(x(t)) A, A\left(t_{0}\right)=I d$.
Consider closed paths, γ, on Γ with base point x_{0}. One can associate to each γ the corresponding monodromy matrix M_{1}^{γ}. The set of all these matrices form the monodromy group M_{1}.
In general let

$$
\frac{d}{d t} A=B(t) A(t),
$$

with the entries of B in a suitable field of functions K, the meromorphic functions on $\bar{\Gamma}$, and let $\xi_{i, j}$ be the elements of a fundamental matrix. Consider the extension $L=K\left(\xi_{1,1}, \xi_{2,1}, \ldots, \xi_{m, m}\right)$.
$G=\operatorname{Gal}(L \mid K)$ denotes the Galois group of the extension.

The closure of the monodromy group is the Galois group.
Theorem 1 (Morales-Ramis Meth. ©j Appl. of Analysis 8, 2001) Under the assumptions above if a Hamiltonian is integrable in a neighbourhood of Γ then the identity component G^{0} of the Galois group of the first order VE along Γ is commutative.
G^{0} commutative \Longrightarrow nothing against integrability.
This can happen, typically, for families of Hamiltonian systems depending on parameters, for some exceptional sets of parameters.

This suggests to try to detect non-integrability using higher order variational equations, methods introduced recently.

Recalling some concepts

Galois group $G=\operatorname{Gal}(L \mid K)$: automorphisms of L which leave K invariant. It is an algebraic group: The elements satisfy some algebraic conditions (polynomials in an ideal in $\mathbb{C}\left[X_{1}, \ldots, X_{m}\right]$) and the group operation and passing to the inverse are algebraic.
Whenever we refer to some topological concept (closure, component,...) one should understand that the Zariski's topology is used.
The closed sets are the zeros of an ideal. Note that any two open sets are not disjoint. In particular it is not Hausdorff.

Using higher order variational equations

Let $\varphi\left(t, x_{0}\right)$ be the solution of $\dot{x}=f(x(t))$ with $\varphi\left(0, x_{0}\right)=x_{0}$.
We consider as fundamental solutions of the k-th order $\mathbf{V E}, \mathbf{V E}_{k}$ based on x_{0}, the string

$$
\left(\varphi^{(1)}(t), \varphi^{(2)}(t), \ldots, \varphi^{(k)}(t)\right)
$$

such that

$$
\varphi\left(t, y_{0}\right)=\varphi\left(t, x_{0}\right)+\varphi^{(1)}(t)\left(y_{0}-x_{0}\right)+\ldots+\varphi^{(k)}(t)\left(y_{0}-x_{0}\right)^{k}+\ldots,
$$

i.e., the coefficients of the k-jet.
$\varphi^{(k)}(t)$ satisfy linear non-homogeneous ODE.
$\frac{d}{d t} \varphi^{(k)}, k>1$ depends on $\varphi^{(j)}$ for $j<k$ in a nonlinear way. It can be made linear by adding additional variables.

Then one can introduce the k-th order Galois group G_{k}. Loosely we can talk about the k-th order monodromy M_{k}^{γ} along a path γ.
The composition of elements in M_{k}^{γ} as a group is equivalent to the composition of jets.

Theorem 2 (Morales-Ramis-S Ann. Scient. Éc. Norm. Sup. $4 e^{e}$ série 40, 2007)
Under the assumptions above if a Hamiltonian is integrable in a neighbourhood of Γ then for any $k \geq 1$ the identity component $\left(G_{k}\right)^{0}$ of G_{k} is commutative.

This result gives rise to non-integrability criteria to all orders. Note that these criteria can depend strongly on the reference solution $x(t)$ and on the paths taken on it.

A degenerate Hénon-Heiles problem

Hénon-Heiles family (HHF) (classical $b=-1$):

$$
H=\frac{1}{2}\left(x_{3}^{2}+x_{4}^{2}+x_{1}^{2}+x_{2}^{2}\right)+\frac{1}{3} x_{1}^{3}+b x_{1} x_{2}^{2},
$$

non-integrable for all b except four values. For $\mathbf{3}$ of them integrability is proved. Remaining case: $b=1 / 2$, degenerate Hénon-Heiles DHH. Fixed points $P_{e e}=(0,0,0,0), P_{h p}=(-1,0,0,0)$.

