Resonance transitions for Oterma comet in Sun-Jupiter system

D. Wilczak, P. Zgliczyński

Bibliography

KLMR W. S. Koon, M. W. Lo, J. E. Marsden and S. D. Ross, Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 10(2000), no. 2, 427-469

WZ1 D. Wilczak, P. Zgliczynski, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - A Computer Assisted Proof, Comm. Math. Phys. 234 (2003) 1, 37-75

WZ2 D. Wilczak, P. Zgliczynski, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem, Comm. Math. Phys. 259, 561-576 (2005)

The physical problem and the numerical results from KLMR

Observation: Jupiter comets (Oterma, Gehrels 3) make rapid transition from heliocentic orbits outside Jupiter to heliocentric orbits inside the Orbit of Jupiter and vice versa.

The interior heliocentric orbit is close to the 3:2 resonance (three revolutions around the Sun in two Jupiter periods) while the exterior heliocentric one is near 2:3 resonance.

KLMR: PCR3BP (planar restricted three body problem) as a model for the Sun-Jupiter-comet system.

Methods of dynamical system theory: the transitions are the consequence of the existence of several homo- and heteroclinic orbits between the libration points.

In fact the existence of symbolic dynamics on three symbols was claimed.

Symbolic dynamics - definitions

Bernoulli Shift : $\Sigma_{k}=\{1,2, \ldots, k\}^{Z}, \sigma: \Sigma_{k} \rightarrow$ Σ_{k}

$$
\sigma(c)_{i}=c_{i+1}
$$

Bernoulli shifts are dynamical equivalent to a coin tossing.

Definition. $P: X \rightarrow X$ - continuous, $S \subset X$, S-compact, we say that P has a symbolic dynamics on k symbols on S, when the following conditions are satisfied

- $P(S)=S$, i.e. S is P-invariant
- there exists a continuous map $\pi: S \rightarrow \Sigma_{k}$, such that $\sigma \circ \pi=\pi \circ P$
- $\pi(S)=\Sigma_{k}$ (or at least $\pi(S)$ is a large subset of Σ_{k})

PCR3BP problem

$$
\begin{equation*}
\ddot{x}-2 \dot{y}=\Omega_{x}(x, y), \quad \ddot{y}+2 \dot{x}=\Omega_{y}(x, y), \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\Omega(x, y) & =\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}+\frac{\mu(1-\mu)}{2} \\
r_{1} & =\sqrt{(x+\mu)^{2}+y^{2}} \\
r_{2} & =\sqrt{(x-1+\mu)^{2}+y^{2}}
\end{aligned}
$$

Jacobi integral:

$$
C(x, y, \dot{x}, \dot{y})=-\left(\dot{x}^{2}+\dot{y}^{2}\right)+2 \Omega(x, y)=\text { const } .
$$

$$
\begin{gathered}
\mathcal{M}(\mu, C)=\{(x, y, \dot{x}, \dot{y}) \mid C(x, y, \dot{x}, \dot{y})=C\}, \\
C=3.03, \mu=0.0009537 \text { - Oterma comet in }
\end{gathered}
$$ Sun-Jupiter system.

Hill's Region

Hill's region - the projection of $\mathcal{M}(\mu, C)$ onto position space (coordinates (x, y))

Picture from KLMR

OUR RESULTS FOR PCR3BP

For $C=3.03, \mu=0.0009537$ - Oterma values, the existence of
0. periodic orbits L_{1}^{*} and L_{2}^{*} around the libration points L_{1} and L_{2}, respectively.

1. topologically transversal heteroclinic orbits connecting L_{1}^{*} and L_{2}^{*} and vice versa in the Jupiter region.
2. two topologically transversal homoclinic orbit to L_{1}^{*} in interior (Sun) region and to L_{2}^{*} in exterior region.
3. symbolic dynamics:

$$
\begin{aligned}
S \rightarrow S, L_{1}^{*}, \quad L_{1}^{*} \rightarrow & L_{1}^{*}, S, L_{2}^{*} \quad L_{2}^{*} \rightarrow L_{1}^{*}, \\
& L_{2}^{*}, X, \quad X \rightarrow X, L_{2}^{*} .
\end{aligned}
$$

Hetero- and homoclinic orbits

Left: 3:2 - homoclinic (internal region) and 1:2 homoclinic (external reg.)

