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Abstract

We construct the renormalized Gross-Neveu trajectory in 2 — € dimensions. Our
construction uses a contraction mapping for an extended renormalization group.
The extension is a running coupling with linear step S-function. The contraction
mapping relies on norm estimates for a fermionic momentum space renormaliza-
tion group.



1 Introduction

In this paper, we construct the renormalized trajectory of the (chiral) Gross—Neveu
model in 2 — ¢ dimensions. The two dimensional model was introduced by Gross
and Neveu [1] and by Mitter and Weisz [2], both as a model for asymptotic freedom
and for dynamical mass generation. In this paper, we consider a super-renormalizable
deformation of its renormalization flow. The deformation mimicks a dimensional con-
tinuation, without being a regularization. We use it to illustrate how rigorous control of
a fermionic ultraviolet limit can be gained by general norm bounds on fermionic renor-
malization groups. Our construction relies on a cumulant bound, which was proved
first by Gawedzki and Kupiainen in [3]. A simplified proof by Lesniewski appeared
later in [4]. In an accompanying paper [5], we will give a fresh proof of the cumulant
bound and its implications on norm estimates for fermionic renormalization groups.

Our construction is furthermore based on a non-perturbative implementation of
the beta function method of [6, 7]. In this approach, one computes renormalized field
theories directly as invariant curves emerging from a renormalization fixed point. The
fundamental dynamical equations are the condition of renormalization invariance and
a tangent (or first order) condition, which selects a particular curve.

The two dimensional Gross-Neveu model has attracted a lot of attention by rigor-
ous renormalization theorists, both because of its simplicity and its interesting non-
perturbative features. We mention the work of Gawedzki and Kupiainen [3]; Feldman,
Magnen, Rivasseau, and Seneor [8]; Iagolnitzer and Magnen [9, 10]; Kopper, Magnen
and Rivasseau [11]. Recent work of Disertori and Rivasseau [12] simplifies earlier con-
structions by avoiding the use of phase space expansion technology. Our work has
the same intention although it proceeds along a different route. Another simple, and
conceptually rather different, approach, which organizes perturbation theory in a ring
expansion, was developed in [13]. Although it has not been applied to a construction
of the Gross-Neveu model, it is an alternative to our bounds.

In the following, we briefly describe the model and our main result, leaving detailed
definitions for later sections. The e comes from a modification of the massless free
propagator, which reads

Sy = 2 1)

= p|2+e

in momentum space. Here ¢ € C; p = p1y1+pay2, where v, and 7, are two—dimensional
hermitean Dirac matrices, with {v,,7,} = 26,,,; and finally 0 < € < 2. As an interac-
tion, we can take any chirally invariant four-fermion interaction. For instance, the two
choices

Oan(v) = [ ds(d0(@)) )
and
Oan (1) = / de { (Boia)) + (&iwb(x))z}, (3)

which correspond to the Gross-Neveu model with discrete or continuous chiral sym-
metry, are allowed. Here Y1)(z) = >, ¥54(2)¥0,4(x), where o € {1,2} is the spin
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and a € {1,..., N} is the colour index. A function of F(2,1)) has a continuous chiral
invariance if

F(y, ) = F(e*), pe'*”) (4)

for all o € R, regarding 7 as a column vector and 1 as a row vector with respect
to the spin indices. 75 is a hermitian matrix that anticommutes with the matrices v,
and v, and whose square is (73)? = 1. The interaction (2) is only invariant under the
above transformation if @« = 7. But even this discrete symmetry forbids a mass term
m [ da (a)(o).

A construction of the model can be obtained by iteration of a renormalization group
transformation Ry, which combines an integration over fluctuations with a rescaling
step. We use the scaled momentum space renormalization group as in [3], given by

Ru(V)(®) = log / dpc, (@) exp (V(S, % + ) — const. (5)

Here C}, is a two sided regularization of (1), with unit ultraviolet cutoff and infrared
cutoff L™" in units of mass, duc, (®) is the corresponding fermionic Gaussian measure
(10), Sy, is a dilatation by a scale factor of L, and V() is a fermionic potential, which
perturbs the free model (details follow below). The constant is subtracted to make
R, (V)(0) = 0. Eq. (5) satisfies the semi-group law R;R;, = Ry . Consequently,
an n-fold iteration of (5) is equivalent to a single step with scale L™. For technical
reasons, we prefer a discrete renormalization group with a rather large scale L. The
coupling constant g in front of the interaction will have to be small, its maximal value
v depending on L. It may be complex, but since our bounds involve only |g| and the
beta function will only amount to multiplication by a real scale factor, we may take
g > 0 without loss of generality.

