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Preface
Poincaré’s program

Poincaré’s program for global analysis of dynamical systems (DS):

Identify equilibriums and periodic orbits.
Identify the invariant manifolds associated to them.
Identify other invariant manifolds (e.g. invariant tori).

The long term behaviour of a dynamical system is organized by its
invariant objects.

These objects constitute the skeleton of the DS.

Nowadays: The qualitative approach can be made very quantitative!
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Preface 3
My (and your!) goals of the lectures

Describe a unified framework for the computation of invariant
manifolds and normal forms attached to fixed points of vector
fields using power series.

Adapt the methodology to elementary models. By elementary we
mean that the model can be written using arithmetic operations
and elementary functions.

Introduce methods of Automatic Differentiation.
Estimate complexities.

Apply the methodology to a concrete example: center manifolds
of Lagrange equilibrium points in the Restricted Three Body
Problem.
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Preface 4
Sources of inspiration

Poincaré, Arnold, ...

C. Simó, “On the Analytical and Numerical Approximation of
Invariant Manifolds” (1990)
X. Cabré, E. Fontich, R. de la Llave, “The parameterization
method for invariant manifolds” (2003)
À. Jorba,“A methodology for the numerical computation of
normal forms, centre manifolds and first integrals of Hamiltonian
systems” (1999)

D. E. Knuth, “The art of computer programming. Vol. 2:
Seminumerical algorithms” (3rd rev., 1997)

Notes of the course:
http://www.ima.umn.edu/2010-2011/ND6.20-7.1.11/abstracts.html#11183

http://www.ima.umn.edu/2010-2011/ND6.20-7.1.11/abstracts.html#11183
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Functional equations in
Dynamical Systems
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Functional Equations in Dynamical Systems 7
Some examples and methodologies

Examples:
The solution of odes
The normal form equations
The invariance equations for invariant manifolds

Methodologies:
Expand the unknowns using series (Taylor, Fourier,
Fourier-Taylor), approximate them using interpolants
(polynomials, splines, etc.)
Solve the equations “order by order” (on-line methods for power
series)
Solve the equations using e.g. Newton method

Remark:
We have to evaluate the dynamical system on the series!

These tasks depend a lot on the problem.
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Invariant manifolds for maps 8
Setting the equations

Given:
a map in Rn:

z̄ = F (z)

a d-manifoldW, parameterized by

z = W (s),

where W : U ⊂ Rd →W ⊂ Rn

a map inW, written in coordinates on U ⊂ Rd as

s̄ = f (s)

then:
The manifoldW parameterized by W is invariant under F ,
with subsystem given by f , if

F (W (s)) = W (f (s)) .
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Invariant manifolds for maps 9
Setting the equations
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Pictures at an exhibition 10
Stable and unstable manifolds in a 4D economic growth model

R(1,1),t+1 =
1

1 + α− αR(2,1),t

R(2,2),t+1 =
1

1 + β − βR(1,2),t

R(1,2),t+1 = R(2,2),t+1 ·
R(2,2),t

R(2,1),t

R(2,1),t+1 = R(1,1),t+1 ·
R(1,1),t

R(1,2),t

(with Pere Gomis-Porqueras)
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Pictures at an exhibition 11
Stable and unstable manifolds of a 2-period torus in a qp driven system

x̄ = x + ȳ mod 1

ȳ = y −
sin(2πx)

2π
(κ + λ cos(2πθ))

θ̄ = θ + ω mod 1

with R. de la Llave
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Pictures at an exhibition 12
Meandering KAM tori in a degenerate area preserving map

8><>:
x̄ = x + (ȳ + 0.1)(ȳ − 0.2) ,

ȳ = y −
κ

2π
sin(2πx) .
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with R. de la Llave and A. González
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Pictures at an exhibition 13
Normally hyperbolic tori in a non-conservative system
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Invariant torus and dynamics in the fattened Arnold family:

x̄ = x + a + ε(y +
z
2

+ sin x)

ȳ = b(y + sin x)

z̄ = c(y + z + sin x)

with a = 0.1, b = 0.3, c = 2.4, ε ' 0.750396. (with Marta Canadell)
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Pictures at an exhibition 14
Computer assisted proofs on the verge of a hyperbolicity breakdown

Invariant tori and normal dynamics of a 2 period torus of the qp driven logistic map

z̄ = a(1 + D cos(2πθ))z(1− z)

θ̄ = θ + ω,

where ω =
√

5−1
2 , and a and D are parameters. (with Jordi-Lluís Figueras)
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Invariant manifolds for vector fields 15
Setting the equations

Given:
a vector field in Rn:

ż = F (z)

a d-manifoldW, parameterized by

z = W (s),

where W : U ⊂ Rd →W ⊂ Rn

a vector field inW, written in coordinates on U ⊂ Rd as

ṡ = f (s)

then:
The manifoldW parameterized by W is invariant under the
flow of F , with subsystem given by f , if

F (W (s)) = DW (s) f (s) .
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Functional equations 16
Unknowns

In the invariance equation:
There is a known term, F .
There are two unknowns, W and f .

