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Prefaci

Com que la construccid de tot Punivers és absolutament per-
fecta i es deguda a un Creador amb coneizement infinit, no
res existeir al mon que no mostri alguna propietat de mazim
o minim. Aixi doncs, no pot haver cap dubte sobre la possibi-
litat que tots els efectes estiguin determinats pels seus desig-
nis finals amb Uajuda del métode del mazim, de la mateiza
manera que ells estan també determinats per les causes ini-
cials.

La Geometria de la Natura

Les lleis fonamentals de la Natura, des de la mecanica classica, I’0ptica geometrica, la
gravetat, 1’electromagnetisme fins a la mecanica quantica, semblen ser Hamiltonianes.
Maupertuis ho va explicar tot dient que, suposant que 1’Univers tingués un Creador
perfecte, llavors ha de ser el millor dels universos possibles, i aixi doncs hauria d’estar
regit per un principi variacional. Encara que aixo ho va dir abans que Hamilton formulés
la seva dinamica, és un fet ben conegut que els principis variacionals i Hamiltonians
estan intimament relacionats. Com diu R.S. MacKay [69], tot plegat és una mica
misterios.

Com que el llenguatge de la mecanica Hamiltoniana és el calcul de formes diferencials
i camps vectorials sobre varietats diferenciables !, la formulacié basica d’aquest calcul
actua com les regles gramaticals [96]. Una conseqiiéncia agradable és la possibilitat
d’evitar els calculs feixucs tan corrents en mecanica analitica. De fet, el primer exemple
d’aquest formalisme va apareixer en un treball de J.L. Lagrange [58] sobre mecanica
celest 'any 1808. Lagrange va escriure les equacions del moviment per als elements

orbitals z = (21,..., z5) d’un planeta, sota I’efecte de pertorbacions, en la forma
OH : dz;
0 Z aij(2) a
1 le

1Un petit resum de geometria diferencial apareix cap al final de la memoria.



- S viL L 4L LT

on (a;;)ij—1-6 és una matriu antisimetrica, i va mostrar que mitjangant una eleccié
adequada del sistema coordenat es poden escriure les equacions en la forma ara coneguda
com equacions de Hamilton.

Aixi doncs, com va comentar Alan Weinstein [98], aquest formalisme Hamiltonia
té el paper en Matematiques d’un llenguatge que pot facilitar la comunicaci6 entre la
Geometria i ’Analisi. De fet, la geometritzaciéo d’aquest llenguatge és el que avui en
dia es coneix com Geometria Simpléctica, que ha esdevingut una prospera branca de
les Matematiques. La paraula simpléctic va ser inventada per H. Weyl [99], el qual va
substituir ’arrel grega per la llatina de la paraula complez. A ell li devem també la
citacié segiient que il-lustra el taranna del que estem comentant:

A Uinterior d’un matematic s’estan barallant el dimoni de [’algebra abstracta
it l’angel de la geometria.

El formalisme Hamiltonia/simplectic ha impregnat altres teories matematiques, que
en principi estan bastant llunyanes. Com a exemples, citem la teoria de representacions
de grups de Lie, la teoria de resolubilitat local d’operadors diferencials lineals i la teoria
d’operadors canonics. Des d'un punt de vista més aviat filosofic, sembla que es pugui
simplectificar tot. Encara que nosaltres no tractarem d’aquests temes, si que mostre la
importancia que té ’estudi de la geometria simplectica dins les Matematiques.

Podem resumir aquestes idees dient que sembla que Déu és un geometra, i la ge-
ometria de la Natura és simplectica.

L’estructura de ’espai de fase

Tornant a la mecanica classica [5, 1, 61], és una bona idea descriure els estats dels
sistemes amb unes coordenades z = (x,y), on & = (x1,...,z4) sén les coordenades locals
sobre una varietat M (I'espai de configuracid) i que descriuen les posicions dels punts
d’aquesta, i y = (y1,...,yq) sén els corresponents moments conjugats, que descriuen
covectors (1-formes) sobre tal varietat. Es a dir, z = (z,) sén coordenades locals del
fibrat cotangent N' = T* M de M, espai de fase del nostre sistema. d és el nombre de
graus de llibertat. Veiem que aixo és una herencia directa de les lleis de Newton, que en
particular diuen que per determinar el moviment d’un sistema de particules necessitem
les posicions i velocitats en un determinat instant (a part de les seves interaccions,
evidentment). L’estructura de 1'espai de fase que ara descriurem seria molt diferent si
les equacions de Newton fossin de tercer ordre i no de segon, és a dir, si necessitéssim,
a més, les acceleracions inicials de les particules per determinar els seus moviments.
Un sistema dinamic general ve donat per un camp vectorial sobre I’espai de fase
N, que codifica I'evolucié infinitesimal de qualsevol quantitat definida sobre ell. Es a
dir, si X € X(N) és un camp vectorial i F' € C*°(N) és una funcié, llavors la variacié
infinitesimal F' de F' al llarg de les trajectories de X (o derivada orbital) ve donada per

F = X(F).
Aquesta és la versid intrinseca d’un sistema d’equacions diferencials ordinaries

{ & = fi(z,y),

yi = gl(zay)a
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Un axioma fonamental a la descripcié dels sistemes fisics, i que es podria anomenar
el paradigma de I’Energia [47], és el segiient:

Tot sistema fisic té una funcio definida sobre el seu espai d’estats, anome-
nada ’Hamiltonia del sistema, que conté tota la seva informacio dinamica.

Aixi, doncs, si N modelitza ’espai d’estats d’una familia de sistemes dinamics, hi ha
d’haver per a cada funcié H sobre N un camp vectorial Xy que descrigui un sis-
tema dinamic. En el cas de la mecanica Hamiltoniana, aquesta associacié ve donada
geometricament per una 2-forma simpléctica sobre N, és a dir, una 2-forma w que és
tancada (dw = 0) i no degenerada (com a 2-forma sobre cada punt). Es diu que el
parell (M, w) és una varietat simpléctica. La primera condicié ve donada pel fet de
lligar les diferents 2-formes no degenerades sobre els diferents punts. La condici6 de no-
degeneraci6 implica la paritat de la dimensié de I'espai fasic i ens permet caracteritzar
Xy mitjangant

w(Xy,Y) = —dH(Y),

onY € X(N) és qualsevol camp. Xy es diu que és un camp Hamiltonia i H és la seva
funcio de Hamilton. El seu flux preserva ’estructura simplectica.

Per comparar dos fluxos Hamiltonians donats per H; i H» es pot utilitzar el parentesi
de Lie dels camps corresponents. Com que nosaltres tenim una estructura addicional
aixo, es pot traduir en un parentesi aplicat no als camps siné als Hamiltonians mateixos.
Es el parentest de Poisson:

{HlaHQ} = w(XHl’XHQ) = _dHl(XHQ) = dHl(XH2)?
que satisfa
oy = Din Xl

L’estructura d’algebra de Lie del conjunt de camps vectorials amb el parentesi de Lie és
heretada pel conjunt de funcions amb el parentesi de Poisson. Va ser també Lagrange
el primer que va utilitzar aquest parentesi.

Usant unes coordenades adients, dites simplectiques, podem escriure la 2-forma w
com

d
w = dy/\da::Zdyi/\dxi.

=1
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Un fet remarcable és que totes les formes simplectiques es poden escriure localment
d’aquesta manera, tal com afirma el teorema de Darboux. Aquesta és una diferencia
substancial entre la geometria simplectica i la geometria Riemanniana. Les equacions
de Hamilton no sén res més que la traduccié a coordenades del camp Xy

. _oH
(2 ayz’

. 0H
Yi = o,

El parentesi de Poisson és escrit com

d
- OH, 0H, O0OH, OH,
{HI;HQ} - Z < ayz . axl B 8:1:1 . 3% ) '

=1

La unitat basica estructural de la mecanica Hamiltoniana és una 1-forma sobre
espai fasic N = T*M, a € Q' (T* M), que és caracteritzada per

Vp e U (M) pra=p,

on la part dreta de la igualtat la veiem com una aplicacié p : M — T*M (de fet, és
una seccié diferenciable del fibrat cotangent). Aquesta 1-forma natural rep el nom de
forma de Liouwille, i la seva diferencial w = da és la forma simplectica natural sobre
el fibrat cotangent. En coordenades cotangents (x,y) la forma simpléctica és

d
w = dy/\dx:Zdyi/\dxi

=1

i la forma de Liouville és
d
a =y dx:Zyi dz;.
i=1

Aixi doncs, un cas especialment important correspon al fet que la forma simplectica
sigui exacta, és a dir, que existeixi una 1-forma «, anomenada forma d’accid, que
verifiqui w = da. Nosaltres només considerarem aquest cas. De fet, a partir d’ara
considerarem que el nostre espai fasic és N' = T* M, encara que la majoria de definicions
son valides en contextos més generals.

Simplectomorfismes exactes

Nosaltres treballarem amb una versié discreta de la mecanica. Es a dir, en lloc de
treballar amb fluxos (donats per camps vectorials) ho farem amb difeomorfismes. De
fet, passar dels fluxos als difeomorfismes és facil, emprant seccions de Poincaré. Aixi,
per exemple, si el nostre camp X = X(z,t) és T-periodic en el temps, i el seu flux
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és ¢4, llavors podem considerar ’aplicacié F' = ¢, que la podem interpretar com
’aplicacié de Poincaré associada a la seccié ¥ = {(z,0) € N x S}, on hem ampliat
’espai de fase a N' x T i aqui T = R/(TZ).

Com que els nostres camps sén Hamiltonians, llavors els seus fluxos preserven l’es-
tructura simplectica. En general, un difeomorfisme que preserva aquesta estructura
s’anomena simplectomorfisme. Aquest terme va ser introduit per Souriau, i equival al
de transformacio canonica, utilitzat a la mecanica analitica. Aixi doncs, un simplecto-
morfisme F' : N — N és un difeomorfisme que verifica

v = w.

Com que la nostra estructura simplectica és exacta, és a dir, té una primitiva a, llavors
la 1-forma F*a — a és tancada:

0 = F'do-do
= d(F'a — a).

Si, en particular, aquesta forma és exacta llavors direm que el nostre simplectomorfisme
és exacte. Aix0d vol dir que hi ha una funcié S : N' — R que satisfa I’ equacid d’ezactitud

FrFrao—a = dS,

i s’anomena la funcio primitiva de F'. No cal dir que esta definida llevat de constants.

Un fet que nosaltres trobem curids és que molts autors es refereixen a S com la
funcio generatriu de F', quan en realitat no el genera! De fet, S genera una familia de
simplectomorfismes, tots amb la mateixa funcié primitiva. Podem dir abreujadament
que

S determina F' llevat de difeomorfismes sobre la base.

La rad és que un difeomorfisme sobre M pot ser elevat a un simplectormorfisme exac-
te sobre T* M, i la funcié primitiva corresponent és nul-la. Per aixo0, nosaltres hem
cregut més convenient seguir la nomenclatura utilitzada a [7]. Ens plantegem llavors
estudiar la natura d’aquesta funcié primitiva, i quina informacié en podem extreure.
Encara que el concepte de funcié generatriu (de tipus Lagrangia) pot ser introduit pels
simplectomorfismes exactes, la seva existencia global restringeix

e els tipus de simplectormorfismes, que han de ser tranversals a la fibraci6 estandard,
que ve donada per les fulles verticals;

e la topologia del nostre espai de fase, perque ’espai de configuracié hauria de ser
difeomorf a R?.

De totes maneres, hem de dir que encara que M no sigui R?, es poden considerar
tan funcions generatrius locals com multiformes, pero la majoria de resultats demanen
la seva existencia global. Nosaltres no adoptarem aquest punt de vista i treballarem
sempre amb la funcié primitiva. Recordem també que si M = T¢, treballarem amb el
seu recobridor universal, RY.
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Algunes quiestions relacionades
amb la dinamica simplectica

Sigui llavors un simplectomorfisme exacte F' : T*M — T*M, amb funcié primitiva
S :T*M — R. L’escriurem, utilitzant coordenades cotangents, com

(encara que podem definir intrinsecament la component basica com f = ¢°F, on
q:T*M — M és la projeccio).

Com que la funcié primitiva no determina el simplectomorfisme, la pregunta que
ens podem fer immediatament és:

quina informacié addicional necessitem per obtenir el nostre simplectomor-
fisme a partir de la seva funcié primitiva?

Aquest problema ’hem anomenat el problema de determinacio, i esta relacionat amb el
problema d’interpolacio, que el podem resumir dient que:

donat un simplectomorfisme F', podem trobar un Hamiltonia no autonom
H = H(z,t) el flux del qual interpoli F' (@19 = F)?

Aquesta segona qiiestié va ser tractada per Moser [77] per demostrar la convergencia
de la forma normal de Birkhoff [19] per una aplicacié del pla que preserva ['drea ? i al
voltant d’un punt fix hiperbolic. Més endavant, altres autors es van preocupar per dife-
rents aspectes del problema, com sén Douady [29], Conley i Zehnder [26], Kuksin [55],
Kuksin i Pdschel [56]. Darrerament Pronin i Treschev [86], treballant en el cas analitic,
van demostrar constructivament que si es podia interpolar el nostre simplectomorfisme
llavors es podia aconseguir que el Hamiltonia fos periodic en el temps.

Nosaltres considerarem aquests dos problemes en el cas en que el simplectomorfisme
deixa fixa la secci6 zero (la base) i coneixem la dinamica sobre aquesta. També seguirem
aquesta linea constructivista i el que farem sera:

e construir formalment el nostre simplectomorfisme a partir de la dinamica sobre
la seccio zero, que és fixa, i la funcid primitiva;

e en lloc de demostrar directament I’analiticitat de les séries 3, trobarem constructi-
vament un Hamiltonia que l'interpoli, i demostrarem que és analitic en un entorn
de la seccid zero i respecte al temps.

Per construir el Hamiltonia utilitzem un meétode d’homotopia, i obtenim certa equacié
en derivades parcials de tipus evolutiu, no lineal. En aquesta equacié apareix el que a
I’ambit de la mecanica analitica es coneix com 1’accid elemental d’'un Hamiltonia, i que

2 Abreujadament: a.p.a.
3Podriem també haver-ho fet directament, perd d’aquesta manera “matem dos pardals d’un tret”.
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nosaltres veurem que és una derivacid a I’algebra de Lie de funcions (on el producte és
el paréntesi de Poisson). Es:

A(H) = a(Xy) - H.

Aquest operador és no invertible, és a dir, existeixen “constants d’integracié”, que sén
les funcions homogenies de grau 1 a les variables y, com es veu facilment si I'escrivim
amb coordenades cotangents:

A(H)(z,y) = y-V,H(z,y) - H(z,y).

Aix0 esta relacionat amb D'existencia de molts simplectomorfismes amb la mateixa
funcié primitiva. Hem d’aconseguir que l'analiticitat de H respecte al temps arribi
una mica més enlla de 1’1, almenys en un entorn de la seccié zero. El metode utilitzat
per demostrar-ho és basicament el classic metode de les majorants de Cauchy. El punt
clau és aprofitar la distincié canonica que hi ha entre les variables posicions i moments.

El fet de deixar fixa la seccid zero i veure que passa al seu voltant de no és tan
restrictiu, i el que ens fa falta saber basicament és on va a parar una certa varietat
Lagrangiana i com es comporten els punts d’aquesta. Una varietat Lagrangiana és
una subvarietat de A, de dimensié d, on s’anul-la la forma simplectica aplicada als
seus vectors tangents. Un exemple trivial ve donat precisament per la secci6é zero d'un
fibrat cotangent, i uns teoremes de Weinstein [97, 98] diuen que qualsevol varietat
Lagrangiana es comporta, localment, com la seccié zero del seu fibrat cotangent. Sén
una generalitzacié del teorema de Darboux. Seguint la linia del que estem explicant, les
nostres varietats Lagrangianes seran exactes. Una varietat Lagrangiana és exacta si la
forma d’accié a sobre la varietat, que és tancada, és exacta. Les construccions anteriors
permetrien construir moltes dinamiques al voltant d’aquests tipus de varietats.

Ara sorgeix una altra pregunta:

quines propietats tenen les varietats Lagrangianes exactes invariants per
I’accié d’un simplectomorfisme exacte F'?

Algunes propietats ja les hem pogut observar en estudiar els dos problemes anteriors.
Per exemple, si M = R?, F = (f,9) : R? x R — R? x R? és un simplectomorfisme
amb S com a funcié primitiva i F' deixa fixa la seccié {y = 0} llavors obtenim que:

e S(x,0) és una funcié constant;

o Yz € R? g—i(x,O) =0, g—j(x,O) =0.
La primera propietat es pot generalitzar facilment a qualsevol varietat Lagrangiana
exacta, i el que diu és que si és exacta invariant per F' llavors li podem assignar una
quantitat conservada. La segona propietat diu particularment que si considerem S com
una familia z-parametritzada de funcions, llavors per a cada x el punt corresponent
de la base, (x,0), és un punt critic de S(z,-). El reciproc també és cert si la nostra
aplicacié és monotona, és a dir, transversal a la foliacié estandard:

of

V@MEWXW,@@MFO




r s AL - S viL L 4L LT

(la simetritzacié d’aquesta matriu de derivades parcials rep el nom de torsid). Aixo
ho generalitzarem per als grafs Lagrangians invariants, pero també podriem considerar
qualssevol varietats Lagrangianes utilizant foliacions transversals adequades.

Un exemple especialment important apareix en el cas que tots els punts critics
fibrats siguin minims, perque llavors les orbites minimitzen certa acci6. Les orbites d’un
simplectomorfisme exacte satisfan un principi variacional, de la mateixa manera que les
trajectories d’un sistema mecanic classic satisfan el principi de ’accio estacionaria. Els
principis variacionals discrets son una eina poderosa a 1’hora de demostrar I’existencia de
punts fixos, orbites periodiques, quasiperiodiques, homocliniques, etc. Va ser Poincaré
[85] el primer que els va considerar en certs problemes de mecanica celest, i després
I’han seguit molts més autors. Per exemple, han estat fonamentals per a la demostraci
de 'existeéncia d’orbites quasiperiodiques en certes aplicacions que preserven area (les
anomenades aplicacions twist). Aquestes orbites, que minimitzen una accié (donada
mitjancant una funcié generatriu Lagrangiana), o bé corresponen a corbes invariants o
bé a conjunts invariants Cantorians (anomenats conjunts d’Aubry-Mather) [13, 71].

Generalment, per definir principis variacionals es necessita 1’existencia d’una funcié
generatriu global que, com ja hem comentat, restringeix la topologia de ’espai de confi-
guracio i el nostre simplectomorfisme. Nosaltres hem evitat I’is de la funcié generatriu
i hem utilitzat la funcié primitiva, de manera que els nostres principis variacionals
sén valids per a qualselvol sistema mecanic discret (és a dir, un simplectomorfisme
exacte sobre T*M). També hem adoptat un punt de vista radicalment diferent: en
lloc d’utilitzar els principis variacionals per trobar orbites nosaltres els utilitzem per
obtenir informaci6 d’elles mateixes. A més, en un cert sentit, sén principis variacionals
locals. Finalment, i en relacié amb el tema dels grafs Lagrangians invariants, amb les
nostres construccions podem generalitzar alguns resultats de Mather [73], Herman [40]
i MacKay, Meiss i Stark [68].

Aixi doncs, pensem que els nostres principis variacionals sén interessants per les
raons segiients:

e podem treballar sobre qualsevol fibrat cotangent, i son una especie de lleis de la
mecanica classica discreta;

e no necessitem la funcié generatriu, que no sempre esta definida o és dificil de
computar (pensem, per exemple, en el cas que el nostre simplectomorfisme vingui
donat per un flux Hamiltonia);

e es poden estendre al voltant de qualssevol varietats Lagrangianes exactes, gracies
als teoremes de Weinstein;

Per definir els principis variacionals hem procedit de la manera segiient. Aqui uti-
litzarem coordenades cotangents (z,y) o, millor, treballarem a R x R?.

1. Considerem primer dues posicions x,,,x, € R? on n > m + 1, que volem unir
mitjancant un tros d’orbita.

2. Definim llavors el conjunt de cadenes que connecten ambdds punts. Una cadena
és una seqiiencia
(xma ym)a (xm+1a ym+1)a s (xnfla ynfl)
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que satisfa

® Ty — X,
o Vi=m=+n—2, f(zi,yi) = Tis1,
L4 f(xn—la yn—l) = Xp.

3. L’acci6 sobre aquest conjunt no és res més que la suma

n—1

Sm,n(xma Yms Tm+1, Ym+1, - - -5 Tn—1, ynfl) = Z S(xu yZ)

i=m

4. Finalment obtenim que les orbites que connecten les posicions x,,,X, soén ex-
tremals de I'accié (definida sobre el conjunt de cadenes), i que el reciproc és cert
si el nostre simplectomorfisme és monoton. Llavors té sentit dir que una orbita
és minimitzant si cadascun del seus segments minimitza [’acci6é corresponent.

Quina és la interpretacio fisica d’aquesta construccié? Bé, considerem un sistema
mecanic continu i periodic en el temps, donat per un Hamiltonia

H:T"MxT — R,

on T =R/Z. Sigui F = ¢, el seu flux a temps el periode. La seva funcié primitiva és,
utilitzant coordenades cotangents,

Sa,y) = / ACH,) (x (1), y(1))dt

= [ (s G al.5(0.0) ~ H0.0(0.0)) .

on (x(t),y(t)) = ¢ro(z,y) és el flux. Llavors, una cadena és una “orbita” del nostre
sistema mecanic la velocitat de la qual és sobtadament canviada cada periode. Es tracta
de suavitzar les punxes, i aix0 s’aconsegueix extremitzant 1’accio.

Si considerem cadenes de longitud 1, pero en aquest cas imposem que els punts
(x,y) vagin a parar a la mateixa fibra, i 'accié és la mateixa funcié primitiva, llavors
el que estem buscant sén punts fixos. Es a dir, els punts fixos sén punts critics de la
funcié primitiva restringida al conjunt transformat verticalment K = {(z,y) | f(z,y) =
xz}. De fet, hem retrobat una construccié que ja va utilitzar Moser [79] per al cas de
simplectomorfismes exactes definits al fibrat cotangent d’un tor, i que després va ser
utilitzada per Arnaud [3].

Per seguir un ordre logic, a la memoria hem descrit primer aquests principis varia-
cionals per a punts fixos i després hem considerat els relatius a orbites. També hem
dedicat una mica de temps a la relacié entre el caracter dinamic i ’extremal d’un
punt fix, encara que ja hi ha molts resultats sobre el tema [53, 66, 3]. Nosaltres hem
considerat també alguns casos degenerats, corresponents a punts fixos no monotons.

Finalment, hem demostrat que el caracter extremal d’una orbita i d’un graf La-
grangia invariant és invariant sota canvis de variable a 1’espai de configuracio i transla-
cions fibrades de ’espai de fase. La interpretacié fisica d’aquest resultat és que les lleis
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de la mecanica discreta sén independents de les coordenades de I'espai de configuracié
i certs “observadors privilegiats”. Aquest tipus d’invariancia esta geometricament con-
nectada amb l’eleccié d’una 1-forma natural a I'espai de fase, a« = y dx, i a la distincié
concomitant entre variables posicié i moment que aixo implica. Recordem, pero, que
la dinamica dels sistemes és independent de les coordenades del nostre espai de fase.
Aixi, per exemple, els multiplicadors de Floquet associats a una orbita periodica sén
invariants per a qualssevol canvis de variable.

Aplicacions a la teoria KAM inversa

Les varietats Lagrangianes son interessants des d’un punt de vista de la teoria dels
sistemes dinamics perque apareixen tot sovint quan es consideren, per exemple:

e cls tors invariants de la teoria de Kolmogorov [52], Arnold [4] i Moser [78],
coneguda abreujadament com teoria KAM, que sén Lagrangians perque la di-
namica sobre ells ve donada per rotacions ergodiques [40, 41];

e les varietats estable i inestable d'un punt hiperbolic, que sén Lagrangianes perque
les dinamiques corresponents colapsen al punt fix quan iterem cap a endavant i
cap a enrere el nostre simplectomorfisme, respectivament.

Nosaltres considerarem més aviat el primer exemple. En relacié amb el segon, hem
de dir que apareixen en la teoria del trencament de separatrius, originada per Poincar
‘e 1 desenvolupada posteriorment per Melnikov i Arnold. Només cal comentar que
en el cas simplectic no s’utilitza un vector de Melnikov siné una funcié de Melnikov
(un potencial) per mesurar el trencament, i que originariament s’utilitzava per la seva
definicié la funcié generatriu. Va ser Easton [30] el primer que va considerar la funcié
primitiva en la definicié d’aquest potencial, i les seves férmules van ser generalitzades
per Delshams i Ramirez-Ros [28].

Per il-lustrar les idees basiques de la teoria KAM considerem la ben coneguda apli-

cacié estandard, que és una a.p.a. tipus twist i va ser introduida per Chirikov [24].
Es:

K
=x+y-— Py sin(2rz) (mod 1)
™

Yy =y-— K sin(27x)
2
on l'espai de fase és el cilindre T x R que esta coordenat per les variables angle-accié
(x,y). K és un parametre pertorbatiu, i quan és zero la nostra aplicacié esdevé inte-
grable:
' =x+y (mod1)

v =y
Aix0 vol dir que I'espai de fase esta foliat per tors (bé, corbes) invariants {y = yp}, i
la dinamica sobre aquests ve donada per rotacions. Les corbes invariants rotacionals
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4 perque envolten el cilindre, estan etiquetades per les freqiiéncies corresponents vy, i
n’hi ha de dos tipus:

e yp € Q, illavors contenen orbites periodiques;
e yp € R\ Q, i contenen orbites quasiperiodiques que les omplen densament.

Quan K és incrementada a partir de zero, la pregunta és quina quantitat de ’estructura
integrable persisteix. Experimentalment veiem que la majoria d’orbites encara semblen
pertanyer a c.i.r., i aixo és el que precisament prediu la teoria KAM: la majoria de tors
invariants persisteix si la pertorbacié K és prou petita. Un fet realment destacable és
que la persistencia d’aquestes corbes invariants depen de quant llunyanes estan les corre-
sponents freqiiencies dels nombres racionals. Aquest grau d’irracionalitat es tradueix en
el que s’anomena condicio diofantica. Un nombre w és diofantic si existeixen constants
C >0, 7 > 1 tals que per a totes les fraccions £ € Q

C
|nw —p| > —
Els nombres diofantics sén durs d’aproximar-los per racionals. Aix0 també esta con-
nectat amb els seus tipus de desenvolupament en fraccié continua. Aixi, el nombre més
irracional és la rad auria
V5 +1

= =1;1,1,1,...
2 [1}?} ]a

que satisfa la condicié diofantica amb C' =~? i 7 = 1.

Ara ens podem fer la pregunta oposada: com ha de ser de gran ha la pertorbacié
per que ja no existeixi cap corba invariant rotacional? I el que és més: quina és 'iltima
corba invariant? També ens podem preguntar quan es trenca una certa corba invariant,
fixant-nos en la seva freqiiencia. El conjunt d’eines i criteris dissenyats per tal de
resoldre aquests problemes s’anomena teoria KAM inversa (de I'angles converse KAM
theory, seguint MacKay, Meiss i Stark [68]). Al contrari que la teoria KAM, la teoria
KAM inversa és no pertorbativa, i és capa¢ de donar condicions perque per un cert
punt de I'espai de fases no passi una corba invariant.

Mentre que hi ha molts treballs referents a la teoria KAM inversa per als simplec-
tomorfismes en dimensié baixa (d = 1), no n’hi ha tants que tractin les dimensions
altes (d > 1), entre els quals destaquem els de MacKay, Meiss i Stark [68], Herman
[40, 41, 42, 43] i Tompaidis [94, 95]. L’espai de fase que es considera és el fibrat cotan-
gent d’'un tor, T"T¢ ~ T¢ x R?, també anomenat anell o cilindre, 'espai recobridor
del qual no és altre que RY x R?. El problema principal és que, mentre que per les
aplicacions que preserven l’area de tipus twist les corbes invariants han de ser grafs,
per un teorema de Birkhoff [19], no hi ha un equivalent per a dimensions altes i ens
hem de restringir a aquells tors Lagrangians que sén grafs. D’altra banda, tenim les
aplicacions que no séon twist, o aquelles on la monotonia canvia de signe, o no és ni
positiva ni negativa (en el cas d > 1). Un altre problema és que no hi ha un clar analeg
multidimensional del desenvolupament en fraccié continua.

4Abreujadament: c.i.r.
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Podem agrupar les diferents tecniques i criteris de la teoria KAM inversa en els
grups segients.

e Criteris Lipschitzians. Per un altre teorema de Birkhoff podem fitar el pendent
que ha de tenir una c.i.r. per una a.p.a. tipus twist. Llavors es poden obtenir
criteris restrictius per a la no-existencia d’aquestes corbes. Per exemple, Mather
[72] va trobar que per a I'aplicaci6 estandard no existeix cap c.i.r. si [K| > 3 i des-
prés MacKay i Percival [67] ho van refinar, utilitzant ’ajuda d’un ordinador, per

obtenir rigorosament una fita |K| > &, i Jungreis [48] va millorar aquests resul-

tats rigorosos. Herman [40, 41] va demostrar similars desigualtats Lipschitzianes

per als grafs Lagrangians invariants per simplectomorfismes monotons positius, i

nosaltres relacionarem els seus resultats amb els principis variacionals.

e Criteris variacionals. A [67], MacKay i Percival van relacionar també el seu
criteri de ’encreuament de cons (de Pangles, cone-crossing criterion) amb els
principis variacionals d’Aubry-Mather. Després, per a dimensions altes, MacKay,
Meiss i Stark [68] van implementar un metode per detectar si per un punt de
I’espai de fase és impossible que passi un graf Lagrangia, i el van interpretar
també de manera geometrica relacionant-lo amb els “pendents” dels plans La-
grangians tangents. En els dos casos es necessita que el simplectormorfisme sat-
isfaci fortes condicions de positivitat, i que estigui llavors definit mitjancant una
funcié generatriu Lagrangiana. Es tracta de detectar si un determinat segment
d’orbita minimitza o no una certa accio, i aix0 es verifica estudiant una certa
matriu Hessiana. Es curids que es necessitin aquestes condicions globals per al
simplectomorfisme i de fet, a I’hora d’implementar el criteri, només es necessiti
detectar si una certa condicié local se satisfa o no.

Nosaltres hem seguit més aviat la linia de definicions de Herman, i hem conside-
rat simplectormorfismes monotons positius [40, 41]. Hi ha exemples senzills de
simplectomorfismes monotons positius que no sén twist, i no estan definits per
funcions generatrius Lagrangianes. Les definicions que hem donat nosaltres son
locals i permeten estudiar diferents regions de l’espai de fase. Podem concloure
que

si un graf Lagrangia invariant viu en una regié monotona positiva, lla-
vors és minimitzant, i les seves orbites sén minimitzants.

A partir d’aqui, podem fer calculs semblants als que apareixen a [68], pero, in-
sistim, amb condicions menys restrictives. En especial, podem utilitzar el que
nosaltres hem anomenat la iteracid MMS, que és un meétode implementat a [68]
per tal de determinar si una certa matriu tridiagonal per blocs i simetrica és
definida positiva o no. °

e Criteris de tipus Greene. A [36], Greene va proposar un criteri per detectar
quan una certa c.i.r. d’una a.p.a. es trenca en augmentar el valor de la pertor-
bacié. El seu metode estava basat en ’estudi de I'estabilitat d’orbites periodiques

Al final de la memoria també hem escrit un petit resum sobre matrius simetriques definides
positives.
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properes. Greene va descobrir que, per a l’aplicacié estandard, I'dltima corba
invariant té freqiiencia w = 7 (el nombre auri) i que es trenca per a un valor critic
K, ~ 0'971635406 (de fet aquest valor va ser trobat per MacKay [63]). Ell va
raonar que si un conjunt d’orbites periodiques, les freqiiencies r; = Z—i de les quals
tendeixen cap a la freqiiencia w,

limr, = w,

11— 00
tenen residus entre 0 i 1 (sén el-liptiques), llavors la corba invariant corresponent
a w deu existir. Aquesta conjectura del residu va ser demostrada per MacKay [65]
i Falconini i de la Llave [32] en alguns casos. Llavors ell considera els valors critics
K,,, on l'orbita periodica corresponent té residu 1 (que correspon a una bifurcacié
de doblament de periode), i observa que tendien cap a K,. A més, quan es
considera el nombre auri (0, més en general, qualsevol nombre noble) i la seqiiencia
d’aproximacions racionals és la donada pels convergents de la fraccié continua,
llavors es comprova que la seqiiencia de valors critics tendeix geometricament
cap al parametre de trencament de la corba invariant. Aix0 esta relacionat amb
la varietat estable d’un punt fix d’un cert operador de remnormalitzacio a 1'espai
d’aplicacions twist que preserven area, tal com va estudiar numericament MacKay

[63].

Per a dimensions altes la situacio no és tan clara. Primer de tot, falta un clar can-
didat de metode d’aproximacié de vectors irracionals que generalitzi les fraccions
continues. Nosaltres hem considerat el metode de Jacobi-Perron, seguint Tom-
paidis [95]. El mateix Tompaidis va considerar un analeg del meétode de Greene
[94] i el va aplicar a un exemple 3-dimensional d’aplicacié que preserva el volum
[95]: 'aplicacié estandard rotacional. Un altre problema és que el comportament
de renormalitzacié és més complicat i dificil de detectar. Aixo ajudaria a millorar
les estimacions dels valors critics de trencament dels tors.

Nosaltres hem desenvolupat un metode amb la mateixa filosofia, pero en lloc de
considerar I'estabilitat de les orbites periodiques hem considerat el seu caracter
extremal. Hem treballat amb simplectomorfismes monotons positius. Des d’un
punt de vista heuristic, ens hem basat en el fet que si una orbita és minimitzant
(i les que estan sobre els tors ho s6n, almenys en certs casos), llavors qualsevol
segment d’orbita suficientment proper és també minimitzant. Encara que les
orbites el-liptiques no sén minimitzants, si que ho sén segments suficientment pe-
tits d’aquestes. Recordem que totes les orbites d’un simplectomorfisme monoton
positiu i integrable sén minimitzants.

Criteris obstruccionals. Considerem una a.p.a. i suposem que la varietat
inestable d’alguna orbita periodica es talla amb la varietat estable d’una altra.
Llavors no hi pot haver cap c.i.r. continguda entre ambdues orbites. Com que
aquestes interseccions heterocliniques es poden calcular numericament, ho podem
utilitzar com un criteri practic de no-existencia de c.i.r., tal com van fer Olvera
i Simé6 [82]. Aquestes varietats també s’utilitzen per fitar les anomenades res-
sonancies, que soén conjunts de punts de I'espai fasic que es comporten de manera
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semblant. La teoria del transport (vegeu, per exemple, [76]) estudia el moviment
d’aquests conjunts, i es pregunta quant tarda un conjunt de punts a desplacar-se
d’una regié de 'espai de fase a una altra.

Quan treballem en dimensions altes no podem utilitzar les varietats estable i in-
estable d’orbites periodiques hiperboliques, perque no separen l’espai. El que
podem fer és considerar orbites de tipus el-liptic-hiperbolic, amb només dues
direccions hiperboliques, i les seves wvarietats central-estable i central-inestable.
Aquestes varietats sén, doncs, de codimensié 1, i nosaltres pensem que poden ser
utils tant per explicar el mecanisme del trencament dels tors invariants com per
estudiar el transport. Son l'esquelet del nostre sistema dinamic. Com a exem-
ple, hem considerat una aplicacié 4-dimensional, ’aplicacié de Froeschlé, i hem
estudiat la zona de ressonancia associada a l'origen, que és un punt fix el-liptic.
Veurem que sembla que aquesta regié estigui fitada per les varietats central-estable
i central-inestable dels seus companys el-liptic-hiperbolics. Per aixo, hem hagut
de desenvolupar aquestes varietats en séries de poténcies (de 3 variables) fins a un
ordre elevat, perque son dificils de globalitzar. La visualitzacié d’aquestes vari-
etats es pot fer intersecant-les amb objectes de dimensié més petita, per exemple
plans, pels quals les interseccions son, genericament, corbes. A causa de les in-
terseccions heterocliniques entre les diferents varietats, hi haura una estructura
molt complicada de plegaments d’aquestes, cosa que donara lloc a ressonancies
més petites.

En certa manera hem unificat els criteris Lipschitzians-variacionals amb el criteris
de Greene. Els primers sén equivalents [67, 68], i, a més, permeten fer demostracions
rigoroses amb ’ajut de I'ordinador, emprant I’analisi intervalar (encara que nosaltres no
ho hem fet). Els segons no permeten fer demostracions rigoroses, perd donen estimacions
molt bones dels valors critics dels trencaments dels tors. Com ja hem comentat, hem
implementat un criteri de tipus Greene pero amb caracter variacional. La unificacié
d’aquests amb els criteris obstruccionals vindria donada per un estudi complet de la
relacié dinamica-extremalitat.

Per il-lustrar totes aquestes idees hem considerat exemples 2D, 3D i 4D. En tots
ells hem aplicat primer els criteris variacionals per descartar zones de 'espai de fase
que no continguin tors invariants (tipus graf), seguint la linia de [68]. Hem considerat
exemples de diferents tipus: twists, monotons positius no twist, que canvien el signe de
la monotonia, etc. Els exemples 2D que hem considerat sén de la familia de I'aplicacio
estandard, els 4D de la familia de ’aplicacié de Froeschlé i el 3D és ’aplicacié estandard
rotacional. Aixi, per exemple, si considerem una a.p.a. no monotona, llavors hem
observat que les c.i.r. que travessen les corbes no monotones (on falla la monotonia)
no semblen grafs i tenen plegaments. A més, sembla que aquestes siguin més dificils
de trencar. Pensem que la majoria d’aquestes corbes sén, de fet, definides (positives o
negatives), pero fa falta considerar coordenades adients.

Per provar el nostre metode de Greene variacional hem considerat primer ’aplicacié
estandard, perque ha estat molt estudiada. També hem observat els tipics compor-
taments associats a la renormalitzacié associada al trencament de les corbes nobles.
També hem considerat una altra de la seva familia: ’aplicacié estandard exponencial,
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que és monotona positiva pero no twist. Per als exemples 4D hem considerat ’aplicacié
de Froeschlé

(
K
yll =Y — 2—7; sin(27mc1) — % Sin(27r(a:1 + 1'2))

K A
Yy = Yo — —2sin(27ms) — — sin(27(z) + 32))
) omr 2

'y =z +y', (mod1)

| 7'y =x5+y', (mod 1)

i dos vectors de rotaci6 diferents: un parell quadratic (v/2 —1,v/3 — 1) i un vector auri
(per l'algorisme de Jacobi-Perron). Depenent dels valors dels parametres K; i Ky, i
considerant el parametre A com a parametre pertorbatiu, hem observat també diferents
tipus de trencaments. Per fer-ho, hem calculat orbites periodiques de periodes grans i
les hem continuat respecte a A. El metode per calcular les orbites periodiques és una
especie de tir paral-lel, perque permet calcular-les amb més cura. La pregunta que ens
hem formulat és:

quins soén els equivalents en dimensions altes dels conjunts d’Aubry-Mather?