The global $W_{h p}^{c}$ manifold. Coincides with a family of periodic orbits.

Separatrix Γ_{0} on the invariant plane $\left\{x_{2}=x_{4}=0\right\}$ and $H=h_{0}=1 / 6$: $x_{1}(t)=\frac{3 / 2}{\cosh ^{2}(t / 2)}-1, \quad x_{3}(t)=\frac{-(3 / 2) \sinh (t / 2)}{\cosh ^{3}(t / 2)}, \quad$ singularity $t_{*}=\pi \mathrm{i}$. Double-periodic solutions for $h<h_{0}: \psi_{1}, \psi_{2}$ paths along real, imaginary periods. Then

$$
\left[M_{k}^{\psi_{1}}, M_{k}^{\psi_{2}}\right]=M_{k}^{\psi_{2}^{-1}} \circ M_{k}^{\psi_{1}^{-1}} \circ M_{k}^{\psi_{2}} \circ M_{k}^{\psi_{1}}
$$

should be trivial. Path can be deformed to loop γ around t_{*}.
Reduces to local checks: M_{2}^{γ} trivial, but some components of $\varphi^{(3)}$ are different from zero. E.g. $x_{2 ; 2,2,2}=\frac{72}{5} 2 \pi \mathrm{i}$.
In general we can have solutions with several singularities and we can have also new singularities in the coeficients of the variational equations. If $\left(G_{1}\right)^{0}$ or $\left(M_{1}\right)^{0}$ is commutative we have to go to higher order variational equations.
A monodromy matrix M is in $\left(G_{1}\right)^{0}$ if, for instance, $M=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$. Solutions of $\mathrm{VE}_{k}, k>1$ are obtained from solutions of VE_{1} by quadrature.

Problems in checking the necessary conditions

To apply Theorem 2 to concrete systems several difficulties are found:

- To apply these methods one needs to use an explicitly known solution $x(t)$.
- They require the choice of a suitable path for the complex time.
- In general it is not possible to integrate analytically first and higher order variational equations in a simple and efficient way.

The need of higher order VE to prove non-integrability can be independent of the existence of large chaotic regions in numerical simulations. Simple enough solutions can be more degenerate than a generic one.
Ergo \Longrightarrow numerical check of the necessary conditions for integrability along arbitrary paths γ of $t \in \mathbb{C}$.
A method with a wide range of applications, based on Taylor expansions both in time and in nearby initial conditions, is presented. The integration of arbitrary higher order VE along arbitrary paths is easily automatized.

The Taylor method for the numerical integration of ODE
Problem: to integrate $\dot{x}=f(t, x), x\left(t_{0}\right)=x_{0}$,
f analytic in a neighbourhood of $\left(t_{0}, x_{0}\right) \in \Omega \subset \mathbb{R} \times \mathbb{R}^{n}$ or $\Omega \subset \mathbb{C} \times \mathbb{C}^{n}$.
From $x\left(t_{0}+h\right)=\sum_{j \geq 0} c_{j} h^{j}$ and $f\left(t_{0}+h, x\left(t_{0}+h\right)\right)=\sum_{j \geq 0} d_{j} h^{j}$ it follows $c_{j}=d_{j-1} / j$. It remains to compute the d_{j}.
This is done in a recurrent way. Assume to evaluate f can be split in simple expressions:

$$
\begin{aligned}
e_{1} & =g_{1}(t, x) \\
e_{2} & =g_{2}\left(t, x, e_{1}\right) \\
\vdots & \\
e_{j} & =g_{j}\left(t, x, e_{1}, \ldots, e_{j-1}\right) \\
\vdots & \\
e_{m} & =g_{m}\left(t, x, e_{1}, \ldots, e_{m-1}\right), \\
f_{1}(t, x) & =e_{k_{1}} \\
\vdots & \\
f_{n}(t, x) & =e_{k_{n}}
\end{aligned}
$$