Right: 5:3-homoclinic (internal region) and 2:3 homoclinic (external reg.)

Symbolic dynamics - the graph representation

Sections and Poincaré maps

Sections: $\Theta=\{(x, y, \dot{x}, \dot{y}) \in \mathcal{M} \mid y=0\}, \Theta_{+}=$ $\Theta \cap\{\dot{y}>0\}, \Theta_{-}=\Theta \cap\{\dot{y}<0\}$.

Coordinates on $\Theta_{ \pm}: T_{ \pm}: U \subset \mathbf{R}^{2} \rightarrow \Theta_{ \pm}$

$$
\begin{equation*}
T_{ \pm}(x, \dot{x})=\left(x, 0, \dot{x}, \pm \sqrt{2 \Omega(x, 0)-\dot{x}^{2}-C}\right) \tag{2}
\end{equation*}
$$

Poincaré maps between sections $\Theta_{ \pm}$

$$
\begin{aligned}
P_{+} & : \Theta_{+} \rightarrow \Theta_{+} \\
P_{-} & : \Theta_{-} \rightarrow \Theta_{-} \\
P_{\frac{1}{2},+} & : \Theta_{+} \rightarrow \Theta_{-} \\
P_{\frac{1}{2},-} & : \Theta_{-} \rightarrow \Theta_{+} .
\end{aligned}
$$

$$
\begin{aligned}
& P_{+}(x)=P_{\frac{1}{2},-} \circ P_{\frac{1}{2},+}(x), \\
& P_{-}(x)=P_{\frac{1}{2},+} \circ P_{\frac{1}{2},-}(x)
\end{aligned}
$$

Symmetries in PCR3BP

If $(x(t), y(t))$ is a trajectory for PCR3BP, then $(x(-t),-y(-t))$ is also a trajectory.

Let $R: \Theta_{ \pm} \rightarrow \Theta_{ \pm} R(x, \dot{x})=(x,-\dot{x})$ for $(x, \dot{x}) \in$ $\Theta_{ \pm}$. We have
if $P_{ \pm}\left(x_{0}\right)=x_{1}, \quad$ then $\quad P_{ \pm}\left(R\left(x_{1}\right)\right)=R\left(x_{0}\right)$
if $P_{\frac{1}{2}, \pm}\left(x_{0}\right)=x_{1}, \quad$ then $\quad P_{\frac{1}{2}, \mp}\left(R\left(x_{1}\right)\right)=R\left(x_{0}\right)$

Symbolic dynamics for PCR3BP

$$
\begin{aligned}
& f_{(1,1)}=P_{+} \\
& f_{(2,1)}=P_{-} \circ P_{1 / 2,+} \circ\left(P_{1 / 2,-} \circ P_{1 / 2,+}\right)^{4} \circ P_{+}, \\
& f_{(1,2)}=P_{+} \circ P_{1 / 2,-} \circ\left(P_{1 / 2,+} \circ P_{1 / 2,-}\right)^{4} \circ P_{-}, \\
& f_{(2,2)}=P_{-}
\end{aligned}
$$

Theorem. For every $\alpha=\left\{\alpha_{i}\right\} \in\{1,2\}^{\mathbf{Z}}$ there exists $x_{0} \in H_{\alpha_{0}}$ (close to $L_{\alpha_{0}}^{*}$), such that

- the trajectory of x_{0} is defined for $t \in(-\infty, \infty)$ and stays in the Jupiter region
- $x_{n}=f_{\left(\alpha_{n}, \alpha_{n-1}\right)} \circ \cdots \circ f_{\left(\alpha_{2}, \alpha_{1}\right)} \circ f_{\left(\alpha_{1}, \alpha_{0}\right)}\left(x_{0}\right) \in$ $H_{\alpha_{n}}$ for $n>0$
- $x_{n}=f_{\left(\alpha_{n+1}, \alpha_{n}\right)}^{-1} \circ \cdots \circ f_{\left(\alpha_{-1}, \alpha_{-2}\right)}^{-1} \circ f_{\left(\alpha_{0}, \alpha_{-1}\right)}^{-1}\left(x_{0}\right) \in$ $H_{\alpha_{n}}$ for $n<0$.