En el cas 2D aquests conjunts tenen dimensié de Hausdorff zero (en el cas hiperbolic),
tal com va demostrar MacKay [64], pero aqui semblen tenir o bé dimensié zero o bé
dimensi6 1. En aquest segon cas també hem advertit ressonancies associades a orbites
periodiques de periodes baixos, que donen lloc a la possibilitat de considerar els criteris
obstruccionals per explicar trencament del tors. Finalment, hem considerat també
I’exemple 3D de Tompaidis i el vector auri. L’aplicacié estandard rotacional és una
aplicacié que depen de dos parametres K i A i una rotacié w, esta definida sobre el
cilindre T x R x T coordenat per (z,y,6) i és

,
Y =y — —— sin(272) (K + A cos(2r6))

(27)

¥ =xz+y (mod1l)

| ' =0+w (mod 1)

Per aixo, hem hagut de desenvolupar primer una teoria variacional per als simplec-
tomorfismes exactes no autonoms, que sén uns simplectomorfirmes que depenen d’una
variable temporal (de Pangles, exact symplectic skew-products). Aixo no ho hem fet amb
tot detall, perque és similar a la teoria variacional ja construida.

Hem de remarcar que existeixen altres criteris per estudiar el trencament dels tors
invariants, com aquells basats en 1’estimacié dels radis de convergencia dels desenvolu-
paments en series de Fourier dels tors KAM (com va fer Percival [84]) o 'analisi de
freqiiencies de Laskar [60].
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Esquema general de la memoria

Hem dividit la memoria en quatre parts ben diferenciades.

PART I. Geometria exactosimpléctica (introduccié dels problemes)

Aquesta part conté les eines basiques de la geometria simplectica i planteja els
quatre problemes que tractarem al llarg de la memoria:

1. el problema de determinacié,
2. el problema d’interpolacio,
3. el problema variacional,

4. el problema del trencament de tors invariants.

PART II. Sobre la varietat simpléctica estandard (part analitica)

Aqui hem treballat a R? x R?, és a dir, hem fet un tractament coordenat dels
resultats. Primer relacionem les funcions generatrius amb la funcié primitiva i
després resolem formalment el problema de determinacié. Després tractem dife-
rents principis variacionals: per als punts fixos, per a les orbites periodiques i per
als segments orbitals. La seva invariancia respecte a certs tipus de transformacions
de 'espai de fase és demostrada, donant una interpretacio fisica. Finalment donem
les propietats basiques dels grafs Lagrangians invariants, especialment aquella que
diu que les orbites sobre un graf minimitzant sén minimitzants.

PART III. Sobre el fibrat cotangent (part geometrica)

Els tres primers capitols segueixen més o menys la linia dels tres precedents, amb
la diferencia fonamental que aqui considerem qualsevol fibrat cotangent. Fem,
llavors, un tractament intrinsec. El quart capitol d’aquesta part esta dedicat a
resoldre el problema d’interpolacié en el cas analitic.

PART IV. Aplicacions (part numerica)

Aquesta ultima part tracta de les aplicacions a la teoria KAM inversa, o del tren-
cament dels tors invariants. Primer donem una llista d’exemples que més endavant
utilitzarem. Després generalitzem la teoria KAM inversa de [68] i la relacionem
amb la teoria Lipschitziana de Birkhoff i Herman [40, 41]. Llavors implementem
el nostre criteri de Greene variacional i I'apliquem a diferents exemples. També
estudiem els equivalents dels conjunts d’Aubry-Mather en dimensié alta (bé, = 4).
Després apliquem aquesta metodologia a I'aplicaci6 estandard rotacional (3D), in-
dicant abans la teoria necessaria. Llavors donem algunes idees de com generalitzar
els criteris obstruccionals a dimensions altes, hi ho mostrem amb un petit exem-
ple. Finalment retrobem algunes formes normals de Birkhoff utilitzant la nostra
metodologia basada en la funcié primitiva i expliquem una mica com es podria
considerar la nostra teoria tenint en compte foliacions Lagrangianes arbitraries.
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Aportacions més rellevants

Per acabar, parlarem de les aportacions més rellevants d’aquesta tesi, i quina és la feina
que encara ens queda per fer.

e Primer de tot, pensem que "aportacié més important és 1’is sistematic de la funcié
primitiva d’un simplectomorfisme exacte. Les eines analitiques, geometriques i
numeriques emprades al llarg de la tesi giren al voltant de la funcié primitiva i
les seves propietats. Aquestes provenen de 'estructura de I'espai de fase, donada
per una forma d’accié.

e [’is de la funci6 primitiva ens ha perm
‘es introduir principis variacionals en contextos més generals i amb hipotesis més
febles de les que usualment s’exigeixen, com l’existencia d’una funcié generatriu
global.

e Aixi, hem establert una especie de principis variacionals de la mecanica discreta
(estudi dels simplectomorfismes exactes definits sobre un fibrat cotangent). La
geometritzacio d’aquests principis variacionals ve donada per la forma de Liouville
i la foliacié estandard associada a aquesta.

e Hem donat també una interpretacio variacional dels grafs Lagrangians invariants.
Els seus punts sén critics fibra a fibra d’una certa funcié relacionada amb la funcié
primitiva i amb el propi graf. Aixo ens permet també classificar variacionalment
els diferents grafs Lagrangians invariants. Trobarem resultats per als grafs que
sén minimitzants (o maximitzants), en particular, que les seves orbites sén mi-
nimitzants (o maximitzants). Aixo generalitza alguns resultats de Mather [73],
Herman [40, 41] i MacKay, Meiss i Stark [68].

e Per donar condicions d’existencia de tors invariants per simplectomorfismes defi-
nits a T? x R hem utilitzat aquests metodes variacionals. Llavors, hem relacionat
les linies d’investigacié de [68] i [40, 41], amb la diferéncia principal que nosaltres
hem utilitzat la funcié primitiva en lloc de la funcié generatriu, que no sempre
existeix.

e El tractament local dels nostres principis variacionals ens permet estudiar les
regions de I’espai de fase on se satisfan certes condicions de positivitat. Ho podem
resumir dient que

si un graf Lagrangia invariant viu en una regié monotona positiva, lla-
vors és minimitzant, i les seves orbites sén minimitzants.

A partir d’aqui, podem fer calculs semblants als que apareixen a [68], pero, insis-
tim, amb condicions menys restrictives. Aquest teorema és important perque ens
permet donar condicions suficients per saber si un graf Lagrangia és minimitzant,
sense tenir la seva expressio explicita, és clar.
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e Un altre punt és el desenvolupament de criteris de tipus Greene per detectar
acuradament el trencament dels tors, pero nosaltres hem aprofitat les propietats
extremals i no les dinamiques de les orbites periodiques. El test del metode amb
I’aplicacié estandard ha donat bons resultats, i apareixen també comportaments
de renormalitzaci6. Hem aplicat també aquests metodes a aplicacions 4D.

e Per “veure” el trencament d’aquest tors hem hagut de calcular orbites periodiques
de periodes grans (de l'ordre de 10°). Per aix0 hem utilitzat un metode de tir
paral-lel. Els resultats concorden amb els obtinguts amb el nostre metode varia-
cional. A més, hem detectat diferents tipus de trencament dels tors, és a dir, de
formacié de can-tors (de Pangles, cantori). Aquests tipus de fenomens haurien
d’ésser estudiats en el futur.

e Hem explicat també un possible mecanisme de trencament d’aquests tors, associat
a les interseccions heterocliniques de varietats invariants de codimensi6 1 (varie-
tats central-estable i central-inestable d’orbites de tipus el-liptic-hiperbolic). Aixo
ja havia estat ben estudiat en dimensié baixa, i pensem que pot ser una bona
explicacio del fenomen en dimensions altes, aixi com també del transport. Encara
que aixo no ho hem desenvolupat completament, pensem que I’exemple que hem
introduit és prou instructiu.

e Finalment, hem aplicat aquesta metodologia a I’estudi de tors invariants per sim-
plectomorfismes quasiperiodics (és a dir, no autonoms on la variable temporal és
un angle que es mou quasiperiodicament). L’exemple 3D que hem considerat va
ser tractat ja per Tompaidis [95]. Els resultats que hem obtingut en aplicar el
nostre criteri variacional de Greene per estudiar el trencament d'un tor auri 2D
concorden bastant (amb la precisié que podem) amb els que va trobar ell.

e Una part important de la tesi esta dedicada als exemples. Com a models de
simplectomorfismes que no sén twist, hem introduit les aplicacions exponencial
estandard, quadratica estandard i trigonometrica estandard. Com a test dels nos-
tres metodes hem utilitzat la ben coneguda aplicacié estandard. Els acoblaments
entre aquestes aplicacions ens han donat una gran varietat d’exemples 4D, simi-
lars a I'aplicaci6 de Froeschlé. Com a exemple de simplectomorfisme quasiperiodic
hem considerat 1’aplicacié estandard rotacional, pero també podriem haver con-
siderat exemples similars als anteriors.

Queden, és clar, molts problemes per resoldre. El primer correspon al cas en que
tenim una aplicacié que preserva I’area, la torsio canvia de signe, i la corba invariant que
estem considerant passa per regions de monotonia de signe diferent. Aquesta corba pot
tenir plecs (no ser transversal a la foliacié estandard) i sembla que sigui més dificil de
trencar que les que sén positives o negatives. Possiblement, la majoria d’aquests tipus de
corbes tinguin signe definit en coordenades adients. El segon es presenta quan treballem
en dimensions altes i, encara que la torsié sigui no degenerada, és indefinida. En aquest
aspecte, Herman té alguns resultats [43]. Nosaltres sabem com sén les orbites dels tors,
des d’'un punt de vista extremal, una vegada hem fet un pas de la forma normal de
Birkhoff, pero, és clar, aixo no és suficient. S’hauria d’estudiar quins son els indexs de
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les seves orbites. A més, ho hauriem de lligar tot amb la dinamica al voltant d’aquests
tors. D’altra banda, tenim l'aplicacié d’operadors de renormalitzacié en dimensions
altes, associats a aproximacions racionals multidimensionals. Ja hem dit que també
seria molt interessant explicar el fenomen del trencament de tors invariants en termes
geometricoobstruccionals, i no només els relacionats amb les orbites periodiques, sind
també amb altres objectes com sén els tors isotropics invariants (que, en el cas 4D,
corresponen a corbes invariants).

Respecte a l'existencia de punts fixos, pensem que seria interessant treballar més
aquest aspecte, perque es poden considerar altres espais de configuracié: S2, SO(3), etc.
Per exemple, podrien ser utilitzats per comptar orbites periodiques de sistemes mecanics
periodics en el temps, mitjantcant la teoria de Morse i potser poden ser utilitzats per
detectar les bifurcacions d’aquests punts fixos a partir dels canvis geometrics al conjunt
transformat verticalment. De totes maneres, aquests resultats d’existencia donats per
implicacions topologiques no sén constructius, i el problema essencial és de caracter
local.

Continuem parlant ara d’altres aportacions.

e Un altre punt important és ’enfrontament funcié primitiva/funcié generatriu. Ja
hem dit que no sempre és possible obtenir la funcié generatriu, i aixo pot ser un
problema a I’hora d’estudiar la dinamica al voltant de tors que no siguin definits.
Nosaltres hem avancat una mica en aquesta direccié. Per obtenir la dinamica al
voltant d’un tor invariant I’inic que ens fa falta és la dinamica sobre aquest (que,
en principi, pot ser qualsevol, pero si és un tor KAM ha de ser una translacié
ergodica) i la funcié primitiva.

e Una altra manera d’obtenir la dinamica és interpolant-la per un flux Hamiltonia.
De fet, aixo ho hem utilitzat per demostrar ’analiticitat de les series. Es important
el fet que les demostracions sén constructives i que les recurrencies poden ser
implementades en un ordinador. A més, podem aconseguir que el Hamiltonia
interpolador sigui periodic en el temps, mitjancant el metode de mitjanes de
Pronin i Treschev [86].

e A les demostracions ha estat fonamental ’aprofitament de ’estructura geometrica
de l'espai de fase. A part de la forma de Liouville i la seva foliacié associ-
ada (Pestandard), han estat clau les propietats del que nosaltres hem anomenat
derivada de Liouville, que a ’ambit de la mecanica analitica es coneix com 1’accid
elemental (d’'un Hamiltonia). Aquest estatus especial que li hem volgut donar
prové precisament del fet que nosaltres hem considerat 'accié elemental com un
operador a 'espai de funcions i hem vist que és una derivacié. A més, aquest
operador pot ser associat a qualsevol varietat simplectica exacta (no fa falta que
sigui un fibrat cotangent), o millor, a qualsevol forma d’accié.

Aquestes construccions poden esdevenir interessants perque permeten inventar mol-
tes dinamiques al voltant de varietats Lagrangianes invariants. Per exemple, si la
varietat basica és un tor necessitem programar un manipulador algebraic de series
de Fourier-Taylor. Podem posar qualsevol dinamica sobre el tor, com una translacié
ergodica, un difeomorfisme d’Anosov, etc. També estem treballant en aixo (es poden
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aconseguir exemplets facils si el tor té dimensié 1). Seria interessant aplicar-ho a 'estudi
de tors indefinits, i veure els canals d’escapament que va trobar Herman [43]. Ja hem
dit que hem demostrat ’analiticitat de les solucions del problema de determinacié i
d’interpolacid, pero el cas diferenciable resta obert (cf. [16]).

Des d’un punt de vista geometric, 'objete important en la nostra teoria és la forma
de Liouville, que precisament s’anul-la sobre la secci6 zero i sobre els vectors tangents a
la foliacio estandard del fibrat cotangent. Aquesta foliacio és transversal a la seccié zero.
Suposem que tot aixo es pot generalitzar mitjancant 1'is de foliacions Lagrangianes ar-
bitraries, transversals a les nostres varietats invariants Lagrangianes. Un altre possible
cami és considerar varietats Lagrangianes sobre el nostre fibrat cotangent que estiguin
definides per les anomenades families de Morse o funcions de fase, que sén una especie
de funcions generatrius que tenen uns parametres addicionals que permeten que les
varietats es pleguin (no siguin transversals a la foliacié estandard). Hem pogut genera-
litzar a aquest context alguns resultats relacionats amb la caracteritzacio dels grafs La-
grangians invariants, pero encara no hem trobat la manera de desenvolupar-ho. També
hem estés alguns resultats al cas o-simplectic (és a dir, quan F*w = ow, on 0 € R o, en
el cas complex, o € C) i, en particular, al cas antisimplectic, que correspon a 0 = —1
(cf. [23]).

Encara que la nostra teoria ’apliquem principalment al voltant de qualsevol seccid
zero d’un fibrat cotangent, moralment ho fem al voltant de qualsevol varietat La-
grangiana exacta. Per exemple, al voltant d’'un tor Lagrangia, o d'un tros de la va-
rietat estable d’un punt fix hiperbolic, o al voltant d’un tros de varietat estable d’'un
tor hiperbolic de dimensié baixa (aquests tipus de varietats s’utilitzen per explicar el
fenomen conegut com a difusid d’Arnold). Utilitzant les nostres construccions, hem
retrobat formes normals per a aquests exemples.

Finalment, pensem que aquest treball pot ser interessant pel conjunt de tecniques
geometriques, analitiques i numeriques que hem estudiat i relacionat, a les quals hem
intentat donar una certa estructura.
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Preface

Since the construction of the entire universe is absolutely
perfect and is due to a Creator with infinite knowledge, noth-
ing exist in the world which does not exhibit some property
of mazimum or minimum. Therefore, there cannot be any
doubt whatsoever about the possibility that oll the effects are
determined by their final aims with the help of the mazima
method, in the same way in which they are also determined
by the initial causes.

The Geometry of Nature

The fundamental laws of Nature, from classical mechanics, geometric optics, gravity,
electromagnetism to, even, quantum mechanics, seem to be Hamiltonian. Maupertuis
explained it by saying that, assuming the universe had a perfect Creator then it must be
the best possible universe, so everything should be governed by a variational principle.
Although he said this before Hamilton formulated his dynamics, it is well known that
the variational and Hamiltonian principles are quite related. As R.S. MacKay says [69],
all of this is a bit mysterious.

Since the language of Hamultonian Mechanics is the calculus of differential forms
and vector fields on smooth manifolds, the basic formulation of this calculus is like
‘grammatical rules’ [96]. ' A pleasant consequence is the possibility of avoiding the
messy calculations so usual in analytical mechanics. In fact, the first example about
this formalism appeared in a J.L. Lagrange’s work [58] on celestial mechanics in 1808.
He wrote the equations of motion for the orbital elements z = (z,..., zg) of a planet,
under the effect of perturbations, in the form

oH de

= aii(z)—,

6zi Z ”( ) dt
j=1

where (a; ;)i j=1-6 is a skew-symmetric matrix, and he showed that a suitable change of

variables put these equations in the form now known as Hamilton’s equations.

'A small summary about differential geometry appears at the end of this thesis.
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So then, as A. Weinstein said [98], the Hamiltonian formalism plays the role in
mathematics of a language which can facilitate communication between geometry and
analysis. In fact, the geometrization of this language is called symplectic geometry,
which has become an important branch of mathematics. The word symplectic was
invented by H. Weil [99], who substituted Greek for Latin roots in the word complex to
obtain a term which would describe a group related to line complexes but which would
not be confused with complex numbers. Next citation is also owed to H. Weil, and it
reflects that we are saying:

Inside a mathematician are fighting the devil of abstract algebra and the
angel of geometry.

The Hamiltonian/symplectic formalism has impregnated other theories, which were
far enough as, for instance, the theory of representations of Lie groups, the theory of
local solvability of linear differential operators, the theory of a canonical operator, and
others. From a philosophical point of view, it seems that all can be symplectified.
Although we shall not deal with these subjects, they show the importance of the study
of symplectic geometry inside mathematics.

We can summarize these ideas by saying that God is a geometer and the geometry
of the world is symplectic.

The structure of phase space

Turning to classical mechanics [5, 1, 61], it is a good idea to describe the states of the
systems with coordinates z = (z,y), where = (1, ..., x4) are the local coordinates on
a manifold M (the configurations space) and which describe the positions of the points,
and y = (y1,...,yq) are the corresponding momentum, which are covectors (1-forms)
on such a manifold. That is to say, (z,y) are the local coordinates of the cotangent
bundle N = T*M of M, the phase space of our system. d is the number of degrees
of freedom. This is a heritage of Newton’s laws of motion, which particularly means
that if we want to determine the motion of a system of particles then we need their
positions and velocities in a certain time (and their interactions, of course). So then,
the structure of the phase space that we are going to describe would be very different
if we also need the initial accelerations in order to determine the motion.

A dynamical system is given by a vector field on the phase space N, that encodes
the infinitesimal evolution of any quantity defined on it. That is, if X € X(N) is a
vector field and F' € C*°(N) is any function, then the infinitesimal change F of F along
the trajectories of X (or orbital derivative) is given by

F = X(F).
This is the intrinsic version of the system of ordinary differential equations

{ & = fi(z,y) ,

Ui = gi(l"ay)
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where ¢ = 1 = d, and

X = : 9 4. 9\
> (#e0igy -ty )
Then, we write
d
OF OF
X(F) = ;(fi(x,y)a—%ﬂwi(%y)ayi)-

A fundamental axiom in the description of physical systems, that we could call the
Energy paradigm [47], is the following:

For every physical system there is a function defined on its space of states,
called the enerqgy or Hamiltonian of the system, containing all its dynamical
information.

So then, if A models the state space of a family of dynamical systems, then, there is an
assignment to any function H on N of a vector field X describing a dynamical system.
In Hamiltonian mechanics, this assignment is geometrically given by a symplectic 2-form
on N, that is, a 2-form w which is closed (dw = 0) and non degenerate (as a 2-form on
each point). Then, the pair (N, w) is called a symplectic manifold. The first condition
is given in order to join the different non degenerate 2-forms of the different points.
The non-degeneracy condition implies that our manifold has even dimension and let us
to characterize Xy by means of

w(Xy,Y) = —dH(Y),

where Y € X (N) is any vector field. Xy is called the Hamiltonian vector field associated
to the Hamiltonian function H. Its flow preserves the symplectic structure.

If we want to compare two Hamiltonian flows given by the corresponding Hamil-
tonians H; and Hs, we can use the Lie bracket of the corresponding vector fields.
Since we have an additional structure, we can translate it to a bracket applied to the
Hamiltonians. It is the Poisson bracket:

{HlaHQ} - w(XHl’XHQ) - _dHl(XHQ) - dHl(XH2)?
that satisfies
My = Pom Xl

The Lie algebra structure of the set of vector fields is then inherited by the set of
functions. We point out that it was also Lagrange the first who used the Poisson
bracket.

Using suitable coordinates, called symplectic coordinates, we write the symplectic
2-form as

d
w = dy/\da::Zdyi/\dxi.

=1
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An outstanding fact is that all the symplectic forms can be written locally in this
way, thanks to Darboux’s theorem. This is an essential difference between symplectic
geometry and Riemannian geometry. Hamilton’s equations are only the translation to
these coordinates of the vector field Xpg:

. _oH
(2 ayz’

. 0H
Yi = O,

The Poisson bracket is written as

d
- 0H, 0H, OH, OH,
{HI;HQ} - Z < ayz . axl B 8:1:1 . 3% ) '

=1

The basic structural unit of Hamiltonian mechanics is a 1-form a € Q'(T*M) on
the phase space N' = T* M, uniquely characterized by

Vpe Q' (M) pra=p.

This natural 1-form is known as the Liouwville form and its differential w = da is the
canonical symplectic form on the cotangent bundle. In cotangent coordinates they are
given by

d
w = dy/\dx:Zdyi/\dxi

=1

and
d
a = ydr= Zy,dx,
i=1

So then, an important case in symplectic geometry corresponds to the fact that
the symplectic form be exact, that is, there is a 1-form « called action form satisfying
w = da. We only shall consider this case. In fact, in this introduction our phase space
is N' = T* M, although many definitions are useful in more cases.

Exact symplectomorphisms

We study a discrete version of mechanics. That is, instead of working with flows (given
by vector fields), we shall consider diffeomorphisms. In fact, they are quite related, via
the Poincaré section. For instance, if our vector field X = X (z,t) is T-periodic in time
and its flow is ¢ ,,, then we can consider the map F' = ¢ry, that is the Poincare map
associated to the section ¥ = {(z,0) € N x T}, where we have extend the phase space
to N xTand T =R/(TZ).



i Y

Since our vector fields are Hamiltonian then their flows preserve the symplectic
structure. In general, a diffeomorphism which preserves such structure is called sym-
plectomorphism. 'This term was introduced by Souriau, and corresponds to canon-
ical transformation, used in analytical mechanics. Therefore, a symplectomorphism
F : N — N is a diffeomorphism that satisfies

Frow = w.

Since our symplectic structure is exact, and the primitive 1-form is «, then the 1-form
F*a — a is closed:

0 = Fda-—-da
= d(Ffa — ).

In particular, if this 1-form is exact we shall say that our symplectomorphism is exact,
and then there is a function S : N' — R satisfying the ezactness equation

Fra—a = dS.

It is called the primitive function of F' and, of course, it is defined up to constants.

A curious fact is that many authors refer to that function as the generating function
of F', but really this function does mnot generate F'! In fact, it generates a family of
symplectomorphisms. We can say briefly that

S determines F' up to diffeomorphisms on the basis.

The reason is that any diffeomorphism on M can be lifted to an exact symplecto-
morphism on T* M, and the corresponding primitive function is zero. By this reason,
we have followed the terminology used in [7]. We wonder about the nature and the
properties of the primitive function, and what kind of information we can get from it.

Although Lagrangian generating functions can be introduced for exact symplecto-
morphism, its existence restricts

e the kind of symplectomorphisms, which must be transversal to the standard foli-
ation of the cotangent bundle;

e the topology of our phase space, because the configuration space must be diffeo-
morphic to R?.

Anyway, although M is not R, we can consider local or many-valued generating func-
tions, but many results ask for its global existence. We shall not take this point of view
and we shall work with the primitive function. Recall that if, for instance, M = T¢,
we can consider its universal covering, M = R?.

Some questions related with symplectic dynamics

Let FF : T*M — T*M be an exact symplectomorphism, and S : T*M — R be its
primitive function. We shall use cotangent coordinates (z,y) and F is given, then, by

{:r f(z,y)
y=g(r,y) ’
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(although we can define the basic component by f = ¢oF, where ¢ : T*M — M is the
projection).

Since the primitive function does not determine our symplectomorphism, the ques-
tion we can ask ourselves is:

what additional information do we need in order to obtain F' from S?

We have called this question the determination problem, and it is related to the inter-
polation problem, that we can summarize by:

given a symplectomorphism F', can we get a time-dependent Hamiltonian
H = H(z,t) whose flow interpolate F', that is ¢, = F'?

This question was studied by Moser [77] to prove the convergence of the expansions
in the Birkhoff normal form [19] for an area preserving map ? around a hyperbolic
fixed point. Later, other authors worry about different aspects of the problem, as
Douady [29], Conley and Zehnder [26], Kuksin [55], Kuksin i Poschel [56]. Lastly
Pronin and Treschev [86], working on analytic set up and with compact manifolds,
proved constructively that if our symplectomorphism can be interpolated then we can
get the Hamiltonian be periodic in time.

We shall consider the two problems in the case that our symplectomorphism fixes
the zero-section and we know the dynamics on it. We shall also take a constructive
point of view. The process will be:

e to construct formally our symplectomorphism from the dynamics on the zero-
section and the primitive function;

e instead of proving directly the analyticity of the expansion, we shall find construc-
tively a Hamiltonian that interpolates it, and it is analytic in a neighborhood of
the zero-section and respect to a big enough time.

To construct the Hamiltonian we use a homotopy method, and we obtain a certain
evolutionary partial differential equation, which is not lineal. In this equation it appears
what in analytic mechanics is known as the elementary action of a Hamiltonian, and we
see is a derivation in the Lie algebra of functions (endowed with the Poisson bracket).
This derivation is

A(H) = a(Xy) - H.

This operator is not invertible, and the ‘integration constants’ are the homogeneous
functions of degree 1 in the y variables, which is easily proved by mean of cotangent
coordinates:

A(H)(z,y) = y-V,H(z,y) - H(z,y).

This is related to the existence of many exact symplectomorphisms with the same
primitive function. Recall that we must get the analyticity of H with respect to time

2in short a.p.m.
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be just a little bit more than 1, at least in a small neighborhood of the zero-section.
The method used is the classical method of majorants due to Cauchy. The key point is
to take account of the canonical distinction between position and momentum variables.

Leaving the zero-section fixed and see what happens around it is not so restrictive,
and the basic fact is where a certain Lagrangian manifold goes. A Lagrangian manifold
is a d-submanifold of A such that the symplectic form vanish on its tangent vectors.
A straightforward example is given by the zero-section of a cotangent bundle, and a
Weinstein’s theorem [97, 98] says that this is in fact the universal model of a Lagrangian
manifold. Our Lagrangian manifolds will be exact, that is, the action form on such
manifolds, which that is, in fact, exact. The previous constructions let us generate
many dynamics around this kind of manifolds.

Now, we have another question:

What are the properties of the exact Lagrangian manifolds, invariant under
the action of our exact symplectomorphism F'?

Some properties can be seen after studying the two previous problems. For instance, if
M=R?and F = (f,g9) : R? x R? — R? x R? is our symplectomorphism, being S its
primitive function, and the zero-section {y = 0} is fixed by F, then we obtain that:

e S(z,0) is a constant function;

o VrcR? %(x,O) =0, %(x,O) =0.
The first property can be easily generalized to any exact Lagrangian manifold, and it
shows that we can assign a conserved quantity to it. The second one means that if we
consider S as a z-parametrized family of functions, then for each = the corresponding
point of the Lagrangian manifold, (x,0), is a critical point of S(z,-). The converse
is also true if our map is monotone, that is, it is transversal respect to the standard
foliation:
of

(The symmetrization of this matrix of partial derivatives is known as torsion). This
property can be also applied to any invariant exact Lagrangian graphs, and even it could
also work for any invariant exact Lagrangian manifolds by means of suitable transversal
foliations.

A specially important example corresponds to the case in which all the ‘fibered’
critical points are minimum, because the orbits minimize a certain action. The orbits
of an exact symplectomorphism on the cotangent bundle satisfy a variational principle
(in a similar way the trajectories of a classical mechanical system satisfy the stationary
action principle). Discrete variational principles are a powerful tool when we want to
prove the existence of fixed points, periodic orbits, quasi-periodic orbits, homoclinic
orbits, etc. Poincare [85] was the first person who used these methods in certain prob-
lems of celestial mechanics, and they have been used by many authors. For instance,
they have been fundamental to prove the existence of quasi-periodic orbits in certain
a.p.m. (the twist ones). These orbits minimize a certain action, and they correspond
to invariant curves or invariant Cantor sets (Aubry-Mather sets) [13, 71].

V(z,y) € R? x R?,




v esE - S v L 4 AT Al

In general, we need the existence of a global generating function in order to define
variational principles, but this fact restricts the topology of our configuration space
and our symplectomorphism. We avoid to use the generating functions and we use
the primitive function, and our variational principles work for any discrete mechanical
system (that is, an exact symplectomorphism on 7*M). We shall take a different point
of view: instead of using variational principles to find orbits, we use them to extract
information about them. They are, in a sense, local variational principles. Finally,
turning to the invariant Lagrangian graphs, our constructions let us generalize some
results by Mather [73], Herman [40] and MacKay, Meiss and Stark [68].

Henceforth, we think that our variational principles are interesting because:

e they work in any cotangent bundle, resembling the laws of discrete classical me-
chanics;

e we do not need the generating function, which does not always exist or is difficult
to compute (for instance, if our map is given by a Hamiltonian flow);

e we can extend them around any exact Lagrangian manifold, thanks to Weinstein’s
theorems.

In order to define those variational principles we have followed the next steps. Here
we use cotangent coordinates (z,y) and, in fact, we work on R? x RY.

1. First, consider two positions x,,,, x, € R?, where n > m + 1, that we want to join
by means of a piece of orbit (of length n — m).

2. Then, we define the set of chains connecting both points, being these chains the
sequences

(xma ym)a (xm+1a ym+1)a fee (xnfla ynfl)
satisfying
® T = Xm,
o Vi=m -+ n—2, f(xuyz) = Tit1,
L4 f(zn—la yn—l) = Xp.

3. The action over this set is the sum

Sm,n(xma Yms Tm+1, Ym+1y - - -5 Tn—1, ynfl) = Z S(xu yZ)

4. Finally, we obtain that the orbits connecting the two positions x,,,x, are ex-
tremal for the action (defined on the set of chains), and the converse is true if
our symplectomorphism is monotone. Then, an orbit is minimizing if every of its
segments minimizes the corresponding action.
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What is the physical interpretation of this construction? Consider a mechanical system
given by a time-periodic Hamiltonian

H:T"MxT — R,

where T = R/Z. Let F = ¢, be its time-periodic flow. Its primitive function is, using
cotangent coordinates,

Sa,y) = / ACH,) (2 (1), y(1))dt

_ /0 <y(t)-%—I;(x(t),y(t),t)—H(x(t),y(t),t)) dt,

where (z(t),y(t)) = ¢ro(z,y) is the flow. Therefore, a chain is an ‘orbit’ of our me-
chanical system whose velocity is suddenly changed each period of time. We want to
smooth the peaks, and we obtain it by extremizing the action.

If we consider chains of length 1, that is, points (x,y), but we impose that they
go to the same fiber and the action is the primitive function, then we look for fixed
points. That is, fixed points are critical points of the primitive function restricted
to the fiberwise transformed set K = {(x,y) | f(xz,y) = x}. In fact, we have found
a construction already used by Moser [79] in the case of exact symplectomorphisms
defined on the cotangent bundle of a torus, and used later by Arnaud [3].

To follow a logic order, in the thesis we have described firstly the variational prin-
ciples for fixed points and afterwards we have considered those related with orbits. We
have also devoted some time to the relationship between the dynamical character and
extremal character of a fixed point, although there are many results about this sub-
ject [53, 66, 3]. We have also considered some degenerate cases, that correspond to
non-monotone fixed points.

Finally, we have proved that the extremal characters of an orbit and an invariant
exact Lagrangian graph are invariant under changes of variables in our configuration
space and fiberwise translations on the phase space. The physical interpretation is that
the laws of discrete mechanics are independent of the coordinates in the configuration
space and certain ‘privileged observers’. From a geometrical point of view, this is
connected to the election of a natural 1-form in the phase space, o = y dx, and the
concomitant distinction between position and momentum variables that this implies.
On the other hand, recall that the dynamics of the systems are independent of any
coordinates on the phase space. Then, for instance, the Floquet multipliers associated
to a periodic orbit are invariant under any change of variables.

Applications to converse KAM theory

Lagrangian manifolds are interesting from a dynamical point of view because they
appear often in the theory of dynamical systems. For instance:

e the invariant tori of the theory by Kolmogorov [52], Arnold [4] and Moser [78],
known briefly as KAM theory, which are Lagrangian because their dynamics are
given by ergodic rotations, as Herman proved [40, 41];
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e the stable and unstable manifolds of a hyperbolic fixed point, which are La-
grangian because the corresponding dynamics collapses to the fixed point when
we iterate our map or its inverse, respectively.

We shall consider the first example. About the second one, they appear in the the-
ory of splitting of separatrices, founded by Poincare and developed later by Melnikov
and Arnold. In the symplectic case one use a Melnikov function rather than a Mel-
nikov vector in order to measure the breakdown, and in principle one uses generating
functions. Easton [30] already used the primitive function for the definitions of that
potential, and his formulae was generalized by Delshams and Ramirez-Ros [28].

In order to show the main ideas of KAM theory we consider now the well known
standard map, which is a twist a.p.m. introduced by Chirikov [24]. Tt is:

K
P =x+y-— Py sin(2rz) (mod 1)
™

' K sin(27x)
=y—- — m
y =Y o

where the phase space is the cylinder T x R, whose coordinates are the angle-action
variables (z,y). K is a perturbative parameter, and for K = 0 our map is integrable:

' =xz+y (mod 1)

Y=y
That is to say, our phase space is foliated by invariant tori y = gy, and their dynamics

are given by rotations. These rotational invariant curves 3, because they encircle the
cylinder, are labeled by the corresponding frequencies y,, and there are two types:

e 1o € Q, and then the orbits are periodic;
e yp € R\ Q, and contain quasi-periodic orbits that densely fill the curve.

When K is increased from zero, the question is about how much of the integrable
structure survive. Experimentally, we see that the major part of orbits still belongs
to r..c., and this is exactly that KAM theory says: the major part of tori persists if
the perturbation K is small enough. A remarkable fact is that the persistence of these
invariant curves depend on the ‘distance’ of their frequencies to the rational numbers.
The irrationality degree is measured with the called diophantine condition. A number w
is diophantine if there are two constants C' > 0 and 7 > 1 such that for all the fractions

yu
5 €Q

C
|nw —p| > et

3in short: r.i.c..
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The diophantine numbers are difficult to approximate by rationals. This is also related
to the continued fraction expansion of a number. So then, the ‘more irrational’ number
is the golden mean

Vi+1

= =1;1,1,1,...
Y 2 [1}?} ]a

that satisfies a diophantine condition with C'=~? and 7 = 1.

Now, we ask ourselves about the converse question: how large should be the pertur-
bation to break all the r.i.c.? Another question is: what is the ‘last’ r.i.c.? We can also
consider when a certain r.i.c. with a certain frequency breaks down. The set of criteria
and tools performed in order to solve these kind of problems is called converse KAM
theory, following MacKay, Meiss and Stark [68]). On the contrary to KAM theory, con-
verse KAM theory is non perturbative, and it is able of giving conditions to say that
for a certain point of phase space does not belong to a r.i.c. (or, in higher dimensions,
to a torus).

While there are many results about converse KAM theory in low dimension (d = 1),
this is not the case in higher dimensions (d > 1). We emphasize MacKay, Meiss and
Stark [68], Herman [40, 41, 94, 43] and Tompaidis [94, 95]. The phase space that one
consider is the cotangent bundle of a torus, 7*T¢ ~ T¢ x R?, named d-annulus or d-
cylinder, whose covering space is R? x R?. The main problem is, while for twist a.p.m.
the r.i.c. are graphs (thanks to a Birkhoff’s theorem [19]), there is not an equivalent
statement in higher dimensions. We must only pay attention to those Lagrangian tori
which are graphs. On the other side, we have the maps which are not twist, or those
in which the torsion changes its sign, or it is non degenerate but not definite (it can
happen for d > 1). Moreover, the multidimensional generalization of the continued
fraction expansion is not so clear.

We can group the different techniques and criteria of converse KAM theory in the
following groups.

e Lipschitz criteria. Thanks to another Birkhoff’s theorem one can obtain Lip-
schitz bounds on slopes of a r.i.c. for a twist a.p.m., and then obtain restrictive
criteria for the non-existence of those curves (as Birkhoff [19], Herman [39] and
Mather [72] studied this, we shall refer to this theory as BHM Theory). For in-
stance, Mather [72] found that for the standard map there are no r.i.c. if |[K| > 3
and later MacKay and Percival [67] refined it, with the aid of a computer, in
order to obtain a rigorous bound |K| > % and Jungreis [48] improved these

rigorous results. Herman [40, 41] also proved similar Lipschitz inequalities for the

invariant Lagrangian graphs of monotone positive symplectomorphisms. We shall
relate some of his results to variational principles.

e Variational criteria. In [67], MacKay and Percival related also their cone-
crossing criterion) with Aubry-Mather’s variational principles. Later, in higher
dimensions, MacKay, Meiss and Stark [68] performed a method to detect if a
point of phase space does not belong to a Lagrangian graph, and they also gave
a geometrical explanation by means of the ‘slopes’ of Lagrangian planes. In both
cases the symplectomorphism should satisfy strong positivity conditions, being
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defined by a Lagrangian generating function. The question was to detect if a
certain segment of orbit minimizes or not a certain action, and this is easily
verified by considering a certain Hessian matrix. It was curious that one need
global conditions on our symplectomorphism while one only check local conditions.

We have followed the definition of positivity given by Herman, and we have con-
sidered monotone positive symplectomorphisms [40, 41]. There are examples of
monotone positive symplectomorphisms that are not twist and they are not de-
fined by Lagrangian generating functions. Our definitions are local, and they let
us to study suitable pieces of phase space. As a conclusion we have that

if an invariant Lagrangian graph lives in a monotone positive region,
then it is minimizing, and all their orbits are minimizing.

From here, we can do similar calculations to those given in [68], but with less
restrictive conditions. Specially, we can use what we have called the MMS itera-
tion, that is, an algorithm performed by MacKay, Meiss and Stark [68] in order

to determine if a certain block-tridiagonal symmetric matrix is positive definite.
4

e Greene-like criteria. In [36], Greene proposed a criterion to detect when a
certain r.i.c. of an a.p.m. breaks when the perturbation is increased. His method
was founded in the study of the stability of nearby periodic orbits. Greene dis-
covered that, for the standard map, the last invariant curve has frequency ~ (the
golden mean) and it breaks for a critical value K, ~ 0.971635406 (this value was
obtained by MacKay [63]). He reasoned that if there is a set of periodic orbits
whose frequencies r; = 2t limit on the frequency w,

ng

limr, = w,

11— 00
and they have residues between 0 and 1 (they are elliptic periodic orbits), then
the invariant circle exists. This residue conjecture has been proven by MacKay
[65] and Falconini and de la Llave [32] in some cases. Then, he considered the
critical values K, where the corresponding periodic orbits have residue 1 (which
corresponds to a period doubling bifurcation), and observed that they limit on
K,. Moreover, when one considers the golden mean (or any noble number) and
the sequence of rational approximations is given by the convergent of the cor-
responding continued fraction, then the sequence of critical values geometrically
limits on K. This is related to the stable manifold of a fixed point of a certain
renormalization operator in the space of twist a.p.m., as MacKay [63] numerically
studied.