The system is underdetermined:
There are n equations.
There are n + d unknown d-variate functions.
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Functional equations 17
Particular setting

Setting the problem

Given a fixed point z0, with a d-dimensional invariant subspace for
the linearization ż = DF (z0)z around z0, associate an invariant
manifold tangent to such subspace.

Semi-local analysis. We will expand the manifold (and its dynamics)
using power (or Taylor) series.

Globalization. The semi-local analysis is the first step to globalize
the manifold, that is to extend the manifold far away of the fixed point.

1D stable/unstable manifolds is straigtforward.
2D stable/unstable manifolds, see [KrauskopfODHGVDJ05].
High order approximations are crucial for center manifolds.
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Functional equations 18
Composition with the system

Important fact

The term F (W (s)) involves compositions of the system with the
parameterization.

Many times the model F is elementary, and the compositions can be
made very efficiently!



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

Automatic Differentiation and
Multivariate power series
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Algebraic Manipulation 20
Series as algebraic objects

Observation: series are algebraic objects.

Algebraic Manipulation

AM is a set of techniques based on the mechanical application of
algebraic operations on series, such as arithmetic operations and
compositions.

Some AM C/C++ sofware: TRIP, Piranha.

This approach has a long story in Celestial Mechanics!
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Automatic Differentiation (AD) 21
Coefficients and derivatives

Observation: coefficients of power series expansions are
(normalized) derivatives.

Automatic Differentiation (AD)

AD is a set of techniques based on the mechanical application of the
chain rule to obtain derivatives of a function given as a computer
program.

AD is a technology for automatically augmenting computer programs,
including arbitrarily complex simulations, with statements for the
computation of derivatives, also known as sensitivities.
http://www.autodiff.org

Some AD C/C++ sofware: ADOL-C, COSY INFINITY, C-XSC.

http://www.autodiff.org
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Automatic Differentiation and Algebraic Manipulation 22
Merging the two technologies

Derivatives of arithmetic operations of power series can be performed
easily from the corresponding algebraic operations.

Derivatives of composition of power series with elementary functions
can be performed on-line (order by order), à la Knuth.
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Multivariate power series 23
Definitions and notations

Definition
Given a commutative ring K (like K = R or K = C), a (formal) power
series in the variables x = (x1, . . . , xd ) with coefficients in K is an
element of the ring K[[x ]] = K[[x1, . . . , xd ]],

f (x) =
∞∑

k=0

fk (x) , (1)

where each fk (x) is a homogeneous polynomial of order k , that is an
element of Kk [x ], which we write

fk (x) =
∑

m1+···+md =k

fm1,...,md xm1
1 . . . xmd

d =
∑
|m|=k

fmxm

We also denote the k th truncation as f≤k (x) =
k∑

i=0

fi (x).
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Multivariate power series 24
Homogeneous polynomials

Recursive scheme

A homogeneous polynomial fk (x) of d variables x = (x1, . . . , xd ) of
order k is a combination of (k + 1) homogeneous polynomials of the
first (d − 1) variables x̂ = (x1, . . . , xd−1) of degrees k , k − 1, . . . ,0:

fk (x) = f d
k (x̂) + f d

k−1(x̂)xd + · · ·+ f d
0 (x̂)xk

d .

A k th order homogeneous polynomial is represented as:

A vector of hd (k) :=
(d+k−1

d−1

)
coefficients, in graded reverse

lexicographic ordering w.r.t. the keys m = (m1,m2, . . . ,md ).

A recursive tree.

A k th truncated power series has nd (k) :=
(d+k

d

)
coefficients.
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Some implementation details 25
Storage of coefficients

Two main approaches

For dense power series, one stores all the coefficients.

For sparse power series, one stores the non-zero terms,
corresponding to coefficient-key pairs.

Here: dense polynomials, without structure.

