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The physical problem and the

numerical results from KLMR

Observation: Jupiter comets (Oterma, Gehrels

3) make rapid transition from heliocentic or-

bits outside Jupiter to heliocentric orbits inside

the Orbit of Jupiter and vice versa.

The interior heliocentric orbit is close to the

3 : 2 resonance (three revolutions around the

Sun in two Jupiter periods) while the exterior

heliocentric one is near 2 : 3 resonance .

KLMR: PCR3BP (planar restricted three body

problem) as a model for the Sun-Jupiter-comet

system.

Methods of dynamical system theory: the tran-

sitions are the consequence of the existence of

several homo- and heteroclinic orbits between

the libration points.

In fact the existence of symbolic dynamics on

three symbols was claimed.
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Symbolic dynamics - definitions

Bernoulli Shift : Σk = {1,2, . . . , k}Z, σ : Σk →
Σk

σ(c)i = ci+1

Bernoulli shifts are dynamical equivalent to a

coin tossing.

Definition. P : X → X - continuous, S ⊂ X,

S-compact, we say that P has a symbolic dy-

namics on k symbols on S, when the following

conditions are satisfied

• P(S) = S , i.e. S is P -invariant

• there exists a continuous map π : S → Σk,

such that σ ◦ π = π ◦ P

• π(S) = Σk (or at least π(S) is a large sub-

set of Σk )
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PCR3BP problem

ẍ − 2ẏ = Ωx(x, y), ÿ + 2ẋ = Ωy(x, y), (1)

Ω(x, y) =
x2 + y2

2
+

1 − µ

r1
+

µ

r2
+

µ(1 − µ)

2

r1 =

√

(x + µ)2 + y2

r2 =
√

(x − 1 + µ)2 + y2

Jacobi integral:

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y) = const.

M(µ, C) = {(x, y, ẋ, ẏ) | C(x, y, ẋ, ẏ) = C},

C = 3.03, µ = 0.0009537 - Oterma comet in

Sun-Jupiter system.
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Hill’s Region

Hill’s region - the projection of M(µ, C) onto

position space (coordinates (x, y))
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OUR RESULTS FOR PCR3BP

For C = 3.03, µ = 0.0009537 - Oterma values,

the existence of

0. periodic orbits L∗
1 and L∗

2 around the libra-

tion points L1 and L2, respectively.

1. topologically transversal heteroclinic orbits

connecting L∗
1 and L∗

2 and vice versa in the

Jupiter region.

2. two topologically transversal homoclinic or-

bit to L∗
1 in interior (Sun) region and to L∗

2
in exterior region.

3. symbolic dynamics:

S → S, L∗
1, L∗

1 → L∗
1, S, L∗

2 L∗
2 → L∗

1,

L∗
2, X, X → X, L∗

2.
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Hetero- and homoclinic orbits
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Symbolic dynamics - the graph

representation

L1 L2S XJI E
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Sections and Poincaré maps

Sections: Θ = {(x, y, ẋ, ẏ) ∈ M | y = 0}, Θ+ =

Θ ∩ {ẏ > 0}, Θ− = Θ ∩ {ẏ < 0}.

Coordinates on Θ±: T± : U ⊂ R2 → Θ±

T±(x, ẋ) = (x,0, ẋ,±
√

2Ω(x,0) − ẋ2 − C ) (2)

Poincaré maps between sections Θ±

P+ : Θ+ → Θ+

P− : Θ− → Θ−

P1
2,+

: Θ+ → Θ−

P1
2,−

: Θ− → Θ+.

P+(x) = P1
2,−

◦ P1
2,+

(x),

P−(x) = P1
2,+

◦ P1
2,−

(x)
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Symmetries in PCR3BP

If (x(t), y(t)) is a trajectory for PCR3BP, then

(x(−t),−y(−t)) is also a trajectory.

Let R : Θ± → Θ± R(x, ẋ) = (x,−ẋ) for (x, ẋ) ∈

Θ±. We have

if P±(x0) = x1, then P±(R(x1)) = R(x0)

if P1
2,±

(x0) = x1, then P1
2,∓

(R(x1)) = R(x0)
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Symbolic dynamics for PCR3BP

f(1,1) = P+

f(2,1) = P− ◦ P1/2,+ ◦ (P1/2,− ◦ P1/2,+)4 ◦ P+,

f(1,2) = P+ ◦ P1/2,− ◦ (P1/2,+ ◦ P1/2,−)4 ◦ P−,

f(2,2) = P−.