Theorem. There are L > 1 and v < 1 such that, for all 0 < g < 7, the following
holds.

1. Let gy = L™ *Ng, and VO(N) = gy Ogn (¢), with Ogy () given by (2) or (3).
Then the limat

V(1,g) (RN (VaM) () (6)

= lim
N—oo
exists.

2. Let Br(g) = L~ *g. Then the composition of Ry, with the application of the step
beta function B, has a fized point. For all g < L%y,

RL(V(wag)) =V (¥, Br-1(9))- (7)

V(,9) = g Oan(¥) + g7V(¢, 9), (8)

where V is small in a norm that depends on L (the details will be given in Section
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We prove the Theorem by showing that, in an appropriate Banach space of coupling
constants ¢g and interactions, the extended renormalization group 77, defined by

V(,g) — R(V) (wa/BL(g))a 9)

is a contraction mapping on a cone emerging from the free field fixed point, which
corresponds to a ball of second order perturbations V. The interactions in this Banach
space are analytic in the fields, chirally invariant, and have exponential spatial decay.
Their decay length is determined by that of the fluctuation covariance Cf, and is of
the order O(L). !

1.1 Setup

We consider continuum functional integrals with ultraviolet and infrared cutoff. 2 Our
cutoffs will be built into the propagator. The model is then defined by a regularized
propagator together with an effective (inter-) action. The details of this standard setup
are, for example, given in [14]. It is also possible to regard the Grassmann variables
merely as a convenient way of organizing infinite systems of equations for antisymmetric
functions.

Our fermionic fields ¥ are indexed by X = R? x A, where A is a discrete set, in our
case A = {1,—1} x {1,2,... ,N} x {1,—1}, where the first index is the spin index,
the second a colour index, and the third distinguishes between v and 1/ according to
VU(z,0,a,1) = 1y 4(z) and ¥(z,0,a,—1) = 9, 4(z). The Grassmann Gaussian integral
corresponding to a free theory with a propagator C is determined by

/duc(\l’) oMY — o3(nCn). (10)

Here the n(X) are Grassmann source fields labelled by X € X and (7, ¥) is an abbrevia-
tion for [ dX n(X) ¥(X), the integral over X meaning [ dXF(X) = [d*z ), F(z, \).

The fluctuation integral in (5) is well-defined if the covariance C'(X, X') is a bounded
function of X and X'. The inverse Fourier transform of (1) is not bounded; the con-
struction proceeds by first replacing it by an ultraviolet cutoff covariance which is a
finite sum of bounded covariances. The ultraviolet cutoff is removed by taking the
number of terms in the sum to infinity, and at the same time letting the coupling
constant flow in the way described in the Theorem. The terms in the sum are given
by the single-scale covariance of our model,

Cr((z,0,a,-1),(z',0',d',1)) = Cy 1(z,0,a;2",0",d') = —-Cr((«',0',d', 1), (z,0,a,-1)),

(11)

Tn the scaled renormalization group, one iterates the same transformation, and localization prop-
erties depend on this iterated transformation rather than on a flowing scale. Translated to a non-scaled
renormalization group, where fluctuation propagators come on different scales, the localization scale
becomes proportional to the ultraviolet cutoff.

2The continuum regularized functional integral again can be defined by discretizing the regularized
field theory to a finite lattice. One then performs both its infinite-volume and zero lattice spacing
limit in the presence of continuum cutoffs. We remark that the bounds given in Section 2 imply that
the effective action converges as the lattice cutoff is removed.




and zero when the charge indices coincide: Cp((-,7),(-,4)) = 0. It is given by the
following Dirac propagator

Cru(z,0,a 7,0’ ad) = 0gu /dp elP(@=2") é{;’i (X(Lp) — )Q(L'p)), (12)

which is two-sided regularized in momentum space with the help of the cutoff function

x(p) = 76)/1) dt e "t2. (13)

F(1+§ 2

(This particular regulator has the advantage that the cutoff propagator (12) becomes
analytic in momentum space.)