where each of the e_{j} contains a sum of arguments, a product or quotient of two arguments or an elementary function (like sin, $\cos , \log , \exp , \sqrt{ }, \ldots$) of a single argument.
Inserting $c_{0}=x_{0}$ in the e_{j} we obtain d_{0} and then c_{1}. Putting $x\left(t_{0}\right)=c_{0}+c_{1} h$ all the e_{i} can be obtained to order 1 in h. Then we have d_{1} and hence c_{2}. Iterate to the desired order. All the g_{j} can be seen as operations with (truncated) power series.
Examples: If $a(h)=\sum_{k \geq 0} a_{k} h^{k}, \quad b(h)=\sum_{k \geq 0} b_{k} h^{k}$
$c=a \times b: \quad c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$
$c=a^{\alpha}, \alpha \in \mathbb{R}, a_{0} \neq 0, \quad c_{0}=a_{0}^{\alpha}$,
$c_{n}=-\frac{1}{n a_{0}} \sum_{k=0}^{n-1} c_{k} a_{n-k}[k-\alpha(n-k)], n>0$
$c=\exp (a), \quad c_{0}=\exp \left(a_{0}\right), \quad c_{n}=\frac{1}{n} \sum_{k=0}^{n-1} c_{k} a_{n-k}(n-k), n>0$
Suitable for analytic (or regular enough) f, non-stiff.

Some interesting properties

- Under simple conditions optimal stepsize (concerning efficiency for fixed truncation error) \approx independent of the number of digits. $h_{\text {opt }}$ close to $\rho(t) / \exp (2)$, where $\rho(t)=$ local radius of convergece around t.
- optimal order $N_{\text {opt }} \approx$ linear in the number of digits.
- The computational cost to integrate from t_{0} to t_{f} (measured in number of elementary operations) \approx quadratic in the number of digits.
- It is elementary to produce dense output.
- Very simple application to obtain Poincaré sections.
- Domain of absolute stability $\approx|z|<N / e, \operatorname{Re}(z)<0$.
- Easy to reduce errors to the propagation of round off.

See paper and software by À. Jorba, M. Zou, Experimental Mathematics 14 (2005) 99-117.
Also: C. Simó, Taylor method for the integration of ODE, Lecture notes, available at http://www.maia.ub.es/dsg/2007/.

Example of use of Taylor method: RTBP Sun-Jupiter-Trojan with initial $z=0.8$. Worst case. Integration time $=10^{9}$ Jupiter revolutions $\approx \mathbf{2 . 6}$ times the age of the Solar System.

Jet transport

Problem: Given initial conditions $x_{0}+\xi$ to obtain $\varphi\left(t ; t_{0}, x_{0}+\xi\right)=$ $\varphi\left(t ; t_{0}, x_{0}\right)+Q\left(t ; t_{0}, x_{0}, \xi\right)=P\left(t ; t_{0}, x_{0}, \xi\right)=\sum_{m} a_{m}(t) \xi^{m}$, where P is a polynomial truncated at the desired order.
Example: in \mathbb{R}^{4} integrate to degree 3 in ξ. Using variational equations requires $4+16+64+256=320$ equations, which reduce to 140 by symmetry.

A simpler method: Integrate using any method (e.g.Taylor) but replacing operations with numbers by operations with polynomials truncated at the desired order.
Strongly related to the Taylor models largely used by M. Berz, K. Makino and collaborators, see, e.g. http://bt.pa.msu.edu/berz.

If $P(\xi), Q(\xi)$ are polynomials up to (total) order k the recurrences mentioned in Taylor method can be used to obtain, to order k, the polynomials corresponding to $P \times Q, P^{\alpha}, \exp (P), \ldots$

Remark: in the selection of the optimal step size one has to take into account all the a_{m} coefficients.