Moreover,
periodic orbits: If α is k-periodic, then x_{0} can be chosen so that $x_{k}=x_{0}$ (i.e. x_{0} is periodic).
homo- and heterclinic orbits: If $\alpha_{k}=i_{-}$for $k \leq k_{-}$and $\alpha_{k}=i_{+}$for $k \geq k_{+}$, where $i_{-}, i_{+} \in\{1,2\}$, then

$$
\lim _{n \rightarrow-\infty} x_{n}=L_{i_{-}}^{*}, \quad \lim _{n \rightarrow \infty} x_{n}=L_{i_{+}}^{*}
$$

h-sets on the plane - definition

 h-set N on the plane:- $c, u, s \in \mathbf{R}^{2}, u, s$ - linearly independent
- $|N|=c+[-1,1] u+[-1,1] s$ - the support of N
- $N^{+}=c+[-1,1] u+\{-1,1\} s$ - horizontal edges N
- $N^{l e}=c-u+[-1,1] s, N^{r e} c+u+[-1,1] s-$ 'left' and 'right' edfe of N
- $S(N)_{l}=c+(-\infty, 1) u+(-\infty, \infty) s$, $S(N)_{r}=c+(1, \infty) u+(-\infty, \infty) s$ - 'left' and 'right' side of N

H-set on the plane

Covering relation - Definition

N, M - h-sets, $f:|N| \rightarrow \mathbf{R}^{2}$ - continuous
We say, that $N \xrightarrow{f} M(N \mathrm{f}$-covers $M)$ if

- $f(|N|) \subset \operatorname{int}\left(S(M)_{l} \cup|M| \cup S(M)_{r}\right)$
- one of the conditions (O) or (R) is satisfied (O) $f\left(N^{l e}\right) \subset S(M)_{l}$ i $f\left(N^{r e}\right) \subset S(M)_{r}$
(R) $f\left(N^{l e}\right) \subset S(M)_{r}$ i $f\left(N^{r e}\right) \subset S(M)_{l}$

Covering relation - Example

Example from the proof for PCR3BP

Main theorem on covering relations

Theorem.(P.Z.)
$N_{0}, N_{1}, \ldots, N_{k}$ - h-sets. $f_{i}:\left|N_{i}\right| \rightarrow \mathbf{R}^{2}$-continuous for $i=0, \ldots, k-1$. Assume, that

$$
N_{0} \stackrel{f_{0}}{\Longrightarrow} N_{1} \xrightarrow{f_{1}} N_{2} \ldots \xrightarrow{f_{k-1}} N_{k} .
$$

Then there exists $x \in \operatorname{int}\left|N_{0}\right|$ such that
$f_{i} \circ f_{i-1} \circ \cdots \circ f_{0}(x) \in \operatorname{int}\left|N_{i+1}\right|, \quad i=0, \ldots, k-1$.
If moreover $N_{k}=N_{0}$, then x can be chosen so that

$$
f_{k-1} \circ f_{k-2} \circ \cdots \circ f_{0}(x)=x .
$$

Local hyperbolicity - cone conditions

$$
\begin{aligned}
& f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}-\mathcal{C}^{1} \text { maps. } f(0)=0 . U \text { - convex, } \\
& 0 \in U
\end{aligned}
$$

$$
\begin{aligned}
& D f(U):=\left(\begin{array}{ll}
\lambda_{1}(\mathrm{U}) & \varepsilon_{1}(\mathrm{U}) \\
\varepsilon_{2}(\mathrm{U}) & \lambda_{2}(\mathrm{U})
\end{array}\right) . \\
& f(x) \in D f(U) \cdot x, \quad \text { for } x \in U
\end{aligned}
$$

$$
\begin{array}{r}
\varepsilon_{1}^{\prime}(U)=\sup \left\{|\varepsilon|: \varepsilon \in \varepsilon_{1}(\mathbf{U})\right\}, \\
\varepsilon_{2}^{\prime}(U)=\sup \left\{|\varepsilon|: \varepsilon \in \varepsilon_{2}(\mathbf{U})\right\}, \\
\lambda_{1}^{\prime}(U)=\inf \left\{\left|\lambda_{1}\right|: \lambda_{1} \in \lambda_{1}(\mathbf{U})\right\}, \\
\lambda_{2}^{\prime}(U)=\sup \left\{\left|\lambda_{2}\right|: \lambda_{2} \in \lambda_{2}(\mathbf{U})\right\} .
\end{array}
$$