Theorem. For every α = {αi} ∈ {1,2}Z there

exists x0 ∈ Hα0 (close to L∗
α0

), such that

• the trajectory of x0 is defined for t ∈ (−∞,∞)

and stays in the Jupiter region

• xn = f(αn,αn−1)
◦ · · · ◦ f(α2,α1)

◦ f(α1,α0)
(x0) ∈

Hαn for n > 0

• xn = f−1
(αn+1,αn)

◦· · ·◦f−1
(α−1,α−2)

◦f−1
(α0,α−1)

(x0) ∈

Hαn for n < 0.
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Moreover,

periodic orbits: If α is k-periodic, then x0 can

be chosen so that xk = x0 (i.e. x0 is peri-

odic).

homo- and heterclinic orbits: If αk = i− for

k ≤ k− and αk = i+ for k ≥ k+, where

i−, i+ ∈ {1,2}, then

lim
n→−∞

xn = L∗
i−, lim

n→∞
xn = L∗

i+



h-sets on the plane - definition

h-set N on the plane:

• c, u, s ∈ R2, u, s - linearly independent

• |N | = c + [−1,1]u + [−1,1]s - the support

of N

• N+ = c + [−1,1]u + {−1,1}s - horizontal

edges N

• N le = c − u + [−1,1]s, Nrec + u + [−1,1]s -

’left’ and ’right’ edfe of N

• S(N)l = c + (−∞,1)u + (−∞,∞)s,

S(N)r = c+(1,∞)u+(−∞,∞)s - ’left’ and

’right’ side of N
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H-set on the plane
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Covering relation - Definition

N, M - h-sets, f : |N | → R2 - continuous

We say, that N
f

=⇒ M (N f-covers M ) if

• f(|N |) ⊂ int(S(M)l ∪ |M | ∪ S(M)r)

• one of the conditions (O) or (R) is satisfied

(O) f(N le) ⊂ S(M)l i f(Nre) ⊂ S(M)r

(R) f(N le) ⊂ S(M)r i f(Nre) ⊂ S(M)l
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Covering relation - Example

N
f

=⇒ N and N
f

=⇒ M

x

x’

1.046816 1.046823

0.00001

0.000032

Example from the proof for PCR3BP
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Main theorem on covering relations

Theorem.(P.Z.)

N0, N1, . . . , Nk - h-sets. fi : |Ni| → R2 -continuous

for i = 0, . . . , k − 1. Assume, that

N0
f0

=⇒ N1
f1

=⇒ N2 . . .
fk−1
=⇒ Nk.

Then there exists x ∈ int|N0| such that

fi◦fi−1◦· · ·◦f0(x) ∈ int|Ni+1|, i = 0, . . . , k−1.

If moreover Nk = N0, then x can be chosen so

that

fk−1 ◦ fk−2 ◦ · · · ◦ f0(x) = x.
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Local hyperbolicity - cone conditions

f : R2 → R2 - C1 maps. f(0) = 0. U - convex,

0 ∈ U

Df(U) :=

(

λ1(U) ε1(U)
ε2(U) λ2(U)

)

.

f(x) ∈ Df(U) · x, for x ∈ U

ε′1(U) = sup{|ε| : ε ∈ ε1(U)},

ε′2(U) = sup{|ε| : ε ∈ ε2(U)},

λ′
1(U) = inf{|λ1| : λ1 ∈ λ1(U)},

λ′
2(U) = sup{|λ2| : λ2 ∈ λ2(U)}.
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Definition Let x∗ be a fixed point for f . We

say that f is hyperbolic (satisfies cone condi-

tions) on N ∋ x∗, if there exists a local co-

ordinate frame on N , such that (in this new

coordinates)

x∗ = 0

ε′1(N)ε′2(N) < (1 − λ′
2(N))(λ′

1(N) − 1).

N = [−α1, α1] × [−α2, α2],

where α1 > 0, α2 > 0 are such that the follow-

ing inequalities are satisfied

ε′1(N)

λ′
1(N) − 1

<
α1

α2
<

1 − λ′
2(N)

ǫ′2(N)
. (3)

Theorem Assume that f is hyperbolic on N .