In higher dimensions the situation is not so clear. First of all, we have not a
definite candidate of rational approximation of irrational vectors which generalizes
the continued fractions. For instance, Tompaidis [94] extended the Greene method

4At the end of this thesis we have written a small summary about positive definite symmetric
matrices.
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and he applied it to a 3-dimensional volume preserving map [95] the rotational
standard map. He used the Jacobi-Perron algorithm in order to approximate the
irrational vectors. We have followed him. Another problem is the renormalization
behaviour which is more complicated and difficult to detect. This should help us
to improve the estimation of the critical values of breakdown of the tori.

We have developed a method with the same flavour, but instead of considering
the stability of periodic orbits we have considered their extremal character. We
have also worked with monotone positive symplectomorphisms. From a ‘naive’
point of view, we have used that if an orbit is minimizing (and the orbits on
the tori are minimizing), then any segment of orbit close enough to it is also
minimizing. Although elliptic periodic orbits are not minimizing, small enough
segments of them are. Recall that all the orbits of a monotone positive integrable
symplectomorphism are minimizing.

e Obstructional criteria. Consider an a.p.m. and suppose that the unstable
manifold of a periodic orbit cuts the stable manifold of another one. Then there
can be no r.i.c. contained between them. Since these heteroclinic connections
can be numerically computed, then one can use them as a practical criterion, as
Olvera and Simé did [82]. On the other side, these manifolds are also used to
bound the named resonances, which are regions on the phase space whose points
have similar behaviour. Transport theory (see, for instance, [76]) deal with the
motion of these sets.

When we work in higher dimensions we can not use the stable and unstable mani-
folds of hyperbolic periodic orbits, because they do not separate the phase space in
connected components. Codimension-1 manifolds are needed, as the center-stable
and center-unstable manifolds of elliptic hyperbolic periodic orbits (with only two
hyperbolic directions). We think that they can be useful to explain the mecha-
nism of the breakdown and to study the transport. They are the skeleton of our
dynamical system. As an example, we have considered a 4D map, the Froeschlé
map, and we have studied the resonance region associated to the origin, that is
an elliptic point. We shall see that this region is bounded by the center-stable
and the center-unstable manifolds of its two elliptic-hyperbolic companions. To
do this, we have expanded these manifolds in power series (with 3 variables) until
a high degree, because they are difficult to globalize. Their visualization can be
obtained by intersection of them with planes. Such intersections are, generically,
curves. Since different invariant manifolds cut between them, there is a complex
structure of folds and bags, which give smaller resonance regions.

In some sense, we have unified the Lipschitz/variational criteria with Greene criteria.
The first ones are equivalent [67, 68] and let us do rigorous proofs with the aid of a
computer, by using interval arithmetic (although we have not done this). The second
ones do not let us do rigorous proofs, but they give accurate estimates of the critical
values of breakdown. As we have already seen, we have performed a variational Greene
criterion. The unification of all of these criteria with obstructional criteria would be
given by a complete study of the relationship between dynamics and extremality.
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In order to show these ideas we consider two, three and four dimensional examples.
In all cases we have applied first the variational criteria in a similar way than [68], in
order to eliminate the regions in phase space that do not contain invariant tori (like
graphs). We have considered different kind of examples: twists, monotone positive but
not twist, non monotone, etc. The 2D examples belong to the family of the standard
map, the 4D ones belong to the family of the Froeschlé map, and in the 3D case we have
taken the rotational standard map. For instance, if we consider a non monotone a.p.m.,
then we see that the r.i.c. which crosses the non monotone curves (where monotonicity
fails) are not graphs, have folds and they are more difficult to destroy. We suppose
that the major part of these curves have definite sign, but we should consider suitable
coordinates.

To check our variational Greene method, we have firstly considered the standard
map, because it is well known. We have also observed the typical self-similarity be-
haviour associated to the breakdown of noble curves. We have also applied it to another
2D map, the exponential standard map, which is monotone positive but not twist. For
the 4D dimensional examples we have taken the Froeschlé map, that is defined on
T? x R? and is

(

K A
yll =Y — 2—7; sin(27rx1) — % Sin(27r(a:1 —+ 1'2))

A
yl2 e y2 — —2 Sin(27TI2) - 5 Sin(27r(‘r1 + I2))

{ 2T 2r ,

'y =z +y', (mod1)

'y =x9 + 9’5 (mod 1)

\

and two different rotation vectors: a quadratic pair (v/2 —1,v/3 — 1) and the golden
vector (for the Jacobi-Perron algorithm), which is a cubic pair. Depending on the
values of the parameters K; and K5, and considering A as a perturbation parameter,
we have seen different kinds of breakdown. We have computed periodic orbits with ‘big’
periods and we have continued them respect to \. We have used a parallel-shooting
like method. The question that we ask ourselves is:

How are the Aubry-Mather sets in higher dimensions?

In the 2D case these sets have zero Hausdorff dimension (in the hyperbolic case), as
MacKay proved [64], but here they seem to have zero or 1 dimension. We have also
seen certain resonance regions associated to periodic orbits of low period, and this carry
out to consider obstructional criteria in order to explain the mechanism of breakdown.
Finally, we have also considered the Tompaidis 3D example and the golden vector. The
rotational standard map depends on two parameters K and A and a rotation w, it is
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defined on the cylinder T x R x T endowed with the coordinates (z,y,#), and it is

( 1
y' =y — ——sin(27z) (K + X cos(276))

(27)

' =z+y (mod]l)

| 0/ =0+w (mod1)
In order to do this, he have had to develop a variational theory for the named exact
symplectic skew-products. This part have not been given with detail, because is similar
to the variational theory for exact symplectomorphisms.

We remark that there are other non-existence criteria, as those based in the com-
putation of the radius of convergence of Fourier series of KAM tori (done, for instance,
by Percival [84]) and the frequency analysis by Laskar [60].

General summary of the thesis

We have divided this thesis in four parts.

PART I. Exact symplectic geometry (introduction of the problems)

This part contains the basic tools of symplectic geometry and outline the four
subjects that we have study along the thesis:

1. the determination problem,
2. the interpolation problem,
3. the variational problem,

4. the breakdown problem.

PART II. On the standard symplectic manifold (analytical part)

We recall the necessary tools to work on R¢ x R?. That is, we perform a coordi-
nate treatment of the results. First of all, we relate different kinds of generating
functions to the primitive function and later we solve formally the determination
problem. Then we introduce different variational principles: for fixed points, peri-
odic orbits and orbital segments. Their invariance under certain kind of transfor-
mations of phase space is proved, and we interpret physically such results. Finally,
we give the basic properties of invariant exact Lagrangian graphs, obtaining, at
last, that if our graph is minimizing then its orbits are minimizing.

PART III. On the cotangent bundle (geometrical part)

The first three chapters are similar to the three previous ones, with the difference
that we do an intrinsic treatment of the results, by considering any cotangent
bundle. The fourth chapter in this part deal with the solution of the interpolation
problem, given in analytic set up.
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PART IV. Converse KAM theory (numerical part)

The last part deal with the applications to converse KAM theory. First of all,
we give a small list of different examples that we shall study later. Then, we
generalize converse KAM theory by [68] and we related it to the Lipschitz theory
by Birkhoff and Herman [40, 41]. Then, we perform our variational Greene method
and apply it to different examples. Also we study numerically the Aubry-Mather
sets in higher dimensions. After this, we apply our methods to the rotational
standard map, that is a symplectic skew product. Then, we give some ideas
about the geometrical obstructions for existence of invariant tori, showing them
with a simple example. We also find some known Birkhoff normal forms using
our methods. Finally, we explain briefly how our theory can be used for arbitrary
Lagrangian foliations.

Main achievements

Now, we summarize what are the main conclusions of this thesis, and further questions
that we leave till the future.

e First of all, we think that our main contribution is the systematic use of the
primitive function of an exact symplectomorphism. The analytical, geometrical
and numerical tools used along this thesis take into account the properties of this
primitive function. In fact, they come from the structure of the phase space, given
by an action form.

e This use let us to introduce variational principles in more general contexts and
with weaker hypotheses that one usually demands, as the existence of a global
generating function.

e We have stated variational principles of discrete mechanics (that is, the study of
exact symplectomorphisms on a cotangent bundle). The geometrization of these
principles come from the Liouville form and the standard foliation associated.

e We also have given a variational interpretation of the invariant exact Lagrangian
graphs. Their points are fibered critical points of a certain function. This let
us to classify from a variational point of view the different graphs. We consider
mainly the minimizing graphs, and obtain that their orbits are minimizing. This
is a generalization of some results by Mather [73], Herman [40, 41] and MacKay,
Meiss and Stark [68].

e In order to give existence conditions of invariant tori for symplectomorphisms
defined on T¢ x R?, we have used these variational methods. Then, we have
related [68] and [40, 41], with the main difference that we have not used the
Lagrangian generating functions, which do not always exist.

e The ‘local’ treatment of our variational principles let us to study the regions of
phase space which satisfy certain positiveness conditions. We can summarize that
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if an invariant Lagrangian graph lives in a monotone positive region,
then it is minimizing, and all their orbits are minimizing.

From this point, we can perform similar computations to [68], but with less re-
strictions.

e Another point is the development of Greene-like criteria to detect when a certain
torus breaks down. We have used the extremal properties instead of the dynamical
properties of the close periodic orbits. We have checked our method with the
standard map. We have also applied it to a 4D example.

e In order to ‘see’ the breakdown of invariant tori we have had to compute periodic
orbits with long periods (= 10°). We have used a parallel shooting method. The
results agree with our variational method. Moreover, we have detected different
kinds of breakdown. These phenomena should be studied in the future.

e We have explained a possible mechanism of breakdown, associated to the in-
tersections between codimension-1 invariant manifolds. Although we have not
developed this completely, this work is in progress. We think that the example
that we have considered is sufficiently instructive.

e Finally, we have applied our methodology to a broader class of maps, the sym-
plectic skew-products. The 3D example that we have considered was already used
by Tompaidis [95]. Our results agree with his.

e An important part of this thesis is devoted to the examples. As models of non
twist area preserving maps we have introduce the exponential standard map,
the quadratic standard map and the trigonometric standard map. We have also
considered the standard map. The couplings of these maps give us many 4D
examples, like the Froeschlé map. As a 3D example (of symplectic skew-product)
we have taken the rotational standard map, but we could also consider other
examples.

About these methods we have some problems to solve. The first one appear, for
instance, when we have an a.p.m. whose monotonicity changes its sign and the r.i.c.
that we are studying cross regions with monotonicity of different sign. These curves
have folds and are more difficult to destroy. Possibly the major part of these curves have
definite sign in suitable coordinates. The second one appears when we work in higher
dimensions and the monotonicity, although is non degenerate, is undefinite. Herman has
some results about this [43]. We know how the orbits are on these tori, from a variational
point of view, once we have made one step of the Birkhoff normal form. Of course, this is
not enough. Moreover, another deep problem is about the application of renormalization
operators in higher dimensions, associated to multidimensional rational approximations.
Finally, we would like to explain the breakdown from a geometrical /obstructional point
of view, not only considering invariant manifolds associated to periodic orbits, but also
to isotropic tori.

On the other side, we have extended the variational principles to any cotangent
bundle and they can work as the laws of discrete mechanics. It should be interesting to
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consider different configuration spaces, as S%, SO(3), etc. For instance, one could look
for fixed points of symplectomorphism defined on their cotangent bundles (and they
could correspond to periodic orbits of mechanical systems). It should be also interest-
ing to detect the bifurcations of such fixed points (if our symplectomorphism depends
on parameters, of course) in terms of topological transformations of the fiberwise trans-
formed set. Anyway, these results are not constructive and the nature of the problem
is local.
We continue with other contributions.

e Other important point is the confrontation primitive function/generating func-
tion. We have also pointed out that the generating function is not always com-
putable, and it could be a problem in order to study undefinite invariant tori. In
order to obtain the dynamics around an invariant torus we only need its dynamics
(and if it is a KAM torus its dynamics is given by a rotation) and the primitive
function.

e We can also obtain the dynamics by interpolation with a Hamiltonian flow. We
have used it in order to prove the analyticity of the expansions (the differentiable
case remains open —cf. [16]-). It is important the fact that the proofs are con-
structive, and the recurrences can be carried out with the aid of a computer.
Periodicity in time can be got applying some constructive results by Pronin and
Treschev [86].

e The geometrical structure of the phase space has been the key point of our proofs.
In addition to the Liouville form and its associated foliation, the Liouville deriva-
tive that we have defined has been very useful. We have obtained that we can
associate a derivation to any exact symplectic manifold, and in the case of the
cotangent bundle (endowed with the Liouville form) is the Liouville derivative
(also known as the elementary action).

These constructions let us to ‘invent’ many kinds of dynamics around invariant
Lagrangian manifolds. For instance, if the basic manifold is a torus, we need to pro-
gramme an algebraic manipulator of Fourier-Taylor series. We can put any dynamics
on the torus, as an ergodic translation, an Anosov’s diffeomorphism, etc. This work is
also in progress (one can get easy examples if the torus has dimension 1). It could be
also interesting to apply it to the study of undefinite tori, and ‘see’ the ‘escape lines’
that Herman found [43].

From a geometrical point of view, the main object of our theory is the Liouville
form, which vanishes on the zero-section and on the tangent vectors to the standard
foliation of the cotangent bundle. This foliation is transversal to the zero-section. We
suppose that it can be generalized by means of suitable foliations transversal to our
invariant Lagrangian manifolds. Other kind of generalization is to consider Lagrangian
manifolds defined by the called Morse families or phase functions, which are similar
to the generating functions but contain additional parameters that let the foldings in
our manifolds. Although we have to be able to extend some results to this context, we
still do not know how to develop them. Moreover, we can also consider other maps, as



4fTLE4 A EL T 4 AT ELLEEAL TV AT AL T &S AR RL

the o-symplectic ones (which satisfy F*w = ow, where o € R or, in the complex case,
o € C), or, in particular, the antisymplectic maps, which have o = —1 (cf. [23]).

We remark that we have worked around any zero-section of any cotangent bundle
and, morally speaking, around any exact Lagrangian manifold. For instance, around a
Lagrangian torus, or a piece of stable manifold of a hyperbolic fixed point, or a piece
of stable manifold of a hyperbolic lower dimensional (isotropic) torus (useful in the
explanation of Arnold diffusion). We have used our methods in order to find the known
Birkhoff normal forms for these examples.

Finally, we think that this thesis is interesting because we relate different analytical,
geometrical and numerical techniques. We have tried to give them a certain structure.
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Chapter 1

Exact symplectomorphisms

We recall the elementary definitions and results about exact symplectic manifolds
and exact symplectomorphisms. For the sake of simplicity, all the objects (man-
ifolds, functions, diffeomorphisms, ...) will be C*°. Moreover, all the manifolds
will be connected manifolds.

Using the nomenclature of [7], we associate to an exact symplectomorphism a
primitive function, also called generating function by other authors. As we shall
see, this function does not generate our symplectomorphism, and because of this
we shall adopt the first name.

Finally, we state the determination problem, which deal with the additive infor-
mation that we need in order to determine our exact symplectomorphism from
its primitive function.

1.1 Exact symplectic manifolds

In accordance with the standard definitions, a symplectic structure on a manifold N is
given by a differential 2-form w € Q?(N) satisfying the following two properties:

e V2 € N, w, is non degenerate (VX, € T,N \ {0} 3Y, € T.N | w.(X,,Y,) #0),

e w is closed (dw = 0).

We say that (N,w) is a symplectic manifold, and that w is a symplectic form. The
nondegeneracy condition implies that the dimension of A/ is even (dim N = 2d) and
the map
w: TN — TN
X — 'X=-iyw

is an isomorphism of vector bundles (its inverse is denoted by w': *X = p & p = X).
If, moreover, w is exact (w = da, for some Pfaffian form a on N), we say that
(N, w =da) is an exact symplectic manifold and « is its action form.
The most important examples of symplectic manifolds correspond to exact symplec-
tic manifolds. Examples of non exact symplectic manifolds are given, for instance, by
orientable compact surfaces, taking their area elements as their symplectic 2-forms.
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Examples

1)

The standard symplectic manifold

The standard symplectic structure on R* = R? x R?, endowed with the position-
momentum coordinates (x,y) = (1, ..., T4, Y1,---,Yaq), 1S given by w = dy Adx =
z?:1 dy; A dz;, and it is exact, with a =y dz = z?:1 y; dz; as action form.
This is a local model of all the symplectic manifolds of dimension 2d, according
to Darboux’s Theorem (see, for instance, [2], p. 463). That is to say, if (N, w)
is a symplectic manifold and z € N, there exists a local coordinate chart on
z, given by (x,y) (the canonical coordinates or symplectic coordinates), in which
w =dy Adx.

‘Exotic’ symplectic structures on R* have been constructed. That is, there exist

symplectic structures on R* which are not (globally) equivalent to the standard
one (see, for instance [8], p. 81).

The cotangent bundle

In classical mechanics, the cotangent bundle (the phase space) of a manifold M
(the configuration space) is the more celebrated example [34, 5].

Let M be a d-dimensional differentiable manifold and 7% M its cotangent bundle,
whose projection is ¢ : T*M — M. We know that we can define a differentiable
structure on T*M by means of the cotangent charts U x R, where each U is a
chart of M. We write the corresponding coordinates as (x,y).

In order to define an exact symplectic structure on 7*M we begin by defining
an 1-form a € Q'Y(T*M) (called Liouville form). Tt is defined on each ‘point’
ps € T*M (where 2z € M) by

~

aszpz = Pz (Px)pr;

for any X,, € T,, T*M (then, ¢.(p.)X,, € T,M and we can apply p,). Moreover,
« is the unique Pfaffian form on 7% M which satisfies

pra=p, Vp e Q'(M),
where in the right term we see p as a map p: M — T*M (in fact, p is a section
of the cotangent bundle).
Finally, w = da is the canonical symplectic structure on T*M, and it is exact.

In cotangent coordinates on T* M, (x,y) € U x R?, these forms are:

a=ydr, w=dyAdz.

The tangent bundle of a Riemannian manifold
If we have a Riemannian metric g on a manifold M, we can transport the canonical
symplectic structure from 7% M to T'M, using the isomorphism of vector bundles:
g: TM — T*M
X — IXg '
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So, if w = da is the canonical symplectic structure of 7*M, then @ = (g’)*w
defines an exact symplectic structure on T M, with @ = dé& and & = (g’)*e (this
is a particular case of the Legendre transformation).

1.2 Exact symplectomorphisms

1.2.1 Definitions

Let F : N — N be a diffeomorphism, where (N, w = dea) is an exact symplectic
manifold. There are three important properties that F' can satisfy:

e F'is a symplectomorphism: Frw = w.
Then 0 = F*w —w = F*da — da = d(F*a — a), and hence F*a — a is a closed
1-form.

e ['is an exact symplectomorphism: F*a — a is exact.

Then 3S: N - R | Ffa— a =dS.

e F'is an actionmorphism: F*a = a.

Exactness equation

Given a symplectomorphism F', we shall refer to the first-order partial dif-
ferential equation on A

FrFra—a = dS
as the exactness equation of F'. The necessary conditions of existence of
solutions of this equation are satisfied.
The primitive function

If the exactness equation is solvable, with F*a — a = dS for a certain
function S, we shall say that S is a primitive function of F', and we shall
write pf(F) = S. Obviously, S is defined up to constants.

Remarks

i) We can do the definitions with different symplectic manifolds, but the maps need
to be immersions. The definitions are similar.

ii) (Exact) symplectomorphisms are also called (globally) canonical transformations,
while actionmorphisms are also known as homogeneous canonical transformations
or Mathieu transformations [100, 61].

'Tn the sequel, while <« means ‘end of remarks’ or ‘end of examples’, O means ‘end of proof’.
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iii) In the literature, the primitive function is often called generating function. As we
shall see, this function does not generate the symplectomorphism, but a family of
symplectomorphisms. By this reason, we have followed the nomenclature used in

7).

iv) Examples of symplectomorphisms on the cotangent bundle of the torus, the an-
nulus A¢ = T*T¢ = T¢ x R?, are given in Appendix A.

1.2.2 Composition formulae

The behavior of the primitive function by composition, inversion and conjugation is
given by the next proposition.

Proposition 1.1 :

Let (N,da) be an exact symplectic manifold, and let F,G : N' — N be
two exact symplectomorphisms, with pf(F) =S and pf(G) =T.
Then:

1. pf (G-F)=S+T-F
2. pf (F7') = —S-F~!
8. pf (G 1oFG) = S-G+T —T-G ' F-G

Proof:
It is enough to prove 1:
(G-F)Y'a=F"G'a=F'(a+dl) =a+dS+d(F'T) = a+dS+d(T-F).
o
Remarks

i) Last formula is useful in order to obtain normal forms, as we can see in Ap-
pendix F.

ii) If we apply the composition formulae to the composition of n exact symplecto-
morphisms Fi, ... F, with corresponding primitive functions 5i,...S,, we have

n—1
pf(Fre...oFy) = Y SieFi.. . oF.
=0

n—1
In particular, pf(F") = Z SoF".
i=0
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1.3 The determination problem

As an immediate application of the previous formulae, we see that if we compose F
with an actionmorphism L, the primitive function is not changed:
(Le-FY)a—a=F'La—a=Fa—a=dS.

In fact, all the exact symplectomorphisms with primitive function equal to S are ob-
tained in this way.

Proposition 1.2 :

Let (N,da) an exact symplectic manifold.
Let F: N — N be an ezxact symplectomorphism, with pf (F) = S. Then:

{G | pf(G)=S} = {L-F|pf(L) =0}

Proof:
Let be G | pf (G) = S and define L = G-F~!.
Then:
pf(L) = pf (G-F ') = pf (F1) + pf(G)eF ' = =SeF 1 4 SeF 1 = 0.
o

Thus, an exact symplectomorphism is determined by its primitive function up to
actionmorphisms ‘by the left’.

In order to determine an exact symplectomorphism from its primitive function we
need some additional information, as, for instance, the image of a certain Lagrangian
submanifold (Section 4.3). As we shall see, this problem is related with the solution of
a certain evolution problem and a derivation in the Lie algebra of functions (endowed
with the Poisson bracket) (see Section 2.4 and Chapter 10).

1.4 On the symplectic product

As it is well known, given symplectic manifolds one can construct a new one by direct
product. So that, if N = N} x...xN, is the product of ¢ symplectic manifolds (N, w;),
oy (Npwy) and 7y, ..., m, are the corresponding projections, then the 2-form on N
given by

q
§ : *
i=1

is symplectic.
Moreover, if the symplectic forms w; are exact, with w; = da; Vi = 1 =+ ¢, then Q
is also exact, that is, & = dA with

q
E : *
=1
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Remarks

i) Many times is more convenient to take the symplectic 2-form on the product of

two symplectic manifolds (N7, w:) and (N, wy) as the difference of the pull-backs
of w; and of wy instead of their sum.

ii) For the sake of simplicity, we shall write w; = 7fw; and Q = 23:1 w;.

<
Hence, given several symplectomorphisms we can define a new one on the direct
product of the corresponding symplectic manifolds.

Proposition 1.3 :

Let N = T[], N; be the product of q symplectic manifolds (N;,w;) (i =
1+4q), and Q =], w; be the symplectic 2-form defined on N .

Suppose we have q symplectomorphisms F; : N; = N; (i =1+ q).

Then:

e The diffeomorphism on N
F = Fix...xF,
(i.e.: mieF' = Fiom;, Yi =1+ q) is symplectic.

o [f the symplectic forms w; are exact, with w; = da; and the symplecto-
morphism F; are exact, with primitive functions S;, respectively, then
the symplectomorphism F is exact, and its primitive function is:

q
S = Z Siom-.
i=1
(or S =37 S;, for short).

An example of actionmorphism is given by the g-rotation R, defined on the direct
product ¢ times of an exact symplectic manifold (N, w = da) with itself. The proof of
the following result is also straightforward.

Proposition 1.4 :

Let (N,w) be a symplectic manifold, and let €, be the symplectic form
induced on N =T N

q
Q, = Zﬂ;w
i=1
(where m; is every projection).
We consider the q-rotation Ry : N9 — N9, which is defined by

Ry(21, 29, ... ,2¢) = (2gy 21y - Zg—1)-

Then:
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o I, is a symplectomorphism.

o [fw=da, then R, is an actionmorphism.

Given a diffeomorphism F : N' — N, we note that a ¢g-periodic orbit corresponds
to a fixed point of F'?, of course, but also to a fixed point of R,eF*? (where F*7 =
F x ..., x F).In both cases, the (exact) symplectic character is preserved.

Proposition 1.5 :

Let F : N — N be a symplectomorphism on the symplectic manifold (N, w).
We consider on N9 the symplectic form Q,. We define F*9 as the diffeo-
morphism defined on N by

F* %z, ... 2¢) = (F(21), ..., F(z)).
We also define the diffeomorphism on N9: Fy = RpeF*9 = F*%R,. Thus

F,: N1 — N1
(ZO,Zl,...,Zq_l) — (F(Zq_l),F(ZO),...,F(Zq_g)) ’

Then:

o The fized points of F, are in correspondence with the q-periodic orbits
of F' (the correspondence is q-to-1). Moreover, F, commutes with Ry:
FpeRy, = Ry Fy = RpeF*"°R,.

o [, is a symplectomorphism.

o [fw is exact (w =da) and F is ezact, being S its primitive function,
then Fy is ezact, and its primitive function is:

Sy N — R

q—1

z="(20,...,2¢-1) — Sq(Z)ZZS(Zi)'

1=

Moreover, the primitive function is Zg-invariant, i.e., SpeRy = S, and

Rg =1d.
Remarks

i) The formula of the primitive function of Fj is very closed to the formula of the
primitive function of F'7.

ii) These ideas give a parallel shooting method for the search for periodic orbits of
a diffeomorphism. This method is some times more adequate numerically (see
Section C.1.2), and preserves the symplectic character.

N
Given a g¢-periodic point z € N of an exact symplectomorphism F : N' — N of an
exact symplectic manifold (NV,w = da) (i.e. F(z) = z), we define
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e the action along the periodic orbit, as

q—1

Sy(z) = Y S(F'(2));

i=0
e the averaged action along the periodic orbit, as

5,(2) = 254(2)

A question is how the action along a periodic orbit changes by an exact symplectic
change of variables (cf. [62]).

Proposition 1.6 :

Let F : N — N be an exact symplectomorphisms on the exact symplectic
manifold (N,w = da), with pf(F) = S. We conjugate F' by another exact
symplectomorphism G : N — N, with pf (G) =T.

Define F = G~ FG, being S its primitive function.

Then:

There exists a constant C' € R such that for all g-periodic point
2z €N of F, so z = G7'(2) is a q-periodic point of F, and the
corresponding averaged actions differs by C':

S,(2) = S,(2)+C.
Proof:

We know that a primitive function of F is

SeG + T — T-F,
and hence B )
S=8G+T—-T-F+C,
for some constant C' € R.
Then:

q—1

Se(2) = qC+Z(5°G(Fi(Z))+T(Fi(5))—T(F”l(f)))

= ¢C+ i(S°G(G_1°Fi°G(G_1(Z)))

q—1

= qC+ ) _S(F'(2))

1=0

= qC + 54(2).
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Remark

If, for instance, we are studying a neighborhood of an elliptic fixed point and
we try to simplify the dynamics by means of successive symplectic changes of
variables (a normal form process), fixing the value of the successive primitive
functions on that fixed point (being equal to zero), then the periodic orbits
around the elliptic fixed point preserve their averaged action. N
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Chapter 2

Hamiltonian flow

Hamiltonian flow on an exact symplectic manifold provides a nice example of
exact symplectomorphism. We recall the basic definitions and results about this
subject, and introduce another important object of this thesis: the derivation A
in the Lie algebra of functions. We state the interpolation problem and show a
possible method for solve it. Finally, we state the variational problem of discrete
analytical mechanics.

2.1 Hamiltonian vector fields

Through this section, we shall work on a symplectic manifold (N, w).

Hamiltonian vector fields

As we know, to a function H : N/ — R we associate the vector field
Xy = *dH.

called Hamiltonian vector field of Hamiltonian function H. So then, Xy is
uniquely determined by iy, w = —dH.

In symplectic coordinates (z,y), w = dy A dz and

OH  OH\ '
Xp=—, ——]) .
" <ay’ ax)

If the function is time-dependent, H = H, !, we obtain a time-dependent Hamiltonian
vector field.

Poisson bracket

The Poisson bracket between two functions K,H is defined by

!The subscript ¢ means the dependence on the time t.

13
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In symplectic coordinates:

oK 0OH 0K O0H
K gy = 2> . 22222 2
(K H} oy Ox Ox Oy’

where - means the scalar product.

We know that the space of functions F(N) = C*(N,R) endowed with the Poisson
bracket is a Lie algebra. The relation between the Lie bracket and the Poisson bracket
is given by the formula

Lie series.- Let f : N — R be a function and let ¢; be the flow of a Hamiltonian
vector field Xz. We know the formula:

d

%(f"sot) ={H, [}

(this formula is also valid for time-dependent Hamiltonians). Therefore, if we suppose
analyticity and take the Taylor series in ¢, we obtain the Lie series

tk
foor=2 7Lt

k>0

where LY f = f and L% f = {H, L5 ' f}, VEk > 1.

2.2 Exactness of the Hamiltonian flow

Let (M,w = da) be an exact symplectic manifold.

Let H; be a time-dependent Hamiltonian function, X; = Xy, be the corresponding
time-dependent vector field and ¢4, be its flow (in order to simplify, we can suppose
completeness). It is known that the time-t flow from to, pi4,, is an exact symplecto-
morphism. We recall the proof.

Applying an elementary result about time-dependent vector fields and forms
(see, for instance, [2] p. 307), we have

d * *

%(gpt,toa) = @t,tOLXta
= @:,to (iXtda + diXta)
= ¥y, dlix,a — Hy))

= d gp:,to (IXta - Ht)

Then,

t
i, — o = d/ (ix,00 — Hy)esy, ds

to
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and we must take

t
St,to = / (ixsa — Hs)ogps,to dS

to
as primitive function of ¢4, .
We introduce now a linear operator on the space of functions F(N) = C*°(N,R):
A: FN) — FWN)

Hence, our primitive functions are
t
St,to = / A(HS)OQOS,tO dS.
to
In the autonomous case, if we suppose analyticity, we have (taking ¢, = ¢.0)
t* .
A(H)op, = Z HLH(A(H))‘

k>0

Finally, if we define Ay (H) = Lk '(A(H)), Vk > 1, then:
tk+1

S0= X LA = X0 )

We summarize the previous argumentation in the following proposition.
Proposition 2.1 :

Let Hy be a time-dependent Hamiltonian function and ¢4, be the corre-
sponding flow (which we suppose defined for all time). Then,

the time-t flow from to, @14, 1 an exact symplectomorphism with
primitive function:

¢
St,to = /A(Hs)ws,to ds,

to

where A(H) = a(Xy) — H.

Moreover, if H = H is autonomous and we suppose analyticity, then,

tk:

where the A-functions are defined as

A(H) = A(H),

Ap(H) = {H, Ay (H)} (k> 1).
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Remark

If we want to compute numerically the primitive function of a Hamiltonian
flow, we just only need to add to our first-order differential equations the

equation
0S4,
—— = A(H,),
. (1)
and to our set of initial conditions the value Sy, ;,, = 0. Then we can integrate
the whole equations with our favorite numerical method. N

2.3 The derivation A

The operator A will be important in the sequel, but for the moment we shall see that it
satisfies nice properties. In particular, it is a derivation on the Lie algebra of functions.

Proposition 2.2 :
The operator A is a derivation in the Lie algebra F(N):
o A is linear,
e A{Hy,Hy} = {A(Hy),Hs} + {H|,A(H>)}.
Moreover, it verifies:
e d(A(H)) =Ly, 0.
Proof:
Before proving the product rule we shall prove the last formula:
Lx,a = dix,+1ix,°dax
= d(a(Xg)) +ix,w

= d(a(Xy)) —dH
= d(A(H)).
Therefore:
A({H, H2}) = o[ Xpy, Xm,) ) — {H:, Ha}

= d(a(XHz)) XH1 - LXHla XH2 - {HI’HQ}

= {H, a(Xn,)} — d(A(H1)) X, — {Hi, Ho}

- {Hl, A(HQ)} + {A(Hl), HQ}

Ol
As an immediate consequence of the previous proposition, we note that the time-¢

flow of a Hamiltonian vector field given by a function H with constant A-derivative is
an actionmorphism (it preserves the action form).
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Corollary 2.1 :

The Hamiltonian vector field Xy of a function with constant A-derivative is
an infinitesimal automorphism of the action form a, that is, « is invariant
under Xg. In fact, the converse is also true. That is:

d(A(H)) =0 < V(t,2) € D(Xp), pya(z) = afz),
where D(Xy) is the domain of the flow ¢ of Xy.
In symplectic coordinates (z,y), the A-derivative of a function H = H (z,y) is

A(H)(z,y) = y-V,H(z,y)— H(z,y).

2.4 The interpolation problem

As the time-1 flow of a Hamiltonian vector field is exact symplectic, a natural question
arises:

Given an exact symplectomorphism, is it the time-1 flow of a time-dependent
Hamiltonian vector field?

Once we have interpolated our exact symplectomorphism by a time-independent Hamil-
tonian flow, next question is:

can we get our Hamiltonian be 1-periodic in time?

This subject has been studied for many authors, and it has many variants. It is a
particular case of the more general problem of inclusion of a map into a flow. Moser [77]
already dealt with this problem when he proven the analyticity of the Birkhoff normal
form around a hyperbolic fixed point of an area preserving map. Douady [29] solved
the problem in the smooth symplectic case provided our map is given by a generating
function and Conley and Zehnder [26] solved it for smooth diffeomorphism of a torus
which leave the center of mass fixed. On the other side, Douady [29], Kuksin [55] and
Kuksin and Poschel [56] solved the problem in analytic set up for maps which are close
to integrable ones, but in a non-constructive way.

We shall solve the problem in analytic set up around an invariant exact Lagrangian
manifold of our symplectomorphism. In fact, we shall solve the first part of the problem.
In some cases we can apply a theorem by Pronin and Treschev [86] in order to get the
time be periodic. The proof will be constructive.

Although we shall devote Chapter 10 to this subject, we shall explain here the main
ideas. The key point is to apply the homotopy method.

2.4.1 Set up

Let F : N'— N be an exact symplectomorphism, with pf (F) = S. We shall try to look
for the exact symplectomorphism as the time-1 flow of a time-dependent Hamiltonian
vector field. Hence, this problem is related to the determination problem in Section 1.3.
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Let H : N x R — R be the Hamiltonian function, X; = Xy, be the corresponding

vector field and ¢; be the corresponding flow from ¢y = 0 (i.e. ¢ = pi). We would
like

pja—a = dS.
In fact, we impose ‘a little more’, that Vit
pja—a = tdS

(this is the idea of a homotopy method). That is to say, we want S;o =1t -S (with the
notation of Section 2.2).
Then, deriving the homotopy formula,

S = A(Hy)p;.
Therefore, if H, satisfies
S = A(H)
and, moreover:
0 = SAH)),
dt

then H,; is a time-dependent Hamiltonian whose time-1 flow is an exact symplectomor-
phism with primitive function being equal to S. Finally,

d Dy 0

T (A(H)op) = d(A(H)(pr) -+ o (A(Hy)wr

= {Hy, A(H)}Her) + 5 (A(He))opr
Then, we shall impose that our Z-dependent function H; satisfies

S = A(H))

)

B(H;, Hy) + 2(A(H,) =0
where B is the bilinear operator

B: FWN)xFWN) — FN)

(Hi, Hy) — {H,A(Ha)},

and, in particular,

B(H,H) = Ay(H).
The expression of B in canonical coordinates is

+0°H, OH\" O0H, 0H\, +0°H, OH,'

B(HlaHQ)(I7y) = y axay : ay ax ' ay y ayZ ) ax
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2.4.2 An evolution problem

The previous equation only assures that the time-1 flow has primitive function S, and
this does not determine the symplectomorphism. This is the effect of the fact that our
derivation A is not invertible (there exists integration ‘constants’, i.e., functions with
vanishing A-derivative). In fact, we need to solve equations as

A(H) =S.
Suppose that the space of (smooth) functions F = F(N) splits as
F = ker A A(F)

(that is A := A\ 5 @ A(F) = A(F) is an isomorphism). If we define S, = A(H,),
then we must solve tl)m evolution problem

dS; .
T —{A[(5), 5}

Cauchy’s data: Sy = S
Of course, we need that A(F) be invariant under these operations.

An iterative method.- Suppose we know Sy and we want to search for S; as a
development in powers of the time t: S; = >, ., Skt*. Then, Vk > 0,

R V. CARCAY

S -
k+1 k n 1
u+tv=k

Finally, we must recover H; from S; = A(H;), and choose the correct way in order to
get our symplectomorphism F'.

2.5 Mechanical systems and variational principles

A classical mechanical system is given by a time-dependent Hamiltonian on the phase
space N' = T* M, i.e., on the cotangent bundle of a manifold M, called the configuration
space. Hence, we need a function

H:T"M xR —R

Thus, the energy-momentum 1-form o — Hdt, also called the Poincaré-Cartan 1-form,
is correctly defined on the extended phase space T*M x R.

2.5.1 Continuous variational principles

Given two basic points x¢,x; € M and two times fo,1; € R, let I' = (4 40),(21,t1) be
the set of paths 7 : [t, t1] —> T*M such that goy(ty) = xp and goy(¢;) = x;. On ' we
define the action

Aly) = /va—Hdt.
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The next principle on stationary action in phase space was formulated by Poincaré
(85, 7].

Proposition 2.3 :

The path v is a critical point of the functional A : I' — R iff its trajectory
15 a solution of Hamilton’s equations with Hamiltonian H.

The action on a connecting orbit is

Amzz/”Mmmww,

to

and we observe that the action on an integral curve ¢, is, in fact, the primitive function
associated to the corresponding flow:

Sunlo) = [ AU o (o)

to

In this context, A(H;) is also known as the elementary action of the Hamiltonian Hy,
and it is useful in order to define the Legendre transformation.

2.5.2 The variational problem

Other of the subjects of this thesis will be if we can state variational principles for
the orbits of an exact symplectomorphism, i.e., to give a discrete version of continuous
variational principles. That is to say, we want to state the laws of the discrete analytical
mechanics. We avoid the use of generating functions, because they are not always de-
fined, and its existence imposes serious restrictions to the topology of the configuration
space.

For the sake of simplicity, we shall consider a time-periodic mechanical system, that
is to say, a Hamiltonian function

H:T"M xS'— R,

where S' = R/Z and M is the configuration space. Let F' = ¢; o be the time-1 flow (we
suppose that it is defined on whole the phase space). It is an exact symplectomorphism,
and its primitive function is

ﬂ@zAAWM%MDﬁ

Physically speaking, a F-chain (see the Sections 5.4 and 8.2) will correspond to an
‘orbit’ of our Hamiltonian, in which the velocity is rudely changed every period (as in a
maneuver). To extreme the action on the space of F-chains corresponds to smoothe the
sharps. On an orbit, the continuous action and the discrete action coincide. In order to
classify the orbits by their discrete extremal character we must compute the index of a
certain symmetric matrix. In order to compute this matrix, we need the differential of
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the Poincaré map, which is easily computed by means of the variational equations of
our Hamiltonian vector field.

Of course, if our Hamiltonian is not time-periodic, or simply we consider different
time flows, we can do similar considerations. For instance, we can look for orbits
connecting two basic points (in the configuration space), periodic orbits, etc, by means
of a kind of parallel shooting method. It is like to ‘minimize’ the maneuvers.
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Chapter 3

Exact isotropic immersions

Isotropic manifolds and, in particular, Lagrangian manifolds, are objects dynam-
ically interesting. For instance, in KAM theory ', where the invariant tori are
Lagrangian (and the low dimensional tori are isotropic), or in PMA theory 2,
because the stable and unstable (immersed) submanifolds of a hyperbolic fixed
point are Lagrangian.

