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ABsTRACT. We consider circle packings in the hyperbolic plane, by finitely many congru-
ent circles, which maximize the number of touching pairs. We show that such a packing
has all of its centers located on the vertices of a triangulation of the hyperbolic plane
by congruent equilateral triangles, provided the diameter d of the circles is such that an
equilateral triangle in the hyperbolic plane of side length d has each of its angles is equal
to 2w /N for some N > 6.
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By a circle packing we will mean a collection of circles, all of some fixed diameter d, in
either the hyperbolic or Euclidean plane such that no two circles overlap except possibly
in their boundaries.

For the hyperbolic plane there are well known difficulties in making sense of optimally
dense circle packings; see for instance [1-4]. In this paper we analyze a class of packings
with similar properties using an alternative to density. We will call a finite packing
optimal if the number of tangencies between its circles is not less than the number of
tangencies for any other circle packing with the same number of circles and the same
radius. Heitmann and Radin [5] proved that any optimal packing of the Euclidean plane
is such that the set of its centers is contained in an equilateral triangular lattice. In this
paper, we prove a similar result in the hyperbolic plane. If the diameter d of an optimal
circle packing is such that an equilateral triangle of side length d has angle QW“ for some
integer N > 7, then the set of centers of the packing is contained in the vertices of a
tessellation of the hyperbolic plane by equilateral triangles (of side length d).

In both the Euclidean and hyperbolic settings these results can be interpreted phys-
ically as the determination of the internal structure and Wulff shape for the energy
ground state of a model of matter composed of hard disks with contact attraction. A
notable difference between the settings is that in hyperbolic space surface tension is not

in fact a surface effect but is comparable in magnitude to the bulk energy.

I. Notation and Statement of Results.

From now on, fix an integer N > 7. Let d be such that an equilateral triangle of
side length d has an interior angle equal to QW” Let p be the distance function in the
hyperbolic plane, H2. For any subsets X and Y in the plane, let p(X,Y) be the infimum
over p(z,y) where z is an element of X and y is an element of Y.

An admissible graph G is a finite geodesic graph in the hyperbolic plane that satisfies
these conditions: (a) every pair of distinct vertices of G are at least a distance d apart,
and (b) an edge exists between vertices v and w if and only if the distance between v

and w is d.

An optimal graph is an admissible graph that has at least as many edges as any
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admissible graph with the same number of vertices.

There is a natural bijection from the set of finite circle packings of diameter d to the
set of admissible graphs which restricts to a bijection between optimal packings and
optimal graphs. The bijection is given by considering the centers of a circle packing to
be the vertices of an admissible graph. Notice that the tangencies of the packing then
correspond to the edges of the graph.

For any admissible graph G, let V(G) denote its vertex set, E(G) its edge set, F(G)
its face set, and OG its boundary, i.e. the subgraph of G that is contained in the closure
of the unbounded component of the complement of GG in the plane. For any set .S, let
|S| denote the cardinality of S. For any face f of G, let A(f) be the area of f. For
any vertex v in the boundary of G, let a(v) be the angle subtended by v, i.e. the angle
interior to the polygon whose boundary is the boundary of G.

We now define the spiral graph on n vertices, S,,, as follows. Let T" be the graph
formed from the tiling of the plane by equilateral triangles with interior angles equal
to 2m/N. Let e be an edge of T" and let v; and vy be its endpoints. We now proceed
inductively. Assuming v; has been chosen for 1 < j < ¢ we let v;4; be the unique
vertex of 1" defined as follows. Order all the previously defined vertices v; adjacent to
v; in the form v, , 1 < k < ¢, with vy, = v;_1, vp, adjacent to vy, ., and the triangle
Up, Vb, ., Vi positively oriented. Then let v; 1 be the vertex adjacent to v; and vy, such
that the triangle vy, v;41v; is positively oriented. We define the spiral graph of order n,
Sp, to be the admissible graph whose vertex set is {v1, ... ,v,}. Note that this uniquely
determines S, up to congruence.

S, is easily seen to have the following properties.

a) All the faces of S, are triangles.

b) There is an m such that the vertex set of the boundary of Sy, is {Vm, Uma1, .-, Un}-

)
)

¢) 47/N < a(vy,) < 27 — 47 /N.

d) If m <i < n, then 47 /N < a(v;) < 67/N.
)

e) 2/N < a(v,) < 4n/N and a(v,,) = 47 /N if and only a(v,,) = 27 — 47 /N.

The main result follows immediately from
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Theorem 1. Using circles whose radius r is such that an equilateral triangle with side
length 2r has an interior angle of 2w /N for some integer N > 7, then for this radius all

spiral graphs are optimal and every face of any optimal graph is triangular.

I1. Proofs.

Before proving Theorem 1 we require two technical lemmas.