1. if fk(x) ∈ N for k ≥ 0, then limk→∞ fk(x) =

x∗,

2. if yk ∈ N and f(yk−1) = yk for k ≤ 0, then

limk→−∞ yk = x∗.
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Theorem. Assume that g is hyperbolic on Nm

and f is hiperboliczny na N0. Let xg = g(xg) ∈

Nm and xf = f(xf) ∈ N0. Assume that

N0
f

=⇒ N0
f0

=⇒ N1
f1

=⇒ N2
f2

=⇒ . . .
fm−1
=⇒ Nm

g
=⇒ Nm,

then there exists a sequence (xk)
0
k=−∞ (this is

a backward orbit ), f(xk) = xk+1 for k < 0

such that

xk ∈ N0, k ≤ 0,

fi−1 ◦ fi−2 ◦ · · · ◦ f0(x0) ∈ Ni for i = 1, . . . , m,

gn ◦ fm−1 ◦ · · · ◦ f0(x0) ∈ Nm for n > 0,

lim
k→−∞

xk = xf ,

lim
k→∞

gk ◦ fm−1 ◦ · · · ◦ f0(x0) = xg.
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What did we proved with computer

assistance

H1

P+
=⇒ H1

P+
=⇒ H2

1

P1/2,+
=⇒ N0

P1/2,−
=⇒ N1

P1/2,+
=⇒ N2

P1/2,−
=⇒ N3

P1/2,+
=⇒ N4

P1/2,−
=⇒ N5

P1/2,+
=⇒ N6

P1/2,−
=⇒ N7

P1/2,+
=⇒ H2

2
P−
=⇒ H2

P−
=⇒ H2.

From symmmetry

H2 = R(H2)
P−
=⇒ R(H2

2)
P1/2,−
=⇒ R(N7)

P1/2,+
=⇒ R(N6)

P1/2,−
=⇒ R(N5)

P1/2,+
=⇒ R(N4)

P1/2,−
=⇒ R(N3)

P1/2,+
=⇒ R(N2)

P1/2,−
=⇒ R(N1)

P1/2,+
=⇒ R(N0)

P1/2,−
=⇒ R(H2

1)
P+
=⇒ R(H1) = H1
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What about symmetry of L∗
1, L∗

2,

periodic orbits, homo- and

heteroclinic connections?

We proved that L∗
1, L∗

2 and the ’basic’ homo-

clinic orbits to L∗
1 and L∗

2 are symmetric.

Moreover, we proved that there exist an infinite

number of symmetric periodic orbits and sym-

metric homoclinic orbits to L∗
1 and L∗

2, which

can be described by symbolic sequences.

The method of proof: It is enough to look for

intersections of Fix(R) = {x | x = R(x)} with

P k(Fix(R)) - this is the Fixed Set Iteration

method (also known as DeVogelaere method

).
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How to get an infinite number of

symmetric orbits ?

Theorem. Assume R is a reversing symmetry

for P and

N0
P

=⇒ N1
P

=⇒ N2 . . .
P

=⇒ Nk.

and Fix(R) ∩ N0 is a horizontal disk in N0 and

Fix(R) ∩ Nk is a vertical disk in Nk.

Then there exists x ∈ intN0, such that P2k(x) =

x and for i = 0, . . . , k holds

P i(x) ∈ intNk, P k+i ∈ intNk−i

If N1 = N0 and N0 is hyperbolic (with a fixed

point x∗) then there exist a symmetric ho-

moclinic to x∗ orbit to P i(x) such that for

i = 0, . . . , k holds

P i(x) ∈ intNk, P k+i ∈ intNk−i

and P i(x) ∈ N0 for i < 0 or i > 2k.
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How to get an infinite number of

symmetric orbits ? continuation

We have an infinite number of chains described

in the previous theorem.
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Future work

• Does there exists a symbolic dynamics for

3D problem such the corresponding orbits are

not all contained in the Sun-Jupiter plane?

• Does the symbolic dynamics persist if the

Jupiter orbit become an ellipse with a small

eccentricity (which is the case in nature)? This

means considering PER3BP instead of PCR3BP.

This is work in progress with Maciej Capinski.

Problem: Fixing C in PCR3BP have made our

problem hyperbolic and ’easy’. In PRE3BP

C is no longer conserved, we have KAM-tori.

This becomes a problem of the Arnold diffusion

for an a priori-unstable system.
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PRE3BP

We want computer assisted proof. What do

we need:

• rigorous normally hyperbolic invariant man-

ifold build from Lapunov periodic orbits (see

yesterday talk of Maciej Capinski). Not done

yet

• the verification of twist condition - should be

an easy C1-computation

• the application of the KAM - probably very

difficult to get reasonable size of bounds, but

always ok for sufficiently small eccentricity

• the Melnikov type computation, this I’m not

sure how to do at this moment, but hopefully

standard tools plus rigorous numerics should

suffice
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