TRIP and Piranha supports sparse series.
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Some implementation details 26
Graded reverse lexicographical ordering

Observation: The ordering of the coefficients is induced by the
recursive tree scheme.

Example

The 10 coefficients of a homogenous 3-variate polynomial of order 3
are ordered following the scheme:

x3
1 , x

2
1 x2, x1x2

2 , x
3
2 , x

2
1 x3, x1x2x3, x2

2 x3, x1x2
3 , x2x2

3 , x
3
3 .
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Some implementation details 27
Data structures

1 / / s t r u c t u r e f o r homogeneous terms
2 / / the c o e f f i c i e n t s are double type
3
4 struct homog
5 {
6 unsigned char nv , orden ; / / number o f va r iab les , homogeneous order
7 double ∗coef ; / / address o f the f i r s t c o e f f i c i e n t
8 struct homog ∗ term ; / / f o r t r ee d i s t r i b u t i o n o f c o e f f i c i e n t s
9 } ;

10
11 typedef struct homog homog ;
12
13 / / s t r u c t u r e f o r power se r i es
14
15 typedef struct
16 {
17 unsigned char nv , orden ; / / number o f va r iab les , order o f the se r i es
18 homog ∗∗ term ; / / l i s t o f homogeneous terms
19 }
20 se r i e ;
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Product of (truncated) power series 28
Schoolbook formula

The key routine, on which the rest of routines are built, is the
(truncated) product of power series, that reduces to perform products
of homogeneous polynomials.

We use the naive convolution formula, whose cost (number of
operations) is

pd (k) =

(
2d + k

2d

)
∼ 1

(2d)!
k2d ∼ d !2

(2d)!
nd (k)2 .

By operation we mean "one multiplication of coefficients, one
addition, and index the result".

Important:
The method is on-line.
Easy to implement.
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Product of (truncated) power series 29
Fast methods

There are (asymptotically) fast convolution algorithms
Karatsuba and Toom-Cook methods, with cost ∼ nα, with α < 2,
n = nd (k).
FFT methods, with multi-evaluation and interpolation techniques
and reduction to univariate series, with cost ∼ n log(n), with
n = nd (k).

Important:
useful only for very high order (not usual in DS).
multi-evaluation and interpolation produces numerical errors.
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Some implementation details 30
Scalar multiplication of a homogenous polynomial

Natural code

1 void smulth (homog ∗h , double r , homog ∗a )
2 {
3 unsigned i n t m, nch ;
4
5 nch= nch ( h−>nv , h−>orden ) ;
6
7 for (m= 0; m<nch ; m++){
8 h−>coef [m]+= r∗ a−>coef [m] ;
9 }

10 }

Fancy code

1 void smulth (homog ∗h , double r , homog ∗a )
2 {
3 double ∗hc , ∗hf , ∗ac ;
4
5 hf= h−>coef + nch ( h−>nv , h−>orden ) ;
6 for ( hc= h−>coef , ac= a−>coef ; hc<hf ; (∗hc)+= r∗ (∗ac ) , hc++ , ac ++) ;
7 }
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Some implementation details 31
Product of homogeneous polynomials

1 void sprodh (homog ∗p , homog ∗a , homog ∗b )
2 {
3 i f ( p−>nv >2) {
4 i f ( a−>orden ) {
5 i f ( b−>orden ) {
6 homog ∗aa , ∗bb , ∗pp , ∗pp0 , ∗af , ∗bf ;
7 a f= a−>term+a−>orden ; b f= b−>term+b−>orden ;
8 for ( aa= a−>term , pp0= p−>term ; aa<af ; aa++ , pp0++) {
9 for ( bb= b−>term , pp= pp0 ; bb<bf ; sprodh ( pp , aa , bb ) , bb++ , pp ++) ;

10 smulth ( pp , ∗(bb−>coef ) , aa ) ;
11 }
12 for ( bb= b−>term , pp= pp0 ; bb< bf ; smulth ( pp , ∗(aa−>coef ) , bb ) , bb++ , pp ++) ;
13 ∗(pp−>coef )+= ∗(aa−>coef ) ∗ ∗(bb−>coef ) ;
14 }
15 else smulth ( p , ∗(b−>coef ) , a ) ;
16 }
17 else smulth ( p , ∗(a−>coef ) , b ) ;
18 }
19 else i f ( p−>nv == 2) { / / 2−v a r i a t e polynomia ls
20 double ∗aa , ∗bb , ∗pp , ∗pp0 , ∗af , ∗bf ;
21 a f= a−>coef+a−>orden ; b f= b−>coef+b−>orden ;
22 for ( aa= a−>coef , pp0= p−>coef ; aa<= af ; aa++ , pp0++)
23 for ( bb= b−>coef , pp= pp0 ; bb<= bf ; ∗pp+= ∗aa ∗ ∗bb , bb++ , pp ++) ;
24 }
25 else ∗(p−>coef )+= ∗(a−>coef ) ∗ ∗(b−>coef ) ; / / 1−v a r i a t e polynomia ls
26 }



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

Benchmarks 32
Estimating the overhead

An efficient implementation of the (truncated) product of power series
is based on an efficient indexation of the coefficients.

