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Goal

We look for properties of the phase space of an area preserving map (APM)

that help in understanding its qualitative structure providing quantitative data.

Part I:

Local and semi-global analysis.

Part II:

Global analysis.

Clearly, these two parts are related.
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Object to study

We consider a one-parameter family of maps

Fδ : U → R2, U ⊂ R2 domain,

such that

1. Fδ analytic in the (x, y)-coordinates of U ,

2. detDFδ(x, y) = 1, for all (x, y) ∈ R2 and for all δ ∈ R,

3. Fδ has a fixed point E0 that will be assumed to be at the origin for all

δ ∈ R,

4. spec DF (E0) = {λ, λ−1}, λ = exp(2πiα), α = q/m+ δ, q,m ∈ Z.

For some local results it will be assumed δ small enough and irrational.
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Hénon map

As an example consider the Hénon map

Hα(x, y) = R2πα(x, y − x2), α ∈ (0, 1/2)

• It has two fixed points:

the origin is an elliptic fixed point E0,

the point Ph = (2 tan(πα), 2 tan2(πα)) is a hyperbolic fixed point.

• Reversible with respect to y = x2/2 and y = tan(πα)x.
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1st part

Local and semi-global analysis

Normal form of APM.

Interpolating flow.

Description of resonances.







Well-known

Inner and outer splitting of separatrices.

Strong resonances.

}

“New”
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Birkhoff Resonant Normal Form

Given F as before (α = q/m + δ, δ irrational small), the Birkhoff Normal Form to

order m around E0 can be expressed as

BNFm(F )(z) = R2π q

m

(

e2πiγ(r)z
︸ ︷︷ ︸

unavoidable res.

+ iz̄m−1
︸ ︷︷ ︸

m-order res.

)

+Rm+1(z, z̄),

where

γ(r) = δ + b1r
2 + b2r

4 + ...+ bsr
2s,

being

z = x+ iy, z̄ = x− iy, r = |z|, (complex variables)

s = [(m− 1)/2],

bi ∈ R are the so-called Birkhoff coefficients,
Rm+1(z, z̄) denotes the remainder which is of O(m+ 1).
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Remarks

1. Effect of other resonances.

To get BNF expression it is assumed that the m-order resonance cannot be

removed but we have removed the others. It can be seen that in a

neighbourhood of the m resonance the effect of the others can be ignored (at

least if they are of similar order and in a first order approximation).

2. BNF dynamics reduces to near-the-identity map dynamics.

BNFm(F )(z) = R2π q

m
◦K(z, z̄, δ)

with

K(z, z̄, δ) = exp(2πiγ(r))z + iz̄m−1 +Rm+1(z, z̄).

The m-jet of K commutes with the rotation R2π q

m
, hence BNF is dynamically

equivalent to the near-the identity map K .
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Interpolating flow of the BNF

(I, ϕ)-Poincaré variables (z =
√

2I exp(iϕ)).

Hnr(I) = π

s∑

n=0

bn
n+ 1

(2I)n+1 and Hr(I, ϕ) =
1

m
(2I)

m
2 cos(mϕ).

Let r∗ such that γ(r∗) = 0, that is r∗ ≈ (−b0/b1)1/2, b0 = δ.

→ The flow φ generated by the Hamiltonian

H(I, ϕ) = Hnr(I) + Hr(I, ϕ)

interpolates K with an error of order m+ 1 with respect to the

(z, z̄)-coordinates, that is,

K(I, ϕ) = φt=1(I, ϕ) + O
(

I
m+1

2

)

.

If we assume b1 6= 0 this approximation holds in an annulus centred in the

resonance radius r∗ of width r1+ν
∗
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Description of resonances

Generic case: α = q/m+ δ, m > 5, δ sufficiently small, b1 6= 0.

• If b1δ < 0 then F has a resonant island of order m.

• The resonant zone is determined by two periodic orbits of period m

located near two concentric circumferences (in the BNF variables). The

closest orbit to the external circumference is elliptic while the one located

close to the inner circumference is hyperbolic.

• The width of the resonant island is O(I
m/4
∗ ), I∗ = −δ/2b1.