The covariance with unit infrared cutoff and ultraviolet cutoff LY can be written
as a telescope sum

N
Cr-vy = Z Cr-m -m+1; (14)
m=1

in terms of self-similar Cs, which are supported on narrow momentum slices,

Cp-m p-m+1(z,0,0;2',0',d') = L*™C, (L™, 0,a; L™z, 0", d'). (15)

1.2 The RG transformation

The exponent o denotes the scaling dimension of the massless free fermionic field. In
our model, o = %(1 —¢). The associated scale transformation of fields reads

Sp(¥)(z,A\) = L0 (L' z, ). (16)
With its help, the self-similarity property of the telescoped covariances (15) becomes
CL—m,L—m+1 = SL—mCl,L(SL—m)T (17)

in operator notation, where 7" denotes the transposition. The additive decomposition
(14) of the covariance implies that the exponential of the effective action at scale 1 is

N
/d,uCL_N,I(\II)eV(‘I!%D) — / H dMCI,L(\Ilm)ev(sL_lw1+...+SL_m\Ifm+q>) (18)
m=1

and is thus equal to e(Fro°RL)(V)(®) hrovided that V is a scaled version of the bare po-

tential, namely V (V) = V(S;-» V). Notice that because of this rescaling, the infrared
cutoff of the theory, defined by the left hand side of (18), is one and not L™V, and
is not changed by the scaling of the bare potential. More generally, one obtains the
scaled renormalization group by a multi-scale transformation, where each multi-scale
component is rescaled to a unit scale.



Conversely, one reconstructs the non-scaled renormalization flow by the introduc-
tion of a (physical) renormalization scale, often together with a renormalization con-
dition on a coupling parameter. We emphasize that the converse step thus requires an
additional datum. 3

We may decompose Ry into two parts, Ry = St o Fy, with F, an integration over
the fluctuations

Fr(V)(®) = log/ducl,L(\Il)eV(‘“q’) — const. (19)

We will derive an estimate on the renormalization group in terms of estimates on
these two parts. A field independent constant, which is proportional to the volume, is
subtracted in order to preserve the condition V(0) = 0 in the RG flow. In statement
1 of the Theorem, the rescaling of the initial coupling constant as a function of the
renormalized coupling constant g is given. In the next section, we specify a set of
potentials V' to which the RG transformation can be applied.

An important property is that the cutoff covariances are of the form ¢ , so that

elos CL-m [-mt1 elos — Cpr-m p-m+1. (20)

Thus, any discrete or continuous chiral invariance of V' is preserved under the RG
transformation. In other words, if V' obeys (4), then the same holds for Fy (V') and
R (V).

2 Estimate on the renormalization flow

We now give a norm estimate on the renormalization group transformation Ry = SpoFT,
built from two separate norm estimates, an estimate on the scale transformation Sz
and an estimate on the fluctuation integral F. It will serve as a template for the
refined estimates presented thereafter.

2.1 Banach space Vj

We consider potentials of the following general (power series) type. Let V(¥) be given
by an infinite sum V(¥) = 327, V;(¥) of f-point vertices

V() :/dXIII/(Xl)---/de\I!(Xf) Vi Xy, ..., Xy), (21)

where the vertices are distributional kernels. We will restrict our attention to vertex
functions of the general form

k—1 l
ViXy, . Xp) =) VX, X)) Y T @) — 2eaa), (22)

=0 €Sy =1

3The scaled renormalization group is best thought of as a block spin transformation on lattice
theories, which live on an infinite unit lattice, but encode exact continuum information.



where V; € L}, (X x --- x X,C), and has the usual properties of a fermionic theory
(anti-symmetry, Euclidean covariance). We also assume that V' is even, that is, V;(¥) =
0 for f € 2N+ 1. Then R (V) is also even. Temporarily, ¥ denotes the fermionic field
without derivatives. Later, we will encorporate derivative fields by enlarging A to an
appropriate multiplet. Let [[V|n. = Y72, b’ [|[Vy|lx, where

Vil = sup /Xm---de(S(xo—zvl)|Vf(X1,... Xp)| exp (kLo ap) )