We define the overhead as the ratio of the execution time of
computing the (k th truncated) product over the execution time of
computing pd(k) products and additions.

1 for ( i = 0 ; i <= k ; i ++) {
2 for ( j = 0 ; j <= i ; j ++) {
3 n i f = nch ( n , i−j ) ;
4 n j f = nch ( n , j ) ;
5 for ( n i = 0 ; n i < n i f ; n i ++) {
6 for ( n j = 0 ; n j < n j f ; n j ++) {
7 z+= x∗y ;
8 }
9 }

10 }
11 }
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Benchmarks 33
Comparison of several implementations

d = 4 tree TRIP ad hoc
k n p time (s) Mflops over. time (s) time (s)

10 1001 43758 2.930e – 04 149.3 3.05 NA 3.665e – 04
20 10626 3108105 1.364e – 02 227.9 2.50 NA 1.906e – 02
30 46376 48903492 1.900e – 01 257.4 2.38 2.000e – 01 2.529e – 01
40 135751 377348994 1.120e+00 336.9 1.70 1.630e+00 1.767e+00
50 316251 1916797311 5.050e+00 379.6 1.53 7.660e+00 1.032e+01
60 635376 7392009768 1.793e+01 412.3 1.42 2.928e+01 5.371e+01
70 1150626 23446881315 5.335e+01 439.5 1.34 9.257e+01 2.098e+02
80 1929501 64276915527 1.393e+02 461.5 1.27 2.533e+02 6.623e+02
90 3049501 157366449604 3.282e+02 479.5 1.23 6.229e+02 1.765e+03

100 4598126 352025629371 7.093e+02 496.3 1.19 1.408e+03 4.195e+03

d = 6 tree TRIP ad hoc
k n p time (s) Mflops over. time (s) time (s)

10 8008 646646 4.808e – 03 134.5 4.17 NA 4.451e – 02
20 230230 225792840 1.310e+00 172.4 3.36 9.940e – 01 1.722e+01
30 1947792 11058116888 5.043e+01 219.3 2.69 4.408e+01 9.161e+02
40 9366819 206379406870 7.808e+02 264.3 2.23 8.367e+02 1.926e+04
50 32468436 2160153123141 7.183e+03 300.7 1.96 NA NA
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Benchmarks 34
log-log plot of executions times
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d= 3: a= -8.59, b= 1.72
d= 4: a= -8.79, b= 1.73
d= 5: a= -8.93, b= 1.73
d= 6: a= -8.95, b= 1.70

Fit t(n) ' A nb, where a = log10 A

Time is subquadratic in n (or sublinear in p)!
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Benchmarks 35
Dependencies

The algorithm: we use the naive formula, which involves pd (k)
products and additions of numbers. We take advantage of the
tree data structure, and use recursivity.
The implementation: we use the programming language C.
The computer: iMac running under Mac OS X 10.6.4. Technical
specifications: 2 GHz Intel Core Due, 4MB L2 Cache; Memory: 1
GB 667 MHz DDR2 SDRAM.
The coefficients: these are real numbers in double-precision
floating-point arithmetic, the variable type double in C (8 bytes
per coefficient).
The compiler: we use gcc with different options and flags.
The plug: time execution can vary a lot if the laptop is not
plugged in and work with the battery.

The list does not finish here.
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Benchmarks 36
Efficient implementation

Efficient implementation!

The Mathematica implementation of an FFT method take hours to
compute the truncated exponential up to order 10 of a 10-variate
power series on a PC [Neidinger05].

Our C implementation of the NAIVE algorithm take less than 0.20
seconds on a slightly old laptop.
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Composition with elementary functions 37
Make AD work!

Composition of formal power series is a very hard task, but in special
cases (e.g. composing with elementary functions), the cost is
proportional to that of the product!

Problem: Compute ϕ ◦ f (x), where ϕ is an elementary function
(solution of a simple ode), and f is a power series.