Some systems requiring order k variational equations
As an extension of DHH consider, for $m \geq 2$, the generalised degenerate HH problem, GDHH, with Hamiltonian

$$
H=\frac{1}{2}\left(x_{3}^{2}+x_{4}^{2}\right)+\frac{1}{2} x_{1}^{2}+\frac{1}{3} x_{1}^{3}+\left(1+x_{1}\right) \frac{1}{n!} x_{2}^{n} .
$$

For $n=2$ gives DHH. Consider now $n \geq 3$. As proved in Martínez-S (2008a) these systems require to go to order $n-1$ to detect non-integrability close to a separatrix like in the DHH case.
Singularities located at $t=(2 k+1) \pi i$; a suitable path is OABCDO, where: $\mathrm{O}=(0,0), \mathrm{A}=(2,0), \mathrm{B}=(2,6), \mathrm{C}=(-2,6), \mathrm{D}=(-2,0)$. Initial point: close to symmetric point on the separatrix, i.e., $(r, 0,0,0), r \approx 1 / 2$.
Notation: $a_{i ; k_{1}, \ldots, k_{n}}(t)=$ coefficient of $\xi_{1}^{k_{1}} \ldots \xi_{n}^{k_{n}}$ in the i-th component of $P\left(t ; t_{0}, x_{0}, \xi\right)$. Simply $a_{i ; k_{1}, \ldots, k_{n}}$ at the end of path γ.

Results

If $1<|k|<n-1$ only round off errors (e.g., $<10^{-8}$ if $n<12$).
If $n=7$ only non-zero for $i \in\{2,4\}, k_{1}=k_{3}=0, k_{2}+k_{4}=6$.

$a_{2 ; 0600}$	$-0.52359878 \mathrm{E}-01 \mathrm{i}$		
$a_{2 ; 0501}$	$0.19739209 \mathrm{E}+01$	$a_{4 ; 0501}$	$0.31415927 \mathrm{E}+00 \mathrm{i}$
$a_{2 ; 0402}$	$0.23254708 \mathrm{E}+02$ i	$a_{4 ; 0402}$	$-0.49348022 \mathrm{E}+01$
$a_{2 ; 0303}$	$-0.12987879 \mathrm{E}+03$	$a_{4} ; 0303$	$-0.31006277 \mathrm{E}+02 \mathrm{i}$
$a_{2 ; 0204}$	$-0.38252461 \mathrm{E}+03$ i	$a_{4 ; 0204}$	$0.97409091 \mathrm{E}+02$
$a_{2 ; 0105}$	$0.57683352 \mathrm{E}+03$	$a_{4} a_{4} ; 0105$	$0.15300984 \mathrm{E}+03 \mathrm{i}$
$a_{2 ; 0006}$	$0.35236754 \mathrm{E}+03$ i	$a_{4 ; 0006}$	$-0.96138919 \mathrm{E}+02$

which coincide with theoretical values to all digits displayed.

Values of four non-zero coefficients of the jet at order 4 after a loop around the singularity for the GDHH problem with $n=5$, as a function of the initial point $x_{0}=(r, 0,0,0)$. The other two non-zero coefficients do not change with r.
Other systems with $x_{1}^{2} / 2+x_{1}^{3} / 3$ replaced by higher order polynomials (up to degree 12) give similar results. Separatrix not available analytically.

A nonlinear spring-pendulum problem

The Hamiltonian

$$
H=\frac{1}{2}\left(x_{3}^{2}+\frac{x_{4}^{2}}{x_{1}^{2}}\right)-x_{1} \cos \left(x_{2}\right)+\frac{k}{2}\left(x_{1}-1\right)^{2}-\frac{a}{3}\left(x_{1}-1\right)^{3}, k>0
$$