:E()ERZ
(23)
Here L(x1,...,zs) denotes the tree distance of (z1,...,zf). The tree distance on an
f-tuple is defined as
‘C(xla--- ,.Tn) :7-1272%:”3;’)1 —.’l?b2||, (24)
T

where T, is the set of trees on {1,2,...,n}, and where b = (by,be) € 7 are the bonds
of 7. The potentials with ||V||;, < oo form a Banach space Vj, .. It depends on two
parameters h and k, where h can be thought of as an inverse radius of convergence
in field space and k as an inverse exponential rate of decay. We will show that there
exists a choice such that the action of Ry, is well-defined on a suitable ball around zero
in Vh,n-

2.2 Estimate on 5y,
Let Si(V})(T) = V; (SL(\I!)). Then * ||S.(VP)lle = L2 ||V|lz-1,, 0 S performs

the following simple scale transformation on our norm
1SL(V)lnwe = L2 IV llz-enr-1s- (25)
Derivatives produce additional inverse powers of L. Because V;(¥) =0 for f € 2N+1,

152 (V)I

he < LV 5, o (26)

at least under the wasteful condition that 0 < € < % Here we saved a small amount
of the scale factor to control an anticipated shift of the field, which will come about in
the integral over fluctuations.

2.3 Estimate on F7,

As shown in the Appendix, the one—scale propagator C', satisfies

CL(X, V)| < O() L2 exp (L7 o~ y]]) (27)

4The exponent 2 — fo is an old friend from perturbative renormalization theory, namely the scaling
dimension of V.



(here and in the following, O(1) denotes constants which are independent of L), and it
has a Gram representation

Cl;L(xa 0, a; .’L”, OJ, a'l) = <90L($a g, a) |95L("17,a JI’ al)> (28)

where ||pr(z,0,a)| and ||@¢r(2',0',a")|| are O(1) uniformly in X. The fluctuation
transformation is defined as follows. In an expansion in the fields, Fp(V)(¥) =

S5, Fr(V)(¥) with
Fp(V)§(¥) = /le‘Il(Zl)---/de\I/(Zf)

00 1 oo fi—1 0o frn—1
2 Z( ) ZZ( >5f,e1+ o0 Op (—1)nfos)
lei=

n=1 n=1en=0

fi=
/d}/l,l o 'd}/l,h Vf1 (Xl,la s aXl,eU}/l,la e a}/l,il)
/dYn,l < dYo i Vi (Xns -+ Xngens Yo1s -+ Yoin)
T
(@) -+ O(Vii )i+ 1 O(Van) -+ (Vo)) (29)
L

where (Z1,...,2Z5) = (X112, s Xters-- » Xnds -+ s Xnen), (—1) is a sign factor,
and where we use the notation f; = e;+1;. (f; is the power of fields of the I’th vertex, ¢,
is the number of external fields chosen therefrom, and ¢; is the number of the remaining
internal fields.) The fluctuation integral produces effective vertices Fr,(V);(Z1, ... , Zy)
as the anti-symmetrized kernels given by the integrand of the expression (29). They
are infinite sums of convolutions of the original kernels with propagators. The norm
estimates in the remainder of this section imply that these infinite sums converge if
|V||ns is small enough.

2.3.1 Estimate on partially truncated correlators

The cumulant expansion (29) involves partially truncated correlators. They obey the
following beautiful bound due to Gawedzki and Kupianen [3], equations (109) and
(112), and Lesniewski [4]. For a simplified proof consult Theorem 4 in [5].

There are positive constants x1, C; and (5, all independent of L, such that

‘<(I)(Y1,1) .. '(I)(Yl,il); - ;(I)(Yn,l) .. 'CD(Y"”'”)>ZL

(30)

] . n—1
<l Cptrtie (172” 02) exp ( — L' i Lyt -y | Yngs - ayn,in)>
In an accompanying paper, we derive these bounds, and the norm bounds that follow
from them, in a simplified way [5]. Here L(y. | ... | yn) denotes the inter-tuple tree
distance of the tuples y; = (1,1, .. ,¥;,) defined as

Ll lyn) = _inf LY Yna): (31)

]le{la'“ 5”}



One selects a point in each tuple and computes the ordinary tree distance for this selec-
tion. The selection with a minimal tree distance defines the inter-tuple tree distance.
It will be important that ., C7, and C5 do not depend on L because we shall use a
large L argument later on. The constant C; is proportional to the Gram constant (see
the Appendix).