Lemma 1. Let G be an admissable graph. Let g = min{p(e,v) | e € E(G), v € V(G)
andv & e}. Let { =inf{lg | G is an admissable graph}. Then { is the length of the arc
depicted in Figure 1:

N
Nl

FIGURE 1

Proof. Let G be an admissible graph. Suppose that there exists (v,e) € V(G) x E(G)
such that v ¢ e and p(v,e) < ¢. Let vy,vy be the endpoints of e. Without loss of
generality, assume p(vy,v) < p(ve,v). Let p € e such that p(p,v) < p(x,v) for all z € e.
Then p(p,v) < £ < d < p(v,vz). So there exists at point v} € e such that p is in the arc
from vy to v} and p(v,vh) = p(v,v1). See Figure 2. Let m be the midpoint of the arc

/
from v; to v5.

FIGURE 2

Without loss of generality assume p is in the arc from vy to m. By symmetry there

exists a point p’ on the arc from m to v} such that p(v,p) = p(v,p’). See Figure 3.
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FIGURE 3

By the law of sines,

sinh p(m,v)  sinh p(v,p)

sina(vpm) 1

(%) . 51.nh p(m,v)
sinh p(0,p)

=  p(m,v) <p(v,p) =m=p.

= sina(vpm) < 1

By the law of cosines,

0 7w cosh p(v, p) cosh p(p, vh) — cosh p(v, vh)
=cos — =
2 sinh p(v, p) sinh p(p, v3)
cosh p(v, v5)
= cosh = — .
cosh p(v, p) cosh p(p, v}

So p(v,p) is minimized when p(p,v5) is maximized and p(v,v5) is minimized. This
occurs precisely when p(p, vh) = d/2 and p(v,v) = d, i.e., when vy = v}, vvjv, form an

equilateral triangle and p(v,p) =¢. O

Lemma 2. Let G be an admissible graph. Let f € F(G). If f has n sides then
A(f) z (3)(m = 3a).

Proof. Let e, f € E(G) be different edges with endpoints vy, ve and wy, wy respectively.
Let v3, w3 € H? such that the triangles v, vov3, wwows have interior angles at vy, va, wq

and ws equal to a/2.
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FIGURE 4

Suppose for a contradiction that the triangles vivovs and wywsws intersect in their
interiors. See Figure 4. Since Int e N Int f = () this implies that the triangle vivovs
intersects wywsows in the arcs wiws and wows. Let m,m’ be the midpoints of e and f
respectively. Then vjvous intersects the arc m’ws. If vivy intersects m/ws then without
loss of generality vivy Nwiws # 0. Let {i} = vivo Nwyws. Then p(wy,e) < p(wy,i) <
p(wy,ws) < £. This contradicts the previous lemma. So vive N m/ws = (). So either
v1U3 Or vevs intersects m'ws. Without loss of generality vivs intersects m/ws. Let
{i} = vivs N m'ws. Then p(vy, f) < p(v1,i) + p(i,m') < p(v1,v3) + p(ws,m') = ¢
contradicting the previous lemma. Thus vjvov3 and wijwsows do not intersect in their
interiors.

For each edge e of f form the triangle v;vov3 as above so that this triangle lies in the
interior of f. Since none of these triangles overlap and each has area = %(w — 3a), the

lemma is proved.

Proof of Theorem 1. If GG is a graph of one vertex, then G is spiral and each face of G
is a triangle. Let n > 1. Assume for induction that if G is an admissible graph such
that |V(G)| < n then if G is spiral then G is optimal and if G is optimal then each face
of G is a triangle.

Let O be an optimal graph and let S be a spiral graph such that |V (O)| = |V(5)| =
n + 1. Define Fj, as the number of k-gon faces of O. Then Y 7 s kFj, = 2(|E(O)| —
|E(00)|) + |E(00O)|. Combined with the Euler characteristic formula V — F + F = 1,

this gives:

0 3V(0)] - 3 - (|E<60> Y (k- 3)&)

— |E(0)] > |E(S)| = 3|V(S)] - 3~ |E(2S)) .



CIRCLE PACKING IN THE HYPERBOLIC PLANE 7

The last equality holds because all faces of S are triangles. Thus |E(90)| < |E(9S)|
with equality if and only if S is optimal and every face of O is a triangle. Assume for a
contradiction that |E(00)| < |E(9S)].

Let O’ be the admissible graph with vertex set V(0') = V(O) — V(90). If O is
empty then by (1) the theorem is true. So assume O’ is not empty. Order the vertices
of S, (v1,...,vy) as in the definition of spiral. Let S’ be the admissible graph with
V(S") = {v1,...,vs} and s = |V(O')|. Then S’ is spiral. By induction, S’ is optimal
so |[E(O")] < |E(S)].

By Gauss-Bonnet,

(2) A(O) — A(S) = Z 7w —a(v) — Z 7w — a(w)
vedO weS
(3) > 7 —a(v) <|E@O0)|x - (|[E(O)| - |E(O"))a
veJO

because there are at least |E(O)| — |E(O’)| pairs of adjacent edges touching 0O and

each pair contributes at least a to the sum.