Known results (Maciejewski-Przybylska-Weil, J. Phys. A 37, 2004):
If $k+a \neq 0, k>0$ the system is non-integrable.
A simple solution for $a=-k$

$$
x_{1}(t)=\rho+\frac{\alpha}{\cosh ^{2}(\beta t)}, \quad x_{3}(t)=\dot{x}_{1}(t) \quad x_{2}=x_{4}=0
$$

with ρ, α, β depending on k. It has a singularity at $t_{*}=\frac{\pi \mathrm{i}}{2 \beta}$.
MPW checked that for $a=-k$ no obstruction appears up to order 7 .
But other singularities appear for the VE at $\pm \hat{t}$, where $x_{1}(\pm \hat{t})=0$.

$$
\pm \hat{t}= \pm \frac{1}{\beta} \log \left(\sqrt{-\frac{\alpha}{\rho}}+\sqrt{-\frac{\alpha}{\rho}-1}\right)
$$

Path to study of the nonlinear spring pendulum around the three singularities of the variational equations. Equivalent to a commutator path.

Left: Sample of paths used for the jet transport and location of singularities. γ_{+}around t_{+}is OABCDO, $\gamma_{ \pm}$around t_{+}and t_{-}is OABCEFAO, and γ_{*} around t_{*} is OGHIJKO. Right: Computed sums of the norms of all terms in the jets at order n (upper curve) and value normalized by the maximum for every order, along γ_{*}. Vertical variable in $\log _{10}$ scale.

Next step is to check the jet transport along $\gamma_{ \pm}$. First we do it along γ_{+}. The results obtained are of the form

$$
T_{\gamma_{+}}(\xi)=\left(\begin{array}{l}
\xi_{1} \\
\xi_{2}+a \mathrm{i} \xi_{2}^{3}-c \mathrm{i} \xi_{2}^{2} \xi_{4}+3 d \mathrm{i} \xi_{2} \xi_{4}^{2}-e \mathrm{i} \xi_{4}^{3} \\
\xi_{3} \\
\xi_{4}+b \mathrm{i} \xi_{2}^{3}-3 a \mathrm{i} \xi_{2}^{2} \xi_{4}+c \mathrm{i} \xi_{2} \xi_{4}^{2}-d \mathrm{i} \xi_{4}^{3}
\end{array}\right)+\mathcal{O}\left(|\xi|^{4}\right)
$$

with $a, b, c, d, e>0$. Symplectic character is checked. Similar for γ_{-}. For $\gamma_{ \pm}$only $0,2 b, 0,2 d, 0$ subsist. Theoretical results (Martínez-S, 2008a) agree qualitatively (no explicit values could be computed theoretically).

Left: Values of $a_{2 ; 0300}$ (upper curve) and $-a_{4 ; 0003}$ (lower curve) as a function of k at the end of $\gamma_{ \pm}$. Right: magnification in $\log _{10}$ scale for $a_{2 ; 0300}-3$ and $-a_{4 ; 0003}$.

The Swinging Atwood's Machine

A classical mechanical device. If we include pulleys the Hamiltonian is
$H\left(r, \theta, p_{r}, p_{\theta}\right)=\frac{1}{2}\left[\frac{p_{r}^{2}}{M_{t}}+\frac{\left(p_{\theta}+R p_{r}\right)^{2}}{m r^{2}}\right]+g r(M-m \cos \theta)+g R(m \sin \theta-M \theta)$,
where $M_{t}=M+m+2 \frac{I_{p}}{R^{2}}$.
Theorem (PPSRMWS, Swinging Atwood's machine: experimental and theoretical studies, preprint 2008):
For every physically consistent value of the parameters, the SAM with pulleys is meromorphically non-integrable.
This can be already detected using Theorem 1.
Without pulleys and normalising constants

$$
H=\left(x_{3}^{2} /(1+\mu)+x_{4}^{2} x_{1}^{-2}\right) / 2+x_{1}\left(\mu-\cos \left(x_{2}\right)\right),
$$

where μ is a mass ratio, $\mu>1$ in the domain of interest.
Known to be non-integrable if $\mu \neq \mu_{p}$ where $\mu_{p}=1+\frac{4}{p^{2}+p-4}, p \in \mathbb{N}$, $p>2$ and integrable if $\mu=\mu_{2}=3$. (Casasayas- Nunes-Tufillaro, J. Physique 51, 1990).