Definition Let x_{*} be a fixed point for f. We say that f is hyperbolic (satisfies cone conditions) on $N \ni x_{*}$, if there exists a local coordinate frame on N, such that (in this new coordinates)

$$
\begin{aligned}
x_{*} & =0 \\
\varepsilon_{1}^{\prime}(N) \varepsilon_{2}^{\prime}(N) & <\left(1-\lambda_{2}^{\prime}(N)\right)\left(\lambda_{1}^{\prime}(N)-1\right) \\
N & =\left[-\alpha_{1}, \alpha_{1}\right] \times\left[-\alpha_{2}, \alpha_{2}\right]
\end{aligned}
$$

where $\alpha_{1}>0, \alpha_{2}>0$ are such that the following inequalities are satisfied

$$
\begin{equation*}
\frac{\varepsilon_{1}^{\prime}(N)}{\lambda_{1}^{\prime}(N)-1}<\frac{\alpha_{1}}{\alpha_{2}}<\frac{1-\lambda_{2}^{\prime}(N)}{\epsilon_{2}^{\prime}(N)} \tag{3}
\end{equation*}
$$

Theorem Assume that f is hyperbolic on N.

1. if $f^{k}(x) \in N$ for $k \geq 0$, then $\lim _{k \rightarrow \infty} f^{k}(x)=$ x_{*},
2. if $y_{k} \in N$ and $f\left(y_{k-1}\right)=y_{k}$ for $k \leq 0$, then $\lim _{k \rightarrow-\infty} y_{k}=x_{*}$.

Theorem. Assume that g is hyperbolic on N_{m} and f is hiperboliczny na N_{0}. Let $x_{g}=g\left(x_{g}\right) \in$ N_{m} and $x_{f}=f\left(x_{f}\right) \in N_{0}$. Assume that

$$
\begin{aligned}
& N_{0} \stackrel{f}{\Rightarrow} N_{0} \stackrel{f_{0}}{\Rightarrow} N_{1} \stackrel{f_{1}}{\Rightarrow} N_{2} \stackrel{f_{2}}{\Rightarrow} \ldots \\
& \stackrel{f_{m-1}}{\Rightarrow} N_{m} \stackrel{g}{\Rightarrow} N_{m},
\end{aligned}
$$

then there exists a sequence $\left(x_{k}\right)_{k=-\infty}^{0}$ (this is a backward orbit), $f\left(x_{k}\right)=x_{k+1}$ for $k<0$ such that

$$
\begin{aligned}
& x_{k} \in N_{0}, \quad k \leq 0, \\
& f_{i-1} \circ f_{i-2} \circ \cdots \circ f_{0}\left(x_{0}\right) \in N_{i} \quad \text { for } i=1, \ldots, m \text {, } \\
& g^{n} \circ f_{m-1} \circ \cdots \circ f_{0}\left(x_{0}\right) \in N_{m} \quad \text { for } n>0 \text {, } \\
& \lim _{k \rightarrow-\infty} x_{k}=x_{f},
\end{aligned}
$$

$\lim _{k \rightarrow \infty} g^{k} \circ f_{m-1} \circ \cdots \circ f_{0}\left(x_{0}\right)=x_{g}$.

What did we proved with computer assistance

$$
\begin{aligned}
& H_{1} \xrightarrow{P_{+}} H_{1} \xrightarrow{P_{+}} H_{1}^{2} \stackrel{P_{1 / 2+}}{\Longrightarrow} N_{0} \\
& \xrightarrow{P_{1 / 2,}-} N_{1} \xrightarrow{P_{1 / 2}+} N_{2} \stackrel{P_{1 / 2,-}}{\Longrightarrow} N_{3} \xrightarrow{P_{1 / 2,}+} N_{4} \\
& \xrightarrow{P_{1 / 2}-} N_{5} \xrightarrow{P_{1 / 2}+} N_{6} \xrightarrow{P_{1 / 2,-}} N_{7} \\
& \stackrel{P_{1 / 2,}+}{\Longrightarrow} H_{2}^{2} \stackrel{P}{\Longrightarrow} H_{2} \xrightarrow{P_{-}} H_{2} .
\end{aligned}
$$