Another of the subjects of this thesis will be the so called Converse KAM theory
[68], which is a non-perturbative theory about the non-existence of invariant tori.
Although an invariant torus can have any dynamics [42], we shall consider only
KAM tori, that is, tori whose dynamics are given by rotations. By another result
due to Herman [41, 40], any invariant torus for a certain symplectomorphism in
which the dynamics is conjugated to an ergodic translation must be isotropic
(Lagrangian if its dimension halves the dimension of the phase space).

In this chapter we begin to generalize a result due to Mather [73]. Given an
exact symplectomorphism F'; we can associate to any F-invariant exact isotropic
immersion a conserved quantity, with the aid of their primitive functions. In
Chapters 6 and 9 we shall obtain more information in some special cases, and it
will be useful for Converse KAM theory.

3.1 Exact isotropic immersions

3.1.1 Definitions

An immersion v : P — N of a manifold P into the symplectic manifold (N, w) is called
isotropic iff v*w = 0. If the dimension of P halves the dimension of N we shall say
that our immersion is Lagrangian.

If the symplectic structure is exact, with w = da, we shall say that our isotropic
(or Lagrangian) immersion is exact iff there exists a function [ : P — R such that
v*a = dl. We shall say that [ is a primitive function of the immersion, and it is defined
up to constants.

by Kolmogorov, Arnold and Moser.
2by Poincaré, Melnikov and Arnold.

23
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Of course, we can fit these definitions to immersed submanifolds and (embedded)
submanifolds.
Examples

1)

Given a function [ : R — R, we know that the immersion

v: R — R? x R?
r — (z,Vi(x))

defines a Lagrangian embedding of R? into R¢ x R¢, and its primitive function is
[:
(v (y d2))2Xs = (y d2)y@yva(2) Xy = Vi(z) - Xy = di(2) Xy,

where z € R? and X, € T,R? ~ R?.

The vertical leaves x = x4 (79 € R?) on R? x R? are also exact Lagrangian. If we
parametrize them by v(y) = (zo,y) then their primitive functions are [(y) = 0.

An example of exact Lagrangian submanifold on the cotangent bundle of a man-
ifold is given by its zero-section. In fact, as Weinstein proved [97], this is the
universal model of Lagrangian submanifold, on an open neighborhood of it. It is
an extension of the Darboux’s theorem.

The leaves of the standard fibration of the cotangent bundle are also exact La-
grangian, and we note that the Liouville form vanish on them.

3.1.2 Invariance of isotropic immersions

Given a diffeomorphism F' : N' — N, we shall say that an immersion v : P — N
is F-invariant iff there exists an immersion f : P — P such that vof = Fov, called
the dynamics on the immersion. If the immersion is injective, i.e., P is an immersed
submanifold, then the dynamics is also injective. In such a case, the injective immersion
is also F~'-invariant iff f is a diffeomorphism, and we shall say that our injective
immersion v (or that our immersed submanifold P) is F, F~'-invariant.

Remarks

i)

ii)

For instance, a fundamental domain of an stable manifold of a fixed point is
F-invariant, but not F'~!-invariant.

As Foy = vof then v*oF* = f*ou*. In particular, if F is a symplectomorphism on
the symplectic manifold (N, w), then f*v*w = v*w, and the 2-form on P v*w is
f-invariant. If, moreover, w = da, we obtain that v*(F*a—a) = f*v*a—v'ais
a closed Pfaffian form on P. If our immersion v is exact isotropic, with v*a = dl,

this 1-form is also exact: f*v*a —v*a =d(lof) — dl.

N

If F'is an exact symplectomorphism, we can associate a conserved quantity to any
F-invariant exact isotropic immersion.
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Proposition 3.1 :

Let F : N — N be an exact symplectomorphism of a certain exact symplectic
manifold (N, da), with pf(F) = S.

Let v : P — N be a F-invariant exact isotropic immersion of a connected
manifold P, with v*ae = dl, and f : P — P be its dynamics.

We define the function ® : P — R by

b = So — (lof—l).
Then:

The function ® is constant.

Proof:
As
d(Sev) = d@*S)=v'dS =v'(Fra—a) = frv'a-1r'a
— d(i-f) -,
we reach d® = 0. a
Remark

If our immersion is F, F~linvariant and ®' is defined similarly by means of
F~!and f !, we obtain that

P = —Pof!

3.2 Families of isotropic immersions

Suppose we have a (smooth) family of exact symplectomorphisms

F: NxR — N
(z,6) — F.(z),

with pf (F.) = S, and an (smooth) family of invariant exact isotropic immersions of a
certain connected manifold P

v: PxR — N
(z,6) — v(2).

Thanks to the result of the previous section, we know that there exists a family of
conserved quantities

Ce - SEOVE - (leof_ le)a
given by the corresponding functions ®..

We can associate another conserved quantity to the immersion € = 0: the derivative
of ®, respect to €, in € = 0.
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Proposition 3.2 :
Let F, : N — N be a family of exact symplectomorphisms on an exact

symplectic manifold (N,w = da), being Sc : N — R the corresponding

family of primitive functions 3.

Let v. : P — N be a family of F.-invariant exact isotropic immersions
of a connected manifold P, being I : P — R the corresponding family of
primitive functions *, and f. : P — P be their dynamics.

We shall denote with superscript 1 the derivatives of any of these maps
respect to €, in € = 0. Then:

the constant function ®' : P — R (equal to C') can be written as

' (p) = 5" ((p)) — (' (Jo(p) — I (),
where
Si(z) = S'(2) — alFo(2)) F'(2)

and

I'p) = I'p) — a(m(p) v'(p).
Proof:
We must derive respect to €, in € = 0, the equality

Ce=®(p) = Sc(ve(p)) + le(p) — l(fe(p))-

On one hand,

Cl=o'p) = S'(w(p) +dS(1(p)) v'(p) +
I'(p) = I'(fo(p)) — dlo(fo(p)) f'(p)

= S'(w(p) + Fo’ewo(p)) v (p) — (o (p) v (p) +
I'(p) = ' (fo(p) — o’ ex(fo(p)) ' (p).

and on the other hand,

Fy'a(n(p)) v'(p) = e(Fo(10(p) Fo.(ro(p)) v (p),

w el(fop) fHp) = alw(folp) v.folp) f'p).
Finally, as F.ov, = v, f., then:

F'(n(p)) + Fo.(m(p)) v'(p) = v'(fo(p)) +10.(fo(p)) f'(p),

3That we suppose smooth, fixing the value of them for a certain point z € N.
4Idem.
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and we arrive to the desired equality:

C'=9o'(p) = S'(m(p)+
a(Fo(vo(p))) Fo.(0(p)) v (p) — e(mo(p) v' (p) +
Mp) — ' (fo(p)) — (e (Jo(p)) vo.(fo(p)) F'(p)

= S'(w(p)) J[a(Vo(fo(p))) (v (
IM(p) = ' (fo(p)) — a(n(p)) v

= ko) — () Pl 4
o)~ 1 (o) +
(o ol0))) ¥ (folp)) — (o (p) 1 ().

O

If the same immersion v is invariant for the family F, of exact symplectomorphisms,
then we obtain:

Ct = SHv(p) — a(v(fo(p) F'(v(p))-

In particular, if our family of exact symplectomorphisms is given by the flow of a time
independent Hamiltonian vector field, then we obtain that the immersion is contained
on an energy level.

Corollary 3.1 :

Let (N, da) be an exact symplectic manifold.

Let H : N — R be a Hamiltonian function, and @; be the corresponding
flow (that we suppose defined Vt).

Let v: P — N be an exact isotropic immersion, which is invariant for the
Hamiltonian flow.

Then:

H-v 1s constant.

Proof:

Let Iy = ¢ be the time-¢ flow of our hamiltonian. We know that it is
exact symplectic and its primitive function is

t
St == / A(H)Owtdt
0

Hence
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Therefore:

Ct = SHw(p) — ev(folp)) F'(v(p))

3.3 Two examples in Dynamics

3.3.1 Invariant tori

Let F': NV — N be an exact symplectomorphism with pf (F)) = S of an exact symplectic
d-manifold (M, w = da) such that:

e F has an invariant torus of dimension & < d, given by the Z*-periodic immersion
v:RF - N (ie., v is 1-periodic in all its variables 8 = (0y,...,0;));

e the dynamics on the torus is an ergodic translation (or shift) by w, R, (w is called
the rotation vector of the torus): R,(0) =0 + w.

As the translation is ergodic (Vk € Z% kw ¢ 7Z) then it is minimal (all the orbits are
dense in the k-torus), and the immersion must be isotropic, as Herman proved [40, 41].
As v is an isotropic immersion of R* it is exact: v*a = dl for some function [ : R¥ — R.
By periodicity, this function is

1(0) =a-0+1(0),

where a € R¥ and [ is a Z*-periodic function.
We know that the function

QH) = Sw)+10) —1(+w)
is equal to a constant C' € R. Hence, V8 € RF:

ZS(FH(VW)) = ZS(V(HJr(i—l)W))
= D@0+ (i~ 1)) ~U0) + 10+ qw))

= ¢C+a-(0+quw)+10+qw)—a-0—1(0)

= ¢(C+a- -w)+10+qw)—1(0),

and then

q
lim é SOS(F () = Cta-w.
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Remarks

i) The best approximations to the value C'+ a - w by means of the averages

LS S ()

q =1

are given by the best approximations of the rotation vector w by rational vectors
%, where p € Z* ¢ € N*. In fact, the error is given by

é(l(ﬁ—{—qw)—l(g)) = é(l(9+(qw—p))—l(9))
- éa—é(eﬂ(qw—p))-(qw—p)
— %(eﬂ(qw—p)) (w—g),

where t € [0,1] is given by the Mean Value Theorem applied to the function

L(t) =10 + t(qw — p))-

In the 1-dimensional case (k = 1), i.e., if we have an invariant circle whose dy-
namics is a rotation by w € R, then the best approximations are given by the
convergents of the corresponding continuous fraction.

ii) As the translation by w is ergodic, then the average on the orbit is given by an
integral:

.1 . i—1
}H?OQ;S(F (v(0) = /Tksoy.

iii) If we have a family of exact symplectomorphisms F, : ' — N and a family of
isotropic immersions v, : R¥ — A/ giving invariant tori for each ¢ with the same
rotation vector, then we can obtain a similar result:

1N ay i
lim;i SYUFY Hw(0) = C'+a' - w.

3.3.2 Stable and unstable manifolds of a hyperbolic fixed point

Let F : N'— N be an exact symplectomorphism, with pf(F) = S, and v : P — N be
a F-invariant exact isotropic immersions ,with v*a = dl and dynamics f : P — P. If
v contains a fixed point of F', 2y = v(py), then the conserved quantity is C' = S(z).
This is the case of the stable and unstable submanifolds of an elliptic-hyperbolic
fixed point z;. They are immersed submanifolds W?** given by injective immersions
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v5U : RF — N (k = d if the point is hyperbolic) such that v*%(0) = z; and dv®*(0)(RF)
is the tangent space to W*" at z,. Moreover, they are isotropic (Lagrangian, if k = d),
as can easily proved. For instance, in the stable case, as the dynamics is ‘contractive’:

vWw = (F"v®)" w—s0, where n — oo.

As an easy example, for any point s € R¥ on the stable manifold, we have that

: 1 - i—1( s
qg?qu;S(F (V(s) = C.

This facts were already know by Poincaré [85] for Hamiltonian flows, and they have
been used by Tabacman [93] for the computation of homoclinic orbits and by Delshams
and Ramirez-Ros [28] for the definition of a Melnikov potential for the study of the
splitting of separatrices. Last authors use similar results to the propositions in the
Sections 3.1 and 3.2. Easton [30] had already used the primitive function in order
to define a Melnikov potential, but he imposed more restrictions on the Lagrangian
manifolds.

3.4 Converse KAM theory

While KAM theory obtain many invariant tori for symplectomorphism which are near
enough to an integrable one (foliated by invariant tori), Converse KAM theory provides
criteria for non existence of such tori. These tori are horizontal, in the sense that
we have chosen a direction on our phase space and those tori are transversal to those
directions. For instance, if our phase space is the annulus T¢ x R?, the direction is in
fact given by the distinction between x (angles) and y (actions) coordinates. Our tori
are Lagrangian and they are given by

y=a+ Vi(x),

where [ is a 1-periodic function in all its variables and a € R? is the average of the
graph.

Converse KAM theory will be another subject of this thesis. The name have been
taken from a paper by MacKay, Meiss and Stark, Converse KAM theory for symplectic
twist maps [68]. In that paper they found a non-existence criterion of invariant tori
through a point of the phase space. They obtained that if a segment of orbit through
that point does not satisfy a certain local condition (a certain symmetric matrix is not
positive definite) then the point does not belong to a invariant torus. Curiously, that
local condition comes from the existence of a global function, the generating function.
Although the existence of this function is very useful in many cases, and have been
proved when our symplectomorphism satisfy some strong positiveness conditions, there
are many cases in which it does not exist or it is not clear.

We shall always attack the problems by means of the primitive function of our
symplectomorphism which always exists (well, at least if we work in R? x R?). For
instance, the first proposition in the previous section is a generalization of a result
due to Mather [73], obtained by him for sympletic twist maps having an invariant
Lagrangian graph (the existence of a global generating function was needed).
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Chapter 4

Symplectomorphisms and
generating functions

Along this part we shall work on the standard symplectic manifold R??. In this
chapter we follow the main topics of Chapter 1, but we do it in an indepen-
dent mode. We recall how to construct symplectomorphisms from generating
functions,and we relate them with the primitive functions, which always exist.

In the second part of this chapter, we solve formally the determination problem in
an special case, when the z-axis is fixed. As we shall see later this can be enough
for our purposes, if we already know that such a symplectomorphism exists (for
instance, if it is given by a Hamiltonian flow).

4.1 Symplectomorphisms

We consider R?? = R? x R? endowed with the position-momentum coordinates

z=(x,y) = (xl,...,xd,yl,...,yd).

Any diffeomorphism F' : R?* — R?? will be represented as

Moreover, we shall write

(e A=2% B= g—g, etc).

= a0

!'We recall that the standard symplectic structure on R?? is is given by w = dy Adz, and it is exact:
a = y dx is the action form. However, we shall not use this language along this part.
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4.1.1 The symplectic group
We note any matrix M of Msq(R) by dxd blocks:

v-(23)

Let J be the symplectic matrix

(01
r= ()
where I; is the d x d-identity matrix. Sp(2d) is the symplectic group of R?¢ (subgroup

of GL(2d,R)), that is to say, the set of matrices M € Myy(R) such that 2 MTJM = J.
Then:

MeSp2d) & MTJM=J & ATC=CTA,BTD=D"B,ATD—C'B =1,

0

MT € Sp(2d) <& MJM' =J < ABT = BAT,CD" = DC",AD" — BCT = I,.

Moreover, if M € Sp(2d), then |M| =1 and

_ DT —-BT
M1:<—CT AT >

4.1.2 Exactness equations
A diffeomorphism F' : R*? — R?*? is a symplectomorphism iff
Vz € R*, DF(z) € Sp(2d).
The exactness equations associated to F' are the Pfaffian system

g—i(:ﬂ, y) =g(z,y)" %(x, y)—y'

%(I,y) =g(z,y)" 5-(@,y)

Then, since F'is symplectic, the integrability conditions of our system are satisfied and
these equations define a function

S:R¥ 5 R

related with F', called its primitive function. Of course, it is defined up to constants
but, anyway, we shall write pf (F') = S. We remark that we can not recover f and g
from S. We need more information, because we must solve a system of p.d.e..

2While T means the transpose, ' will mean the transpose of the inverse.
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4.1.3 Lifts and vertical translations

For instance, all the diffeomorphisms of the form

(v) = Codim )

where ¢ : RY — R? is a diffeomorphism, are symplectomorphisms and have primitive
function equal to zero. These symplectomorphisms are the [ifts of diffeomorphisms ¢,
and they are represented by qAS It is easy to see that if we compose on the left our initial
symplectomorphism F' with a lift L = qAS then we obtain another symplectomorphism
F = LoF, with the same primitive function. Since our symplectomorphism F is given

by B
{ flz,y) = o(f(z,y))
g(z,y) = Do(f(z,y)) "g(x,y)
then
glz,y)" g—i(aﬁ,y)—yT = 9(96,y)TDqﬁ(f(ﬂc,y))1D<zﬁ(f(:lf,y))%(ﬂc,y)—yT
s
- %(ajay)
and
o) Sw) = G

A (symplectic) vertical translation is defined by means of a function [ : R? — R, it
is denoted by 7 = 7y; and it is given by

(5) - <y+él(x)>'

It is a symplectomorphism and its primitive function is just [ (it is a function which
only depends on the z-variables).

4.1.4 Monotonicity
We shall say that our diffeomorphism F' is monotone iff
Vz € R* |B(2)| # 0.

If F is a monotone symplectomorphism, then the matrices B~!(z)A(z) and D(z)B~'(z)
are symmetric. Following [40, 41], we shall say that F' is monotone positive iff some of
the next two conditions is verified:

(+4) Vz € R* B71(2)A(z) is positive definite;

(+4) Vz € R* D(2)B~'(z) is positive definite.
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We shall distinguish both types of monotone positiveness writing (+,)or (4+4). We can
define monotone negativeness in the same way.

The symmetric matrix

T(2) = 5(B(z) + B(2)")

will be called the torsion of F' at the point z. If it is positive definite for all the points,
we shall say that our diffeomorphism has positive torsion. If the torsion is uniformly
positive definite, we shall say that F' is a twist map and, as Avez proved in [14] (see

also [68]), the map
( ;Jc ) - < f(:f, 0) )

Geometrical meaning for d = 1.- We shall consider two geometric features:

is a diffeomorphism on R??,

e the transformation of vertical and horizontal vectors by the tangent map associ-
ated to our symplectomorphism:

a b 0\ (0 a b 1Y (a}).
c d 1) \d)’ \c d 0/) \c)’
e the transformation of the vertical and horizontal foliations, which are composed
by the leaves {x = 2} and {y = 3o}, respectively.
We shall consider three cases:

1. Positive torsion: b > 0.

e The vertical vector (0,1) tilts to the right.

e The leaves of the vertical foliation are transformed in graphs over x, which
are transversal to such a foliation.

2. Monotone (+4): ¢ > 0.

e The vertical vector (0,1) tilts to the right-up if b6 > 0 and to the left-down if
b<0.
e The leaves of the vertical foliation are transformed in graphs of increasing
functions over x, being transversal to the vertical and horizontal foliations.
3. Monotone (+,): § > 0.
e If b >0 (b <0), the vertical and horizontal vectors, (0,1) and (1,0), tilt to
the right (left).

e If b > 0 (b < 0) the vertical and horizontal leaves are transformed in graphs
over .
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4.2 Generating functions

Sometimes, a symplectomorphism is given by a generating function. Here, we shall recall
two examples. While for the definition of the Lagrangian generating function we need
F be monotone (|B| # 0), for the Hamiltonian generating function we need |D| # 0.
Although these conditions are enough in order to define locally our symplectomorphism,
we shall do global definitions.

4.2.1 Lagrangian generating functions

Suppose F'is a monotone symplectomorphism, and pf(F) = S. We shall say that it is
strongly monotone iff

Vr € R, f(z,) : RY = R? is a diffeomorphism.

This is the case when F'is a symplectic twist map.
Let ¢ = p(x,2') be its inverse, i.e., Vo, 2’ € R?

o' = f(z,(x,2)).
We define the function L : R? x R — R by
L(xz,2") = S(x, p(x,2")).

Therefore, applying the exactness equations, we reach to the relations

y=—V,L(z,z")

y' = VuL(z,z")
The function L is called a (global) Lagrangian generating function of F.

Hence, the relationship between the Lagrangian generating function and the primi-
tive function is given by
S(z,—V.L(z,2")) = L(x,2").

Moreover, the second derivatives of L are given by

0%L B
or'dr

2L,
w — B A,

Remark

Notice that this expressions appear in Section 4.1.4, in the definitions about
monotonicity. N
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4.2.2 Hamiltonian generating functions

As before, if
Vr € R g(z,-) : R? = R? is a diffeomorphism.

and 1 = 1(z,y’) is its inverse, i.e., Vz, 2’ € R?

y =gz, ¥(x,y"),

then we define a function H : R? x R? — R by
H(z,y') =y [(z.¢(x,y) = S(z,9(x,9))-
Therefore, applying the exactness equations, we reach to the relations
y=V,H(z,y)
t'=VyH(z,y)

The function H is called a (global) Hamiltonian generating function of F.
Therefore, the relationship between the Hamiltonian generating function and the
primitive function is given by

S(x,V,H(z,y")) = vy -VyH(z,y')— H(x,y").

4.3 Determination of a symplectomorphism

As we have recalled, we can determine a symplectomorphism by means of a generating
function, but this is not always possible. On the other side, the primitive function
always exists. But, as we have seen in Section 4.1.2, if we start from it we need some
additional information.

In this section we shall see that it is possible to recover an exact symplectomorphism
when it fixes the zero-section {y = 0}, using the primitive function and the dynamics
on the zero-section. It is useful when one obtains normal forms (Appendix F) and it
could be useful in order to obtain different dynamics around an invariant Lagrangian
manifold.

In fact, our assumptions on our symplectomorphism are not so restrictive, and
our manifold is a ‘formal’ cotangent bundle. Weinstein’s theorems [98] let us to send
via a symplectomorphism a certain neighborhood of any Lagrangian manifold onto a
neighborhood of the zero-section of its cotangent bundle. Moreover, using a generalized
Poincaré’s lemma, he also proved that if our Lagrangian manifold is exact then the
symplectomorphism is also exact (between two different manifolds, of course) 3. Finally,
we shall suppose that all the points of the zero-section are fixed. If not, we must compose
on the left with the lift of the diffeomorphism on the zero-section.

3For these results and their applications to the construction of Morse families see [98, 61].
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4.3.1 Set up

We shall adopt a formal point of view, in order to understand the nature of the problem.
Then, we assume that:

e our manifold M is R¢;

e the primitive function S is a formal series in y:

S@,y) =3 sale)y”

n
where the s,, are functions (we use multi-index notation: n = (ni,...,ng) € N%),

e and all the points of the zero-section are fixed:
f(z,0) =z, g(x,0) =0.

Hence, we want to recover our symplectomorphism F' = (f, g) looking for expressions

of the form:
2,y) =Y falz)y"

r,y) =Y galz)y"

where the f, and g, are vector functions:

fn:(faaf) agn:(grlu"'agg)Ta

being fy = z and gy = 0.

4.3.2 Iterative process

From the exactness equations we can obtain the relationship between the terms of f,g
and S. In the next formulas, ) . means Z;j:l and u,v € N are multi-indices. Firstly,
since

oS 3sn )

a—x](‘ray) = Zax]
= Zg z y (z,y) = y;
= Z ((ng«b(z)y") (Z gi( z)y" )) — Y
- TY ¥ (Fe

i utv=n

x)) y" =y,
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then Vn e N, Vj =1+ d
&Sn 8]”
- 5ne-a
or, ™ = 2 2 g :

where ¢ is the Kronecker’s delta. Secondly, since

oS
P (x,y) = § :(nJ + 1)Sn+ej (x)yn
i .

. ofi
Ei:g’(:v,y)a—;(x,y)

> (Zg;(x)yn> (Z(nj—i—l) e (x)y”)

n

Z(Z S (w+1)fi, (x >g:;<a:>) e

i utv=n

then

(nj + 1)Sn+ej (I’) = Z ( Z (’LL]' + 1)f1i+ej (l‘)g;(%’)) :

7 u+v=n
So then:

e the function sq is constant, and we can suppose that this constant is zero;

e the functions s., vanish.
Therefore, the primitive function verifies
DS(z,0) = 0,

and, in particular, is constant (null) on {y = 0}.
In order to find the z-functions f,, and g,, we have to solve these equations recur-
rently by increasing orders. The order 1 equations are, Vi,7 =1+ d

gZi = 6ij

fgi = (1 + 62]) Seite;
Now, we suppose that we already know the terms of order £ — 1 and we have to obtain
the terms of order k. The equations are, V|n| =k, Vj =1+ d:
=G
nifi+ g+ )Y fo e, = Fi
i#]
where the terms G,, are computed from terms of lower order and the F), depend on,

moreover, the g,. We have obtained a linear system with natural coefficients for the
fn- We are going to solve it.
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4.3.3 Solving the linear systems

Let N = (Ny,...,Ng) be a multi-index subscript (with |N| = k) and let J =1+ d be
a superscript. We want to know how many equations the corresponding f7, contain.
Every equation is identified by a subscript n and a superscript 7, and it is written as

R i — J
Z(n] 62] + 1) n—eite; - FTL
Since _
fz,eﬁej = [ = i=1, n=N+e;—ej,
then f# only appears at the d equations
S NG 4610 =0 Nres o = Fliey e

)

where j =1+ d.

Notice that all the terms f in these equations are of the type f}ﬂerei, with ¢ = 1+d.
Hence, the terms f,, appear in d x d-blocks, and we have to solve the corresponding
linear sub-systems. If any subscript has a negative component, we assume that the
corresponding F' is equal to 0, and we also deduce that the corresponding f is equal to
0. Adding the d equations,

ZF]JV"‘BJ_@J‘ = ZZ(N] + 5JJ - 5ij)f]i\7+e‘1—ei = |N| Zf]i\f-i-e‘]—ei?
j i i
where |[N| = ). N;, and we obtain that
i 1 '
SJ = Z fN‘l‘@J—@i = W ZF]JV%*C‘]fe]"
i J

Finally, since

F =3 Nyt 1= 6i) fhse, e = (Ns + 1S = f,

2

we get
fi = (N +1)Sy — Fy.
4.3.4 Statement of the result
What we have proved in the last paragraphs can be summarized as follows.

Theorem 4.1 :

Let F be a ‘formal’ symplectomorphism on R2? given by

flay)=z+ ) falx)y"

In|>1

g(x,y) = galz)y"

In|>1
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being

Sy) = 3 sa@)y”

its primitive function. We take fo(x) = x and go(x) = 0. Then:
o The function sq is constant and the functions s., vanish, i.e.,

DS(x,0) = 0.

o We can recover the x-functions f, and g, from the z-functions s, by
means of the next recurrence:

— Step 1: Vi, =1+d:
gé'i = 0y
fgi = (1 + 674) Se;+te;
— Step k> 1:Vn|=k, Vj=1=+d:
=G
fi=n;+1)S) — F}
where

. 05, afi
G, = 2 (2) g, (@),
aZE] Z Z 8xj

u+v=n

uF#0

Fg = (nj+1) Sn-l-e Z Z (uj +1)f u—l—e ( )gf}(I)

i u+v=n
v > 1

and
S = IE:Fi
n E i ntej—e;’

Examples

1) If we work on T¢ x R?, the functions f,, g, and s, are 1-periodic in all its variables
for [n| > 0. An example corresponds to the case in which the zero-section is
invariant and its dynamics is given by a shift + — r + w.

2) Another example is the case in which the dynamics on the zero-section is given
by ¢(z) = Az, where A = diag(Aq,. .., \¢) and, for instance, |\;| < 1, Vi =1+ d.
(i.e., the origin is a hyperbolic fixed point and the zero-section is the corresponding
stable manifold).
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Remarks

i)

ii)

iii)

iv)

The condition Vo € R? DS(x,0) = 0 is necessary and sufficient for the zero-
section to be fixed. A similar condition also works for an exact Lagrangian in-
variant graph for an exact symplectomorphism defined on a cotangent bundle. In
particular, we can associate a conserved quantity to such a graph.

If the points of the zero-section are not fixed, and we want to solve the problem
directly, then the linear systems are more difficult. Let ¢(z) = f(z,0) be the
dynamics on the zero-section. The order 1 equations are, Vi, j =1 + d:

> gath =
a gel -
Ty
Z fl ge 1 + 6zy) Sel—l—e]
The order k equations are V|n| = k,Vj =1+ d:
Z 8¢z z _
3:15]

Z( _51] )fn ei+e; gel_Frz

il

In order to solve these equations, we need, of course,
[Do(z)| # 0.

Following the calculations we can obtain the known normal forms around invari-
ant tori and hyperbolic points, as we have made in Appendix F. We can also
obtain normal forms around lower dimensional hyperbolic tori, but we need some
reducibility hypotheses.

We must prove the analyticity of the expansions. Instead doing this, we shall
obtain the symplectomorphism as the time-1 flow of an analytic Hamiltonian.

4.4 Primitive function versus generating functions

As we have said, not all the symplectomorphisms can be generated by a generating
function, specially by the Lagrangian ones. For instance, the ‘naive’ integrable sym-
plectomorphism on the annulus A =T x R given by

{ ' =w+z+y* (mod1)
y'=y
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can not be defined by a Lagrangian generating function, even in a neighborhood of
the zero-section, which is the invariant curve we are interested in. If we look for the
Hamiltonian generating function, we obtain

1
H(I’,yl) = (w+$)y,+ gylg,

and this function is not well defined on the annulus. Its primitive function is

2
S(I’,y) = _y3~

3

The method we have introduced allow us to construct any dynamics around a zero-
section that we keep fixed. The method can be carried out with the aid of a computer,
and, if our basic manifold is a torus, we should perform an algebraic manipulator of
Fourier-Taylor series. Moreover, the algorithm is a simple iteration, and we do not have
to apply the Implicit Function Theorem, as if we use some kind of generating function.
On the other side, we shall also see that any of these dynamics can be generated by a
Hamiltonian flow.

As we shall see, the primitive function is nearer to the Lagrangian generating func-
tion than the Hamiltonian one. This is due to the choice of privileged directions in our
phase space: the vertical ones. Notice that the zero-section is horizontal, that is, it is
transversal to the vertical directions, as any graph. If we had prefered the horizontal
directions, other kind of primitive function could be defined, and it would be nearer the
Hamiltonian generating function (see Appendix G).



Chapter 5

Variational principles

We shall consider different variational principles for different ‘objects’ (fixed
points, periodic orbits, orbits) of a certain symplectomorphism F : R?¢ — R??,

First, we recall the Lagrange and Hamilton variational principles (if the corre-
sponding generating functions can be defined), and some variational principles
using the primitive function: the Poincaré variational principles. After this, we
construct the variational principles by restriction of the action to a certain sub-
manifold. The action will be defined by means of the primitive function. This
idea was already used by Moser [79] for the search of fixed points.

Although variational principles are a very powerful tool in order to look for certain
orbits (for instance, in Aubry-Mather theory [76]), most of the results need the
existence of a global generating function (mainly the Lagrange one). We have
used the primitive function, which is a global function that always exists. We
shall not prove existence theorems of fixed points, homoclinic orbits, etc. (This
is the usefulness of the existence of a global generating function, for instance),
but we shall use these variational principles in order to obtain information about
a given orbit.

Last section is devoted to the the invariance of the extremal character under
different canonical transformations: the lifts and the vertical translations. This
is connected with the election of privileged directions on our phase space.

5.1 Lagrange, Hamilton and Poincaré
variational principles

We shall look for fixed points and orbits. In the second case, we shall define the actions
in a formal way, and they will be applied to bisequences of points:

e X = (zy)rez (configurational bisequence),
e 7 = (2)kez, where zx = (zx, yx) (complete bisequence).
Remarks

i) We can define the actions on finite sequences, fixing the initial and final ‘z’.

45
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ii) It is possible to get the actions in order to look for periodic orbits.

iii) In both cases, we can modify the actions if F'is a lift of a symplectomorphism on
T? x R? or T¢ x T?, and we look for periodic orbits of a certain rotation vector.

<

These are the discrete versions of Lagrange and Hamilton variational principles for

the orbits of a Lagrangian and Hamiltonian system. While the Lagrangian ‘lives’ on

the configuration space, the Hamiltonian ‘lives’ on the phase space of positions and
momentums.

e Lagrange variational principle
Let L be the Lagrangian generating function. (We need g—g to be non singular).

— The fixed points correspond with the stationary points of the action
l(z) = L(z,x).

— The configurational orbits correspond with the stationary configurational
bisequences of the action

L(X) = ) Lz, ap41)-

kEZ

e Hamilton variational principle
Let H be the Hamiltonian generating function. (We need g—z to be non singular).

— The fixed points correspond with the stationary points of the action
— The orbits correspond with the stationary bisequences of the action

H(Z) = Y (xxyr — H(zg, ypsr)).

kEZ

Poincaré used variational principles in order to look for periodic orbits of systems
related with celestial mechanics. He considered the Poincaré maps of a certain Hamil-
tonian system, and he looked for fixed points of this map. The primitive function arised
on them.

e First Poincaré variational principle
(We suppose % to be non singular).

— The fixed points correspond with the stationary points of the action (see
[85, 80])

p(r,y) = yl@— f(z,y)+S(z,y).
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— The orbits correspond with the stationary bisequences of the action

P(z) = Z(ykﬂ(l’kﬂ = f(@k, yk)) + S @k, yr))-

keZ
e Second Poincaré variational principle

— The fixed points correspond with the stationary points of the action

ply) = Slt+gley) (o—f@y) + Sy)

if —1 is not an eigenvalue of DF(z,y), V(z,y) (see [85]).

— The orbits correspond with the stationary bisequences of the action

P(2) = Y (ks + 90w 00) (e — foeue)) + (e )

keZ

if a certain infinite matrix is non singular. (If we work with finite sequences,
we obtain the condition for a certain finite matrix).

e Third Poincaré variational principle
9 .
(We suppose a—z to be non-singular).

— The fixed points correspond with the stationary points of the action
p(r,y) = g(z,y) (x— flz,y) + S(z,y).

— The orbits correspond with the stationary bisequences of the action

P(Z) = > (9(xe, ) @esr — Flae, ) + S(ze, ui)).

kez
Remarks

i) We observe that all the actions give the same result for an orbit of the symplec-

tomorphism:
Z Sk, Yr)-
keZ

For fixed points (z,y) it is
S(x,x).

ii) Although Poincaré variational principles are written by means of the primitive
function, they do not seem to have a strong geometrical meaning. Since y is a
momentum (a 1-form) and z is a position (with momentum y on it), what does
y(z — f(x,y)) mean? We need z — f(x,y) be a vector. In R? is clear, but in
other manifolds? Possibly we need an additional Riemannian structure on the
configuration space.
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iii) Although we have stated the variational principles using formal sums, they can
be finite is some cases. For instance, if we consider homoclinic orbits to an hy-
perbolic fixed point, and we give the value 0 to the primitive function in such
a point. If that fixed is parabolic the convergence of the expansion depends on
the velocity in which the homoclinic point tends to the parabolic fixed point.
In other cases suitable corrections should have to be performed, for instance for
homoclinic orbits to an invariant curve whose dynamics is given by an irrational
rotation. Heteroclinic cases can also be considered.

5.2 Fixed points

We have an exact symplectomorphism F' given by

{x’zf(x,y)

Y =g(z,y)

Y

being S its primitive function. So then, we consider the fized action s as the function S
restricted to the vertically transformed set K, that is, the set of points (z,y) verifying
the condition x = f(z,y). Of course, it contains the fixed points. We suppose that this
set K is a submanifold of R**, and impose that the rank of the matrix

(I-A, B)

is maximal (equal to d) in all its points. This transversality condition is satisfied when,
for instance, F' is monotone, and then the vertically transformed set is, locally, a graph.
(This last case appear in the works of Moser [79] and Arnaud [3]).

Proposition 5.1 :

Let F = (f,g) be a symplectomorphism on R??, being S its primitive func-
tion. Suppose that the vertically transformed set

K = {(z,y) e R | f(z,y) =z}
satisfies the transversality condition, and consider s = S : K — R. Then:

o The fixzed points of F' are critical points of s.

e If F' is monotone, the critical points of s are fixed points of F'.

Proof:

By the Lagrange multipliers method, we must look for the critical points of
the function

L(z,y,\) = S(z,y) + A (x — f(x,y)),
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where A € R?. The system of equations is

(02 OL _0S w00\ _ T T
[y_on_os_cor

- = — — T_

oL
0:—:
\ o\

(,I' - f(xa y))T
Therefore:

e If (z,y) is a fixed point of F = (f, g), then it is a critical point of the
function s (having A = y).

e We suppose now that ‘g—ﬂ # 0 (F is monotone). Let (x,y) be a critical

point of s (in particular, x = f(z,y)). Then, the second equation gives

A=g(z,y),

and the first one gives
A=y.

Remarks

i) Of course, if the monotonicity condition is satisfied on the points of the vertically
transformed set, we can obtain the same result.

ii) We can obtain other variational principles for fixed points having other functions
and other constraints. For instance, we can take the action

5(x,y) = S(z,y) —y(f(z,y) —x)

restricted to the set {y = g(z,y)}.

5.2.1 Extremal character

Given a fixed point (xg,9o) of a certain symplectomorphism F' : R* — R??, we shall
say that it is a transversal fized point iff the rank of the matrix

(I-A, B)

is maximal (equal to d) on it. In such a case, the vertically transformed set is regular
in a neighborhood of it. We distinguish two cases.
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Monotone case: |B| # 0.- Hence, we can write the vertically transformed set in a
neighborhood of that point as a graph

and the action is written as

s(x) = S(x,n(x)).

Since the function 7 is implicitly defined by

z = f(z,n(z)),

we can compute its derivatives. They are

g_z(z) _ <g—£(aj,n(m))>_1 <I—%(M(x))>-

Hence
o) = el + 5 () G
— glanl@)) S nt)) — @)+ gle @) G ) Fho)

= g(z,n(x)" —n(z)"

As we see, on the fixed point these derivatives vanish. We are going to compute the
Hessian matrix on our fixed point. We shall write A = A(z), etc.

5, 5, 0 0
D?*s(zy) = 8—Z($0,y0) + 8_Z($0,y0) 8—2(%) - £(l"0)
= C+(D-I)B'(I-A)
= DB '4+B'A+C-DB'A- B!
= DB '4+B'A—(B'+B").

Hence, we have proven the next proposition.

Proposition 5.2 :

The extremal character of a monotone fixed point is given by the symmetric
matric

~ A

H = + BT,

_l’_
where A= DB~' + B~'A and B = —B~!.
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Remark

Notice that
and, hence, the image of the z-parametrized manifold
z — (z,1(z))
for F(x,y) — (x,y) is parametrized by
r — (z,Vs(x)).

So then, the image for F'(z,y) — (z,y) of the vertically transformed set is a
Lagrangian submanifold, and the fixed points correspond with the intersec-
tions of this Lagrangian submanifold with the zero-section {y = 0}. <

Non monotone case: |B| = 0.- The fixed point is degenerate as critical point of
the action. For instance, if I — A is regular at the fixed point, then we can write locally
the vertical transformed set as a vertical graph

r = viy).
Proceeding as before, the Hessian matrix at the fixed point (o, yp) is
(CT(I-A)"'B+D-I)(I—-A)'B,
and we see that it is degenerate.

Proposition 5.3 :

Non monotone fized points are degenerate critical points of the fized action.

We shall consider now the case d = 1. Hence, suppose that in a neighborhood of the
fixed point (zg,yo) we can write the vertically transformed set as a function = = v(y).
Then, we must seek the critical points of the function

s(y) = Swv(y),y).

We obtain that:

o s'(y) = (9(v(y),y) = ¥)V'(y), and then §'(yo) = 0. Moreover, v/(y) = L=

and /(yo) = 0.

o s"(y) = (9:(v(v), y)V'(y) + 9,(v(y),y) — DV'(y) + (9(v(y),y) — y)¥"(y), and then

8"(yo) = 0 and the critical point is degenerate. Moreover, 1" (y) = %

e s"(yo) = 2(gy(x0,y0) — 1)V"(yo) = 2%, and the fixed point is an inflection

point of s, provided fy,(xo,yo) # 0.