Very well-known formulas for 1-variate power series (Knuth).

Formulas for multivariate power series?
Reduction to 1-variate case (not on-line!).
Use chain rule ∇(ϕ ◦ f )(x) = ϕ′(f (x))∇f (x) [Neidinger 95,
10][Barrio 06]
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Composition with elementary functions 38
Radial derivative

The radial derivative of a function (power series) f (x) =
∞∑

k=0

fk (x) is

defined by

Rf (x) = Df (x) x =
∞∑

k=0

k · fk (x) .

Euler Identity

For a k th order homogeneous function, fk : Rfk (x) = k · fk (x) .

Chain rule

For an univariate function ϕ = ϕ(t) and a multivariate function
f = f (x):

R(ϕ◦f )(x) = ϕ′(f (x)) Rf (x) .
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Composition with elementary functions 39
Applications to AD

Key observation in AD. If ϕ satisfies an elementary differential
equation, then we can compute ϕ◦f on-line à la Knuth.

Example

If ϕ(t) = et , then e(x) = exp(f (x)) satisfies Re(x) = e(x)Rf (x).
Since e0 = exp(f0), the series e(x) is computed recursively by

ek (x) =
1
k

k−1∑
j=0

(k − j)fk−j (x)ej (x) .

Notice that the cost up to order k is ∼ pd (k).
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Example

The series p(x) = (f (x))α can be computed recursively from p0 = fα0
by

pk (x) =
1

k f0

k−1∑
j=0

(α(k − j)− j) fk−j (x)pj (x) .

Notice that the cost up to order k is ∼ pd (k).

Same tricks are applied to many others elementary functions, and the
resulting algorithms have a cost that is proportional to the cost of a
product. See the notes!
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Comparing codes 41
C-XSC implementation of power function of exponent α, for 2-variate power series

1 l d i m 2 t a y l o r power ( const l d i m 2 t a y l o r& s , const l _ i n t e r v a l & alpha )
2 {
3 l d i m 2 t a y l o r erg ( s . p ) ;
4 i d o t p r e c i s i o n sum_idot ;
5 l _ i n t e r v a l sum1 , sum2 , h ;
6
7 erg [ 0 ] [ 0 ] = pow( s [ 0 ] [ 0 ] , alpha ) ;
8 for ( i n t j =1; j <=erg . p ; j ++) {
9 sum_idot= i n t e r v a l ( 0 . 0 ) ;

10 for ( i n t i =0; i <= j−1; i ++) {
11 h=alpha∗( i n t e r v a l ( j )− i n t e r v a l ( i ))− i n t e r v a l ( i ) ;
12 accumulate ( sum_idot , h∗erg [ 0 ] [ i ] , s [ 0 ] [ j−i ] ) ;
13 }
14 sum1 = l _ i n t e r v a l ( sum_idot ) ;
15 erg [ 0 ] [ j ]=sum1 / i n t e r v a l ( j ) / s [ 0 ] [ 0 ] ;
16 }
17 for ( i n t i =1; i <=erg . p ; i ++) { / / remaining erg ( i , k )
18 for ( i n t k =0; k<=erg . p−i ; k++) {
19 sum_idot= i n t e r v a l ( 0 . 0 ) ;
20 for ( i n t l =0; l <= i−1; l ++) { / / Do not sum coe f f . ( l ,m)= (0 ,0 )
21 h=alpha∗( _ i n t e r v a l ( i )−_ i n t e r v a l ( l ))− _ i n t e r v a l ( l ) ;
22 for ( i n t m=0; m<=k ; m++) {
23 accumulate ( sum_idot , h∗erg [ l ] [m] , s [ i−l ] [ k−m] ) ;
24 }
25 }
26 sum1 = l _ i n t e r v a l ( sum_idot ) ;
27 sum_idot= i n t e r v a l ( 0 . 0 ) ;
28 for ( i n t m=1; m<=k ; m++) {
29 accumulate ( sum_idot , s [ 0 ] [m] , erg [ i ] [ k−m] ) ;
30 }
31 sum2 = l _ i n t e r v a l ( sum_idot ) ;
32 erg [ i ] [ k ] = ( sum1 / i n t e r v a l ( i )−sum2 ) / s [ 0 ] [ 0 ] ;
33 }
34 }
35 return erg ;
36 }
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Comparing codes 42
AD on-line implementation of power function of exponent α, for multivariate power series