2.3.2 Estimates on tree distances

Since the inter-tuple distance is a tree distance with respect to one particular tree,
which may or may not be the minimal one, we have that

Zﬁ(ﬂ,ﬂ)+£(£|---|y_n)2[’(ﬂa@a--- s Ty Yn)- (32)

=1

In addition to (32), we need a bound which tells how tree distances behave under the
removal of points. > There exists a constant «, with 1 < o < 2, such that

aL(Zy, Y1, 5T, Yn) > L(T1, ..., Ty). (33)

Simple examples show that (33) cannot hold with o = 1. For oo = 2, (33) is readily

proved by grouping the removed points into trees and reconnecting the connected

components in a way that can be estimated by twice the length of the removed trees.
Let

k=L 1k and L >4 > 2a. (34)
Then
K K " K
T L@y z) = T L ) S 6D LEny) = 5 L@, Za ) (35)

The estimate (35) is the only property of tree distances which we need in our bound
for the fluctuation integral.

2.3.3 Estimate on the f-vertex

We proceed under the assumption (34). Return to (29). From the estimates (30) and
(35), we claim it follows that:

1LVl < 7 (2777 0o Cg)n_l

n=1
o0 f1 1 o fn 1
ZZ( )0;1 1Vl ZZ( )cfn Wil Spersoens (36)
fi=1le1=0 n=1en=0

SFor this reason, Gawedzki and Kupiainen use a different tree distance in [3].



To see this, note that for each vertex one chooses a point to anchor its tree. One then
pulls out the vertex norms. The remaining integral over the anchors is estimated using
the spared exponential decay,

n—1
sup/del---/den d(zo — x1) exp (— aal L(xq,... ,xn)) < <L2 03) . (37

To QO{L

To obtain a bound on the (h, k)-norm from this, we have to sum over the powers of
fields. This yields the geometric series

10 lzenase < 3 (22 2CoCs) ™ (IVllonscrn) (38)
n=1

which converges if ¢||V||-onic, s < 1, where ¢ = L*>27C,Cj; then

IVllmopacin
|Fr(V) || -onr-1s < LrE 39
e P P (39)

This shows that the RG transform is well-defined on a ball of potentials that are
analytic in the fields.

2.4 Estimate on Ry,
Let h satisfy
h=L"%h+C;. (40)

Both 4 and k now depend on L. Let V(¥) then be an element of the ball B, =

{V(\I!) € Vh,,e‘HVHh,,C < 7"} with sufficiently small radius 7. Then (26) and (39) imply

together that Ry : B, — By, ;) with a flow of radii given by
Lit3er

o 1—gqr

fu(r) (41)
Unfortunately, this bound is not sufficient for an iteration of R; because small poten-
tials tend to grow. ¢ This behavior indicates the necessity of renormalization. The
factor L in (41) will be removed by restricting to a subspace of potentials with vanishing
mass vertex.

3 Two point vertex

The scaling dimension of an 2f—vertex is 2 — fo. Because all vertices with an odd
number of fields f vanish, the lowest non-vanishing vertex is a two point vertex. Its
scaling dimension is 1 + €, which is also the scaling dimension of a local mass vertex.
The two point vertex is the most relevant vertex of our flow. In this section, we will
split it into a local and a non-local part. The non-local part will have an improved
scaling dimension. The local part is zero for chirally invariant interactions.

6The largest eigenvalue of the linearized renormalization group is here L'*¢. The extra factor of
L?¢ is due to the non-linear corrections.



3.1 Localization operator L

The localization operator amounts to a Taylor expansion with remainder in momentum
space. For the purposes of this paper, a lowest order expansion of the two point vertex
suffices. 7 In real space, we define L by the decomposition

V() = [ axs [ ax,wi) (L) (N, X) + (- L)), X)) B() (42
into a local part

L) (o1, M), (22 00)) = 81 = 22) [ P Va((o, M), (s he)) (49

and a non-local part

(1= L)(%)( (@1, M), (22 M)
Zi;/oldtt—Zw((xl,Al), (3:1—{—%;331)’)\2) xé‘;x’f a%;' (44)