∆ I Η

δp

∆ IΕ

H
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H

q

I*

δq
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Application

Computation of 1st. and 2nd. Birkhoff coefficient.
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α = 0.21, b1 ≈ −0.0341669659295153 and r∗ ≈ 0.540999411522355.
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A model around a generic resonance

For a generic APM such that α = q/m+ δ, δ < 0, b1 > 0, b2 6= 0, the

dynamics around an island of the m-resonance strip (m ≥ 5) can be

modelled, after suitable scaling, by the time one map of the flow generated by

Hamiltonian

H(J, ψ) =
1

2
J2 +

c

3
J3 − (1 + dJ) cos(ψ),

where

c ≈ b2
√
mπ b

6+m
4

1

|δ|m
4 , d ≈

√
m

2
√
π b

m−2

4

1

|δ|m
4
−1.

In an annulus domain centred at the radius I∗ of width O(I
m/4
∗ ) the above

approximation gives an error O(Iσ
∗
), σ = min{m/2 − 2, (m+ 2)/4}.
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Map vs flow: inner and outer splittings

• We have described dynamics by terms of a Hamiltonian flow, and hence,

by an integrable approximation .

• An estimation of how far is an APM to be integrable is given by the splitting

of separatrices in a resonance of the phase space. Clearly, this

“distance-to-integrable” depends on the zone we are studying the map.

In particular, in a resonant chain of islands there are two splittings to be

considered: the inner σ− and the outer σ+ splittings.
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Difference inner-outer splittings

α = 0.212, 1:5 resonant chain, Hénon map
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The splittings characterisation

Assumption: σ ∼ A(log λ)B exp(−Cr/ log(λ)) cos(Ci/ log(λ),

where C = 2πiτ , with τ ∈ C the nearest singularity to the real axis of the

separatrix {s(t), t ∈ C}, of the interpolating Hamiltonian.

F APM, α = q/m+ δ, δ sufficiently small, b1 6= 0, m ≥ 5.

→ Then, them-chain of resonant islands, located at a distance O(δ), verifies:

a) The islands of the resonance have, generically, both splittings different .

b) The outer splitting is larger than the inner one being the difference

between the position of the corresponding nearest singularities

O(δm/4−1).

c) Neither the inner nor the outer splittings oscillate.
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Inner and outer splittings: Hénon map
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tively, of a different resonance. Note that in all the cases shown the outer split-
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Strong resonances (I)

The description of the resonant structure by means of the interpolating

Hamiltonian does not hold if m ≤ 4.

1:3 resonance: H(I, ϕ) = ǫI + I2 + I
3

2 cos(3ϕ)

ǫ < 0 ǫ = 0 ǫ > 0

• Hyperbolic points at a distance O(ǫ2). Elliptic points at a finite distance.

• Outer splitting non-perturvative since the separatrices remain at a finite

distance.

• Inner splitting behaves as described in the generic case m > 4.
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Strong resonances (II)

1:4 resonance: H(I, ϕ) = ǫI + I2 + ξI2 cos(4ϕ), ξ < 0.

ǫ < 0, ξ < −1 left,

−1 < ξ < 0 right

ǫ > 0, ξ < −1 left,

−1 < ξ < 0 right

• Elliptic and hyperbolic points located at a distance O(ǫ).

• Cases with ξ < −1: The splitting oscillates and behaves as expected in

magnitude in the generic case.

• Case ǫ < 0, ξ > −1: The splittings behave as expected in the generic

case.
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Strong resonances of the Hénon map (I)

1:3 resonance:
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Strong resonances of the Hénon map (II)

1:4 resonance: Non-generic!!
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• It corresponds to the case ξ = −1 in the Hamiltonian above.

• The elliptic point goes to a distance O(ǫ1/2) instead O(ǫ).

• H(I, ϕ) = ǫI + I2(1 − cos(ψ)) + I3(a+ b cos(ψ) + c sin(ψ)).