1 void pows ( se r i e ∗px , se r i e ∗x , complex alpha )
2 {
3 i n t k , j ;
4 complex x0 ;
5
6 x0= coef0s ( x ) ;
7 acoef0s ( px , cpow ( x0 , alpha ) ) ;
8
9 for ( k= 1 ; k<= px−>orden ; k++) {

10 zeroh ( px−>term [ k ] ) ;
11
12 for ( j = 1 ; j <= k ; j ++)
13 smprodh ( px−>term [ k ] , ( alpha+1)∗ j−k , px−>term [ k−j ] , x−>term [ j ] ) ;
14 multh ( px−>term [ k ] , 1 . / ( k∗x0 ) ) ;
15 }
16 }
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Exercise
Write a symbolic manipulator of 1-variate power series.

Exercise
Write a symbolic manipulator of 2-variate power series. Compare
C-XSC method, Barrio’s method and on-line method.
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Elementary models 44
Length and complexity

Definition
A model is elementary if we write its equations as a finite sequence of
single expressions, these meaning arithmetic operations and
elementary functions such as exponential, logarithm, sinus, etc.

The length of the model is the number of single expressions.
The complexity is the sum of the complexities of the single
expressions, where:

scalar multiplication, addition, subtraction add 0;
product, division, exponential, logarithm, power function add 1;
square, square root add 0.5;
trigonometric functions sin, cos, hyperbolic functions sinh, cosh
add 2;
elliptic functions sn, cn, dn add 3;
see the notes for more examples.
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Parameterizations of
invariant manifolds
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Computation of invariant manifolds 46
Setting the problem

For a vector field ż = F (z) in Kn, we assume that:
The fixed point is the origin: F (0) = 0;
The linearization has a block triangular form:

DF (0) =

(
A1 B
0 A2

)
,

where A1 is k × k and A2 is (n − k)× (n − k).
We write z = (z1, . . . , zd︸ ︷︷ ︸

x

, zd+1, . . . , zn)︸ ︷︷ ︸
y

.

Problem
Look for power series expansions of the parameterization of a
d-dimensional invariant manifold z = W (s), tangent to y = 0 and the
corresponding dynamics ṡ = f (s), where s ∈ Kd .
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Computation of invariant manifolds 47
The invariance equation

The invariance equation is

F (W (s)) = DW (s)f (s) , (2)

that we consider in terms of power series.
So, we write

x = W x (s) = s +
∑
k≥2

W x
k (s) ,

y = W y (s) =
∑
k≥2

W y
k (s) ,

(3)

for the parameterization and

f (s) = A1s +
∑
k≥2

fk (s) , (4)

for the reduced vector field on the manifold.



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

Computation of invariant manifolds 48
Homological equations

Step k>1

From W<k (s) and f<k (s) (and [F (W<k (s))]<k , including the
intermediate results), do:

1 Compute [F (W<k (s))]k .
2 Solve for Wk the k -order homological equations

DWk (s)A1s − AWk (s) + DW1(s)fk (s) = Rk (s) (5)

where Ŵk is known from previous steps:

Ŵk (s) = [F (W<k (s))]k − [DW<k (s)f<k (s)]k . (6)

3 Compute [F (W≤k (s))]≤k just adding AWk (s) to [F (W<k (s))]k .
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Computation of invariant manifolds 49
Solving the homological equations

We split the homological equations in two blocks:

DW x
k (s)A1s − A1W x

k (s) + fk (s) = Rx
k (s) + BW y

k (s) , (7)
DW y

k (s)A1s − A2W y
k (s) = Ry

k (s) , (8)

where Rk (s) denotes the right hand side of (5).

For the sake of simplicity, we assume A1,A2 in diagonal form:

A1 = diag(λ1, . . . , λd ),A2 = diag(λd+1, . . . , λn).
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Computation of invariant manifolds 50
Solving the homological equations

Equation (8) is written, for i = d + 1, . . . ,n:

λ1
∂W i

k
∂s1

s1 + · · ·+ λd
∂W i

k
∂sd

sd − λiW i
k (s) = R i

k (s) .

In particular, for i = d +1, . . . ,n, |m| = k :

(λx ·m− λi )W i
m = R i

m. (9)

If there are not cross resonances, for i = d +1, . . . ,n, |m| = k :

W i
m =

R i
m

λx ·m− λi
.

(OK e.g. classical manifolds, but may also work for weak-stable (or
slow) manifolds).