From symmetry

$$
\begin{aligned}
& H_{2}=R\left(H_{2}\right) \stackrel{P_{-}}{\Longrightarrow} R\left(H_{2}^{2}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{7}\right) \\
& \stackrel{P_{1 / 2,}+}{\Longrightarrow} R\left(N_{6}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{5}\right) \stackrel{P_{1 / 2,+}}{\Longrightarrow} R\left(N_{4}\right) \\
& \stackrel{P_{1 / 2}--}{\Longrightarrow} R\left(N_{3}\right) \stackrel{P_{1 / 2}+}{\Longrightarrow} R\left(N_{2}\right) \stackrel{P_{1 / 2,-}-}{\Longrightarrow} R\left(N_{1}\right) \\
P_{1 / 2,+} & R\left(N_{0}\right) \xrightarrow{P_{1 / 2,-}} R\left(H_{1}^{2}\right) \stackrel{P_{+}}{\Longrightarrow} R\left(H_{1}\right)=H_{1}
\end{aligned}
$$

What about symmetry of L_{1}^{*}, L_{2}^{*}, periodic orbits, homo- and heteroclinic connections?

We proved that L_{1}^{*}, L_{2}^{*} and the 'basic' homoclinic orbits to L_{1}^{*} and L_{2}^{*} are symmetric.

Moreover, we proved that there exist an infinite number of symmetric periodic orbits and symmetric homoclinic orbits to L_{1}^{*} and L_{2}^{*}, which can be described by symbolic sequences.

The method of proof: It is enough to look for intersections of $\operatorname{Fix}(R)=\{x \mid x=R(x)\}$ with $P^{k}(\operatorname{Fix}(R))$ - this is the Fixed Set Iteration method (also known as DeVogelaere method).

How to get an infinite number of symmetric orbits ?

Theorem. Assume R is a reversing symmetry for P and

$$
N_{0} \xrightarrow{P} N_{1} \xrightarrow{P} N_{2} \ldots \stackrel{P}{\Longrightarrow} N_{k} .
$$

and $\operatorname{Fix}(R) \cap N_{\mathrm{O}}$ is a horizontal disk in N_{0} and $\operatorname{Fix}(R) \cap N_{k}$ is a vertical disk in N_{k}.

Then there exists $x \in \operatorname{int} N_{0}$, such that $P^{2 k}(x)=$ x and for $i=0, \ldots, k$ holds

$$
P^{i}(x) \in \operatorname{int} N_{k}, \quad P^{k+i} \in \operatorname{int} N_{k-i}
$$

If $N_{1}=N_{0}$ and N_{0} is hyperbolic (with a fixed point x^{*}) then there exist a symmetric homoclinic to x^{*} orbit to $P^{i}(x)$ such that for $i=0, \ldots, k$ holds

$$
P^{i}(x) \in \operatorname{int} N_{k}, \quad P^{k+i} \in \operatorname{int} N_{k-i}
$$

and $P^{i}(x) \in N_{0}$ for $i<0$ or $i>2 k$.

How to get an infinite number of symmetric orbits ? continuation

We have an infinite number of chains described in the previous theorem.

Future work

- Does there exists a symbolic dynamics for 3D problem such the corresponding orbits are not all contained in the Sun-Jupiter plane?
- Does the symbolic dynamics persist if the Jupiter orbit become an ellipse with a small eccentricity (which is the case in nature)? This means considering PER3BP instead of PCR3BP. This is work in progress with Maciej Capinski.

Problem: Fixing C in PCR3BP have made our problem hyperbolic and 'easy'. In PRE3BP C is no longer conserved, we have KAM-tori. This becomes a problem of the Arnold diffusion for an a priori-unstable system.

PRE3BP

We want computer assisted proof. What do we need:

- rigorous normally hyperbolic invariant manifold build from Lapunov periodic orbits (see yesterday talk of Maciej Capinski). Not done yet
- the verification of twist condition - should be an easy C^{1}-computation
- the application of the KAM - probably very difficult to get reasonable size of bounds, but always ok for sufficiently small eccentricity
- the Melnikov type computation, this I'm not sure how to do at this moment, but hopefully standard tools plus rigorous numerics should suffice