• Hénon corresponds to ǫ < 0, a+ b > 0. The inner splitting oscillates and

the outer does not. There is a big difference inner-outer splitting magnitude

(outer singularity at a distance O((ǫ(a+ b))1/4), inner singularity real
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Strong resonances of the Hénon map (III)
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2nd part

Global analysis

Dynamics in a neighbourhood of any resonance.

Dynamics close to separatrices:

Separatrix map

Double separatrix map







“Well-known” but...

Dynamics in Birkhoff zones: Biseparatrix map

}

“New”
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What we mean by global?

From now on (unless the opposite is stated) it will be assumed that we are

interested in dynamics within a region containing a resonant chain of islands.

It is not assumed that the resonance is located close to the elliptic fixed point
(δ arbitrary).
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A model away from E0

Question: How global are the results obtained before?

Dynamics in an annulus containing a q : m resonance far away of the elliptic

point E0 can be studied by means of a perturbation of an integrable twist

map . After reduce the near integrable twist map to normal form and compute

the m-th iterate to have a near-the-identity map it can be obtained an

interpolating Hamiltonian flow. A straightforward computation gives

H(J, ψ) = J2/2 + cJ3/3 − (1 + dJ) cos(ψ)

that is, the same Hamiltonian as the one interpolating the m resonance

when located in a neighbourhood of the elliptic fixed point E0.

BUT the coefficients c and d are arbitrary (and maybe there are higher order
(J ) coefficients which play relevant role in dynamics).
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A model away from E0: splittings

In particular, it cannot be assumed the outer splitting to be larger than the

inner when far from the elliptic point.

2:11 Hénon map
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Dynamics close to separatrices

We distinguish two cases:

Open map.

Separatrix map

Figure eight.

H

+

−

−π π

EH H

Double separatrix map
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Separatrix map

SM :

(

x

y

)

7−→
(

x′

y′

)

=

(

x+ a+ b log(y′)

y + sin(2πx)

)

• Describes the dynamics in a close neighbourhood of the separatrices

emanating from a hyperbolic point H .

• a is related with a shift needed to get the image in the fundamental domain

(“no dynamical relevance”).

• b = −1/ log(λ), λ is the eigenvalue of modulus greater than one of H .

• The y variable is rescaled by the amplitude of the splitting.
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SM: invariant curves and islands

Approximating SM by the Chirikov standard map it is obtained:

→ distance to expect rotational invariant curves:

→ from the stable separatrix: dc ∼ |b|/k∗, k∗ Greene

→ from the hyperbolic point: dh
c ∼

√

|b|/k∗
→ distance to expect islands from the hyperbolic point: di ∼

√

bπ/2

Hénon map (α = 0.1), hyperbolic fixed point.

Observed: dh
c ≈ 3.2×10−3, di ≈ 2×10−3

Formulas above:

Ph ≈ (0.64983939, 0.21114562)

λ+ ≈ 1.83785279

σ ≈ 1.19 × 10−5

dh
c ≈ 1.12 × 10−2, di ≈ 5.5 × 10−3
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Double separatrix map

DSM :







x

y

s







7−→







x̄

ȳ

s̄







=







x+ a+ b log |ȳ| (mod 1)

y + νs̄ sin 2πx

sign(y) s







• a i b parameters defined as before.

• s = 1 outer separatrix domain U and s = −1 inner separatrix domain D.

• ν1 = 1 and ν−1 = A−1/A1, where A1 and A−1 are the amplitudes of the

outer and inner splittings respectively of the resonant island.
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DSM: invariant curves

• Inv. curves outside island: DSM reduce to SM and above formulas hold.

• Inv curves inside island:

IDEA: Both inner and outer separatrices play a role.

Assume that the dynamics of F inside the “pendulum” like island is

modelled by the time one flow of an interpolating Hamiltonian H(J, φ). Let

J = Jm be the action on the separatrix in the inner domain and JM be the

action on the separatrix in the outer domain. Put

f = ∇H(Jm)/∇H(JM).

→ Then, a distance d measured with respect the outer separatrix

becomes a distance fd with respect the inner one.
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DSM: example

1:4 resonance Hénon (Hc(x, y) = ((1 − x2)c + 2x + y,−x), c = 1.015).
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λ ≈ 1.1284291, σ+ ∼ 10−54, σ
−
∼ 10−1.