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

Computation of invariant manifolds 51
Solving the homological equations

Equation (7) is written, for i = 1, . . . ,d :

λ1
∂W i

k
∂s1

s1 + · · ·+ λd
∂W i

k
∂sd

sd − λiW i
k (s) + f i

k (s) = R̂ i
k (s) , (10)

where R̂x
k (s) = Rx

k (s) + BW y
k (s).

Hence, for i = 1, . . . ,d , |m| = k :

(λx ·m− λi )W i
m + f i

m = R̂ i
m. (11)
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Computation of invariant manifolds 52
Solving the homological equations

For i = 1, . . . ,d , |m| = k : (λx ·m− λi )W i
m + f i

m = R̂ i
m.

Main styles of parameterizations

Graph method. For i = 1, . . . ,d , |m| = k .

W i
m = 0, f i

m = R̂ i
m.

Normal form method. For i = 1, . . . ,d , |m| = k :f i
m = 0 , W i

m =
R̂ i

m

λx ·m− λi
, if λx ·m− λi 6= 0;

f i
m = R̂ i

m , W i
m = 0, if λx ·m− λi = 0.

(d = n corresponds to normal form)
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Computation of invariant manifolds 53
Cost for elementary vector fields

Complexity

Let wn,d (k) be the computational cost of solving (2) up to order k .
Then,

wn,d (k) ∼ Cpd (k),

where the constant C depends on the dimension n and complexity c
of the elementary vector field F , the dimension d of the manifold and
the style of parameterization.

Graph method:

wn,d (k) ∼ c pd (k) + (n − d)d pd (k). (12)

Parameterization method (with polynomial normal form):

wn,d (k) ∼ c pd (k), (13)
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An elementary example
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The equations of the RTBP 55
Description

The RTBP models the motion of a massless body under the
gravitational forces induced by two punctual bodies (primaries) in
circular Keplerian motion.
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The equations of the RTBP 56
The model

After considering a rotating frame fixing those primaries on the x-axis
and z-axis perpendicular to the ecliptic plane, and doing some
scalings, the equations are:

ẋ = px + y ṗx = py −
1− µ

r3
1

(x − µ)− µ

r3
2

(x − µ+ 1)

ẏ = py − x ṗy = −px −
1− µ

r3
1

y − µ

r3
2

y

ż = pz ṗz = − 1− µ
r3
1

z − µ

r3
2

z

(14)
where r1 =

√
(x − µ)2 + y2 + z2, r2 =

√
(x − µ+ 1)2 + y2 + z2, and

µ is the mass parameter.
The RTBP model is elementary, with complexity 6.5.
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An elementary example 57
Computation of center and center-(un)stable manifolds

RTBP has 5 equilibrium points: L1,L2,L3 are collinear, and L4,L5
are triangular.
Each collinear point is unstable (c × c × s), with one 4D center
manifold, 5D center-(un)stable manifolds, and 1D (un)stable
manifolds.
Computation of these objects is useful in astrodynamics, and has
been carried out several times in the literature.
The pioneers were Carles Simó’s team in 80’s, and nowadays
are used e.g. in designing space missions by ESA and NASA
(see Martin Lo!).
Standard technique: reduction of the dynamics to the center
manifold. This is performed through a partial normal form of the
Hamiltonian killing the unstable directions (6D).
Here: Direct computation of the center manifold of the L1 in the
Earth-Moon system.
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Benchmarks 58
Run like hell

For µ ' 0.0121506 (E-M system), for L1, we have computed the
center manifold (d = 4) with this laptop.

k product graph ratio
10 4.352e−04 7.790e−03 17.90
20 2.533e−02 4.048e−01 15.98
30 3.582e−01 5.497e+00 15.34
40 2.590e+00 3.921e+01 15.14
50 1.259e+01 1.900e+02 15.09
60 4.708e+01 7.104e+02 15.08
70 1.460e+02 2.207e+03 15.12

The theoretical estimates for the ratio is 14.5 = 6.5 + (6− 4) · 4.
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Benchmarks 59
Comparison

In faster (but similar) machines, we have compared different
algorithms.

k Lie series Graph transform Graph style + AD
8 0m 0.085s 0m 0.057s 0m 0.005s

16 0m 3.876s 0m 2.943s 0m 0.084s
24 2m 10.251s 1m 13.965s 0m 0.790s
32 33m 22.000s 14m 35.475s 0m 4.764s

(Results for Lie series and Graph transform from [FJ10])
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Growth of the coefficients 60
Fitting the growth

For k > 0, let `1(k) be the maximum of the `1 norms of the k th order
coefficients of Wk . In log-scale ...