The t-integral converges at ¢ = 0 because the vertex decays exponentially fast at

infinity. This splitting follows from a Taylor expansion with remainder term of the
second field

W(z, Aa) = U1, Ao) + /0 dt (25 — 71) - (00) (21 + t(zs — 71), ha)  (45)

around the position of the first one. After a change of integration variables, one obtains
an expression of the form

Va(T) = /d% D W, Ar) mag o, Uz, Ag)

A1,A2

#Y [ [ axw ) Vau(,, ) (,9) (%0 ()

3.2 Redefinition of the norm ||V5]|,

Let us represent the two point vertex as in (46). Then we may redefine its norm into
IValllx = [[LVa[] + [I(1 = L) Vo[l with [[LV3]] = 325, 5, [ms x| and

=LVl = sup [ a0 [ aXe 3 Vo (X0, Xo) exp (s = o)), (47)
zo
o

which is the old norm of the non-local part times k. For the higher vertices, we use
the old norm. We can now redo the above estimates with this redefined norm.

"In the case when e = 0, one has to expand the two point vertex to third order and the four point
vertex to first order, as is done in [3] and [8]. The formulas are immediate generalizations of those
presented here.
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3.2.1 Estimate on S}

The remainder term has an improved scaling dimension. Sy and L commute. There-
fore, the local term scales according to ||[LSpVs|| = L'™¢||LV4]|, while the non-local
remainder scales as

(X =L)SLValls = LEI(1 = L)Va[[L-1x (48)

because of its derivative field. In our model, the local mass term is zero because of the
chiral symmetry (4). The net gain of the localization procedure is a factor of L= for
the redefined norm, since

SEV lllnwe = LB ([ Valll =1 + D L2 "0 B2 ||| Vg 11 (49)

n=2

This gives the following refinement of (26). If 0 < e < 2, then

< LV, (50)

~&hL 'k

3.2.2 Estimate on F7],

The norm of the non-local term can be bounded by the norm of the non-differentiated
vertex. By definition

(1= L)Va|lx = & Sup/d Y el

)‘15)‘25M

1 _ B
/ dtt 2V, ((a:l,/\l), <x1+ M,AQ» T2~
. 7 ¢
it follows that

(1 =L)Va|lx < Sllp/d To Z efillT1—z2|]

At
1
K Z |z — b / dt etxller=all, (52)
0
7

For our convenience, we define ||z|| = _  [2#|. Then we have the promised estimate

(51)

Vz((ﬂ?l A1), (952,)\2))‘

(X =T)Vale < [Vl (53)
Consequently, we find the following estimate for the effective non-local two point vertex
(X =L)SLFL(V)elle = L (L = L)FL(V)2llp-1e < L [[FL(V)2llz-1s  (54)

computed as the image of one renormalization group transformation. The local mass
term is zero by the chiral invariance.

We now do the estimate of the fluctuation step exactly as in Section 2. This is
possible because (47) is of the same form as the old norm up to a factor k. For each

11



factor V5 we pick up a factor k1. But we also get one derivative field for each factor
V5. Fortunately,

a —20—1 -1 _
SO )| < O L7 exp (=17 o~ (55

comes with an additional factor L', which compensates the L-factor in x!. The
remaining constant is easily accommodated since it is of the order O(1). We shift it
into a modified cumulant bound. Thus C; and Cy are now understood to be redefined
such that the cumulant bound holds for the enlarged multiplet ¥, which includes
derivative fields.

3.3 Estimate on the massless renormalization group

Summing over powers of the field, we get

IRVl < LR NFL(Vallp-1s + D L™ B2 [ FL(V)anlli-1s. - (56)

n=2

The largest scale factor is now L*. For 0 < € < %, it follows that

IRL(V)l

e S L3 (L7 R) T IFLV Dol (57)

n=1

As before, h = L=ih + C;. Then we can sum the series as above. The result is the
estimate

IV llnx
1= q[[Vllan

with ¢ = L?72? O(1). Thus, also in the massless renormalization group, small potentials
tend to grow. But the pace is reduced.