Note that, if (zg,yp) is not a fixed point, but s'(yg) = 0, then it is non degenerate

provided fy, (%o, yo) # 0.
We also can use the bordered Hessian matrices in order to study the extremal char-

acter of fixed points.
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5.2.2 Dynamical character

The dynamical type of a fixed point is given by the eigenvalues of M = DF (g, yo). It
is well know that its eigenvalues (also called the multipliers of the fixed point) appear
either in pairs or in quadruplets, since the characteristic polynomial is reflexive (see,
for instance, [76])':

ANeo(M)= "' ea(M).

In fact, given an eigenvalue \ € C:

e if ) is real, but different from +1, then it has a real partner A~!, and we shall say
that {\, A7'} is an hyperbolic pair, with reflection if X\ < 0 and without reflection
if A > 0;

e if A = +1, then it has even multiplicity, and we shall say that it is parabolic, with
reflection if A = —1 and without reflection if A = 1;

e if A is on the unit circle but it is not real, then its partner is A"l = ), and we
shall say that {\, \} is an elliptic pair,

e if A is neither real nor of unit modulus, then there must be a (complex) hyperbolic
quadruplet of eigenvalues {\, \™1, \, A1} (of course, this case can occur only for
more than 2 dimensions).

Hence, we obtain that R?? splits in elliptic, hyperbolic and parabolic subspaces R*? =
E @ H @ P (generically, dim P = 0). The dimensions of these subspaces are called
the elliptic, hyperbolic and parabolic dimensions, respectively. Furthermore, we can
compute a kind of symplectic Jordan normal form, called Williamson normal form
[101].

Herman proved that the eigenvalues of the matrix M are those values A such that
the determinant of the matrix

M, = BT'A+ DB '—AB'—-)\'B7T
A+ AB+\'BT
H+\A-1)B+(\'-1)B"

vanish, provided that B is regular. Notice that M; = H and |M,| = |M%|, since H
is symmetric. Hence, the extremal character contains relevant information about the
linearized dynamics around the fixed point.

5.3 Periodic orbits

In order to look for the g-periodic orbits of an exact symplectomorphism F' given by

{x’zf(x,y)

Y =g(z,y)

Y

L5’ means the spectrum of a matrix.
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being S its primitive function, we shall consider the exact symplectic product and the
exact symplectomorphism Fj (see Section 1.4). We write Fj, as

) f(l‘qfla yqfl)
€1 f(x()a yO)
Tg—-1 . f(xq—% yq—Z)
Yo g(xq—la yq—l)
Y1 g(iUo, Zlo)
yqfl g(l‘qua yq72)

Then fixed points of Fj, correspond to g-periodic orbits of F', and we applied the results
of the previous subsection. The fixed action for Fj is the periodic action

q—1

Sq(:EOa ceey Tg—1,Yoy - - ayqfl) — ZS(UUZ,Z/Z)

i=0
and it is restricted to the loops. The loops are the ¢-sequences of points such that
o Vi=0+ q_2a f(xzayz) = Ti41,
i f($q—1, yq—1) = To-

We note that if /' is monotone, so is Fj.

5.3.1 Extremal character

In the previous context, in order to compute the extremal character of a ¢-periodic
orbit we need first to compute DFj. It is the 2¢d x 2¢d matrix

0 0 ... Ay 0 0 ... By,

Ay 0 ... 0 By, 0 ... 0

A B B A, e 0 B, 5 O
C D - 0 0 Co1 0 0 Dy 4
Co O 0 Dy 0 0

Cpa 0 D, 0

Hence, the extremal character of the g-periodic orbit is given by (for ¢ > 3)
H, = DB'+B'A—-(B'+B™")

Ay By B,
B A B
Bl A By
qul B(;er Aqfl
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provided that F' is monotone at all points of the periodic orbit. We have defined
A= DB +B;_1AY, and B; = —B; ! (i =0+ ¢ — 1, identifying —1 with ¢ — 1).

5.3.2 Dynamical character

The dynamical character of a ¢-periodic orbit with initial point in zo = (0, yo) is given
by the eigenvalues of M = DFY(z)) = DF(z4—1)...DF(z). Using Floquet theory in
configuration space [66, 53, 22], the eigenvalues of M are in correspondence with those
values of A such that the determinant of the matrix

i, B AT
B A B

LA B
AB, Bl, A,

= H+(A-1)E, 1 ®B, 1 +(A*'—1)E], ®B) ,

is equal to zero, where ® means the Kronecker product and E,; is the ¢ x ¢ matrix
with 1 in the (g, 1)-entry and zero otherwise. This is an extension of the Herman result
in Section 5.2.2. In particular, M; = H,. Since the coefficients of A — 1 and A™' — 1
are rank d matrices and |M,| = |M,-1|, then the determinant will be a polynomial of
degree d in the variable A + A™! (see, for instance, [22] for a proof).

If we group the eigenvalues by reciprocal pairs JA;, )\;1 (1 =1+ d) and we consider
the d residues of everyone of the multipliers,

1
B = 4(2=XN-A\"),
then
d —1\¢ g—1
[Ir = (3) Ll
i=1 j=0

as Kook and Meiss proved in [53] when our symplectic map is generated by a Lagrangian
generating function.

We wonder also about the dynamical character of the g-periodic orbit as fixed point
of F,. Applying the Herman result, it is given by the values of A such that the deter-
minant of the matrix

Ay ABy A'B],
AB] A ABy
M, = " ..
)\_18;3 Ay o AB, 9
)\Bq,1 )\_IBT72 Aqfl

= H+(A-1DI,®B, 1 +(\' =1 @B/,
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vanishes, where I'; is the fundamental circulant matriz, which is

01 0 0

00 1 0
r, =

00 O 1

1 0 0

We also obtain My = H, and |M,| = |M,-1|.

5.4 Connecting orbits

Let F' be the symplectomorphism in R?? given by

{:v’zf(x,y)

y' = g(z,y)

Y

with S as primitive function.
Given two z-points X,,, %, € R?, where n > m + 1, we want to look for the orbits
connecting them after n — m steps, i.e., the (m, n)-sequences of R*

(xma ym)a (xm+17 ym-l—l)a e (.Z'n_l, yn—l)
such that
® Tm = Xm,
o Vi=m+n—2, F(z;y:) = (Tit1,Yi+1),
4 f(l‘nflaynfl) = Xp.

We shall consider the (m,n)-orbital action

Sm,n(ajma Yms Tm+1) Ym+1y - - - 5 Tn—1, ynfl) = Z S(wza yz)a

which is restricted to the points satisfying that
® Tm — Xm,
o Vi=m~+ n_25 f(xzayz) = Tjt1,

L4 f(xn—la yn—l) = Xp-
This set will be call the set of chains, Kpnn = Kx,, x,- 1t is a d(n—m—1)-submanifold
of R24m—m) provided the rank of the matrix
B, -1
Amy1 Bupr -1
An72 Bn72 —1
Anfl anl
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be maximal (= n—m) in all the chains. For instance, this transversality condition is
satisfied when F' is monotone. If this condition is satisfied for a certain connecting
orbit, we shall say that it is transversal. An orbit will be a transversal orbit iff all its
segments are transversal.

Proposition 5.4 :

Let F = (f,g) be a symplectomorphism on R??, being S its primitive func-
tion. Given two T-points X, X, € R, suppose that the corresponding set of
chains, K, ,, satisfies the transversality condition, and consider the orbital
action Sy, on it. Then:

o The connecting orbits are critical chains of Sy, p.

e If F' is monotone, the critical chains of Sy,, are connecting orbits.

Proof:
By the Lagrange multiplier method, we must seek the critical points of the
function
L(yma Tm+1sYm+1s -+ s Tn—1,Yn—1, )\la sy )\n)
n—1
= (S(wiyyi) + Nigr - (Tivr — f(2i,9))),
where all the variables belong to R?, and we have taken z,, = x; and
Tn = X,. The system of equations is:
( oL 0
0= 0w (9(ws, yi) — )\i+1)Ta_£(xiayi) +(Ni—wi) " (i=m+1+n-1),
OL 0
$ 0= 2 = (glon) — At) Do) 1= m 50 1),
oL .
0= = (z; — f(®i1,yim1)) " (i=m+1+n).
L o\
Therefore:

o If (24, ¥i)i=m=n_1 IS & connecting orbit between x,, and x,, then it is a
critical point of the function S,,, (having \; =y; Vi = m+1+n—1
and A\, = g(In—la yn—l))

‘_f

e We suppose now that ‘ # 0 (F' is monotone). For a critical point

of Sy, (in particular, Vi = m +n — 1, x;11 = f(z;,y;)) the second
equations give Vi = m +n—1

Niv1 = 9(xi, vi)
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and, therefore, the first ones give Vi = m+1+n—1
)‘i = Y-

Finally, we obtain Vi = m +n—2

9(xivi) = Aig1 = Vit

5.4.1 Extremal character

We have seen that the connecting orbits between two z-points x,,, and x,, are critical
F'-chains of a certain action. We wonder about their extremal character, i.e., about the
second order derivatives H,, , = DZSm,n. If F' is monotone, or at least it is monotone
in the region where the segment lives, then the function S,,, can be locally written in
variables Z,,11,...,%,_1, and we can compute this Hessian matrix.

For the sake of simplicity, we shall consider m = 0. Hence, we shall consider the
connecting orbits between x, and x,,. Since F' is monotone, the set of equations

f@iy) = @i (i=0+n-1)
defines implicitly a set of functions
ni = ni(x,2') (i=0+n-1)
such that

f(xiani(ajiaxﬂ»l)) = Tjy1 (Z =0=+n-— 1)

Of course, these functions are defined on a neighborhood of a connecting orbit. Their
derivatives are given by the equations

0 ) o,
0= a_i(xi’m(xi’xiﬂ)) + a_z(xi,m(xi,xiﬂ)) a—Z(Ii,xiH)

and

of an;

I = a—y(ﬂfi,m(%,%Jrl)) ax,(ﬂﬁz‘,%iﬂ)-

Therefore, we have to compute the critical points of the function

n—1

Son(@1,. s wn1) = Y S(wimi(wi, wip1)),

=0
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where we have taken xqg = X and z,, = x,,. So then, Vi =1+n — 1:

dSo.n ds s an; ds
8—:;; = a—x(% 77i) + a—y(l“i, 77i) —8:1: (%l"iﬂ) + a—y(%—l, m_1) _8x’ ‘(l"i—lal"i)
of of on;
_ R YL S S T (e )
= g(xim) 5 (i m) =+ g(xi,m) o (@i, mi) 5 -+

0 on;_
9(%’—1;771'—1)T a_i(xi—lani—l) ngl

= 9(1151'71,771'71)T - UZT-
Therefore, the orbits are extremals of the action. We are going to compute the second

derivative on a connecting orbit. We have written A; = %(zi, i), ete.

e Vi=1+n-1,
Sy, Oy
oxz Oy

2

o Vi=2+n-—1,
0?Son dg ( ) ag( ) Oni—1 ( )
. a. — a-\WTi-nYi-1) = 5o\ Tien, Yie1) (X1, T
0x;_10%; ox b Yin dy L i ox !
= C;y—Di B, 4A; 1 =-B,_| ;

e Vi=1+n-—2,

2 =~ (T,
0x;110x; oz’ i
— _RBLl.

e All the other second derivatives vanish, and, of course, we have obtained that the
Hessian matrix is symmetric.

Summarizing:

Proposition 5.5 :

The Hessian matriz associated to a monotone segment of orbit is given by
the block-tridiagonal symmetric matriz

A B
Bl 4, B,
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where the matrices A; and B; are given by
Ai — Di—le‘_}l + Bl_lAl

and

Connecting orbits with positive definite Hessian matrix will be interesting in the
sequel. All of their points must be monotone, because in other case the Hessian is
degenerate.

5.4.2 Minimizing orbits

We shall say that a connecting orbit is minimizing iff its Hessian matrix is positive
definite. Hence, an orbit is minimizing iff every segment of it is minimizing (for the
corresponding action). We shall say that a point z is minimizing iff the action Wy,
with xg = ¢oF1(2) and xy = ¢oF(z) is minimized on z. Then (in the monotone case),
the matrix

A(z) = DF'(2)B(F~'(2))"" + B(2) T A(2)

must be positive definite.
Remarks

i) So then, minimizing means non degenerate minimum.

ii) Since the eigenvalues of a matrix depend continuously on its components, if we
have a minimizing segment of orbit then another segment of orbit close enough
to the first will be also minimizing.

iii) All the subsegments of a minimizing segment are also minimizing.

iv) A minimizing orbit of F' is also a minimizing orbit for any power of F', because
in the second case the chains are defined with more constraints and the primitive
function of a power of F'is the sum of the primitive function on each point of the

segment. That is to say, if S, is the primitive function of F'?, where ¢ € N*, we
know that

Then, the (m, n)-action associated to F'¢ applied to the F%-chain

q q q q
(.I'm, yma tey xnfl’ ynfl)
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1s
n—1
SQ;m,n(xgn’ ygm tet ’x(r]z—la yz—l) = Z Sq(l‘;-], y?)
=m
n—1 q¢—1

= > > SeFi(ad,yf),

i=m j=0

which is also the (m,ng)-action associated to F' applied to the corresponding
F'-chain.

v) Let (z9,yo) be a g-periodic point, with ¢ > 2. If the corresponding segment of
length ¢ minimizes the ¢-periodic action then it also minimizes the g-orbital action
with xg = 2y and x, = .

The MMS iteration.- In [68] the Hessian matrix is written using the Lagrangian
generating function, but if we use the results of Section 4.2 we see that the two matrices
coincide. Then, although the Lagrangian generating function does not exist, we can
define a (local) extremal behaviour of the orbits.

On the other side, they describe the following method for block-diagonalizing that
matrix. They write

AL B
Bl Ay B
B, An
L Dy I Di'B
BT Dy I Do I DBy
BT D77, T Dn_1 T

where the diagonal blocks are given by the recurrence

Dl = Ala
)

Di=A;-~B  \D\B, ,(i=2+n-1)

provided D,_, is invertible. If the matrix is positive definite then all the symmetric
matrices D; are positive definite.

1 degree of freedom.- If d = 1, then we can obtain a recurrence for the characteristic
polynomials of Hy; (7 > 1), that we shall call p;_y: p;—1(x) = det(z — Hy;). Then:

{ po(z) =1,pi(x) =2 — a3
pi(w) = (v — @i)pia (v) = bi_1pia(@) (i > 2).
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The sequence of polynomials {p;,p; 1,...,p1,p0} is an Sturm sequence for the poly-
nomial p; (see [11]). In particular, all the eigenvalues of H; are different (and real, of
course), and, moreover, we can compute the number of positive eigenvalues:

If p;_1(0) # 0, the number of positive eigenvalues of H; is equal to the
number of changes of sign in the sequence {py(0),p1(0),...,p;—1(0)}.

This is a particular case of the Sturm’s theorem.
Hence, we must compute the number of changes of sign of the sequence

ro =1, m = —ay;

T = —Q;Ti—1 — 622717"1'_2 (Z > ].)
Remark
This fit into the MMS iteration, by defining (for ¢ > 1)
~ T

di:_

Ti—1

5.5 Index, torsion and dynamics

Given a fixed point, we wonder about the relationship among its extremal character as
fixed point, periodic orbit or orbit, and its dynamical character. He shall follow with
the notation in Section 5.2. We shall consider two examples, but further information
can be found in [66, 53, 22, 3].

e About its dynamical character, we shall use the next result due to Herman, who
stated that the eigenvalues A\ of M satisfy

rg(M = M) = j < rg(My) = j,
where My = B'A+ DB ! — B! — X"1B~". Hence, following Arnaud [3]:
My = H+(1-XxYHYB T4+(1-)NB"L
e As fixed point, its extremal character is given by the matrix
H = DB '+B'A—(B'+B ")
= A+B+B".

e As g-periodic orbit (for any ¢, ¢ > 3 — the case ¢ = 2 is different —), the character
is given by the dg x dg-matrix

A B BT
BT A B
H, = -
BT A B
B BT A
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The matrix I', can be diagonalized by the Fourier matrix [27]. This fact was used
in [22] in order to block diagonalize H,, and they found that

q
oI, A+T,®B+T, ®B") = |Jo(A+w]'B+w'BT),
j=1
where ¢ means the spectrum of a matrix and w, = exp(%”i) is the ‘first’ ¢-th

root of the unity. Note that all the eigenvalues are real, because the matrix is
Hermitian.

If B is symmetric we obtain that

o(Hy) = U o (fl + 2fij) ,

i=1

with 7, = cos (%{1)) (j=1+9q).

Finally, if we want to compute the extremal character of the corresponding seg-
ment of length n + 1 (with n > 1) then we must consider the nd x nd-matrix

A B 0
BT A B
Ho,n+1 =
BT A B
0 BT A

= LA+, 9B+% @ BT,

where 3, and X! are the backward shift and the forward shift, respectively (see
[45]):

01 0 0
00 1 0
S.o= | i
00 0 ... 1
00 0 ... 0

This kind of matrix often appears when one works with numerical methods of par-
tial differential equations (for instance, in the eigenvalue problem of the Laplace
operator defined on a square).

When B = BT we can diagonalize Hy,,, as follows. First of all, we know [11]
that the tridiagonal n-matrix 7,, = ¥, + X can be diagonalized as

where

C, = diag(cy,coy...,0n),
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with ¢; = cos (%) (j =1+ n), and the entries of S, are

n+1
i 1y
S;; = sIn .
* n+1

Then the eigenvalues of Hy,; are the same that those of

(Sp ® 1) *Hpnet(Sn @ 1) = (S, 1)1, ® A+ T, ® B)(S, ® I,
= ,®A+2C,® B,

and finally, we obtain that

n

o(Hopt1) = U o (fl + 2CjB) :

Jj=1

5.5.1 Area preserving maps

As an easy example, we shall consider the 2D case (d = 1). Hence, let ' : RxR — RxR
be a symplectomorphism, whose primitive function is S : R x R — R. We shall write

F=(fg)and
DF(z,y) = (i Z)

Let zp = (zo,¥0) be a fixed point. Its dynamical type is defined by the trace
(1 = a+d). In fact, some people prefers to use the residue R = QTTT. We distinguish
the next types (see [63, 76]):

o 7 > 2: reqular hyperbolic or non-reflection hyperbolic;
e 7 = 2: reqular parabolic or non-reflection parabolic;

o —2 <1 <2 elliptic

e 7 = —2: inversion parabolic or reflection hyperbolic:
o 7 < —2: inversion hyperbolic or reflection hyperbolic.

In order to study the extremal type we distinguish the monotone and the non mono-
tone case.

Monotone case.- If the fixed point is monotone, that is, b # 0, then the extremal
character as fixed point is given by

a+d—2
h = ———.
b

We shall call 7 = a + d, the trace of the matrix. Hence, if we suppose b > 0 (opposite
case being similar):

e 1, is non degenerate minimum < 7 > 2.
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e 1, is degenerate & 7 = 2.

e 1, is non degenerate maximum & 7 < 2.

As we have seen, the character of a fixed point does not only depend on its index
as critical point of the action, but also on the index of its torsion.

A natural question arises:

given a minimizing fixed point, is its orbit minimizing?

The second derivative of the (n+1)-orbital action W, 11 is given by the nxn matrix

> Q>
Q> T
>

HO,n-H -

S L
o> -
Q> o

Its eigenvalues are

. 9
o(Hopnt1) = {)\j =a+ 2cb= T J} :
j=1+n

where ¢; = cos (nj—ﬁ)

Suppose its torsion is positive: b > 0. Then, the eigenvalues are disposed in increas-
ing order by j:

-2 2 4
T <)\1<...<>\n<TJr =h+—.

h=— b b

Hence,
e if 7 > 2 the orbit is minimizing;
e if —2 < 7 < 2 the orbit is undefinite (or saddle);
e if 7 < —2 the orbit is maximizing.
Remarks
i) In the hyperbolic cases, the matrix is strictly diagonal dominant and the eigen-
values are far from zero. In the parabolic cases the eigenvalues are not uniformly
away from zero when n increases, and the matrices correponding to the periodic

actions are degenerate.

ii) In the elliptic case, we must take n big enough in order to obtain eigenvalues with
different sign.
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<

Following with the case b > 0, we can define an extremal index of the fixed point,

being the proportion of negative eigenvalues of the Hessian matrix when n tends to
infinity. It is the continuous function of the trace 7

(1 ifr< -2,
. 1 T, .
ind(7) = A —arccos(§) if —2<7<2,
m

L0 if2< T

We note that in the elliptic case, the two eigenvalues are exp(+mvi) where v is the
extremal index of that point and + = v is the average angle of rotation per period [36].
Of course, we can proceed analogously in the case b < 0.

Non monotone case.- If the fixed point is not monotone, b = 0, then it can not be
elliptic, because the differential matrix is

a
c
On one hand, if the point is regular parabolic (a = 1) then the vertically transformed set
is not regular at that point. On the other hand, if the point is not regular parabolic then
the vertically transformed set can be write as a function x = v(y) (see Section 5.2.1)

and the fixed point is a degenerate critical point of the fixed action (it is generically an
inflection point). In all cases, the set of chains in not regular.

el O

Similar considerations can be done using the periodic extremal character. We sum-
marize the previous argumentation in the next table.

dynamical trace residue multipliers extremal character
character T =a+d R = 2% AL, A2 b>0 | b=0 | b<O0
regular > 9 R<0 reciprocal pair min. f.p. deg. f.p. max. f.p.
hyperbolic of positive reals min. or. non. tr. or. max. or.
regulaf r—9 R—0 pair at +1 deg. f.p. non tr. f.p. deg. f.p.
parabolic min. or. non. tr. or. max. or.
s _ complex pair on max. f.p. min. f.p.
elliptic 2<T<2 ) 0<kR<T the unit circle sad. or. x sad. or.
inversion r—_9 R—1 pair at —1 max. f.p. deg. f.p. min. f.p.
parabolic max. or. non tr. or. min. or.
inversion <2 R>1 reciprocal pair max. f.p. deg. f.p. min. f.p.
hyperbolic of negative reals max. or. non tr. or. min. or.
Remark

This table suggest us that the detection of bifurcations of fixed points is
related with the study of geometrical changes in the vertical transformed

set.

N
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5.5.2 The symmetric case

Following with the notation of the beginning of this section, we shall consider now the
case B = B'. We shall obtain similar results to the previous ones. We remember that
we must look for A\ vanishing the determinant of the matrix

My=H+(1-AXHB "+(1-\NB,
where H is the Hessian matrix of the fixed point. In our case, we can write

M, = DB '4B'A—-2B!'4+4R()\) B!
B™H (DT + A—2 1) +4R()\) 1)

where R(\) = % is the residue corresponding to the eigenvalue A (or better, to
the pair {\, A\"}). Hence,

ANeo(M) & R\ €o (2(2 I;— (DT + A))) :
In general setting, the residue is real iff the corresponding pair is real hyperbolic, elliptic
or parabolic, and in other case the residue, and its conjugate, correspond to a complex
hyperbolic quadruplet.
If B is symmetric and positive definite (and so is B™'), then we can diagonalize
simultaneously the quadratic forms associated to H and B~! by a regular matrix Q:

QTB?IQ - Ida QTHQ = Aa

where A is a diagonal matrix. This transformation preserves the inertia of the sym-
metric matrices (that is, the numbers of their negative and positive eigenvalues). Then,
since

det My =0 < det(Q T M,Q) = 0 & det(A +4R(\)1,) = 0,

the residues must be real, and our fixed point can not have complex hyperbolic direc-
tions.

Following in the definite positive case, let n, p be the numbers of negative and
positive eigenvalues of H, respectively.

e Hence, since p residues are negative, there exist p regular hyperbolic pairs of
eigenvalues and n pairs of elliptic or inversion hyperbolic or inversion parabolic
eigenvalues. The rest of pairs are regular parabolic.

e The eigenvalues of Hy 1,

LnJa (A+ QCJ'B) = LnJ o (H—|— 2(1 — Cj)Bil) )

j=1 j=1
have the same sign that the eigenvalues

n n d

U o(A+2(1—¢))ly) = U U{T, — 2¢,}.

j=1 j=1li=1
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Hence, if all the traces are > 2 (all the pairs are regular hyperbolic or parabolic)
then the orbit is minimizing, and if all the traces are < 2 (all the pairs are
inversion hyperbolic or parabolic) then the orbit is maximizing. We can also
define an extremal index of the orbit, as the average of the all the extremal indices
corresponding to the different traces (1 = (7q,...,74)):

IND(7) = éZind(Ti).

5.6 Invariance of the extremal character

We wonder if the extremal character of an orbit is independent of the variables in which
we write our symplectomorphism. In fact, we shall see that they do not change under
lifts and vertical translations, but it can change under other kinds of symplectomor-
phisms. This fact is due to the concomitant distinction between x and y variables. For
the sake of simplicity, we shall work in the monotone case.

5.6.1 Under vertical translations

Let F' be our symplectomorphism in R?¢, given by

{:r’zf(:r,y)

y' = g(x,y)

)

and G = 7y; be the vertical translation induced by the function [ : R — R, which
defines a change of variables

r=2x
y =7+ VI(z)
Our symplectomorphism F written in the new variables if ' = G~'eF-G, and it is given
by
{ 7' = f(z,7+ Vi(z))
v = 9@,y +VI(z)) = VI(f (7,5 + VI(T)))

We remember that if the primitive function of F is S, then the primitive function of F
is SoG + loq — l° f°G, where ¢ is the projection on the z-variables.

We consider now two corresponding orbits by F' and F. Hence, let (g, 1) the initial
point of a F-orbit and (%, 7o) = G~'(z¢, o) the initial point of the corresponding F-
orbit. We know that the extremal character of a F-orbit is given by the recurrence

A

-Dl = Ala

Di=A;-~B  D\B, ,(i=2+n-1)

where A; = D; 1B ', + B;'A; and B; = __B;1 (see Section 5.4.1 for the terminology).
We should write the same sequence for a F-orbit putting bars in all the places, but we
shall write A; rather than A;, etc. We must relate the two sequences and see that the
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indexes of the matrices D; and D; are the same. First of all, we must relate DF (%) with
DF(z). By the chain rule we obtain

A B B A+ BL, B
C D) — C —LB+D )’

where Ly = D?I(z) , L1 = D*I(f(Z,79)), etc. We note that

monotonicity does not change under vertical translations.

Finally, the relationship between the matrices 4;, B; and A;, B; is given by
B = B

and

Ai — Di_l.B;ll —|— BZ_IAZ_I
= (=L;B; 1+ D; 1)B;} + B, '(A; + B;L;)
= D; B+ B A

~

= Aia

and we obtain that they are the same.
Remarks

i) The extremal characters of fixed points and periodic orbits do not change by
vertical translations.

ii) We note that the monotone positive character of our symplectomorphism can
change. In fact: DB™' = DB™' — L, and B'A™!' = B 'A + L,.

5.6.2 Under lifts
Let F' be our symplectomorphism in R?¢, given by

{:v’zf(x,y)

y = g(z,y)

Y

and G = ¢ be the lift of a certain diffeomorphism ¢ on R?, which defines a change of

variables
{ x = ¢(1)
y=Do(T)" G

Our symplectomorphism F,written in the new variables, is F' = G~ 'oF°@, and it is

given by
{ ¥ = ¢~ (f(¢(x), Do(2) " '9)))
y' =D¢(a") g(6(2), Dé(z) "y))
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We remember that if the primitive function of F is S, then the primitive function of F
is SongS.

We consider now two corresponding orbits by F' and F. Hence, let (g, 1) the initial
point of a F-orbit and (%, 7o) = G~'(z¢,yo) the initial point of the corresponding F-
orbit. We use the same notation than in the previous subsection.

By the chain rule we obtain

A B\ _ ([ F'AF,+ F'BG, FT'BFyT
c D) — C ~G{BF; "+ F'DF; "
where Fy = D¢(Z), F1 = Do(7'), ete, and Gy = (:E 7), Gy = %(x 7'), etc. We note

that the matrix GOTFO is symmetric. We also note that
monotonicity does not change under vertical translations.
Thus, the relationship between the matrices fli, B; and A;, B, is given by
B; = FiTBiFHl
and

A = a13ﬂ+B*A*
(-G, B, \F, "+ F'D; \F,_|)F,' B/\F, +
F' B Fiy (F AiFs + F7 BiG))
= —G/F,+F'G,+ F(D,_1B' + B]'A)F;
= FAF,

Finally, we obtain by induction that D; = FiTDZ-Fi, and, the extremal characters are
the same.
Remarks

i) The extremal characters of fixed points and periodic orbits do not change by lifts.

ii) We note that the monotone positive character of our symplectomorphism can
change. In fact: DB~! = FITDB_IFI GTFI and B71A~! FTB 1AFO—l—F Go.

N

5.6.3 Statement of the result
The previous argumentation are summarized in the following.
Proposition 5.6 :

Given a symplectomorphism F : R** — R?? | the extremal character of mono-
tone

e fixed points,
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e periodic orbits,

e orbits,
do not change by

e vertical translations,

o [ifts.

A physical interpretation of this result is that the laws of the discrete mechanics
are independent from the coordinates on our configuration space and certain privileged
observers. This fact is geometrically connected with the choice of a certain 1-form
a = y dz in our phase space, and the distinction between z and y coordinates that it

produces.



Chapter 6

Invariant Lagrangian graphs

A first step in order to understand the properties of invariant Lagrangian mani-
folds is to study the easier ones: the invariant Lagrangian graphs.

This chapter is devoted to extend some results due to Mather [73], Herman [40]
and MacKay, Meiss and Stark [68], obtained by them by means of the use of a
(global) Lagrangian generating function. In some sense our results are more local,
because they do not use the existence of this global function, and they will let us
to study different regions in our phase space where some positiveness condition
will be satisfied.

This chapter will be completed in Chapter 9, where we deal with more general
phase spaces, and in Appendix B, where we relate the BHM theory with Converse
KAM theory and we obtain some non-existence criteria of invariant Lagrangian
graphs when the configuration space is a torus.

6.1 Characterization

Given an open set & C R? and a function [ : / — R, we know that the immersion

v: U — R xR
r — (z,Vi(z))

defines a Lagrangian embedding of ¢ into R? x R?, and its primitive function is I. We
also know that if v is invariant for a certain symplectomorphism F' = (f, g), we have a
conserved quantity, given by the function

d: U — R
r — Sz, Vi(z)) — (I(f(z,Vi(x))) — (x)).

We want to obtain more information.
First of all, we extend the function ® to the function ® : & x R — R defined by

A

O(z,y) = S(z,y) = (I(J(z,y)) = I(2)),

so that ®(z) = ®(x, Vi(z)). We have the next proposition of characterization of invari-
ant Lagrangian graphs (in short, i.L.g.).

71



D - il LT T4 AL LVEL AL T A2 AL AAAL VL AL T RAERL AL T AR

Proposition 6.1 :

Let F = (f,g) be a symplectomorphism on R x RY, with primitive function
S,and | : U — R be a generating function of the exact Lagrangian graph L,
being U a connected open set U C RY into R??,

We define the functions ® and ® as above.

Then:

1. (Conserved quantity on an i.L.g.)
L is F-invariant = ® is constant.
2. (Characterization of i.L.g.)

od
o(z,y)

3. (Characterization of the points of an i.L.g.)
If F is monotone, and L is F-invariant:

L is F-invariant & ¥z € U

(x,Vi(x)) = 0.

y = Vli(r) & 1) (x,y) = 0.

Moreover, if L is F~'-invariant:

y=Vl(z) & —(z,y) = 0.

Proof:
We write the invariance condition as
Ve el g(z,Vi(x)) = VI(f(z,Vi(z))).

1. First point is an immediate consequence of the second.

2. The derivatives of ® are:

0 ol 0 ol
o) = (sen = 2w e v+ )
o T ol of

8—y($,y) = <g(x,y) %(f(;g,y))>8_y($,y)

So if [ gives a F-invariant graph the two derivatives vanish (the points
of the invariant graph are critical for the function ®) and, in particular,
the function ® is constant:

9D 0% 0d 0l
(@) = = (@, Vi) + M (&, V(@) - 55 ()

4 s

hlaad g
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Conversely, if the derivatives vanish at a point (z,Vi(z)), then we
obtain

g(x, Vi(z)) = Vi(f(z,Vi(x))),

because the rank of the matrix (A(z,y) B(x,y)) is maximal at all
points.

3. Suppose F be monotone, that is to say, |B(x,y)| # 0, V(z,y) € U xR?,
Then

A

b
o(z,y)

(the points of the F-invariant graph correspond with the critical points
of a certain function). If, moreover, the graph is F~'-invariant, then

(z,y) =0 = y=Vi(z)

g—j(:r,y)z() = g(z,y) = VI(f(z,y))
= F(z,y) e L
= (z,y) el
= y=Vli(x)

(the fibered critical points of o correspond with the points of the in-
variant graph).

6.2 Extremal character of an i.L.g.

As we have seen, a point of an i.L.g. £ = Ly, is a fibered critical point of the function
®, that is to say, for all point x € U
0d

a—y(x, Vi(z)) = 0.

The extremal character of the graph in each point (z, Vi(z)) is given by

52 @) = (D7) - B@) D) Bla).

where we write f(x) = f(z, Vi(z)), A(z) = A(z, VI(z)), etc. If all the points have the
same character as critical points of the ‘fiber’ function @, and then all the corresponding
Hessian matrices have non vanishing eigenvalues, we shall say that our graph is non
degenerate. In such a case, the graph have to be monotone (i.e., it have to be included
in a monotone region). Then, if all these matrices are positive definite we shall say that
our graph is minimizing, and if all of them are negative definite we shall say that it is

mazimizing. Otherwise we shall say that it is undefinite.



As we shall see, the extremal character of our graph does not change under vertical
translations and lifts. In fact, we shall see a little less than this, but enough for us. We
shall perform two steps of normal form in order to simplify the dynamics around an
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i.L.g.. For the sake of simplicity, we shall suppose U« = R?.

Proposition 6.2 :

Proof:

Let F = (f,g) be a symplectomorphism on R x R, with primitive function
S, and L be an i.L.g. generated by [ : R¢ — R.

Hence, the extremal character of the graph does not change after the next
two steps of normal form:

1. projection of the zero-section,

2. simplification of the dynamics on that zero-section, via conjugation by

a lift.

. Let £ be an invariant graph given by a generating function [ : R? — R,

Then its character is given by the indexes of the symmetric matrices
(D' (z) — B(z)" DI(f(x)))B(x).

If we make a change of variables, by means of the vertical translation

rT=2x
y=9+Vi(z) ’

then in the new variables T,y the zero-section {y = 0} is fixed. After

this projection, the character of the graph (the zero-section) is given
by

D(z)'B(z) = (D(z)— Li(7,0)B(x))' B(x)
= (D(x)" - B(x) ' D*I(f(2))B(x),

and the character does not change (see the notation in Section 5.6). In
fact, while

A

®(z,y) = S(z,y)+(x) —IU(f(z,y))

we have

Sz, y+ Vi(z))+1(x) = I(f(z,y+ VI(T))).
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2. Suppose the zero-section is fixed. If we conjugate by a lift b

{ z = ¢(z)
y=Do(z)" 'y’

then in the new variables Z,y the zero-section {y = 0} is also fixed.
While the character of the zero-section for F'is given by

A

(r,y) = S(z,y),
for F is given by
®(7,9) = S(6(2), Do) ')
Hence, since %(:p, 0) =0, Vo € R?, then

%@m — Do) 122

and the extremal characters coincide.

6.3 Minimizing invariant Lagrangian graphs

For minimizing invariant Lagrangian graphs we have the following theorem. It asserts
that the orbits on a minimizing i.L.g. are also minimizing, and it will be a key result
in order to perform non existence criteria of i.L.g. (see Appendix B).

Theorem 6.1 :

Let F: R xR — R xR? be a symplectomorphism, with primitive function
S, and L = Ly, be a minimizing i.L.q., generated by the functionl : R? — R.
Then:

All the orbits on the graph are minimizing.

Proof:

Before doing a complete proof we shall see what is the key of our method-
ology. For the sake of simplicity, we shall suppose that our graph is glob-
ally minimizing, i.e., if C' € R is the conserved quantity associated to the
graph then V(z,y) € R &(z,y) > C. Hence, let (z, VI(z)) be any point
on Ly;. First, we fix m,n € Z, with the condition m + 1 < n and take
Tm = @ F™(x,Vi(x)) and z,, = ¢oF™(z, VI(z)). Now, let p = (4, Yi)Jimmeon-1
be any F-chain connecting z,, with x,,, and o be the corresponding segment
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of orbit (i.e. 0 = (F'(x,VI(2)))i=m=n-1). Hence, the corresponding actions
verify:

i
L

I
3

i
L

(S(wiyyi) = Uf(wiyyi) + U xi) + Uwn) — Uzm)

I\¢

I
3

i
L

= Oz, ;) +U(wn) — Uapm)

> Z(:m— m)C + l(xn) — l(zm)
= O(F'(2,VI(x))) + () — U(2m)
= Smn(o)

Hence, the connecting orbit minimizes the action on the chains. Notice that
the restriction of the action to the set of F-chains is fundamental.

We have to improve this result and obtain that any segment of orbit is, in
fact, a non degenerate minimum of the corresponding action. We do not
need global conditions. Thanks to the invariance of the extremal character of
orbits and graphs under vertical translations, we can restrict our attention
to the case in which our graph is the zero-section. In such a case, our
symplectomorphism is given by

{ ' =¢(x)+ B(x)y+ ...
y =Do(x) Ty +...

where ‘...” means terms in upper orders in y. Hence we have
_ [ Alx) Bz)

where A(z) = D¢(z) , D(z) = A(z)" ", and A(z)B(z)" = B(z)A(x)".
Therefore

= D(z)'B(z) = A(z)™' B(x)
Hence, our graph is minimizing iff !

A(x) 'B(z) = 0,

'For any symmetric matrix S, S > 0 means that S is positive definite.
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for all the points € R?. In fact, the symmetric matrices A='B = BT AT
and B~TA™! = A=TB~! have the same inertia (recall that ‘minimizing’
implies ‘monotone’). Moreover 2:

AT'B=0e B '"A-0A"TB'-0< ABT = 0.

Now, let = be giving any point on the graph. As always, we shall write
A; = A(¢'(x)), B; = B(¢'(x)) and D; = D(¢*(x)) = A7 . We shall use the
MMS iteration. In this case we have

Ay = A7IBTL + B7A; - 0.

We shall prove by induction that D; = B;'A; + K;, where K; = 0, for any
1> 1.

e For i = 1 we have D; = By 'A; + K, where K| = Ay "By! = 0, and
the property holds.

e Suppose that the property is true for i — 1. Hence
. - T - ~TH-1 p—
D; = B; A+ Ai—lBi—ll - Bi—lDi—llBi—ll
and then
T p— T A— _
K, = Ai—lBi—ll - Bi—lDi—llBi—ll
= A;—TlBi:11 - (Bilez‘lez'Tfl)il-
Therefore, since

D, = B;_11Ai71+Ki71
~ BiillAi—l >0

then
BiaDiBl, = AiBl, -0,
and, finally
K; = A7\B7Y - BZIAT, =0.
In summary, all the matrices D; are positive definite. O
Remark
Of course, we obtain a similar result for maximizing i.L.g.. <

24 - 0= A~! = 0, for any symmetric matrix A.
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Part 111
ON THE COTANGENT BUNDLE
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Chapter 7

Symplectic geometry on the
cotangent bundle

We recall and introduce some basic results related with the canonical symplectic
structure on the cotangent bundle of a certain manifold M, T* M. At the first
section, we recall basic facts about the Liouville form and the Liouville vector
field on T* M, and introduce the Liouville derivative, that is the derivation A in
this context (see Section 2.3). Secondly, we apply the definition of exact sym-
plectomorphism and, finally, we recall some examples of Lagrangian manifolds.