It remains to study the exceptional cases, which can not be decided using Theorem 1. Non-integrability proved in Martínez-S, 2008b.
A simple solution

$$
x_{1}(t)=\frac{1}{a}\left(1-t^{2}\right), \quad x_{2}(t)=0, \quad x_{3}(t)=\left(1-\mu_{p}\right) t, \quad x_{4}(t)=0
$$

where $a=p^{2}+p-2$. Note that $r\left(t_{ \pm}\right)=r(\pm 1)=0$.
Several paths have been taken for the tests. We recall that the path associated to the commutator must travel around t_{+}and t_{-}and then again around them reversing orientation: $\gamma_{-}^{-1} \circ \gamma_{+}^{-1} \circ \gamma_{-} \circ \gamma_{+}$.
Let $g^{(s)}=\sum_{i=1}^{4} \sum_{n \in^{4},|n|=s}\left|a_{i ; n_{1}, n_{2}, n_{3}, n_{4}}\right|$ a norm of the terms of or$\operatorname{der} s$ and define a relative $\operatorname{error} \varepsilon^{(s)}=g^{(s)}\left(t=t_{\text {final }}\right) / \max _{t \in \gamma_{*}}\left\{g^{(s)}(t)\right\}$.

One of the paths, OABCDAOEFGHEOADCBAOEHGFEO, used for tests.

Left: The norms $g^{(s)}$, of the terms of order $\mathbf{1 , 2}$ and 3 for SAM as a function of μ. The lower (resp. upper) curve corresponds to $s=1$ (resp. $s=3$). For $s=1$ we show the change with respect to the identity matrix. In the horizontal axis we display $\log (\mu-1)$ while in the vertical one $\operatorname{arcsinh}\left(g^{(s)}\right)$ is shown.
Right: For $p=2$ we consider the values of $g^{(s)}$ at the end of Γ (lower curve) and of γ_{+}(upper curve) divided by the maximal value of $g^{(s)}$ along the full path, as a function of s. For both curves in the vertical axis the $\log _{10}$ scale has been used.

Plots similar to the previous one for $p=3$ (left) and $p=4$ (right). Now, in contrast with the case $p=2$, the lower upper (lower curve), at least for large s, corresponds to the $\log _{10}$ of the quotient of $g^{(s)}$ at the end of γ_{+}(at the end of Γ) by the maximal value of $g^{(s)}$ along the full path. Note that now the final value (except for the known cases $s=1,2$) is only one or two orders of magnitude smaller than the maximal value.

Histograms of the number of elements $a_{i ; n_{1}, n_{2}, n_{3}, n_{4}}, n \in \mathbb{N}^{4},|n|=s$ such that the $\log _{10}$ of its maximum value along Γ is in a given range. On the top left (resp. right, bottom) appear the results for $p=2$ (resp. $p=3, p=4$). In each plot the values for $s=5,10,15,20$ are shown.

Final considerations

We have used the check of Theorem 2 as an application of jet transport.
a) One can convert the computation into a rigorous proof, CAP, by using interval arithmetic and estimates of remainder in Taylor using Cauchy bounds.
b) A difficulty shows up to extend this to unbounded ranges of parameters. Analytical proofs can not be avoided in general.
c) Jet transport is even efficient!. On the plot for a range of μ in the SAM, the average computing time per value of μ is $\mathbf{2 4} \mathbf{~ m s}$. In that time one can compute only one hundred of Poincaré iterates!

Some further applications of jet transport:

1) Transport of a box of initial data under the flow, assuming that the image is not too large. Otherwise, add the use of subdivision methods.
2) Transport of probability distributions under the same assumptions.
3) Computation of high order approximations of return maps associated to any type of connection.
4) Computation of normal forms around arbitrary orbits. Application to obtain local expansions of $W^{u, s, c}$, to study higher order codimension bifurcations, check assumptions for validity of KAM theorems, etc.