In the following, we shall only work with ||| - [|; for simplicity, we denote it by the
usual norm symbol || - |

IR V)l < L7 (58)

4 Invariant ball

We turn our attention from points in the space of chirally invariant even potentials to
parametrized continuous curves V(¥|g), g € [0,~], which are of the form

V(Tlg) = g Oan(T) + g7 V(T]g). (59)

Here Ogy(¥) denotes the normal ordered Gross-Neveu vertex and V(¥|g) = O(g7)
denotes a second order correction to it. For any fixed g, the potentials of the type (59)
form a linear space. We shall estimate the remainder in

[Vllynw = sup [IV(-[g)llnn- (60)

g€(0,7]

The additional parameter v denotes the maximal admissible value of the coupling
constant ¢ in our estimates.

12



4.1 Step [-function

The linearization of R;, at the free field fixed point V*(¥) = 0 is the first term of the
cumulant expansion

DRL(V)(¥) = /ndL(@) V(SL¥ + @) — const. (61)

The normal ordered Gross-Neveu vertex is an eigenvector of the linearized renormal-
ization group

DRL(OGN)(\II) = L26 OGN(\IJ) (62)

with eigenvalue L?. For € > 0, it is a relevant perturbation. We use the inverse of the
eigenvalue in (62) to define our step S-function as the linear function

Bulg) =L *g. (63)

4.2 Extended renormalization group

We then define an extended renormalization group transformation as the composition
T, = Pr o Ry of a linear coupling transformation £r(V)(¥|g) = V(¥|FL(g)) and
the renormalization group Ry. The additional step S-function turns the Gross-Neveu
vertex into a fixed point

DTy (906n)(¥) = gOan (V) (64)

of the linearized extended renormalization group. Our desire is a non-linear extension
thereof. For this purpose, we consider the transformation of the second order correction

To(V)(¥lg) = 9% BSuFL(V)(¥lg) = g7 (Te(V)(¥lg) — g Oan(¥))  (65)

4.2.1 Estimate on [y,

The flow of the coupling constant yields an extra small factor. It will turn out to be
sufficient to renormalize the theory. We have that

7o)l = L% sup g% | SLFL(V)(19)llne (66)

9€[0,L72¢7]

Since L > 1 and € > 0, we have that [0, L7>*y] C [0,~] and therefore

ITeM)llyne < L% sup g5 [SLFLV)(19) I (67)

N 9€[0,7]

In the following, we do not need the small scale factors coming with terms of higher
order than ¢%.
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4.2.2 Estimate on Sj,

As a payoff of our general massless estimate (50) it follows that the right hand side of
(67) itself can be further estimated by

ITe )l < L5 sup g~ & | FL V) Lol -5 1, (68)

9€(0,7]

The prefactor L% < 1 will become responsible for the contraction property.

4.2.3 Estimate on F;,

In this renormalization group, we track the transformation of the non-linear corrections
to a pure Gross—Neveu vertex. By its definition (65), the subtracted fluctuation step
reads, in a selfexplanatory notation,

Fi(V)(¥lg) = g* (VS + @ |g) )

L

+§:%<ﬁ [g(’)GN(SL\IHr(I)) +QZV(SL\I’+(I));:|>ZL' (69)

1=

The estimate of (69) goes exactly as in Section 2. With the choice (40), the result is

|h,l<;

IFL ) Gl -5 51 < 97 1V(Lg)
o n—1 n
3 (177 Gs) " (9110wl + g7 V19 In) (70)
n=2

7
1

When this estimate is plugged into (68), the factor g 4 cancels, and

7. (W)

< L% sup {||v<-|g>||h,n

9€[0,7]

£3 ( Caigt) 910 (1Oavls + o V) D ()
=2

We have chosen h and « to depend on L. We now also choose 7y to depend on L. We
demand that v < 1 be so small that

L2—20 02 03 ,_y% <

- 72
< 2anlinn (72)

With this, we have the following estimate on the extended renormalization group

. — (1 Vipwe \"
T2 e < L 2{||V||7,h,n+2||oGN||h,n > (5+ srote) } (73)

n—=9 |h,,K,
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4.3 Invariant ball

The only parameter which has not been fixed yet is L. This last parameter in our map
can be used to find an invariant ball of second order perturbations. Let

O K
B ={V € V| Ve < 19230 (1)
Let L be so large such that
< (75)
— 10

Then (73) implies that the ball of second order perturbations (74) is invariant under
the extended renormalization group transformation 7y.