7.1 Liouville objects

Let M be a d-dimensional manifold and 7% M its cotangent bundle. The zero-section
is

z: M — T*M
r — 0

and My = z(M), and the projection is

q: T"M — M
Pe — .

We know that we can define a differentiable structure on 7% M by means of the cotangent
charts U x R?, where each U is a local chart of M. We write the corresponding cotangent
coordinates as (x,y) = (L1, -, Ta, Y1 - -+, Yd)-

Given a map F : P — T*M from a manifold P to the cotangent bundle T*M, we
shall refer to f = q°F" as its basic component.

7.1.1 The Liouville form

We recall that the Liouville form is the Pfaffian form on 7" M whose value at a point
p € T*M is given by

a, = pg.p).
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Moreover, « is the unique Pfaffian form on 7* M which satisfies
pla = p,

for any Pfaffian form on M, p € QY(M).
Then, w = da is the canonical symplectic structure on 7*M, and it is exact. In
cotangent coordinates on T*M, (z,y) € U x R?, these forms are:

d d
o= Zyidxi, w = Zdyi A dx;
i=1 i=1

(a = ydz and w = dy A dz for short).
Remark

We can define other symplectic structures on the cotangent bundle by means
of closed 2-forms on M, p € Q*(M), by

w, =da+q"p.

7.1.2 The Liouville vector field

We shall denote by Z* the Liouwville vector field on T* M, which is the only vector field
that satisfies the relation

izxda = a.
Moreover, it satisfies the relations
izra =0, Lyra=a, Lyrda =da.
(see [61] for further information and generalizations of this subject).

e This vector field is vertical (¢.Z* = 0), and it is written in cotangent coordinates
as

SN
zr = Y y—
219
(Z* = ya% for short).

e [t is complete, that is, its flow is defined for all time ¢ € R. In fact, it is given by
the 1-parameter group of positive dilations of each fiber of T* M:

hi(pz) = etpm-

It gives to T*M a principal bundle structure, where the structure group is the
additive group R of real numbers.
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7.1.3 The Liouville derivative

We remember that we have a derivation on F = F(T*M), endowed with the Poisson
bracket, given by the linear operator

A: F —» F

(see Section 2.3). In this context, A(H) can be written by means of the Liouville vector
field on the cotangent bundle. By this reason we shall refer to the A-derivative as Liou-
ville derivative. Furthermore, A(H) is also known by the elementary action associated
with the Hamiltonian H, because it is used in order to define a variational principle for
its orbits (see [5, 61]). It is used in order to define the Legendre transformation between
the tangent and cotangent bundle of the configuration space M.

Proposition 7.1 :

The derivation A associated to the canonical symplectic structure on T* M
satisfies the next relations:

o A(H)=dH(Z*) - H,

Proof:
e First,

a(Xy) = igxda(Xy) = —ix,da(Z*)
= dH(Z*).

i[Z*,XH] w = Lz*iXHw — iXHLz*w = —Lz*dH — iXHw
= —Ly«dH +dH = d(H — Lz+H)
= —d(A(H)).

The expression of A(H) in cotangent coordinates (z,y) € U x R is:

A(H)(z,y) = dH( H(z,y)=y-V,H(z,y) — H(z,y).

ya—y) -
We see that A is a vertical operator, because the value of A(H) on a fiber only depends
on the value of H on such fiber.

Remark

Although we shall not use this in the sequel, we note that we can extend
the definition of the Liouville derivative to be applied to forms and vector
fields.
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o If X € X(T*M) we define A(X) = [Z*,X], and hence X p
A(Xy).
o If 3 € Q(I"M) we define A(3) = Lz+3 — 3, and hence the Liouville

derivative commutes with the exterior derivative

Aed = doA.

(H) —

Obviously,
Be€kerA = df € kerA.

The converse is false. For instance, the Liouville form a belongs to
ker A, but there does not exist any function H such that dH = a.

Notice also that Z* is a conformal infinitesimal automorphism of the
forms of ker A. In fact, if the Liouville derivative of 3 € QF(T*M)
vanishes, then

hin(p) = € -n(p),
that is to say,

n(p) (€' X1(p),....e' Xi(p)) = € -n(p)(Xi1(p), ..., Xu(p)),
for all t € R and X,(p), ..., Xk(p) € T,T*M.

Following with the previous remark, but working with 0-forms, we have that
A(H)=0 & H(e'p) =€'H(p),

that is, H is positively homogeneous of degree 1 on each fiber. Hence, the functions of
ker A are written in cotangent coordinates (x,y) as

H(xay) = CL($) Y.

We recall (see Section 2.3) that the flows of these Hamiltonians preserve the Liouville
form (in fact, it is enough to have constant Liouville derivative).
Remarks

i) If A(H) = C, being C' a certain constant, then we can consider the Hamiltonian
H' = H+C. Hence, A(H') = 0 and we can apply the previous results. Of course,
the corresponding flows to H and H' coincide.

ii) Let ¢; be the flow of Xp. Then:

« is invariant under Xy bra=«
Lyx,a=0
d(A(H)) =0
A(H)=C, CeR
[Z*, Xy] =0

the flows of Z* and Xz commute

(N O
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(that is to say, e*pi(p) = pi(e®p) when the times have sense). In particular,
©1(03) = Ogop,(2), that is to say, the zero-section is invariant under Xp.

In Chapter 10, we shall do a more intensive study of the Liouville derivative.

7.2 Exact symplectomorphisms

7.2.1 Exactness formulae

Let FF : T*M — T*M be an exact symplectomorphism, and S : T*M — R be its

primitive function. Since
F*ao—a=dS,

then
dS(pz) = (F~
= QF(p, °F*(pw) Qp,

o)

)
= F(p)°q:(F(pz))Fi(pz) — pras(pz)
= F(pz)°(¢°F)s(pz) — p2°qs(pz)-

Pz al)z

Let p € Q' (M) be an 1-form on M. Then

p*(dS) = d(p"S) = d(S°p)

and
p (Fra—a) = (Fop)'a—p.

So, we have
d(Sep) = (Fep)'a—p.
Hence, we have obtained the following proposition.

Proposition 7.2 :

Let F : T*M — T*M be an exact symplectomorphism, with pf(F) = S,
and let f = qoF be its basic component. Then:

o Vp, €T M
dS(pCE) - F(pw)of*(pzv) - px°Q*(px);

e Vpe Q'(M)
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7.2.2 Lifts

By means of the Liouville vector field (and thanks to its completeness), it can be proved
that the unique actionmorphisms on all T* M are the lifts of diffeomorphisms on M (see
[61], p.66). If f: M — M is a diffeomorphisms, its lift (or lifting) is fiT*M — T*M,
defined by:

~

f(pe) = () @ype € TimyM.

Obviously: feq = qof. In cotangent coordinates we write the lift as

(0) = Coitiim )

From this, an exact symplectomorphism on 7% M is determined by its primitive function
up to diffeomorphisms on the base.

Let X € X(M) be a vector field on M. While its lift to the tangent bundle is
given by the variational equations, we can lift it to the cotangent bundle following two
procedures.

e By defining the Hamiltonian vector field corresponding to the function

H: "M — R
pr = pa(Xa)

We write X = Xy. In cotangent coordinates, the Hamiltonian function is

H(z,y) =y - f(z),

and the corresponding vector field is

{ i = f(x)
jy=-Df(x)Ty

e By defining the vector field as the velocity of the continuous group given by the
lift of the flow (; of the initial vector field:

A~

X(pa) = 5 @ulp)s = 5 (L)) Ly

In both cases we obtain the same vector field, which verifies X*oz = 2, X (see [61]).
Moreover, we note that these lifts of ‘configurational” vector fields belong to ker A.
Remark

In fact, we can lift the vector field to the fiber product T M ®,; T*M.
Moreover, this product is a symplectic vector bundle. N
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7.2.3 Fiberwise translations

Given a 1-form # on M, a fiberwise translation by (3 is the map 75 : T"M — T*M
defined by

T = tdr=-pm + Bog.
If 3 is closed, then 75 is a symplectomorphism. If it is exact, with § = d/, then we have

an exact symplectomorphism, and its primitive function is

pf(le) = [°q.

7.2.4 Monotonicity

Let F: T*M — T* M be a diffeomorphism, and f : T* M — M be its basic component.
In this context, we also are able to define the monotony condition, which is an important
property that F' can verify, as we shall see later. We shall say that I’ is monotone iff

Vee M f:T:M — M is a local diffeomorphism,
or, equivalently, iff
Vpe € T*M [fi(pz) : V,, T*M = Tyop(p,)M is an isomorphism.

Here, V' T* M means the vertical tangent bundle of the cotangent bundle: V T*M =
ker g, (we can define this for all fibration). Geometrically speaking, F' is monotone iff
it is transversal to the leaves of the standard foliation of the cotangent bundle.
Remark

We note that the lifts and the fiberwise translations are not monotone. In
general, the composition of two monotone maps is not a monotone map. <

7.3 Exact Lagrangian graphs

Let £ be a submanifold of dimension d of the symplectic manifold (N, w) of dimension
2d. We recall that £ is a Lagrangian manifold iff w, = 0, i.e.:

w,(X,,Y,) =0, Vze L, VX,,Y, e T,L.

The following result furnishes an important example of an exact Lagrangian mani-
fold in a cotangent bundle (see [61], p. 92).

Let M be a manifold and N = T* M its cotangent bundle equipped with its
canonical symplectic form da.

Let g : M — T*M be a Pfaffian form on the manifold M and Lz =
{Bs | x € M} its graph.

Then:

Lg is a Lagrangian manifold of N < 3 is closed.
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Then, we say that Lz is a Lagrangian graph. If 3 is exact, with § = dl (where
[: M — R), we say that [ is the generating function of the exact Lagrangian graph
Lq. In particular, the image of the zero-section, £,, is an exact Lagrangian graph (it
is often identified with M) that admits the zero-function as a generating function.

It is interesting to notice that the problem of finding intersections of two exact
Lagrangian graphs, £, and L, , is reduced to finding critical points of a real-valued
function, [, — ls. Hence, the theory of intersections between exact Lagrangian graphs
is rather trivial.

We can transport an invariant (exact) Lagrangian graph to the base space, via a
fiberwise translation by a closed (exact) 1-form and then obtain a normal form around
the zero-section (see Appendix F). In fact, as Weinstein proved [97, 98], a zero-section
is the universal model of Lagrangian submanifold, on an open neighborhood of it. A
small summary of these results there is in Section G.2.2.

Finally, there are many results about the topological properties of general La-
grangian manifolds defined on a cotangent bundle. A survey of results about exact
Lagrangian manifolds is given in [59]. On the other side, we can define exact La-
grangian manifolds with foldings (with respect to the standard foliation) by adding
parameters to the generating function. It is the method of the Morse families or phase
functions [44, 98].



Chapter 8

Variational principles

The purpose of this chapter is to obtain several variational principles associated
to any symplectomorphism defined on the cotangent bundle of a manifold (with
the natural symplectic structure). In all cases, the variational principles will not
depend on the coordinates on the configuration space.

On one side, the idea of associating with a symplectic map F' a function h such
that the critical points of h are fixed points of F' goes back Poincaré [85], and
has been used by many authors, as Arnold, Weinstein, Moser, Banyaga, Arnaud,
Golé, etc. In many cases, the constructed critical function A is not coordinate-
free, and we must work on the standard symplectic manifold R?*?. In other cases,
we need some type of closeness to the identity.

Here, we work on a certain set of the cotangent bundle where the fixed points
of our exact symplectomorphism live, the fiberwise transformed set. Then, the
fixed points are critical points of a certain action on this set. Hence, the number
of fixed point depends on the topology of this set (due to Schnirelman-Lusternik
theory and Morse theory). This idea was already used by Moser [79].

On the other side, the orbits of an exact symplectomorphism also satisfy a vari-
ational principle, as the orbits of a mechanical system. As we know, variational
principles for orbits of strong monotone symplectomorphisms on the annulus have
been very useful in order to study cantori and invariant circles (Aubry-Mather
sets, Converse KAM theory), homoclinic orbits, periodic orbits, etc (see the works
of Aubry, Mather, Percival, Herman, MacKay, Meiss, Kook, Tabacman, etc).

We think that these variational principles can be interesting for several reasons:
e we can work on any cotangent bundle, not only on the standard symplectic
manifold R¢ x R? or on the d-annulus;

e we do not need the generating function, which is not always defined, or it is
difficult of computing;

e in some sense, they are local, because do not use the existence of this global
generating function;

e we could extend these variational principles to neighborhoods of any exact
Lagrangian manifolds, thanks to Weinstein’s theorems.

89



i s L4 L2 £ AL ELU e r4 A4 véase £ L2 ITL T Ade £ AVEL T Rttt AL LS

8.1 Fixed points

Let M be a d-manifold, and 7*M its cotangent bundle. Let F' : T*"M — T*M be
an exact symplectomorphism, with primitive function S, and let f = ¢°F be its basic
component.

8.1.1 The fiberwise transformed set and the action

We shall obtain the fixed points of our symplectomorphism as critical points of a certain
function defined on a certain submanifold of 7*M. Here we state the main definitions.

The fiberwise transformed set

We define the fiberwise transformed set as the fiber product of ¢ and f:
K ={peT"M|q(p) = f(p)}.

Hence, any point of this set goes to the same fiber (it is fiberwise transformed). If
§:T*M — M x M is defined by § = ¢ x f, and A = {(z,2)| z € M} C M x M is
the diagonal of M x M, then K = ¢ '(A). We observe that the fixed points of F are
in K: Fiz(F) C K.

We suppose K # (). It is a closed set of the cotangent bundle, and it is a d-
submanifold provided the map § be transversal to A, that is to say, the rank of the

matrix
( J_ o of )
or Oy

be maximal in all points of the critical set (using cotangent coordinates). For instance,
if F'is monotone, the critical set is locally a graph, and the restricted projection g x
is a local diffeomorphism. Of course, K can have many connected components, but we
can study everyone.

The action

We define the action as the primitive function of the symplectomorphism
restricted to the fiberwise transformed set: s = Sk.

We shall prove that the fixed points of our symplectomorphism are critical points
of s, and the converse is true provided F' verifies the monotony condition. First, we
shall show that the topology and the geometry of the fiberwise transformed set is more
understanding when F' is monotone.

8.1.2 Topology of the fiberwise transformed set

Proposition 8.1 :

Let f: T*M — M be a monotone map.

Let ¢ : T*M — M x M be the map defined by 6 = idy X f. We define the
closed submanifold of dimension d K = §~'(A), provided K # ().

Then, the following holds:
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e K 1s a graph, locally;
® g : K — M s alocal diffeomorphism;
e the fibers q"KI (x) are discrete.

We suppose M be compact and connected. Let k be a compact and connected
component of K. Then:

o (k,qr) is a (smooth) covering space of M, with a finite number of
leaves. Hence, all the fibers in k have the same number of elements:

Va,y € M, tq; ' (x) = L ().

Proof:

The first three points are an immediate consequence of the implicit function
theorem. The fourth point comes from the adaptation of the next topological
result ! (see [70]).

Let X and Y path connected and locally path connected spaces,
being X compact and Y Hausdorff.

Let f: X — Y be a local homeomorphism.

Then:

(X, f) is a covering space of Y, with a finite number of
leaves.

Remark

Of course, we can apply the same ideas in order to study the topology of a
component of fiberwise transformed set included into a monotone region of
our symplectomorphism. N

!'We recall some definitions of Topology:

e A continuous map f : X = Y between two topological spaces X and Y is a local homeomorphism

iff each point z € X has a open neighborhood V, that is mapped homeomorphically by f onto
its image f(V), which is open, too.

Let X and X be two path connected and locally path connected spaces and let p : X 5 X
be continuous and surjective. We shall say that the pair (X,p) is a covering space of X iff
every point z € X has a path connected open neighborhood U such that every path connected
component of p~1(U) is mapped homeomorphically by p onto U.

The map p is called a covering map or projection. It can be proved that all the sets p~!(x) have
the same cardinality, for all z € X, which is called number of leaves (or folds) of the covering
space.

In our case, we must substitute continuous by smooth, homeomorphism by diffeomorphism, etc.
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8.1.3 Geometry of the fiberwise transformed set

We know that the fiberwise transformed set is a d-submanifold of 7% M, provided a
certain non-degeneracy condition be satisfied (Section 8.1.1). We define a map

3: K — T*M
p — Flp)—»p

Y

which is well defined because F'(p) and p have the same point basis. This map is an
immersion, provided the rank of the matrix

dg Of
< 0y’ 8y>
is maximal in all points of K (using cotangent coordinates). Again, this condition is
automatically satisfied when F'is monotone.
We note that the fixed points of our exact symplectomorphism F' are in correspon-
dence with the intersection

B(E) N M.

Furthermore, since the immersion is exact Lagrangian, as we shall see in the next
proposition, this relates the theory of fixed points of exact symplectomorphisms with
the theory of Lagrangian intersections, that is, the theory of intersections between
Lagrangian manifolds 2.

Proposition 8.2 :

Let F : T*M — T* M be an exact symplectomorphism, with primitive func-
tion S, and let f : T*M — M be its basic component: f = q°F.
Let K be its fiberwise transformed set, and suppose that the rank of the

matrices
;9 of ;_99 9f
or’ 0oy) ’ oy Oy

are mazimal in all of its points (written using cotangent coordinates). We
consider the map (8 defined above. Then:

B 1s an exact Lagrangian immersion of K in T* M, and its prim-
itwe function is the action 8 = S|k .

2There is another way of relating both theories. For instance, given a symplectomorphis F : N” — N
on a symplectic manifold (N, w), then is easy to prove that its graph

I' = {(2,F(2)) | z€ N} C N?
is a Lagrangian submanifold of (N2, 3w — mfw). On the other side, the diagonal
A = {(z,2)|zeN}CN?

is also a Lagrangian submanifold of 2. Finally, fixed points of F' are in correspondence with the
intersection of both Lagrangian submanifolds.
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Proof:

We only must prove that f*a = ds. As we know, if v : K — T*M is
the inclusion of K into T*M, then the function s : K — R is defined as
s = Sev. Hence, we must prove that

(B )(p) & = (Sov).(p) &
for any p € K and §, € T,K. This last assertion is equivalent to the

condition f,(p) &, = q.(p) &, (identifying £, with v,(p){, and p with v(p).
Then,

e on one side

e and on the other side, using the exactness formulae,

(Sev)i(p) = Si(v(p)) vi(p)
= F(p)fi(p) — poq.(p)
= (F(p) —p) a:(p) + F(p) (f<(p) — a:(p))
= B(p) ¢.(p) + F(p) (fe(p) — a.(p))-

Finally, applying both of formulas to the vector {,, we arrive to the desired
result. O

8.1.4 Fixed points as critical points of the action

We shall prove that fixed points are critical points of the action w, which is the primitive
function restricted to the fiberwise transformed set.

Theorem 8.1 :

Let F : T*M — T* M be an exact symplectomorphism, with primitive func-
tion S, and let f : T*M — M be its basic component: f = qoF.

Let K be its fiberwise transformed set. We suppose K # () and § transversal
to A (so, K is a d-submanifold of T*M ).

Then:

e The fized points of F' are critical points of s = S|k

o If F' is monotone, the fized points of F correspond with the critical
points of s.
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Proof:

In order to obtain the proof, we need the next result which generalizes the
Lagrange multipliers in classical calculus (see [2], p. 177):

Let M and P be two manifolds.

Let ¢ : M — P be transversal to the submanifold W of P,
N=g'(W),and let f: M —RbeC",r>1.

Let Ey,) be a closed component to Toq) W in Ty P so Tgq)P =
TomyW @ Eyny and let p : Ty,yP — Ey(n) be the projection.
Therefore:

A point n € N is a critical point of f, iff there exists
A € Ej, called a Lagrange multiplier such that fe(n) =

Aepeg.(n).

In our case, we have a map ¢ : T* M — M x M transversal to the subman-
ifold A, K = 6" '(A) and S : T*M — R a function. Given p, € K (i.e.:
0(pz) = (z,2)), a complement to T(; A in T(; (M x M) = T,M x T, M
is E(gg) = {05} x T, M. In fact, we have:

() - () (5)

Since E(; ) ~ T M, we define the projection

p: TMxT, M — T,M

(5) s

So p, € K is a critical point of s = S| iff there exists A € Ty M ~ Ea,m)
such that
Si(pz) = Aop=0.(pa)-

Using the exactness formulae and the previous definitions, this is translated
to

F(px)of*(px) - pxoq*(px) = )‘O(f*(px) - Q*(px))'
The proof follows now from this formula.

e If p, is a fixed point of F, i.e. F(p;) = p, then it is enough to choose
A= pr = F(ps).

e We suppose now that F' is monotone. If we apply the formula to a
vertical vector &, € V, T*M (i.e. ¢.(ps)€,, = 0), we have:

F(pw)(f*(pm)gpz) = )‘(f*(pw)gpm)'
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Since F' is monotone, i.e., f.(p;) is an isomorphism between V, T*M
and T(,,)M, then A = F(p,). Hence, we have:

P2°0x(Pz) = Aqu(pa).

Finally, since ¢.(p;) is an epimorphism, we reach p, = A = F(p,).

Remarks

i) Suppose M be compact and connected and F' be monotone. On every compact
connected component k of K we have at least two fixed points. In fact, the number
of fixed points is bounded from below by the Schnirelman-Lusternik category of
k. If all of they are non degenerate (as critical points of s), then we have at least
the sum of the Betti numbers of k. That is to say, the number of fixed points
depends on the topology of the fiberwise transformed set.

ii) We can reduce the study of the g-periodic orbits of an exact symplectomorphism
to the study of the fixed points of another one. Note that if we consider a power of
a monotone map F', it cannot be monotone. In order to preserve the monotonicity,
it is better to work on the symplectic product.

8.1.5 An example

Let F = (f,g9) : T¢ x R — T¢ x R? be an exact symplectomorphism with primitive
function S, such that we can write f(z,y) = 2+ f(z,y) (mod 1) and g(z,y) = g(=,y),
where f and g are 1-periodic in all their z-variables. We suppose that F verifies the
strong monotone condition:

Vz € T f(z,.) : R — R? is a diffeomorphism.
We can decompose the critical set in this way:

K={(e,y) € T x B fa,y) =2 (mod 1)} = | K,

peZd

where, Vp € Z%
K, ={(z,y) € T x R?| f(z,y) = p}.

We say that a point (z,y) is a fixed point of type p € Z¢, or that p is its rotation number
is p, iff F(z,y) = (x +p,y)). Hence, on every component K, the fixed points of type p
live. In this case, everyone of this components is homeomorphic to the d-dimensional
torus: K, ~ T Vp € Z% Each torus K, is a radially transformed torus (see [79, 3]),
and it is given by a map 7, : TY = R? (i.e. f(z,n,(z)) = p). Hence, Vp € Z
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there exists d + 1 fixed points of type p, and 2¢ if all of them are non
degenerate, as critical points of the critical function s,(z) = S(z,n,(x)) *.

In this case we obtain that

oo m@) ~ () = D2z,

Remark

While here the fixed points are classified by their rotation number, in the
general case, when we work on any cotangent bundle, the fixed points are
classified by the different connected components of the fiberwise transformed
set. <

8.2 Variational construction of orbits

Let M be a d-manifold and N' = T*M its cotangent bundle. We shall obtain a
variational principle for the orbits of an exact symplectomorphism F : N — A with
primitive function S.

8.2.1 The set of chains and the action

Given two basic points X,,,x, € M, where m,n € Z| m + 1 < n, we ask for the
connecting orbits between x,, and x,, that is to say, finite sequences (p;)i=m-n_1 such
that ¢(pm) = Xm, ¢°F (pn_1) = %, and piy1 = F(p;),YVi=m +n — 2.

First, we shall define the set where the action will act. This set is the set of F-chains
connecting X,,, Xp.

The set of F-chains connecting x,, and x,

It is the set K,,, = Kx,, x, of finite sequences
n—1
P = (pi)i:m+n—1 € H "M

i=m

verifying the following conditions:

d q(pm) = Xma
o f(pi) =q(pir1),Yi=m+n—2,
b f(pnfl) = Xp-

3While d + 1 is the cup length of T?, 2 is the sum of its Betti numbers.
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Suppose K,,, is not empty. If the map

n—1 n—1
O, : HT*M — H(M X M),

defined by
5m,n((pi)i=m+n—1) = ((Q(Pi)a f(pi)))i:m+n—17

is transversal to the d(n—m—1)-submanifold of the 2d(n—m)-manifold [/=} (M x M)
defined by

Am,n - Axm,xn - {((Xma xm+1)a (ajm+la xm+2)a sy (xnfla Xn))| Tmt1ye-ryTp-1 S M},

the set of chains Ky, = 0;,},(Am.p) is a d(n—m—1)-submanifold of the 2d(n — m)-ma-
nifold H:;lz T* M. For instance, this is the case when F' is monotone.
Secondly, we must define the action on the previous set.

The action

The action on the set of F-chains will be

n—1

S ((pi)i=men1) =Y S(pi).

i=m

We shall see that the connecting orbits are critical chains of the action. The converse
is true if F' is monotone.

8.2.2 Connecting orbits as extremal chains

Orbits extremize the orbital action.

Proposition 8.3 :

Let M be a d-manifold.

Let F : T*M — T*M be an exact symplectomorphism, with pf(F) = S,
and let f = q°F be its basic component.

Let m,n € Z be integers such that m +1 < n, X, %X, € M be basic points,
and Kpp = 6;1,1n(Am,n) be the set of F-chains connecting x,, with x,. We
suppose K n # 0 and 0y, transversal to Np, .

Let Sy H:;lz T*M — R be the function defined by

n—1

Sm,n((ﬂi)i:m%nfl) = Z S(pz)a

i=m

i.e. Sy = Zf;nll Sem;, where the m;’s are the projections. Let Sy, be the
restriction of Sy, to the set of F-chains.
Then:



o The connecting orbits between X, and X, are critical chains of Sy, .

o If F' is monotone, the connecting orbits correspond with the critical

chains.

Proof:

s L4 AL £

Given pP= (pi)i:m+n71 € Km,n; with

6m,n(p) =X = ((Xm7 xm+1)7 (ajm+la $m+2)a

we have the decomposition

Tx [175,(M x M)

Um
Cm-i—l
Vm41
<m+2
Vm+2

Cn—l
Vn-1

Cn

TXAm,n

0
Cm-i—l
Cm-i—l
<m+2
<m+2

Cn.— 1
Cn -1
0

~. r4 AL v A £ £ L T4

S Ex

Um

0

0

Cn

Since Ex ~ [[;_, T:; M, we will take as projection the map

Hence p € K,,,, is a critical point of S,,, iff there exists A € []._, Ty M

such that

n—1

p: TXH':

m

Vm
<m+1
Vm+41
Cm+2
Vm+2

Cnfl
Vn—1

Cn

(MxM) —

l/m
Vm+1 — Cm41
Vm+2 — Cm+2

Vp—1— Cnfl

Cn

S mns (p) = Aop°0ins (p)7

ooy (Tn1,X0)),

Vm+1 — Cm+1

Um42 = Cm+2

Vp—1 — Cn—l




i r4 A2 vdse £ L2 ITL T A VML TN A AUVY AV AT NV A AV E &R

that is to say, iff there exist n—m+1 forms \; € T; M (i = m + n) such
that, V€ = (&, Emtts s En1) € [10) T, T* M,

n—1

Z(F(Pi)"f*(pi) — pred(pi))Ei =

i=m

n—1

A (Pm)Em + Z Ai (felpic1)&im1 — . (pi)&i) +

i=m+1
)‘nof*(pn—l)gn—l-
The proof follows now from this formula.

e If p is a segment of orbit connecting x,,, with x,, then

—_

n—

(F'(pi)fe(pi) — pica(pi))&i =

i
3

n—1
— @ (Pm)Em + Z pi (fe(pis1)&i1 — ¢(pi)&) +

i=m—+1

F(pn-1)°fe(pn-1)&n-1-
Hence, it is enough to choose \; = p;, Vi = m+n—1and A\, = F(p,_1).

e We suppose now that F' is monotone. If we apply the formula to a
vector £ = (0,...,&,...,0), with & € V,,7*M (i = m +n — 1), then
we obtain

F(Pz)(f*(pz)&) = )\i+1(f*(pi)§i).

Since this fact is true V§; € V), T7*M and F' is monotone, we reach to
Xiti=F(p;), Vi=m-+n—1.
Hencea vé- = (gma é-m—l—la s 7§n—1) € H?:_;L TpiT*Ma

3 0. ()6) = S Man ),

and we reach
ANi=pi, Vi=m-+n—1.
Finally, we obtain that

Pirv1 = A1 = F(pi), Vi=m +n—2.

Remark

The transversality condition on the hypothesis of the proposition is satisfied
when our symplectomorphism is monotone. N
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8.2.3 Minimizing orbits

An orbit of our diffeomorphism F' is a bisequence

(pi = F'(p))icz,

where p € T* M. We have seen that each finite segment

(pi)i:m+n—1

is a critical chain for the corresponding m,n-action (fixing x,, = ¢(F™(p)),x, =
q(F™(p)). If each finite segment is a (global or local) minimum chain for the corre-
sponding action, we shall say that the orbit is (globally or locally) minimizing. The
same definitions can be applied to (global or local) maximizing orbits.

Remark

This property is invariant under lifts and fiberwise translations. <



Chapter 9

Invariant exact Lagrangian graphs

To any invariant exact isotropic submanifold of a certain exact symplectomor-
phism we can associate a conserved quantity, with the aid of the corresponding
primitive functions. If the invariant manifold is an exact Lagrangian graph, we
can obtain more information. We use the primitive function in order to charac-
terize it. The results of this section extend the results of Mather and Herman
appearing, for instance, in the last appendix of [68], and those seen in Chapter 6.

9.1 Characterization

Let F': T*M — T*M be a symplectomorphism, and let 5 : M — T*M be a closed
Pfaffian form, inducing a Lagrangian graph L£3. We say that Lg is F'-invariant iff:

Fefi = [ofep,

where f = ¢°F, q being the projection of T*M onto M. The dynamics on the invariant
manifold is given by the injective immersion f = fo3 : M — M. It is a diffeomorphism
iff L5 is, moreover, F'~'-invariant.

If # = dl, for some function [ : M — R, we know (see Section 3.1) that the function
®: M — R, given by )

O = Sedl — (Iof — 1),

is constant (because M is connected). We can improve this result for invariant exact
Lagrangian graphs (in short, i.e.L.g.).

Proposition 9.1 :

Let F : T*M — T*M be an exact symplectomorphism, with pf(F) = S,
and let f = qoF be its basic component. X
From the function | : M — R, we define the functions ® : T*"M — R and

d: M —R by
d =25 —(lof —loq)
and X
d = Peodl.
Then:
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(Conserved quantity on an i.e.L.g.)

La s F-invariant = ®is constant.

(Characterization of i.e.L.g.)
La s F-invariant < Vo € M (i*(dlx) =0.

(Characterization of the points of an i.e.L.g.)
If F' is monotone, and Ly 1s F-invariant:
pr =dl, & @*(pm) =0.

Moreover, if Lq is F~'-invariant:

pr = dly & ®.(p2)y, popg =0,

First point is an immediate consequence of the second.
We have to compute &, (p,),Vp, € T*M:

~

D.(pz) = Silpa) = (L(f(pr))ofe(pe) = Li(2)gu(pr)) =

= (F(pz) = di(f(pz))ofe(pz) — (po — dl(7))q.(pz).
So, Vo € M:

~

O, (di(x)) = (F(dl(x)) — dI(f(dl(x))))f.(dl(x)).
The proposition follows directly from this formula, because f.(p,) is
an epimorphism Vp, € T* M.
Suppose that F' is monotone and Ly is F-invariant. The = is the

previous point, so then we must prove the <=. Hence, we assume that
pr € T*M verifies @, (p,) = 0, i.e.:

(F(pz) = dU(f(pz))ofi(pz) — (pz — dl(x))°qs(ps) = 0.

In particular, if we apply this formula to vertical tangent vectors &,, €
V,, T*M = ker ¢,(p;), we obtain

(F'(pz) — di(f(pz)))o S (p2)€p. = 0.
Since F' is monotone, i.e., f.(p;) is an isomorphism between V, 7*M

and T, M, then

F(pm) - dl(f(pm)) = 0.
Therefore, we return to the first formula:

(P = dl(z))°q.(pz) = 0,
Finally, applying that ¢.(p,) is an epimorphism, we reach p, = dl,.
If, moreover, L4 is F~'-invariant, we proceed in the same way, and we
obtain that F'(p,) € Lg. Finally, by F~l-invariance, p, € Lg.

O

-

hlaad g
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9.2 Minimizing invariant exact Lagrangian graphs

Let L4 be an invariant graph of an exact symplectomorphism F' : T* M — T* M with
primitive function S. Let ® the function associated to the graph. We know that this

function is constant on the graph (because M is connected):

We shall say that the graph is (global or local) minimizing or minimal iff each point
of the graph di(x) is (global or local) minimum of the function ® restricted to the

AC € R| Vo € M &(di(x)) = C.

corresponding fiber. For instance, Ly is global minimizing iff

D(py) > (dl(z)) = C, Yz € M, Vp, € T M.

The next proposition shows that orbits on a minimizing graph are minimizing.

Theorem 9.1 :

Let FF : T*"M — T*M be an exact symplectomorphism, with primitive
function S, and Ly be a minimizing i.e.L.qg., generated by the function

[: M — R
Then:

All the orbits on Ly are minimizing.

Proof:

We shall suppose that M is connected, but this is not important. Hence,
let C' € R be the conserved quantity.

Let dl(x) be any point on the minimizing graph. First, we fix m,n € Z,
with the condition m + 1 < n. Then, we take z,, = ¢ F™(dl(x)) and

T, = @ F"(dl(x)).

Now, let p = (pi)i=m:n_1 be any F-chain connect-

ing x,, with x,, and o be the corresponding segment of orbit (i.e. o =
(F'(dl(z)))i=m=n_1). Hence, the corresponding actions verify:

Smn(p)

S
—

S(Pi)
(S(pi) = Uf () +Ua(p:))) + Uzn) — Uzm)

. (i) + Uxn) — Ham)
(n—m)C + l(x,) — l(x),)

S(Fi(dl(x))) + U(zn) — l(2m)
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Remarks

i) The same proof works in the local minimizing case, choosing chains close enough
to the orbit.

ii) This proposition is more geometrical than the analogous proposition in Sec-
tion 6.3. Notice that the key point is restrict the action to the set of chains.

iii) These properties are invariant under lifts and fiberwise translations.



Chapter 10

Interpolation of an exact
symplectomorphism

We consider the exact symplectic manifold N' = T* M, and an exact symplecto-
morphism F : N'— N with primitive function S. We wonder if we can obtain a
time-dependent Hamiltonian whose time-1 flow be F: F' = ;. In this case, we
shall say that F' is homologous to the identity.

We shall study the case in which the zero-section is F-invariant. Therefore,
applying the results in Chapter 9, we have dS°z = 0 and S°z = 0 (without loss of
generality). Following Section 2.4, this interpolation problem is related with the
properties of the Liouville derivative. We shall work in analytic set up, and the
differentiable case will remain open (cf. [16]).

The previous results will be enough for many cases, due to Weinstein’s theorems.

10.1 A fiber p.d.e.

To integrate with respect to the Liouville derivative is to solve the problem

given a function S € F(T*M), what are the functions H € F(T*M) such
that A(H) = §?

Since A is a vertical operator, we can restrict our attention to each fiber, where it
is easy to work. On each fiber (fixing «) we have a linear operator A, which transforms
y-valued functions. Its properties will be inherited by our Liouville derivative.

10.1.1 Solving the p.d.e. y-V,H -H =S5

Let 4 C R? be an open neighborhood of the origin in R?, with coordinates y =
(y1,-..,Ya4), and let S : U — R be a function. We want to solve the p.d.e.

y-VyH(y) = H(y) = S().
If we derive the previous equation we get a necessary condition to solve it:

v,5(0) = 0.
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(i.e., the origin must be a critical point of S). We shall consider the case S(0) = 0.
If not, we define S(y) = S(y) — S(0), H a solution of the p.d.e with S and, finally,
H(y) = H(y) — S(0) will be a solution of the original p.d.e.. We note that the case
S ~ 0 is the well known FEuler’s equation for the homogeneous functions of degree 1.
We can define a linear operator A on the space of smooth functions defined on U,
F=FU):
A F - F

H — y-V,H-H.

The problem reduces to solve the linear equation A(H) = S.
First, we begin remembering that if we have a function F' : Y — R, defined on an
star-shaped open set & C R?, centered in the origin, then we can write

F(y) = F(0)+Zyifi(y)a

where the d functions f; are given by

LoF
fily) = i ayz_(ty) dt.

Since H(0) = 0 (by the equation), then we shall decompose H as

d
H(y) = Y yihi(y).
i=1
Moreover, we can apply that result to the function S and its derivatives and obtain

S(y) = Z Yiyisij(y),

ij=1+d

with

S
sii(y) = t- sty) d(s,t
)= [t gy o) A

(note that Sij = Sji)~
Then, we impose that Vi,j =1+ d

oh;
y;

(y) = si;(y).

Since s;; = sj, we know, by Poincaré’s lemma, that there exists a function u : i/ — R
function such that A = Vu. We must find this function.
Since

0%u / 0?8
s;:(y) = = t sty)d(s,t
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then

u(y) = a-y+/[0 iS(sty) d(s,t)

,1]2 S2t

where a € R?. Finally, we have Vi =1 +d

ou 10S
hily) = — = ai—l—/ ——(sty) d(s,t
(y) o0 o 3 ayi( y) d(s, 1)

and, particularly, h;(0) = a;.
Summarizing, we have the next proposition.

Lemma 10.1 :

Let U C R? be a star-shaped open set centered in the origin and S : U — R
be a function satisfying:

S(0)=0,V,S(0) =0.
Then:
The solutions of the p.d.e.
y-VyH(y) = H(y) = S(y)

are

where a € RE.
Proof:

It is enough to substitute in the equation, but we shall recover the solution
from the previous formulae. We have

d
H(y) = Zyihi(y)
i=1
d
108
= Yi Cbz‘—l—/ - sty ds,t)
Zz; ( [0,1]2 Sayz( ) ds,)
1
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Remarks

i) We do not have problems with the integrals, thanks to the conditions satisfied by
S.

ii) The function H is defined up a constant vector a, and: V,H(0) = a. So then,
there is an unique solution with the origin being a critical point.

iii) The functions H(y) = a-y belong to ker A, that is, they are the homogeneous func-
tions of degree 1. In fact, the eigenfunctions of A are the homogeneous functions.
That is, if A(H) = «H iff H is homogeneous of degree a + 1.

iv) If S has the form S(y) = y*sp(y), with |k| > 2, then H has the same form
H(y) = y*hi(y) (we choose a = 0), with:

hi(y) = /Oltk|23k(ty) dt.