(4) Z T —a(w) = Z 7w —a(w) + Z T — a(w)

weods wedS—9aS’ wedSNIS’
() = 7|E(00)| = (IE(S)| = |E(S)| - 1a
+ Z T — a(w)
wedSNIS’

because |V (9S) — V(9S5")| = |E(00)|, there are exactly (|E(S)| — |E(S")| — 1) pairs of
adjacent edges radiating from the vertices in V(9S) — V(9S5’) (since if a(vy) = « for
v; € S then i = n and the edge connecting v,, 1 to v, is not counted twice), and each

pair contributes exactly a to the sum since every face of S is a triangle.

(6) Y w—alw) =7 — (21— 2a) + (v — 3a) [|E(35)| — |E(90)| — 1]
wedSNIS’

since a(v,) < (27 — 2a) and a(v;) < 3a for m < @ < n, and

V(98) NV (8S")| = |E(8S)| — | E(O)|.
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By lemma 2,

(7) AO)=AS)= D AH- Y Al

fer(o) fer(s)
> ([F(O)| = [F(S))(m = 3a)

= ([E(O) = [E(S))( = 3)

and equality holds if and only if all faces of O are triangles. The last equality holds
from the Euler characteristic formula.

Equations (2)—(7) and o = 27/N imply

(8) [EO) - |E(S)|+|E)] - [EO)
N -6 N —6

<N -0 (552) (£08)| - |E@O)) - (T3 ) (EO)] - ES))
with equality holding only if all faces of O are triangles. Hence |E(9S)| — |E(90)| < 2
with equality holding only if |[E(O)| = |E(S)| and all faces of O are triangles. This
contradicts (1). So we may assume |E(9S)| — |E(00)| = 1.

By (8),

+|EO)] = [E(S)] -

9 (B~ 1EEN) (V5 ) < V50

since |E(O")| < |E(S")|, |[E(O)| = |E(S)|, i-e., S is optimal.
By (1), there exists exactly one nontriangular face, f of O and it is a 4-gon. Suppose,
for a contradiction, that there exists a vertex v in f which is not in 0. Let k be the

number of triangular faces of O containing v. Since v is in the interior of O,
(10) fw)=2r—ka=(N -k

where f(v) = the interior angle of f at v. But this implies

f
L)

\J
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that two opposite vertices of f are distance less than or equal to d apart, contradicting
that f is a face of O. Thus all vertices of f are in 0. Thus any vertex in the interior
of O is contained in N edges of O. For any admissible graph G, let E(G) = {e €
E(GQ)|lenV(9G) # 0}. Then,

(11) N([V(0) = V(80))) = 2(|1E(0) — E(O)]) + |E(O) — E(80)|
=2|E(0)| - |E(0)| - |E(80)|
=2|E(S)| - |E(O)| - (IE(8S)| - 1)

(11a) N(V(O)| = [V(90)]) = N([V(S)] = (IV(99)] = 1))
=2|E(S)| ~ |E(S)| ~ |E(9S)| + N .

So,
(12) |E(O)| = |E(S)|-N+1.

Every edge of E(S) which is in E(S’) is connected to the unique vertex v € V(9S)N
V(9S’). Since v € 95, at least 2 edges radiating from v touch other vertices on 95 and

are therefore not in S’. Hence,
(13) [E(S)| < |B(S)| — |E(S")| + N = 3.
(12) and (13) imply
[E(0))] = E(0)| ~ |EO)| = |E(S)| — [E(S)| + N —1 > |E(S)| +2.
This contradicts that S’ is optimal. Thus |E(0O)| = |E(9S)| and by (1), the theorem

is proved. [

ITI. Conclusion.

For some specific diameters (other than those we have just considered) it is easy to
guess what the optimal packings look like. For example, let P be a 6-gon such that one
angle of P is equal to m/2 and all other angles are equal to 27 /3. Suppose also that the
sides of P that make the 7/2 angle have equal length and the other four sides all have
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equal length as well. Then P is determined up to congruence and P admits a unique
tessellation of the plane for which any copy of P is a fundamental domain. With respect
to the diameter of the incircle of P, we believe that any optimal packing will have its
center set contained in the center set of a tessellation by P.

For most diameters d, we conjecture that any limit of optimal packings (for d) does
not fill space well; in fact, it appears that they may be very “narrow”. Imagine placing
one circle in the plane after another in such a way as to maximize the number of
tangencies at each step. It is easy to increase the number of tangencies by two in a
single step but the opportunity to increase the tangencies by three or more is rare. By
construction, if d is smaller than the diameter of the incircle of P then the maximum
number of tangencies in a circle packing of diameter d with n circles is at least 2n — 3 +

[£] + [252]. This is the best bound we have so far.
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