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  10  20  30  40  50  60  70k

Then:
`1(k) ∼ `(k) = Aλk (log k)ck

where a = log A,b = logλ and c are estimated by

a = −1.25± 0.05 , b = −0.212± 0.008 , c = 0.252± 0.005
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Growth of the coefficients 61
Mild growth implies sharp behaviour

Assume that, for δ small enough, the expansion of W (s) for |s|∞ ≤ δ
is asymptotic, that is:

|W≤k (s)−W (s)|∞ ≤ `1(k + 1)δk+1 ∼ ε(δ, k) = `(k + 1)δk+1 . (15)

Following [C. Simó], the best bound b(δ) for the error in the
approximation of W (s) by W≤k (s) in the box |s|∞ ≤ δ is obtained
taking k = k(δ) minimizing ε(δ, k). In the present case,

k(δ) =
1
e

exp
(

(λδ)−
1
c

)
− 1 ,

b(δ) = ε(δ, k(δ)) = A exp
(
−c(λδ)

1
c (k(δ) + 1)

)
.

Hence, the mild growth of the coefficients of the expansions explains
the behavior of the (best) error of the asymptotic approximation.
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Growth of the coefficients 62
Mild growth implies sharp behaviour
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Figure: Error estimates as a function of δ for different order of
approximations (left), and best error estimates (in log-scale).



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

Dynamics on the center manifold 63
Poincaré section

In order to analyze the dynamics on the 4D center manifold, we use
the following standard technique:

Fix an energy level H > HL1 ' −1.594171;
Use Poincaré section with {z = 0}.

From different energy levels one gets a collection of 2D phase
portraits, obtaining a local-global view of the dynamics on the center
manifold.

The boundary of the intersection of the center manifold with an
energy level and the Poincaré section is a closed curve: a planar
Lyapunov orbit.

Other important periodic orbits are the vertical Lyapunov orbit and the
halo orbits.



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

Dynamics on the center manifold 64
Computation of Poincaré maps

Two methods of integration of orbits:

Reduction: Integrate numerically the vector field on the manifold,
using e.g. a R-K 7-8 with automatic stepsize control.
This is quite reliable but numerically expensive.
Projection: Given a point on the section, integrate the full vector
field, using e.g. a Taylor method of order 18 with automatic step
size control. At each return map, project the point on the center
manifold.
This is numerical cheap.
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Dynamics on the center manifold 65
Error estimates

The error in the invariance equation:

eI(t , s0) = ||F (W (s(t)))− DW (s(t))f (s(t))||∞ ,

The error in the orbit:

eO(t , s0) = ||W (s(t))− z(t)||∞.

The error in the Hamiltonian:

eH(t , s0) = |H(W (s(t)))− H(W (s(0)))|.
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Dynamics on the center manifold 66
H = −1.590
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Dynamics on the center manifold
H = −1.580
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Dynamics on the center manifold 68
H = −1.570
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Dynamics on the center manifold 69
H = −1.565
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The energy level H = −1.565
Main periodic orbits
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The energy level H = −1.565 71
Error estimates for the planar Lyapunov orbit
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20 2.943184 9.99e-16 3.03e-05
30 2.943083 1.67e-15 7.38e-06
40 2.943068 1.44e-15 1.53e-06
50 2.943065 1.67e-15 3.67e-07
60 2.943065 1.44e-15 9.53e-08



Preface Functional equations in DS AD and multivariate power series Parameterizations of invariant manifolds An elementary example Conclusions

The energy level H = −1.565 72
Error estimates for the vertical Lyapunov orbit
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The energy level H = −1.565 73
Error estimates for the halo orbit
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The energy level H = −1.565
A −1 : 18 period orbit around vertical orbit
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The energy level H = −1.565
A 1 : 9 periodic orbit around halo orbit
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Further on
Numerical chaos in the energy level H = −1.555
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Conclusions
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Conclusions 78

The link of the parameterization method with automatic
differentiation provide efficient methods to compute multivariate
power series expansions of invariant manifolds.
Computation of the semi-local manifold is the starting point to
study the manifold (globalization, visualization, etc.)
The methods work for conservative and dissipative systems.
We can also obtain efficient methods to compute normal forms of
elementary Hamiltonians.
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Final remarks 79

AD methods are applied in many contexts:

Numerical methods
Validated methods of computation (with interval arithmetics)
Sensitivity analysis
Design optimization
Data assimilation and inverse problems