<
Finally, we shall obtain formal results of the problem using the previous formula
and imposing directly the condition. We shall compare the results.

e Using the previous formula, we have
S(y) = Z spy" = S(ty) = Z spt™ly"
n n

1 _
= t—QS(sty) = antw 2yn

Sn
| =1

= H(y)=a-y+)» Y

e and imposing directly the conditions, since

Sy) = sy = Zyig—i(y)—ﬂ(y)

n 7

= Z (yz Znihnynei> - Zhnyn

i

= (Il = e

n

then

— Vi=1-+4d, s,, =0 (necessary condition),
—Vin|#1, h, ==

— Zn
n|—17

— Vi=1-+d, h,, is undetermined.
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We see that if S is an analytic function in a certain polydisk, so H is . We have seen

that if we work on
Fe={HeF|j'H=0},

with £ > 2 (i.e., the space of functions with zero (k — 1)-order Taylor’s polynomial in
the origin), the operator A is invertible (at least if we work on an open star-shaped set).
In summary, we have obtained that

F =kerA® A(F),
because
o ker A\ = {h,(y) = ay | a € R}, and
o \(F)={SeF|5(0)=0}

Hence, A = Ay, is isomorphism onto A(F).

10.1.2 A splitting lemma

As a corollary of the previous results we obtain the next lemma.

Lemma 10.2 :

The space of functions defined on T* M (or in a tubular neighborhood of its
zero-section), F, splits as

F = kerA® A(F).

Moreover, the vertical derivatives of the functions of A(F) vanish on the
zero-section, and the functions of ker A are the fiberwise homogeneous func-
tions of degree 1.

We shall write Aj = A 7 ;. Hence Ajis an isomorphism in A(F).

10.2 An evolution problem

We recall that we have to solve the evolution problem:

ds .
d—tt =—{A['(S). i},

Cauchy’s data: Sy = S.

We want to solve the evolution problem using expansions in powers of t. If S, =
> ks Skt" is the expansion of S; (where Sy = S), then we can compute all the terms
by the recurrence

-1
S = 7 1 AT Sy aSv ’
= O 8T8, 50)
u+tv=k
thanks to the next two properties (bearing in mind that dSez = 0).
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Lemma 10.3 :

Let S, T be two functions defined in T*M (or in a neighborhood of its zero-
section). Then:

o dSoz = 0= d(A['(5))ez = 0.
e dSoz =0, dT°z =0=d{S, T}z = 0.

This lemma can be easily proved using cotangent coordinates. Hence, all the terms of
the expansion verify dSx°z = 0 (and, in particular, belong to A(T*M)). In fact, since
the function Sy = S has y-order 2, the y-orders of the Sy increase: the y-order of Sy, is
k+2. This is the key point in order to prove the convergence of the expansions.

We see that if our manifold is analytic (differentiable) and the initial term S is
analytic (differentiable), so are all the terms in the expansion. The problem is to
obtain the analyticity (differentiability) of the expansions in the ‘spatial’ variables, at
least until a time ¢ > 1 in a neighborhood of the zero-section. Now, the analysis is
local, and we shall prove the analytic case using majorant estimates.

10.2.1 Majorant estimates

Recall that for any two functions f(z), g(z) (z = (21, ..., zm)) analytic at z = 0:
F2) =3 fad", g(z) =) gne"

(using multi-index notation), we say that g is a majorant for f (f < g) iff Vo |fn] < gn-
A very close lemma to the next can be found in [86].

Lemma 10.4 :
The relation < satisfies the following properties:

1. i<ag, o< = i+h<<a+g, gt < g192;

f _ 9y

2. f<K<yg = (1=1+m);

b b
3. fi < gVt €lab] = / ft(z)dt<</ gi(2)dt.

Let wy, be the product wy(z) = [[i~, (b — z;), where b > 0. Hence:
L Vik=1=m

bou b 1 L
b—z wy, wy (b—2z1)...(b— 2) wy

1K

bm
5. 1f(2) <eVz | |2ls <b = f<<%.
b
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We complete the previous lemma.

Lemma 10.5 :

We suppose now that: m = 2d,z = (z,y),w(z) = H?Zl(b —z;)(b — y,).
Then:

6.

7.

Proof:

f<wtg<w! = {f g} < 2d0* 2klw D,

f<<Hyit ,g<<Hy]t L (u>0,0>0) =
=1

Cuvleyzt Z H y]t

s=1 t=1,t#s
{f,g} < b2d71 + w7(1+k+l).

CuvlkHyjt Z H Ys,

s=1 t=1,t#s

_ 2dkl
where cypp = k + 222 il

1 u
- -1 —k
f<<Hth Flu>1)= A (f)<<u_1t11yitw

(See [86])
d
=1
d 1
< 2%l w0
; (b—2:)(b—u)
< 2dbP Dkl (D
Since
of dg ~ (T Mlerv,
<< Yiy
Z 895] ay] ; <H b— i ( yj 1_‘!:
and

s=1 t=1,t#s
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then

lHyjt'Z H Yiy
t=1

= s=1 t=1,t#s
{f,.9} < +
U v v
ElTwe- 22 11 i
t=1 s=1 t=1,t#s

+2db** 2kl H Ui, H Y, w

Using that

s=1

H?Jth?Jﬁ = 'U/+U

- sV £ £4T7T A AL EUE

p2d—1,,~(1+k+1)

1+k+l

H Yje - Z/js)
t=1,t#s
+

t=1 t=1 v u u
i (1)
t=1

s=1

we obtain, finally:

t=1,t#s

Cuvleyzt Z H Yy

s=1 t=1,t#s

{f,9} < v +

CuvlkHy]t Z H Yiy

s=1 t=1

8. Since

RE2X]

AN = [ e

and, Vt € [0, 1]

floty) < JJwt w

s=1
—k —k
w (l‘, ty) < w ('I'a y)a

then

ATHS) < ! H?Jis
s=1

u—1

“F (2, ty),

wk,

—(L+k+1).

o~ A A A

-

o~ T
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10.2.2 Solving the problem in the analytic case
Proposition 10.1 :

Let M be an analytic d-manifold, and N = T* M its cotangent bundle (or
a tubular neighborhood of its zero-section,).

Let S : N = R be an analytic function, with dS°z = 0.

Then:

There exists a tubular neighborhood of the zero-section where the
solution of the evolution problem S; is defined until some time
t>1.

Proof:

We can use cotangent coordinates (x,y) in a neighborhood of every point
of the zero-section. It is sufficient to prove that we can get an small neigh-

borhood of zero where the series Y, ., Sk(z,y)t* is defined for ¢ < T and
T > 1. -

S(z,0) is constant, and we have supposed that this constant is 0. Moreover,

%(:E, 0) = 0 Y, and we can write:

S(xy) = > ywisiz(z,y),
i

where de functions s;; are analytic (and s;; = s;;). Fixing a radius b > 0, let
¢ be the maximum of the sup-norms of the functions s;; on “||(z, y)]e < b”.
So then, Vi,j =1+d

si; <K T
where w(z,y) = H?Zl(b — ;) (b — y;). Hence
So < WY Yl w
11,02
where vy = cb®?.
Suppose that Vu < n

u+2

Su < v > [y w .

L1yeenyly42 =1

We want to estimate S, ;. So then, applying the previous majorant esti-
mates

_ —1 -1
Sn+1 - n—_H Z {A| (Su)asv}

u+v=n
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u+2 v+2  v+2

Cuvazt'Z H Yijy

2d—1 s=1 t=1,t£s
< b Yu Yo n w—2nt3)
)
n+1 < u+1 v+2 ut2  ut2
u+v=n
i1, fut Cquth ’ E : H Yie
J1se -5 Ju+2 s=1 t=1,t#s
2d(2u+1)(2v+1)

where ¢,y = C(ut2),(v+2),2u+1),@20+1) = (2u+1) +=="227=—. Applying that

u+2 v+2  v+2 v+2 u+2 v+2
> (Mo I w) =20 > (Il 1] w
T1yeneybut2 s=1t=1,t#s s=1 Tlyeeey byt t=1 t=1,t#s
JlyeesJut2 JisesJut2

n+3

== d(U—|—2) Z Hykt’

ki,...,knt3 t=1

we reach to
n+3

Sn-i—l < Tn+1 Z Hykt 2n+3,

k1yeknys t=1

where

db** YVu Yo

n—+1 quU:nu—l—l

Tn+1 Cuv

and

Cuww = Cup(v+2) 4 Cpu(u+2)
= Qu+1)(v+2)+ 2v+1)(u+2)+2d2u+1)(2v+1)
= (4+8d)uv + (5+ 4d)u+ (5 + 4d)v + (4 + 2d)

< 41+ 2d)(u+1)(v+1).
Thus

4(1 + 2d)db*=1
n+1

Tn+1 > Z (U + 1)711%1

u+v=n

< 414200 Y e
u+v=n
Hence, we have majorated the S,s by

n+2

Sn < Y Z Hyzt 2n+1,

11 ,eeyin42 t=1

e T
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where the new sequence v, verifies the recurrence
Yo = b

’7n+1:K Z YuVv ,

u+v=n
where K = 4d(1 + 2d)b*~".
Let p € [0,1] be a ratio that we shall choose later. If |z|, < pb and
|yl < pb, then
[Salz,y)| < 7u(dpb)™?(b(1 — p)) 24D,

We call the right term in this formula 3,. Therefore, we have bounded all
the terms of the expansion in a certain domain of x, y:

S ISa(zy)lt” < D Bat™
n>0 n>0

We want the convergence radius of this series to be greater than 1. Since
Bn—l—l dp

lim = lim %H.
n By bY-1(1— p)ld A,

we have to compute the convergence radius of ) ., 7,t". We can write:

_ n_n+l
f)/n - K fYO (In,

where a,, is the sequence of natural numbers given by
ayg = 1

Up+1 = § Qo Uy

u+v=n

The elements of this sequence are the coefficients of the Taylor series of the
function

1—+1—-4t

) = —¥Y
(o) .
and, hence
lim 2L =y,
no
Finally:
limﬁnﬂ — o dp lim L — _ AKvydp
n B, P11 — p)ld “n A, pid—1(1 — p)id
= 16%(1+2d)e—"—— < 1
i=p ="

if p is sufficiently small. O
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Remarks

i) Of course, if we use a better sequence 7,, we can improve the factor 16 in the
last formula. For example, we can change it by 4e if we consider the constants +,
satisfying the recurrence

K
n+1

Tn+1

> @+ D

utv=n

ii) If our basic manifold is a torus, we can use a more adapted method. We can use
suitable norms, taking account that the functions s, are 1-periodic in all their
variables. We should use Fourier-Taylor expansions.

10.3 Solving the interpolation problem

Suppose that we have an exact symplectomorphism F' defined on a certain neighborhood
of the zero-section on 7% M, being S its primitive function, and that we have the solution
of the evolution problem: S;. Hence, if H; is a time-dependent hamiltonian verifying
A(H;) = S, then the corresponding Hamiltonian vector field is tangent to the zero-
section, of course, because:

d(A(H)) =z = 0 & d(Hez) = 0,

as it can be easily checked. We want to recover H; from the solution S;, and that the
flow of H; interpolates F'.

If all the points of the zero-section are fixed, then there is an only possibility:
H, = Al’l(St). If the dynamics on the zero-section is given by a certain diffeomorphism
f, we need it to be interpolable by the flow of a time-dependent vector field on the
zero-section. Then, we need this vector field to be extended to a neighborhood of the
zero-section by a time-dependent Hamiltonian vector field, whose Hamiltonian function
hs belongs to ker A, Vt. But this is easy, we just have to lift the basic vector field to
the cotangent bundle.

As a summary we have the next theorem, which says that dynamics around and
exact Lagrangian manifold is homologous to the identity.

Theorem 10.1 :

Let M be an analytic manifold, and N be its cotangent bundle T*M (or a
tubular neighborhood of its zero-section).

Let F : N — N be an analytic exact symplectomorphism, such that the
zero-section s invariant, whose dynamics is given by f : M — M. Suppose
that f is interpolated by the flow fi = fio of an analytic time-dependent
vector field Xy € X(M): f=fi

Then:
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F is (analytically) homologous to the identity (at least in a tubular
neighborhood of the zero-section).

Proof:

Let S; the solution of the evolution problem. Then, it is sufficient to choose
Hy = he+ AT (S f; 7,
where h(p,) = p(Xi(x)), because dHyez = dhyoz and hy € ker A. O

Remarks

i) In fact, this let us to prove the analyticity of the expansions given in the deter-
mination problem, and solve it in analytic set up.

ii) As a particular case, the dynamics of a symplectomorphism around an invariant
torus whose dynamics is conjugated to an ergodic translation is homologous to
the identity, and the time-dependent Hamiltonian can be chosen periodic, thanks
to the results in [86].

10.4 Dynamics around an i.e.L.g.

As a summary of the results of this chapter, we are going to obtain a theorem about
the dynamics around an invariant exact Lagrangian graph.

Theorem 10.2 :

Let M be an analytic manifold.

Let F : T*M — T*M be an analytic exact symplectomorphism, having and
invariant exact Lagrangian graph L given by an analytic generating function
[ : M —= R, whose dynamics is analytically conjugated to the time-1 flow of
a certain analytic time-dependent vector field.

Then:

F is (analytically) homologous to the identity (at least in a tubular
neighborhood of the Lagrangian graph L).

Proof:

By conjugation of our symplectomorphism by the fiberwise translation asso-
ciated to [ and, after, by the lift of the basic conjugation, we can transport
the Lagrangian graph to the zero-section and obtain that its dynamics is
the time-1 flow of the basic vector field. Let G be the composition of these
two conjugations and F' = GeFoG~! the new exact symplectomorphism.

By the previous result, F' can be interpolated by the time-1 flow of a certain
Hamiltonian vector field (at least in a neighborhood of the zero-section). Let
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H, be such a Hamiltonian and @, be its corresponding flow (from ty = 0):
F =¢;.
Now, we apply the flow of H, := H;sG~" is given by ¢, = Go@,°G~! and,
finally

F = GoFoG™' = Gop1oG™" = 1.

Remarks

i)

ii)

iii)

iv)

If the Lagrangian manifold £ is not a graph, then we must use the Weinstein’s
theorems to transport this manifold to the zero-section of its cotangent bundle,
via a symplectomorphism defined from a tubular neighborhood of £ onto a neigh-
borhood of the zero-section in T*L. Moreover, using a generalized Poincaré’s
lemma, he also proved that if our Lagrangian manifold is exact then the symplec-
tomorphism is also exact (between two different manifolds, of course). For these
results and their application to the construction of Morse families see [98, 61].

We recall that although our symplectic objects may be non exact, sometimes it
is possible that they turn into exact ones by lifting to suitable covering spaces.

If the basic manifold is compact, say a torus, then we can get a time-periodic
Hamiltonian H;, of period 1, at least in a relatively compact open neighborhood
of the graph. This can be done thanks to the results due to Pronin and Treschev
[86], in analytic set up.

These results can be applied for rather far of integrable symplectomorphisms.
So, the dynamics around an invariant torus whose dynamics is conjugated to
an ergodic translation is homologous to the identity, and the time-dependent
Hamiltonian can be chosen 1-periodic.
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Appendix A

Some examples

Although the theory that we have introduced can be applied to a wide quantity of
dynamical systems, it is advantageous to apply it to simple models. For instance,
it would be hard, from a computational point of view, to experiment with a time-
periodic Hamiltonian. The computation of the differential of the time-period map
must be done by means of the variational equations. Notice that we do not worry
about if that map has generating function.

This chapter is devoted to give different examples of exact symplectomorphisms
defined on the annulus, which will be used in the sequel. They are an extension
of the generalized standard-like maps introduced by MacKay [63], and provide
examples of twist symplectomorphisms, monotone positive symplectomorphisms
but not twist, symplectomorphisms whose monotonicity changes its sign, mono-
tone undefinite symplectomorphisms, etc.

A.1 Definitions

The annulus

Let T? = RY/Z? be the d-torus, and let A? = T¢ x R? be the d-annulus
(or d-cylinder). We recall that T*T¢ ~ A?. The coordinates on A? are the
angle-action coordinates z = (x (mod 1),y).

We consider the symplectic structure on A? inherited from its universal covering
A? = R? x R? (or the symplectic structure as cotangent bundle of T?). Let 7 : A% — A¢
be the projection: 7(Z) = z (and we shall write zZ = (z,y)).

Let F : A — A% be a diffeomorphism, and let F : A — A? be its lift: moF = For.
If F'is a symplectomorphism then F is an exact symplectomorphism. If the primitive
function of F is 1-periodic in all its z-variables, then F is exact symplectic.

Integrability

We shall say that a symplectomorphism L : A? — A? is completely integrable
iff it is given by

L(z,y) = (z 4+ Vi(y), y),
for some function [ : R — R.
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In such a case, the primitive function is given by

S(x,y) =y - Vi(y) —I(y).

Each tori {y = yo} is invariant and the motion on it is given by a shift by w = [(yo). If
it is rational, then all the orbits in such a torus are periodic, while if it is irrational the
orbits are dense, and the dynamics is topologically transitive.

Rotation vector of an orbit

Given the lift of an orbit {(xg,yx)}kez C R, its rotation vector (or fre-
quency vector) is defined as the following limit, if it exists:

. Tk
lim —.
k—o0 k

In particular, the rotation vector of a periodic point of period n, (z,y) € Per,(F), is
rational. It is given by £ € Q?, where p € Z satisfies

F™(z,y) = (z,y) + (p, 0).

This is the equation to look for periodic orbits of rotation vector Z.

A.2 Generalized standard-like maps

A generalized standard-like map is a diffeomorphism on the d-cylinder
F:T'xR' - T x R

given by
y =y—VV(x)
' =z+VW(Y') (modl) ’

where the potentials V and W are functions V, W : R? — R, being V 1-periodic in all
its variables. Its inverse is given by
y=y +VV(x)
r=a —VW(y') (modl) ’
F' is an exact symplectomorphism, and its primitive function is
Sx,y)=(y—VV(z)) - VW(y = VV(z)) = W(y — VV(z)) = V().
The Jacobian matrix is
_ ( L—-D’W(y) D’V(x) D*W(y)

We note that

~

Alw,y) = D*W(y)" +D*W(y)~ - D*V(a),
and, if VV (xy) = 0, then

~

A(zo,y) = 2D°W(y) ' —D*V(x).
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Remark

Notice that if we only ask V' to have periodic gradient, then we obtain a
symplectomorphism in the annulus, but not necessarily exact. Its lift is, of
course, exact. <

Examples

1) If we choose V(z) = 0 we get an integrable map, and all the torus {y = yo}
are invariant. The corresponding frequency vectors are w(yy) = VW (yo). The
extremal character of the orbits depends on D?*W (y,). If D*W (yy) = 0 the orbits
are minimizing and if D*W (y,) < 0 the orbits are maximizing. Undefinite orbits

appear when D*W (y,) is undefinite.

2) If we take W(y) = %yQ we obtain a standard-like map, which has a Lagrangian

generating function
1
L(xz,2") = 5(35' —2)? - V(x)
and it is given by

{ Yy =y—VV(z)
' =z+y—VV(zr) (modl)

The standard-like maps are monotone (+4), and twist. They are a discrete model

of the second Newton’s law, because
" =22+ = —VV(2).

Hence, an orbit is determined by its sequence of angles.

Moreover, these maps are models of Poincaré maps of Hamiltonians defined on
the (d+1)-cylinder (in angle-action coordinates: & = (x¢,x) and § = (yo,y)) with

a double resonance:

1 |
H(wo, w390, y) = yo + 5 [yll3 + € Y cx(p)e”™ <"+
kezd

(The section through zy = 0 is equivalent to the time-unit map).

A.2.1 Fixed points

The fixed points of our generalized standard map are given by
FIX(F) = {(.I'U,yg) S Ad | VV(.Z'[)) = 0, VW(y()) S Zd}
The stability of a fixed point is given by the 2d eigenvalues of the matrix

DPrg) = (17 P DV D0 ),
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These eigenvalues are paired off in the d residues. The residues are the eigenvalues of
the matrix

1
DR (o)D)

In particular, if the symmetric matrix B(zg,y9) = D*W (yq) is positive definite, then
the residues are real, and there are no complex hyperbolic quadruplets.
In particular, if d = 1, the residue is

1
p= W' (yo)V" (o).

A.2.2 Monotonicity

Our generalized standard map is monotone iff the matrices
B(z,y) = D*W(y - VV(z))

are regular at all. Anyway, if this is not our case, the non-monotone set is given by the
family of graphs

y = yo+ VV(x),

where the actions y, are those such that D?W (y,) is singular. Generically, the non
monotone set is a submanifold of codimension 1, and in this example is foliated by
Lagrangian graphs.

The torsion at a point (x,y) coincides with the matrix B(z,y), because it is sym-
metric. Recall that monotone positiveness is given by the matrices B~'4 and DB~!.
We shall consider monotone positiveness of the second kind, because the condition is
easier. Hence, monotone positive regions are given by the points (z,y) satisfying

B(z,y) > 0.
For d = 1, monotonicity is given by

B(z,y) = W'(y—V'(z)).

A.3 Some area preserving maps

Next four examples are generalized standard-like maps on the annulus A = S' x R. For
these area preserving maps we have chosen the potential V' as

V(z) = K uv(x),

where K is perturbative parameter and v is any 1-periodic function, for instance

v(r) = —WCOS(QMU).
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We have taken this function v for the examples. For K = 0 we have complete integra-
bility. We shall consider K > 0.

We have
V(z) = Kuv(z) = % cos(2mx),
V'(z) = Ki'(z) = £sin(2ma),

V'"(z) = Kv'(z) = Kcos(2rz).

The function V' has two critical points (in fact, this number is the minimum for a
function defined on S'), and in our case they are zo = 0 and z; = 5. If W'(y) = p € Z,
then the points (0, y) and (%, y) are fixed. The corresponding residues are py = %W”(y)
and p; = %W”(y).

Remark

We consider this potential V' because it is commonly used, although it could
be better to use trigonometric polynomials or even with infinitely many
harmonics, which is the generic case.

For instance, we can change the sinus function by the sinus-like function

1 1 11
! = —12V3 - = =), ifre|— =
v'(z) V(e - S)(+3), ife |-3,5]
and extending by periodicity. Then, we obtain C! area preserving maps
which are even cheaper from a computational point of view. N
Examples

1) The well known standard map, or Taylor-Chirikov map [24], is given by

and it is
=y 5 sin(n)
=y — —sin(27
y=Yy o
' =z+y (mod1l)
It can also be defined on the torus T?, because F(z,y + 1) = F(z,y) + (0, 1).

The standard map appears in the study of particle accelerators, for instance
in some model which consider an orbiting electron in a cyclotron [76], or in
condensed-matter physics, as in the Frenkel-Kontorova model [13].

The standard map is monotone positive and it is given by a Lagrangian generating
function.

The fixed points (%,p), with p € Z have residue p = and they are regular
hyperbolic. On the other side, the fixed points (0,p), with p € Z have residue
p= %, and they are elliptic if K < 4 and inversion hyperbolic if K > 4.

=K
4
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The exponential standard map is given by

Wi(y) = exp(y),
It is K
Yy =y— Py sin(27x)
' =z +exp(y’) (mod1)

The Jacobian matrix is

DF(o.y) ( ey S VEVIE) el Vi) ) |

We have introduced this map because it is monotone (+4), has positive torsion
but is not twist (because the torsion can be arbitrarily small). Moreover, F' has
not a global generating function (it must contain logarithms).

The fixed points are given by p € N*:

e (0,log(p)): the residue is p = %p, and it is elliptic if p < % and inversion
hyperbolic if p > %.

e (4,log(p)): the residue is p = =%p, and it is regular hyperbolic.
Note that if K > 4, there are no elliptic fixed points.

If the potential W is given by

we get a quadratic standard map. It is
K
y' =y — —sin(27x)
2m
' =z+y” (mod1)

The Jacobian matrix is

1-2(y = V'(x))V"(z) 2(y—V'(x
DFa = (2 2= ) ),

We introduce this a.p.m. because it is not monotone, since the monotonicity
condition fails on the curve {y = V'(z)}. In fact, it is monotone (+4) above this
curve and monotone (—4) below it. F has not a global generating function (it
must contain square roots).

The fixed points appear in three groups:



< e K. -~ LsLE AL LLgEV LA AL T AE AL T AL N A 4TEASL AL Y A2 SN LTRSS M -~

e (0,0) and (%, 0): they are regular parabolic;

e (0,\/p) and (3, —/p), with p € N*: since the residue is p = £./p, they are
elliptic if p < 2 and inversion hyperbolic if p > =

e (0,—/p) and (5, V/P), with p € N*: since the residue is p = %\/fo, they are
regular hyperbolic.

Note that, if K > 2, there is no elliptic fixed points.

We can get many quadratic standard maps taking W as any cubic polynomial.

4) Finally, if our potential W is given by

W) = —sin(my)

then we have a trigonometric standard map. It is
K
!/ — S 2
V=Yoo sin(27x)
' =z +cos(my’) (mod 1)
We can also consider this map as defined on the torus R/Z x R/(2Z), because

F(z,y+2)=F(z,y)+ (0,2).

This a.p.m. is not monotone, because the condition fails on the family of curves
{y =k+V'(x)}, where k € Z. On these curves the monotonicity changes its sign.

It has three families of fixed points:

0,p), (%,p) with p € Z: they are regular parabolic;
o (0,5+2p), (5.5
(0,5 +2p), (5,
hyperbohc if K

= + 2p), with p € Z: they are regular hyperbolic;

>
. : 4:12p) with p € Z: they are elliptic if K < 2 and inversion
> =
T°

<

A.4 Higher dimensional symplectic maps

On the 2-annulus (d = 2), a well known example is due to Froeschlé [33]. The Froeschlé
map is an standard-like map given by the potential

1
V(xy, x2) = ——= (Kj cos(2mxy) + Ky cos(2mxs) + A cos(2m(xy + x2)))

(27)?
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and it is )

K A
yll =Y — -1 Sin(27TI1) . Sin(27r(‘r1 + I2))
omr 2

K. A
Yy =yo — 2—7: sin(2mxy) — Py sin(2m(x; + x3))

'y =z +y', (mod1)

| 2’y =25+ 9", (mod 1)

As we see, it is a product of two standard maps (with parameters K; and K5) with
a coupling parameter \. We shall take positive parameters. Moreover, we have the
following:

e If A\ =0, it is the product of two standard maps.

e If ki = Ky =0, it is the product of a rotation and a standard map (of parameter
2)).

Last claim is seen by using the change of variables:

Uy =1 — T2, U1 =Y — Y2,
U = X1 + T2, V2 = Y1+ Ya.

Of course, we can obtain many symplectic maps by changing the potential W. We
can consider combinations of the kind Wy, y2) = Wi(y1) + Wa(yz2), in order to get
a standardx exponential Froeschlé map, an exponentialX exponential Froeschlé map, a
standardx quadratic Froeschlé map, etc.



Appendix B

BHM theory and Converse KAM
theory

A fundamental question in symplectic-Hamiltonian dynamics is which parts of
the phase space contain invariant tori and which do not. Often one works on the
cotangent bundle T*T¢ ~ T¢ x R? = A? of the d-torus.

e On one hand, KAM theory (by Kolmogorov [52], Arnold [4] and Moser [78])
let us to obtain many invariant tori of dimension d for the exact symplec-
tomorphisms which are close enough to completely integrable ones. Some
non degeneracy conditions are needed. In fact, this theory proves that the
measure of the complement of the invariant tori in any bounded region is
arbitrarily small when we make smaller the size of the perturbation. The
dynamics on these tori is conjugated to ergodic translations on T? satisfy-
ing Diophantine conditions. Herman has proven that these tori need to be
Lagrangian [40].

e On the other hand, the Birkhoff theory [19] about the invariant curves for
area preserving maps in the annulus A = Tx R is a first step to a global (non
perturbative) study on the existence of such a curves. This theory gives
several Lipschitzian inequalities for the invariant curves and first asserts
that they must be graphs (under some non degeneracy conditions). These
theorems appear also in the works of Herman [39] and Mather [72]. Herman
improved and generalized such results to higher dimensions along several
papers [40, 41]. We shall refer to this theory as BHM theory.

e Finally, it would be useful to know conditions under which there are no
invariant tori though a given point or region in phase space. Following
MacKay, Meiss and Stark in [68] we shall refer to the development of such
criteria as Converse KAM theory.

This chapter is highly inspired in Herman’s papers Existence et non ezxistence
de tores invariants par des difféomorphismes symplectiques [40] and Inegalités a
priori pour des tores lagrangianes invariants par des difféomorphismes symplec-
tiques [41] and the paper by MacKay, Meiss and Stark Converse KAM theory for
symplectic twist maps [68].
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B.1 Monotone positiveness

Some non-existence criteria of invariant tori are founded in some kind of positiveness of
our symplectomorphism. We have follow [40] rather than [68], that is, we have studied
monotone positive cases rather than twist cases.

B.1.1 Notation

We shall work on the annulus. Let F' : A% — A? be a symplectomorphism. We shall
consider its lift F : R2¢ — R?? which is an exact symplectomorphism with primitive
function S : R — R.

Let ¢ : T¢ — R? be a differentiable map, whose graph L, is a F-invariant La-
grangian torus. Thus, we can write

b(x) = a+ Vi(z),

where a € R? and [ : T — R. So, the generating function (on R?) of £, is L(z) =
ar +(x).

Let f: T¢ — T¢ be the dynamics on the torus, that is to say, the diffeomorphism
given by f(z) = f(x,v(z)). We shall also write A(z) = A(z,¢(z)), B(z) = B(x,v¥(z)),
etc 1. We shall suppose that ¢ is monotone (|B(x)| # 0, Va € T?).

Remark

Along this chapter we suppose that our invariant Lagrangian tori are graphs.
There is no an equivalent to higher dimensions of the next theorem due to
Birkhoff, for d = 1:

Let F': A — A be a C'! monotone symplectomorphism, satisfying

sup(|B ™1 (2)A(2)],[D(2)B ' (2)]) < oo

ZEA

Then, any C° F-invariant torus homotopic to the circle {y = 0} (a
rotational invariant curve), is the graph L, of a certain continuous
function ¢ € C°(T", R).

For the proof of this theorem see [19, 39, 72]. Herman [40] has perturbative
generalizations to higher dimension of this theorem. <

B.1.2 Minimizing graphs

Let @ : R? — R be the function given by

A

®(z,y) = S(z,y) — (L(f(z,y)) — L(z)).

1Recall the notation in Section 4.1
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In order to know if £ is minimizing we must compute the second derivative of o respect
to y on the points of the graph. It is

92d

Gy (@ ¥(@) = (DT (@) = B(x)" D(/(«))B(a).

The character of the second derivative does not change if we multiply it by B! and
B~ (recall that the graph is monotone):

BT(x)%‘f(x, $(@)B (z) = D(x)B(x) " — Dy(f(x)).

Taking derivatives in the equalities f(z) = f(x,v(z)) and ¥ (f(z)) = g(z,¥(z)) we
obtain

Df = A+ B Dy,
Dyef Df = C + D Dy.
Hence, as DA — B'C = I;, D"B = B" D and D is symmetric, we reach
B7'A+Dy = B'Df,
DB —Dyof = (Df)y" "B
Therefore, we define the maps E1, By : T — My(R) by

E, = B7'Df,
E, = (Df)y" "B .

They are symmetric and non-singular matrices, and they are related by the equality
E, = B 'E['B.

Hence, the positive definiteness of one matrix implies the positive definiteness of the
other one. Then, we have obtained next lemma.

Lemma B.1 :

Let F : AY — A? be a symplectomorphism, and Ly be a monotone F-
wnvariant Lagrangian torus. Then:

Ly is minimizing < E1(z) = 0 Vo € T? & Ey(z) = 0 Vo € T

B.1.3 BHM theory

The second point of the next theorem is due to Herman, but we have used his proof in
order to relate his results with Converse KAM theory. As a summary, we obtain that
the orbits on a monotone positive i.L..g. are minimizing.

Theorem B.1 :
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Let F : A — A? be a symplectomorphism, and L, be a F-invariant La-
grangian torus. Suppose that it is monotone positive. Then:

1. Ly is minimizing;
2. |p(DY)|e < max(|p(B~"A)]oo, [o(DB™")|s), where ||o means the
sup-norm of a function defined on T¢.

Proof:

1. Suppose that our graph, which is given by ¢(z) = a + Vi(z), is mono-
tone (+,), that is, Vo € T¢ B !(z)A(z) = 0. Let x4 be the minimum
of the periodic function [. Then:

Y(z9) = a, Dp(zg) = D?I(z4) = 0.

Hence: B B

El(ZEo) = B_I(Io)A(ZL’O) + D@/J(Io) > 0.
Finally, as E is non-singular at all, we deduce that it is always positive
definite: Vo € T¢ E;(x) = 0.
If we suppose that the graph is monotone (+4)the proof is similar. We
must take the antiimage by f of the maximum of [ in order to prove
that E5 is positive definite at all.

2. Second point is an immediate consequence of the inequality

—B~(z) A(z) < Dy(x) < D(f'(x)) B~'(f'(2)),
which is satisfied Vo € T¢.
d
Remarks

i)

ii)

We have that Vx € T¢

Ey(x) + Ey(f () = D (@)B ' (J () + B (x)A(x)
= Az, ¢ (x)).

Hence, if our graph is minimizing (for instance, if our graph is monotone positive)
then these matrices are all positive definite. These matrices appear on the diagonal
of the second derivative of the action, and we had already obtained this result.
In particular, if A(x, y) < 0 then there is no minimizing invariant graph through
(xz,y). For d = 1, this coincides with the first step in the Lipschitz criterion for
non existence of invariant graphs [67, 76].

The upper bound of the proposition is a bit stronger that the previous one, be-
cause we have stronger hypothesis. Herman also proved that if our exact sym-
plectomorphism is C' and monotone globally positive and the invariant torus is
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C-Lagrangian (see [40] or [41] for the definitions and the proofs). It is a gener-
alization to higher dimension of a theorem due to Birkhoff for d = 1 [19], which
gives us bounds of the slope of invariant rotational curve 2.

Following in the case d = 1, such bounds give Lipschitz cones, and inside them
there is the i.r.c.. This is the heart of the cone-crossing criterion for non-existence
of i.r.c. performed by MacKay and Percival [67], and first used by Herman [39] and
Mather [72]. On the other side, Newman and Percival [81] and, independently,
Aubry and coworkers [12, 13] used criteria connected with action principles. In
[67], they prove that both methods are equivalent.

iii) The first point in the proposition was also proved by Herman [40, 41] and MacKay,
Meiss and Stark [68] using different assumptions. They need the generating func-
tion (and impose twist conditions on the symplectomorphism). We think that
many results can be proven without using the existence of a global generating
function satisfying some strong conditions of positiveness.

iv) We note that Fy is B~'A and E, is DB™! after projection of the graph on the
zero-section. So then, the graph is minimizing iff when we project it on the
zero-section then it is monotone positive in the two senses.

B.1.4 Converse KAM theory

In [68], they derived a variational criterion for the non-existence of invariant Lagrangian
graphs. We can write it in the next way. We shall use the same notation as in the
proposition.

Non-existence criterion

If the orbit by z yields on a monotone positive region, and has a segment
which does not have non-degenerate minimal action then it does not lie on
any invariant Lagrangian graph included into such a region.

In order to check the minimality of a segment we can use the MMS iteration of
Section 5.4.2). Of course, if we take segments of length 1 we obtain rather crude
estimates.

In [68], they applied the test to the Froeschlé map, which is a 4D twist map and it
is given by a Lagrangian generating function. However, we have seen that we must not
be so restrictive, and we can apply their methods to other examples. The idea is that
we do not apply global methods because we test if a certain segment of orbit is a local
minimum of the corresponding action, and then the existence of a global generating
function, which involves global conditions for our symplectomorphism, is not strictly
necessary.

In [68], they also performed a generalization to higher dimensions of the cone-
crossing criterion, given a geometrical interpretation of the variational criterion.

2i.r.c. for short
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B.2 Examples

We consider a generalized standard-like map (see Section A.2)

{ ¥ =x+VIW(y—VV(x))
y'=y— VV()

If the potential W is a strictly convex function (D*W (y) = 0 for any point y € R?) then
our symplectomorphism is monotone (+4). If this is not our case, we can study the
monotone positive regions. Of course, we can do the same with the monotone negative
regions.

Applying the first step in the variational criterion, if there is an invariant Lagrangian
graph inside a monotone (+4)region through a point (x,y), then the corresponding orbit
must be minimizing and, in particular, the matrix
Alz,y) = DW(y)™' +D*W(y)™" =DV ()
must be positive definite. Since any invariant Lagrangian graph must intersect each
fiber {z = 2y}, we can restrict ourselves to a particular one. We can choose z, as a
critical point of the potential V. So then, we have to study the inertia of the matrix

fl(xo,y) = 2D*W(y)~" — D*V(x).

Hence, if D*W (y) is positive definite we must check if fl(xo, y) is positive definite, and
if DIV (y) is negative definite, we must see if A(zg,y) is negative definite. Undefinite
cases are not considered.

Of course, stronger results may be obtained by iterating, with the aid of a com-
puter. For instance, suppose our map be positive definite. Then, we can throw out the
pieces of the phase space where the points are not minimizing after a finite number of
iterations. We are sure that in these pieces there are not invariant tori. On the other
side, minimizing orbits not only correspond to invariant tori, but also to minimizing
periodic orbits, cantori, etc. This is the philosophy in [68].

We shall apply the method to different generalized standard maps.

B.2.1 Some 2D examples
We shall consider d = 1 and the potential V' given by

K
Viz) = e cos(2mz),
where K is a positive pertubative parameter.
In all these examples we shall apply:

e the first step in the variational criterion, in order to get rather rude estimates of
the critical value of K in which all the i.r.c. have broken;

e the MMS iteration to a region of the phase space, in order to check in which parts
of the phase space do not exist invariant tori and in which parts such existence is
possible.
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In order to show this second point, we have taken different values of K to see the
minimizing and maximizing regions. We have taken the same region of the cylinder,
y € [—1,1], and we have compared:

e the dynamics, taking 1024 points and iterating all of them 1024 times;

e the extremal character of the orbits, applying the MMS iteration to segments of
length 128;

e the minimizing and maximizing regions, by choosing the corresponding points of
the previous picture.

Moreover, if our map is not monotone, we have drawn in third picture and using white

colour the curves where monotonicity fails (and change its sign). We shall see that the

i.r.c. which cross these curves can fold, and be no graphs, and they are more robust.
The scale of colors that we have use in order to show the extremal character is

min max

Examples

1) The standard map.
The standard map has W (y) = 1y? and it is monotone (+4)(as all the standard-
like maps). Then:
Alz,y) = 2-=V"(x)
= 2— Kcos(2rx).

As K > 0, A(z,y) takes his smallest value at z = 0, being A(0,y) = 2 — K. So
then, as in the first step in Mather’s calculations ([72]):

If K > 2, there does not exist any i.L.g..

If we take a segment of length 2, then we must take into account

A

D1(0,y) = 2-K

and
Do(0,y) = 2— K cos(2my) — —
= 2— Kcos -
If 0 < K < 2 then Z:)l > 0 and there does not exist any i.L.g.. if D2 < 0. The
maximum value of Dy is taken for y = % and it is 2 4+ K — ﬁ Finally, we

improve the previous bound and we get that there are not i.L.g.. if K > /3. We
could improve the bounds taking into account segments of higher length.
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A better bound is obtained by improving the Lipschitz cone. For instance, Mather
[72] obtained the bound K > 4/3 taking into account segments of length 2 (this
kind of bound was generalized by Herman [40] to higher dimensions). Later,
MacKay and Percival [67] refined it to obtain K > 63/64 = 0.984375. This
refinement is an example of computer assisted proof. Finally, Jungreis [48] also
performed a method for proving (computer assisted) that the standard map has
no invariant circles for K > 0.9718. These bounds are in according with the
result of Greene [36], who estimated the bound K > 0.971635406, by means of
the residue criterion.

Next figures show how the invariant tori disappear when we increase the parameter
K.