Outside (inner) island: dc ≈ 10−52.

Inside. Interpolating flow of H4
c given by

H(x, y) = H0 + δH1 + δ2H2,

with δ = 2πα− π/2 and

H0 = x2y2
− x4y − xy4 + x6/3 + 2x3y3 + y6/3 − x5y2

− x2y5
− 5x4y4/6,

H1 = −2x2
− 2y2 + 2x2y + 2xy2

− x4
− 2x3y − y4 + x5

− 2x3y2 + 2x2y3 + 2x5y − 5x4y2/3 + 13x2y4/3,

H2 = −2x3 + 4xy2
− x4/3 − 4x3y + x2y2/2 − 4y4/3.

The value of ∇H in the maximum (outer zone) of the separatrices oscillates
between 0.0086 and 0.0098 depending on the island considered. On the other
hand, the corresponding value in the minimum (inner zone) is ≈ 0.00066.
Then f is between 13 and 15 which coincides with what is observed in the
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DSM: invariant curves, δ small (close to E0)

Let F be an APM having an elliptic fixed point with rotation number

α = q/m+ δ, q,m ∈ Z, δ ∈ R \ Q.

Denote by b1 ∈ R the first Birkhoff coefficient of the normal form of F around

the elliptic point and assume b1δ < 0.

Then, for |δ| small enough, the width of the chaotic outer zone is larger than
the width of the inner one if, and only if, sign b1· sign b2 > 0. Both amplitudes of
the stochastic layer are of the same order of magnitude of the outer splitting.
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Birkhoff zones of instability

Let F be an APM. A Birkhoff zone of instability is a rotational

non-contractile annulus without rotational invariant curves.

Assume we are interested in the dynamics between two concentric chains of

islands. Let d denote the distance between them. A simple model is given by

the biseparatrix map

BSM :

(

u

v

)

7−→
(

u′

v′

)

=

(

u+ α+ β1 log(v′) − β2 log(d− v′)

v + sin(2πu)

)

β1 = 1/ log(λ), β2 = 1/ log(µ), λ and µ eigenvalues of modulus greater

than one associated to the hyperbolic points of each chain of islands.

Just qualitative but...
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BSM: twist case

Chirikov standard map

with k = 0.16.

For the corresponding

BSM model:

β1 = β2 ≈ 1.0365

(λ = µ ≈ 2.624248)
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Amplitude splitting outer island ≈ 1.2 × 10−2

Amplitude splitting inner island ≈ 1.5 × 10−2

Distance between the islands ≈ 0.424







⇒ d between 28.2 and 35.4
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BSM: Non-twist case

For APM it can be zones without rotational invariant curves but where the twist

vanished. Fb(x, y) = (x̄, ȳ) = (x + ǫ(ȳ2 − b), y + ǫ sin x)

BSM :

(

u

v

)

7−→
(

u′

v′

)

=

(

u+ α+ β1 log(v′) + β2 log(d− v′)

v + sin(2πu)

)
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The End

Thank you!

Quantitative global phase space analysis of APM – p.35/35


	Goal
	Object to study
	H'enon map
	1st part
	Birkhoff Resonant Normal Form
	Remarks
	Interpolating flow of the BNF
	Description of resonances
	Application
	A model around a generic resonance
	Map vs flow: inner and outer splittings
	Difference inner-outer splittings
	The splittings characterisation
	Inner and outer splittings: H'enon map
	Strong resonances (I)
	Strong resonances (II)
	Strong resonances of the H'enon map (I)
	Strong resonances of the H'enon map (II)
	Strong resonances of the H'enon map (III)
	2nd part
	What we mean by global?
	A model away from $E_0$
	A model away from $E_0$: splittings
	Dynamics close to separatrices
	Separatrix map
	SM: invariant curves and islands
	Double separatrix map
	DSM: invariant curves 
	DSM: example
	DSM: invariant curves, $delta $ small (close to $E_0$)
	Birkhoff zones of instability
	BSM: twist case
	BSM: Non-twist case
	The End