5 Contraction property

The last property to be shown is that any pair of points in the invariant ball move
closer under an extended renormalization group transformation.

5.1 Estimates on 7 and Sp,
The treatment of 87, and Sy, remains the same as in the previous section. The result is

[Te(V1) = To(Ve)lly.nm
<L7% sup g1 |FL0N)(lg) = FrWo) (Lol -5 o, (76)

9€[0,7]

5.2 Estimate on Fp,

The difference on the right hand side of (76) leads to a cancellation of the V-independent
term, as is best seen from the formula

FL(V)(¥lg) = FL (%) (¥lg) = gF (Mi(-lg) = Va(lg)) ()

+3 gy [ s ([o e+t v a5t (Wlls) - wiClo)):]
g% (i(lg) - v2<-\g>)>z (V) (77)

In complete analogy to (70), we conclude that the following estimate holds

IFL (V) (¥lg) = FLOVo) (9l =5 o1, < 95 [V1(19) = Val:19) I

oo

1\ n—1 3
+9% [Vi(1g) = Va(l9)lnw > (LQ*Q"C’Q(Jg,gZ) ngi®-D
n=2
! 3 n—
/ ds (106nlIne + 9% (1 = $)V1(19) + sV2(:19) I ) (78)
0
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On top of (and consistent with) the above choices of h, k, v, and L, we demand that
~ be so small that nyi®=1 < (%)2 for all n € {2,3,4,...}. Then we have that

IToV0) = T (V) < L {1 (3@ } M=Vl (79

n=2

But L7% < ;5 so (79) implies that

1
||7E/(V1) - 7'L(V2)||'y,h,n < § ||V1 - V2|

YhKe (80)

Thus our extended RG transformation 77, is indeed a contraction mapping on the ball
B.

6 Conclusions

In this paper, we have constructed the renormalized Gross-Neveu trajectory as an
invariant curve in the unstable manifold of the free field fixed point. We have chosen
a parametrization, in which the renormalization group acts on the curve in a normal
form. The normal form of super-renormalizable models is a linear step S-function. It
can be used in models whose differential S-function

5(9) = 0rBe(9)|L=1 = B1g + Bog” + B3g® - - - (81)

has a non-vanishing coefficient §; < 0 (and is regular enough for the first coefficent to
be leading). In our model f; = —2e.

In the non-deformation limit € = 0, the model stays renormalizable due to the sign
of the second order correction. Its construction is slightly different from the super-
renormalizable case. The normal form of the differential S-function is now cubic, that
is, B(g) = P29 + B3g® with the well known universal constants 3, and (5. As L
is increased, the coupling flows logarithmically rather than powerlike. Therefore, we
cannot extract inverse powers of L from the flowing coupling. One deals with this
situation in the usual way by imposing renormalization conditions the non-irrelevant
vertices, namely the Gross-Neveu vertex and the wave function vertex. (The mass
vertex is still forbidden.) But the infinite series of higher monomials in the fields v can
be treated exactly as in this paper.

An interesting extension of the present work would be to gain complete control of
the renormalized trajectory all the way from the ultraviolet to the expected infrared
fixed point. In our model, this would require control of the large coupling limit.
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A Propagator properties

The decay properties follow immediately from the integral representation

3 L2 12
1 € (w—a’)
C y @, T ,: Ia ) = bae / d 51 oo'€ A . 82
1o(x,a,052 d', o) “ T+ 5 ), aaz”'@, (82)

The Gram representation holds by the Fourier representation (12) of C; ;: with the
spectral decomposition

Yu =D Aol bt 0) (1, p, (83)
p
we have
Ya)oo = D Aolol, pY (1, pl, o). (84)
P
Thus
o1(2,0,0) (0P, 11, 0) = Bae e [Nopul? (0lp1p) fu(p) (85)
- ipx! A Pu
¢r(a’,d, o' )(p,p,p,0) = Gewe T ﬁ (o' |p) fr(p) (86)
p w
with
N ~ 1/2
x(p) — x(Lp
fr(p) = <()ij()> : (87)
p[T
The norms of ¢ and ¢ are bounded by
. . d’p
() [ S -y <2 [ S (58)

Because x(p) < O(1)|p|¢e™®’ for [p| > 1, the integral converges at infinity. The integral
over the unit disk is finite for € < 1.
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