STANDARD HMAP: K= @.9%800808

Dynamics MMS iteration, 128 steps Extremal orbits, 128 steps
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STAHNDARD MAP: K= 8.958888

Dynamics MHS iteration, 128 steps Extremal orbits, 128 steps

STANDARD MAP: K= 1.0800808

Dynamics MMS iteration, 128 steps Extremal orbits, 128 steps
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2) The exponential standard map.
In this case we take W (y) = e¥. Then

~

Alryy) = eV+evVE@ V()

and if we take x = 0, the minimum of V', then

~

A(0,y) = 2 - K.
Hence:

If we fix K > 0, there is no i.L.g. through any point (0,y) with y >
log %

This kind of bound is natural since the dynamics become faster and more chaotic
as closer to 400 we are. The upper invariant curve separates a chaotic region of
another which is plenty of invariant curves. A similar situation appears when one
studies the boundary of a resonance zone associated to an elliptic fixed point [90].
We have changed this point by the points in —oo, which are fixed.

EXPONENTIAL STANDARD MAP: K= B.658888

Dynamics MHS iteration, 128 steps Extremal orbits, 128 steps

Note that, although the hypotheses of the Birkhoff theorem are not satisfied, the
rotational invariant curves seem to be graphs.
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3) The quadratic standard map.

We consider W (y) = 3y® Then, as K > 0, the points over y = V'(z) are
monotone (+4), and the points below y = V'(z) are monotone (—4). As,

R 1 <1 1
A0,y)=-—-K, A=,y =—-+K
O.0) =7~ K, Al =

then

there is no monotone (+4)i.L.g. through any point (0,y) with y >

and there is no monotone (—,4)i.L.g. though any point (%, y) with y
_1

K-

1
K
<

In the next figures, we note that the non-monotone r.i.c. are more robust that
the other ones, which seem to be graphs. Moreover, the non-monotone curves,
which have folds, forbid the mixing between the monotone positive and monotone
negative regions. Then, we see that these curves are minimaximizing, in the sense
that ‘half’ of the eigenvalues of the Hessian matrix are positive. When they break,
the mixing is possible. We think that these minimaximizing curves are, in fact,
definite (positive or negative), in suitable coordinates (cf. [91]).

We recall that set of the points which go to a non-monotone one, after iteration,
has measure zero.

QUADBATIC STAHDARD MAF: K= @.8000880

Dynamics MMS iteration, 128 steps Extremal orbits, 128 steps
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QUADRATIC STANDARD MAF: K= 1.5868888

Dynamics MHS iteration, 128 steps

QUADBATIC STAHDARD MAF: K= 2.8000888

r s~ L£vNSEAL A AL ALTE

Extremal orbits,

128 steps

Dynamics MMS iteration, 128 steps

Extremal orbhits,

128 steps

- sL4A T AU
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4) The trigonometric standard map.

Finally, we consider W (y) = < sin(ry). We consider the map defined in the torus

™

R/Z xR/(2Z), represented by [0, 1] x [—1,1]. Then, the region {—1 < y—V'(z) <
0} is monotone (+4) and the region {0 < y — V’'(x) < 1} is monotone (—4). We

have

9 .
y)——erK, A0,y) = —

2

K
7 sin(7y) ’

then

there is no monotone (—4) i.L.g. through any point (3,y) with y €]0, 1]
and sin(ry) > -2 and there is no monotone (+4) i.L.g. through any

point (0,y) with y €] —1,0[ and sin(ry) < 2.

Note that this is dynamically represented by the a resonance zone associated to
the fixed points (0, _71) and (%, %) Anyway, if K is small we do not throw out
any piece of phase space, at least is this first step.

In the next figures we also note that the ‘last’ i.r.c. are non-monotone. The

monotone i.r.c. seem to be graphs.

TRIGOHOMETRIC STANDARD MAP: K= @.3paaae

Dynamics MMS iteration, 128 steps Extremal orbits, 128 steps
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TRIGOHOMETRIC STAWDARD MAFP: K= @.808888

Dynamics MHS iteration, 128 steps Extremal orbits, 128 steps

B.2.2 Around an elliptic fixed point

We can also apply these methods to the study of a neighborhood of an elliptic fixed
point, by means of suitable changes of variables. For the sake of simplicity we shall
consider the 2D case.

Suppose we have a symplectomorphism F : R?> — R2?, being the origin an elliptic
fixed point. Although it is not strictly necessary, we suppose that the linear part is
already reduced:

DF(0,0) = ,

where ¢ + s> = 1.
We now consider the polar symplectic change of variables
P: SxR. — R
0,I) — (z=+2Icosh,y=+2Isinb).
In order to do the calculations, we must consider the differential of P~'eFP. Note

that it is not necessary to perform the change of variables and it is enough to consider
the matrices

z _ X
M(:E,y) = 72152 52537_2 CL(%?J) b(]:,y) Y wre

e(e,y) day) )\ o s
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being (7, 7) = F(z,y).
Example

As an example, we consider the standard map with K = 1. The square
means the box [, 2] x [—3, 3], and the elliptic point is in its center (and we
must take out it). The pictures in the second line show the averaged action
(Ap) and its variation respect to the parameter K (A;), for the different
points of the square (see Section 3.3.1). The level of grays are from black
to white, in increasing order respect to the corresponding values of Ay and

Al

STAHNDARD MAFP: K= 1.888888

Dynamics MMS iteration, 128 steps Extremal orbits, 128 steps

AB in [3.1e-83,1.8e-811, 128 steps Al in [-2.3e-82,2.5e-821, 128 steps

In these pictures, the resonance zone associated to the elliptic fixed point
has been roughly bounded. For a more accurate study of the ‘last’ invariant
curve see the paper by Simé and Treschev [90]. <
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B.2.3 Some higher-dimensional examples
Now, we shall consider d = 2 and the potential V' given by

1
(27)?

We shall consider different potentials T, all of them like W (y1, y2) = Wi (y1) + Wa(yz),
mixing the different behaviors appearing in the previous section. In the pictures we
have shown the extremal character of the points of a piece of a vertical plane (we have
chosen the symmetry plane {x; = 0,2z, = 0}) and we have extracted those which are
minimizing or maximizing.

Examples

V(zy,e) = — (K1 cos(2mxy) + Ko cos(2mxs) + Acos(2m (21 + 22)).

1) The Froeschlé map.
The potential is

1 1

Wy, y2) = 59%"‘593

Following [68], if we consider the symmetry planes {z = (0,0)}, {z = (3,3)},
{z = (0,2)} and {z = (3,0)}. we obtain that there are no i.L.g. outside the

parametric region given by

Ki+X<2 | Ky+)X<2,

(2- L‘;KZ > W0l _4K2)2 + A2,
(24 Bt he ; B2y s Ky — Ka)” _4K2)2 + 22
(2 — Kit Ky —5 Ky A)? > U+ Ko)” ZKQ)Q + A2,
2+ Kit Ko ; Ko _ A)? > G+ Ko)” ZKQ)Z + A%

We shall consider two examples, which appear in the next page:

1. The first one also appears in [68], where they relate the channels in the
figure with the channels which appear when one look for symmetric peri-
odic orbits [53], or when one takes a thin neighborhood of the symmetry
plane and projects the points of a chaotic orbit when they enters into such
a neighborhood [49].
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2. If we take a small parameter K; and a parameter K, rather big then when
we increase the coupling parameter A we obtain that the destruction of all
the tori is like a dust of the kind Interval x Cantor. This behaviour is shown
in the second picture.
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FROESCHLE HAP

Ki= @.858888, K2= 0.200808
L= B.8z8888

512 iterations

et

vertical section: x1= 08.988AA8 x2- A.@606068
square —» yl: [B.0086AA,1.080088]
y2: [B.000000,1.00008081

FROESCHLE MAP

Ki= 8.188888, K2= @.980888
L= 8.885888

128 iterations

vertical section: x1= 0.000000 xZ2= @.0000808
square —> yl: [8.8RABAA,1.8880AA]
y2: [B.AA06AA,1.000084]
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2) The standard xexponential Froeschlé map.
We take

1 A
Wy, y2) = §y%+€yz-

Then

; 2— (K + ) -2
A(Oa anlayZ) - ( )\ Qe Yz _ (K2 + )\) > '

Hence, there are not invariant tori if Ky + A > 2. Otherwise, there are not
invariant tori through any point (0,0, y1, y2) with

2(2 — (K1 + )
ys > log <2(K2+)\) — KK, — (Kl—i—Kg))\) .

Next figure confirms our expectations about that the number of invariant tori
increase when we decrease the value of 5.

STANDARD x EXPOHENTIAL FROESCHLE MAP

Ki= @.188888, K2= 0.200808
L= @8.188888

128 iterations

vertical section: x1= 08.988AA8 x2- A.@606068
square —» yl: [-1.0868088,1.08008088]
y2: [-1.8000008,1.00008088]
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3) The exponential xexponential Froeschlé map.
We change W by

W (y1,y2) = ' + 2.

Hence,

: 2 e — (K, 4+ ) =\
A(O; anlayQ) = < -\ ' 2 e Y2 (K2 + )\) > :

Then, there is not invariant torus through any point (0,0, y1, y2) with

o ¥l >_2 _ o

Ki+X?
¢ > iy, or
VI« 2 oy o 2 _ Kt oy _ KotA oy A% Y1 pye
o ¥ < e < iy, (1 e (1 taev?) < S-eviel.

EXPOHMENTIAL x EXPOHENTIAL FROESCHLE MAP

Ki= 8.188888, K2= 0.200888
L= 8.188888

128 iterations

vertical section: x1= 0.000000 xZ2= @.0000808
square —> yl: [-1.80680808,1.86808881
y2: [-1.088088,1.0800800]
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4) The standard xquadratic Froeschlé map.
In this case we have

Wiy, y2) = %?J% + %yg’
Then, our map is monotone (+,4) over the hypersurface {ys = V.,V (z1,22)}, and
monotone undefinite below it. This is reflected in the next figure, because the
intersection of the non-monotone set with the vertical plane {z; = x = 0} is the
line {yo = 0}. There is a value yo bigger enough, say ﬁ, such that there are
not invariant tori over it.

STAHNDARD x QUADRATIC FROESCHLE HAP

Ki= @.188888, K2= 0.200808
L= @8.188888

128 iterations

vertical section: x1= 08.988AA8 x2- A.@606068
square —» yl: [-1.0868088,1.08008088]
y2: [-1.8000008,1.00008088]
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5) The quadraticxquadratic Froeschlé map.

Finally, we have chosen

1 1
Wy, y2) = gy:f + gyg

The phase space if divided in four regions: one is monotone positive
M, ={y1 > Vo, V(x1,29),y2 > Vi, V(x1,29) },
another is monotone negative
M_ ={y1 < Vg, V(z1,22),y2 < Vg,V (21, 22)},
and the other two are monotone undefinite. They are separated by the non

monotone sets {y; = V,, V (21, 22)} and {yo = V.,V (21, 22)}.

This is also reflected in the next figure, where the non-monotone sets are repre-
sented by the axis {y; = 0} and {y2 = 0}. We have chosen rather big parameters
K, and K5 and we see two CantorxCantor dusts: one is monotone positive and
the other is monotone negative.

QUADBATIC x QUADRATIC FROESCHLE MAP

Ki= 8.680888, K2= 0.700808
L= B.818888

128 iterations

vertical section: x1= 08.988AA8 x2- A.@606068
square —» yl: [-1.0868088,1.08008088]
y2: [-1.8000008,1.00008088]



Appendix C

The breakdown of invariant tori

The study of the breakdown of invariant tori is interesting in order to understand
the transition to chaos in conservative dynamical systems.

The persistence of an invariant torus for small perturbations from the integrable
case depends on the fact that the corresponding frequencies are ‘far’ from ratio-
nals. This is translated to a certain Diophantine condition. So, there is a nice
connection between Dynamics and Arithmetic. The KAM tori are labelled by
their frequencies, the more badly approachable by rationals the rotation vector
is, the more difficult is to broke the corresponding torus.

In order to obtain good estimates on the domain of existence of such tori, it is
better to look at a concrete frequency vector. For the standard map (and similar
maps), we can ask about the critical value of the perturbative parameter, K,
needed in order that the curve corresponding to such frequency, w, breaks. Greene
[36] proposed a criterion based on the study of the stability of periodic orbits with
nearby rotation number. He applied his method to show that, for the standard
map, the ‘last’ invariant circle has frequency w = v, where ~y is the golden mean

1++5
v = 5

The critical value when that torus is destroyed is
K, ~0.97163540631.

This value was obtained by MacKay [63], and he had numerical evidence that it
was, in fact, slightly high.

The Greene’s method has been partially proven by MacKay [65] and Falcolini
and de la Llave [32]. Tompaidis [94, 95] performed a Greene method in higher
dimensions, and applied it to a three dimensional example (see also Section D.2.2).

We shall perform a Greene-like method, but instead of using the residues of peri-
odic orbits (their dynamical character), we shall use their actions (their extremal
character), but in a different way that Mather’s AW [72]. Our symplectomor-
phisms must be monotone positive (or negative), or at least in the region where
our torus exists. First, we shall check the method with the standard map and
the golden curve, and we shall also notice scaling behaviour [63, 82]. Secondly,
we shall apply the method to a 4D dimensional symplectic map: the Froeschlé

151
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map. Moreover, we shall do a numerical study of the kind of breakdown, that is
to say, we ask for the kind of Aubry-Mather set our invariant torus transforms.

Although the approximation of quasi periodic orbits by periodic orbits is well
understood in 2D twist maps, this is not the case in higher dimensions. Anyway,
we shall use it in a heuristic way.

Finally, we must say that we only concern about KAM tori, that is to say, tori
whose dynamics is given by ergodic translations. We recall that the dynamics on
an invariant Lagrangian torus can be that of any diffeomorphism conjugated to
any diffeomorphism of T¢, as Herman proven in [42].

C.1 Periodic orbits

First of all, we shall recall some definitions. We shall work on the d-cylinder Al =
T¢ x R?. Given a diffecomorphism F : A — A?, and its lift F' : R?? — R??, we shall say
that a periodic point of period n, (z,y) € Per,(F), has rotation vector 2 € Q7 iff

Fn($’y) = (x,y) + (p’ 0)'
In order to study an orbit with irrational rotation vector w, one consider periodic

orbits with nearby rational rotation vectors.

C.1.1 Approximation of invariant sets

The approximation of invariant sets by periodic orbits can rely on the two next propo-
sitions. Before stating them we need to recall a few concepts (see, for instance, [17]):

e Given a metric space (X, d) one defines

H(X) = {KCX|K+#0,K compact}.

e In the previous space of compact sets one defines the Hausdorff distance, as
h(A,B) = max(p(4, B), p(B, A)),
where

p(4,B) = maxmind(a,b).

Let X and Y be two metric spaces and f : X — Y a continuous map. We can extend
this map to the bigger metric space as F': H(X) — H(Y), defined by F(K) = f(K).

Proposition C.1 :

F is a continuous extension of f.

Let f : X — X be a continuous map. We shall say that K C X is (strictly)
f-invariant iff f(K) = K. Next result follows from the previous proposition.
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Corollary C.1 :

Let (K,)n be a sequence of f-invariant nonempty compact sets, convergent
to K (in the Hausdorff metric). Then:

K is f-invariant.

In particular, the limit of a sequence of periodic orbits, if it exists, is a compact
invariant. The question is to know which kind of object it is.

C.1.2 Reversible maps and symmetric periodic orbits

When our diffeomorphism has some symmetries, then we can simplify the computation
of periodic orbits. We summarize here the main definitions about reversible maps.

Reversibility.- Given a set X, let T : X — X be a bijective transformation and
I: X — X be an involution (I? = id). We shall say that T is I-reversible if and only
if T=' = ITI. In such a case, we shall say that I is the reversor of T.

For all j € Z, we define I; = TVT and the j-th symmetry azis as

F]' = {ZL’EX|IJZE:£L’}

Then we say that an orbit is j-symmetric if and only if it is invariant by I;. The following
holds:

excly Tizecly, 2q+j—-k#0=
x is | 2¢ + j — k |-periodic and 6(z) is symmetric with respect I; and Ij.

In particular, if we look for n-periodic symmetric orbits, we can look for x € X such
that:

o Ifn=2¢
x € Ty, T2z € Ty (symmetric with respect to Ip), or
x € 'y, T9z € Ty (symmetric with respect to Iy).

e [fn=2¢+1:
zel, T2 €Ty, or
x €y, T2 el
(in both cases symmetric with respect to Iy and I;).

Reversibility in generalized standard-like maps.- Suppose that our diffeomor-
phism on F: T¢ x R — T¢ x R? is given by

{y’zy—f(l“

¥ =z+g(y) (modl) ’

where f,g:R¢ — R? are two maps, being f 1-periodic in all its variables.
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Then F = 1, where

v(0)= (i) (5)=C73).

I; is an involution, and I is an involution iff f is odd.
If this is our case, the (principal) symmetry axes of our reversible map are:

Ty = U S Ti= J S

be{0,1}4, f(1b)=0 be{0,1}4
where
1
Sap = {(5lag(y) +0),y) |y € R},

For the sake of simplicity, we shall assume that all the symmetry axes exist, i.e.

Vb € {0,1}¢
1

For instance, the standard map and the Froeschlé map (and their extension to other
generalized standard-like maps) are reversible in this sense, and satisfy the previous
condition.
Remarks

i) The standard map and the Froeschlé map are, in fact, doubly reversible [63],
because they can factorize in other compositions of involutions. In general, if g is
even then F' = I11,, where I, and I; are the involutions

n(y )= ) n(0)=("9")

ii) In general, when we work with reversible symplectomorphisms, we ask for the
involutions be antisymplectic. That is, F*w = —w. In the case of d = 1, they are
also called orientation reserving area preserving maps.

<
The search for symmetric periodic orbits of rotation vector £ is summarized by the
following diagram:

y — (v= %(agg(y) +b0),y) = (g ¥) — Ty — %(alg(yq) —b1) =0,
where:
e ao€{0,1},b € {0,1}*

e if nis even: a; = ap
ifnisodd: a; =1 —qg
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® by =by+p

e if niseven: ¢ =3
if n is odd and ay = 0: ¢ = =5~
if nisodd and ag = 1: ¢ = %

—

™ ‘
L

Using this formulation the dimension of the problem is halved.

A parallel shooting technique to look for periodic orbits.- To solve the equa-
tion F™(z) = z is equivalent to solve the system:

1 = F(ZO)a
Zo = F(Zl),
zZp = F(anl)-

The advantages can be summarized in two items:

e in our case, the differential of F' has spectral radius > 1, and so, the differential
of F™ can be extremely large if n is large, giving rise to accuracy problems;

e the continuation respect to parameters is more efficient.

This is the background of the methods that we have used, but it can have the
following variants:

e the symmetries of the problem can be used, and

e in some cases it is enough to consider the angular variables to determine the orbit.

Hence, it is possible to reduce the dimension of the problem to one fourth of the initial
one.

C.2 A variational Greene method

Suppose we have a monotone positive symplectomorphism on the cylinder, and it is a
perturbation of a monotone positive integrable one. Hence, if the perturbation vanish,
then all the orbits are minimizing and they live on Lagrangian graphs. We fix a certain
invariant Lagrangian graph, whose dynamics is given by an ergodic translation. We
want to know when it breaks.

Our method is heuristically based in next three points:

e as an exact Lagrangian graph is minimizing, then the orbits on it are minimizing,
and segment of orbits close enough to it are also minimizing;

e if the dynamics on the torus is given by an ergodic translation, that is by a shift
by an irrational vector of frequencies w € RY, is reasonable to consider periodic
orbits with rotation vectors close to w as segments close to the initial object;

e although elliptic periodic orbits are not minimizing, small enough segments of
them are minimizing.
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C.2.1 Area preserving maps

Given a l-parametric family of monotone positive area preserving maps, Fx, being Fj
integrable, we wonder when a certain invariant curve of rotation number w breaks down.
In order to detect that critical value of the parameter, K, we propose next method:

1. Construction of a sequence of rationals r; = £ tending to w. We shall choose the

7
sequence of convergents of the continued fraction.

2. For any rational r;, consider a periodic orbit with such a rotation vector, but its
corresponding segment must be minimizing. We recall that all the Fy-orbits are
minimizing.

3. Then, we must detect when this segment stop being minimizing. We shall call
this critical value K.

4. This sequence of critical parameters seems to converge to K.

We notice that given a periodic orbit, its extremal character as a finite segment of
points depends on the first point that we choose, that is, the order in which we apply
the MMS iteration. In the examples we shall use the symmetries of our maps. The idea
is to choose a symmetry axis and the segments must be symmetric with respect to it.
If our map is not reversible, we had to consider all the possible orders, but we think
that the segments must distribute around a certain axis.

Continued fractions.- One can classify the real numbers from their continued-
fraction expansions [50]. The continued fraction of a real number w is the sequence
[ag; a1, as, .. .] of integers generated by

Wo = W,
a; = [wi], Wi+1 = wi%(]‘i (Z 2 0)
Note that ay,as, ... are positive. We can also write
1
W = Qo + 1 .
a+ ———
as + ...

e The continued-fraction expansion of an irrational is infinite, while that for ratio-
nals always ends. Convergents of a continued fraction are the rationals obtained
by truncating the expansion:

pi

n; = [aﬂ;ala"'aai]a

and the fraction is irreducible.
e The continued-fraction expansion is strongly convergent:
lim |p; — njw| = 0.
11— 00

In fact, the convergents are the best approrimants.
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e [rrationals are more difficult to approximate if their continued-fraction elements
are small, because a large element a;;; leads to a small correction to 2-. Exam-

ples are given by the numbers of constant type, whose elements of the continued
fraction are bounded by a certain constant. They satisfy a Diophantine condition

C
EIC’>0,7'21|V£€Q|nw—p|>—
n n’

for 7 = 1. The set of numbers of constant type has measure zero.

For instance, the quadratic irrationals have eventually periodic continued fraction,
as Lagrange showed. A more special subset is given by the noble numbers: these
have a; = 1 from a certain element ;. Noble numbers are dense in the reals. The
noblest of numbers is the golden mean

1+3
v = +2‘[:[1;1,1,1,1,...],

which satisfies v — v — 1 = 0. Sometimes
o = 14+v2=102;2,2,2,2,..]
is referred to as the silver mean. We shall call bronze mean the number

B = 14+v3=[2:1,2,1,2,..]

Examples

1) The standard map.

We shall use Sy o-symmetric periodic orbits, with that symmetry axis ‘in the
middle’. This is important to check the extremal character of the segments.
Although these orbits are not minimizing (they are elliptic if K is , small enough
and inversion hyperbolic if K is bigger), segments small enough of them are
minimizing. This is related with the original Greene method, when one looks
for period doubling bifurcations.

For the golden mean w =« (in fact, K, = K,,_;) we have three different scalings:
e the convergence of the critical values K,, to K, is linear, and the asymptotic
constant, C, is near to v — 1;
e the initial points of the periodic orbits, (0, y,,), also converge lineally;

e finally, the residues R, seem to converge linearly to 1, although this conver-
gence is given in period three, since there are three kinds of periodic orbits
(depending on the other symmetry line).

These scalings have been also observed when one apply the original Greene method
[63] or when one apply more geometrical methods [82]. They let us to improve the
critical values by means of Aitken’s method. Next three tables show the results.
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i | | K \ Ka | Ck | K-K, | Ki—-K, |
1] 1/1 2.000000000000 1.02836e-+00

2 | 1/2 1.732050807569 7.60415e-01

3 12/3 1.663903016141 | 1.640659327892 6.92268e-01 | 6.69024e-01
4 |3/5 1.278480954794 | 1.746688368559 | 5.655679 | 3.06846e-01 | 7.75053e-01
5 15/8 1127250509332 | 1.029592668131 | 0.392376 | 1.55615e-01 | 5.79573e-02
6 | 8/13 1075780907462 | 1.049226201013 | 0.340339 | 1.04146e-01 | 7.75908e-02
7| 13/21 1032334115527 | 0.797051995603 | 0.844125 | 6.06987e-02 | -1.74583e-01
8 | 21/34 1.009090548804 | 0.982349105874 | 0.534989 | 3.74551e-02 | 1.07137e-02
9 | 34/55 0.994835283933 | 0.972226722281 | 0.613299 | 2.31999e-02 | 5.91319e-04
10 | 55/89 0.985871590140 | 0.970687478426 | 0.628799 | 1.42362e-02 | -9.47925e-04
11 | 89/144 0.980379745567 | 0.971692629592 | 0.612677 | 8.74434e-03 | 5.72263-05
12 | 144/233 0.977038964758 | 0.971850454494 | 0.608317 | 5.40356e-03 | 2.15051e-04
13 | 233/377 0.974948899669 | 0.971456201847 | 0.625622 | 3.31350e-03 | -1.79201e-04
14 | 377/610 0.973674374704 | 0.971682548867 | 0.609802 | 2.03897e-03 | 4.71456e-05
15 | 610/987 0.972889152047 | 0.971629042277 | 0.616090 | 1.25375e-03 | -6.36097e-06
16 | 987/1597 0.972405600684 | 0.971630512280 | 0.615814 | 7.70197e-04 | -4.89096e-06
17 | 1597/2584 | 0.972108645999 | 0.971636064785 | 0.614112 | 4.73243e-04 | 6.61542e-07
18 | 2584/4181 | 0.971926245661 | 0.971635816847 | 0.614236 | 2.90842e-04 | 4.13604e-07
19 | 4181/6765 | 0.971814047318 | 0.971634729505 | 0.615121 | 1.78644e-04 | -6.73738e-07
20 | 6765/10946 || 0.971745157297 | 0.971635574777 | 0.614002 | 1.09754e-04 | 1.71534e-07
21 | 10946/17711 || 0.971702830019 | 0.971635382226 | 0.614418 | 6.74268e-05 | -2.10170e-08
22 | 17711/28657 || 0.971676822865 | 0.971635378812 | 0.614430 | 4.14196e-05 | -2.44313e-08
e | y \ ya | ¢ | vy | ya—ue
1]1/1 1.000000000000 4.05079e-01

2 | 1/2 0.500000000000 -9.49209e-02

3 |2/3 0.610279927619 | 0.590351921002 1.53590e-02 | -4.56899¢-03
4 |3/5 0.581063269311 | 0.587182509556 | -0.264932 | -1.38576e-02 | -7.73840e-03
5 15/8 0.594845134663 | 0.590427778056 | -0.471713 | -7.57729e-05 | -4.49313e-03
6 | 8/13 0.592092361130 | 0.592550657327 | -0.199739 | -2.82855e-03 | -2.37025¢-03
7| 13/21 0.594054673449 | 0.593238003349 | -0.712849 | -8.66234e-04 | -1.68290e-03
8 | 21/34 0.594115173004 | 0.594117097587 | 0.030831 | -8.05735e-04 | -8.03810e-04
9 | 34/55 0.594507294292 | 0.594043636187 | 6.481391 | -4.13613e-04 | -8.77271e-04
10 | 55/89 0.594638724351 | 0.594704986114 | 0.335177 | -2.82183e-04 | -2.15921e-04
11 | 89/144 0.594756486232 | 0.595771095607 | 0.896004 | -1.64421e-04 | 8.50188e-04
12 | 144/233 0.594816273367 | 0.594877929546 | 0.507695 | -1.04634e-04 | -4.29780e-05
13 | 233/377 0.594857679620 | 0.594950954677 | 0.692561 | -6.32279e-05 | 3.00471e-05
14 | 377/610 0.594881677207 | 0.594914757525 | 0.579564 | -3.92304e-05 | -6.15004e-06
15 | 610/987 0.594896883564 | 0.594923186289 | 0.633662 | -2.40240e-05 | 2.27872¢-06
16 | 987/1597 0.594906114656 | 0.594920375623 | 0.607055 | -1.47929e-05 | -5.31943¢-07
17 | 1597/2584 || 0.594911828476 | 0.594921110592 | 0.618975 | -9.07909e-06 | 2.03025e-07
18 | 2584/4181 | 0.594915324063 | 0.594920832565 | 0.611778 | -5.58350e-06 | -7.50010e-08
19 | 4181/6765 | 0.594917479081 | 0.594920943351 | 0.616496 | -3.42849e-06 | 3.57846e-08
20 | 6765/10946 || 0.594918800785 | 0.594920897118 | 0.613315 | -2.10678e-06 | -1.04488e-08
21 | 10946/17711 || 0.594919613378 | 0.594920910364 | 0.614808 | -1.29419e-06 | 2.79767e-09
22 | 17711/28657 || 0.594920112505 | 0.594920907250 | 0.614238 | -7.95062e-07 | -3.16119e-10
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i [ [ R Rx Cr | B-R, | Ba—Ry |
1 1/1 0.500000000000 -5.00000e-01

2 || 1/2 0.750000000000 -2.50000e-01

31 2/3 1.320047970837 3.20048e-01

4 1 3/5 0.972228738684 -2.77714e-02

5 1 5/8 0.858699778873 -1.41300e-01

6 || 8/13 0.960742536492 -3.92576e-02

7 ] 13/21 0.940600884808 | 0.942586213879 -5.93993e-02 | -5.74139e-02
8 || 21/34 0.948323756052 | 1.369404736786 -5.16764e-02 | 3.69405e-01
9 || 34/55 0.977116217402 | 0.976402583304 -2.28839e-02 | -2.35976e-02
10 || 55/89 0.976648111123 | 0.957447505504 | -1.139730 | -2.33520e-02 | -4.25527e-02
11 || 89/144 0.983736924027 | 1.006870547826 | 0.395131 | -1.62632e-02 | 6.87039e-03
12 || 144/233 0.992231389262 | 1.173770346049 | 0.923138 | -7.76877e-03 | 1.73770e-01
13 || 233/377 0.992624663555 | 1.005342234928 | 0.443212 | -7.37550e-03 | 5.34207e-03
14 || 377/610 0.995203709820 | 1.000694609257 | 0.323800 | -4.79645e-03 | 6.94449e-04
15 || 610/987 0.997659897828 | 1.000702091448 | 0.359143 | -2.34026e-03 | 7.01931e-04
16 || 987/1597 0.997823207165 | 1.000330614248 | 0.325386 | -2.17695e-03 | 3.30454e-04
17 || 1597/2584 0.998610585705 | 1.000050651837 | 0.297108 | -1.38957e-03 | 5.04915e-05
18 || 2584/4181 0.999318545862 | 1.000048311134 | 0.305544 | -6.81615e-04 | 4.81508e-05
19 || 4181/6765 0.999369475891 | 1.000024121845 | 0.297443 | -6.30684e-04 | 2.39615e-05
20 || 6765/10946 0.999599789674 | 1.000004528004 | 0.290355 | -4.00371e-04 | 4.36763e-06
21 || 10946/17711 || 0.999803394533 | 1.000003665756 | 0.292316 | -1.96766e-04 | 3.50538e-06
22 || 17711/28657 || 0.999818377881 | 1.000002011109 | 0.290313 | -1.81782e-04 | 1.85073e-06

For the errors, we have compared with the values obtained superconverging the
results until an orbit of rotation number 75025/121393. They are:

o K, ~0.971635403243,

e 1y, ~ 0.594920907566,

e 2, ~ 1.000000160378.

We have also computed the critical values for the silver mean and the bronze
mean. As the bronze mean has continued-fraction expansion of period 2, this is
also the period in the scaling behaviour (as in [82]). The three critical values are

12

2

0.971635403243,
0.957445407625,
0.876067425540,

and we note that they are in the correct positions!

The results for these three numbers are summarized in the following two figures.

1. The first one shows the reduced error in the rational approximation, |n;w—p;/,
versus the error in the estimate of the critical value, K, — K, for the different

convergents 7;

% of the continued fraction.



“*- s £ AL TS R4 A T - 4sL4d UL VEEALA LA AT TP AT s AT T AAVEAL AT A A& N A UVE

001 T T T T T T v'l' I," T

s 7 "golden.rt" o
S - a’ "silver.rt" +
0.009 - S "bronze.rt" o©

0.008 ¥/ _ ]
0.007 7 |
0.005 | |
0.004 |

0.003 | -

_0001 1 1 1 1 1 1 1 1 1
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

T = |njw —pi|,y = Ky — Ky,

2. Next figure shows the number of convergent, 7, in front of the decimal loga-
rithm of the error in the corresponding estimate of the critical value. For the
three numbers the orders of the denominators of the last considered conver-
gents are about 10°, and the corresponding errors in the estimates are also
of the same order.
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z =1,y =logo(Ky — Kr;)
We have also considered a ‘lead’ number

A = [0:1,1,1,3,1,2,2,1,3,3,2,1,1,3,2,1,1,1,2,.. ]
~ 0.6412359518762
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which does not show scaling behaviour. The critical values estimated is K) =~
0.912277185668, obtained from a periodic orbit of period 72786, corresponding to
the fifteenth convergent. The difference with the previous one is about 2-107°. In
this case we can not apply the scaling behaviour in order to improve the results.
Anyway, it is better than the bronze mean!

2) The exponential standard map.
In this example we have taken w = 7. The convergence to the critical value is also
linear. The values obtained superconverging the results until an orbit of rotation
number 28657/17711 are:
o K, ~0.608047936956,
o y, ~ 0.466309789723,
e R, ~1.000003497428.
Next table shows the sequence of critical values.
i | | K \ Ka | Ok | K-K, | Ki-K, |
1 [1/1 2.000000000000 1.39195e+00
2 12/1 1.000000000000 3.91952e-01
3 13/2 1.154700538379 | 1.133974596216 5.46653e-01 5.25927e-01
4 |5/3 1.031827843765 | 1.086219612449 | -0.794262 | 4.23780e-01 4.78172e-01
5 |8/5 0.803328379967 | 1.297634940319 1.859644 | 1.95280e-01 6.89587e-01
6 | 13/8 0.702772533761 | 0.623741798218 0.440070 | 9.47246e-02 1.56939e-02
7 |21/13 0.674184301968 | 0.662827985606 0.284302 | 6.61364e-02 5.47800e-02
8 | 34/21 0.645609371674 | -60.740449985072 | 0.999535 | 3.75614e-02 | -6.13485e+01
9 | 55/34 0.631557757817 | 0.617962526120 0.491746 | 2.35098e-02 9.91459e-03
10 | 89/55 0.622540884086 | 0.606392282597 | 0.641697 | 1.44929e-02 | -1.65565e-03
11 | 144/89 0.616959861175 | 0.607894328833 0.618953 | 8.91192e-03 | -1.53608e-04
12 | 233/144 0.613511686119 | 0.607937021622 0.617839 | 5.46375e-03 | -1.10915e-04
13 | 377/233 0.611431541138 | 0.608268596679 0.603260 | 3.38360e-03 2.20660e-04
14 | 610/377 0.610119695476 | 0.607879762423 0.630651 | 2.07176e-03 | -1.68175e-04
15 | 987/610 0.609323729415 | 0.608095609584 0.606753 | 1.27579e-03 4.76726e-05
16 | 1597/987 0.608832310575 | 0.608039354799 0.617387 | 7.84374e-04 | -8.58216e-06
17 | 2584/1597 0.608529815657 | 0.608045476912 0.615554 | 4.81879e-04 | -2.46004e-06
18 | 4181/2584 0.608344011410 | 0.608048158985 0.614239 | 2.96074e-04 2.22028e-07
19 | 6765/4181 0.608229930244 | 0.608048475233 0.613986 | 1.81993e-04 5.38276e-07
20 | 10946/6765 0.608159721789 | 0.608047368869 0.615425 | 1.11785e-04 | -5.68087e-07
21 | 17711/10946 || 0.608116627244 | 0.608048133256 0.613808 | 6.86903e-05 1.96300e-07
22 | 28657/17711 || 0.608090146221 | 0.608047936956 0.614487 | 4.22093e-05 | 0.00000e+00

3) A C! example.

We consider now a standard-like map with potential in the interval [—1,1] given

by
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and extending by periodicity to the rest of R. This potential is C? and our
standard-like map is C.

We have performed the next experiment. We consider the golden mean w = y—1.
For each value k € N*, we approximate 7 by the sequence of rationals given by

[0:k],[0;1, k], [0;1,1,k],[0;1,1,1,K],....

The critical value is K, ~ 1.1254531070. Next figure shows the reduced error
of each rational approximation versus the error in the estimation of K, for k =
1,2,3,4,5,6. Several velocities are shown.
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z = |njw — p;|,y = K — K, for different rational sequences approximating y — 1

C.2.2 Higher dimensions

As we have recalled, approximation of irrational numbers by rationals has been very
important in the study of breakdown of invariant curves in twist maps (and not only
for twist maps) since the work of Greene [36]. MacKay [63] explained the phenomenon
in terms of a renormalization group operator that changes the rotation number of an
invariant curve by eliminating the first continued fraction coefficient. The question is
if we can extend these ideas to higher dimensions.

First of all, we need a method to approximate an irrational vector by rational ones.
There are some possible generalizations of the continued fraction algorithm in higher
dimensions, as the Kim-Ostlund tree [51] (which generalizes the Farey-tree approxima-
tion squeme [38]) or the Jacobi-Perron algorithm [18, 87, 54, 57]. We have used the
second one, and we have followed the description given by Tompaidis [95].



D “+ %+ T4 44 LEL AL A AL T AL AL VEAEAAAL T Y AT AA £ A48 T &

The Jacobi-Perron algorithm.- Given a point w = (wy,w;) €]0,1[%, the Jacobi-

Perron convergents 2, with p; = (p;,p;) € N?) and n; € N, are recursively given

by
Pit1 _ . Pi ) Pi—1 Pi—2
() = w0 e ()< (0
where the integer coefficients k;, 1, ;4 are determined by !

)

(kisslisn) = (= 1[“’11

ws
and

(Wit wyth) = ({ }{ })

The initial values are

(w?vwg) = (wlaw? )
b2 = (071)7 pP-1= (170)7 Po = (070)7
n,gzn,lzo, Ng = 1.

For all points in the unit square, Vi > 0,k; > 1,k; > [; > 0.

From a geometrical point of view, given a triangle determined by three successive
approximants, all approximants of higher order will lie inside that triangle [57] 2. More-
over, such a triangle does not contain rational points with denominator smaller than
the largest denominator of the vertices.

We can measure the goodness of a rational approximation by means of the reduced

error and the Roth exponent. Given a point in the unit square w and a rational point

r=(2,m),

e its reduced error is

e(r,w) = [nw—pls,
e and its Roth exponent is
|
nrw) = 1— M
ogn

Measure-theoretical properties of the Jacobi-Perron algorithm were studied by
Lagarias [57]. Let r; be the i*" Jacobi-Perron approximant to our point w. Then,
the best approzimation exponent for w (using the Jacobi-Perron scheme) is

m(w) = limsupn(r;,w)

1— 00

and the uniform approximation exponent is defined as

nu(w) = liirgglfmin(n(riaw)a77(702'+15w)a77(70i+2’w))‘

Lwhile [] is the integral part, {-} is the mantissa.

2This property is also satisfied by another commonly used algorithm, the Farey-tree approximation
scheme [51].
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Lagarias showed that these exponents are constant in a set of measure one in the unit
square. He also conjectured that these constants are in fact the same. Estimates of the
best approximation exponent were computed numerically by Baldwin [15] and Kosygin
[54], founding n, = 1.374 +.002. If the Lagarias’s conjecture were true, the successive
triangles in the Jacobi-Perron scheme become, in the limit, needle-shaped.

Consider, for instance, a quadratic pair w (V2 —1,v/3 —1). This is a good
pair (or bad pair, depending on the point of view), because the two numbers are alge-
braic and lineally independent. Then, the rational approximation is difficult. The first

convergents of the Jacobi-Perron algorithm are written in the next table:

e | e(ri, w) | n(ri,w) |

0 | (0,0)/1 8.41113¢ — 01 -

1| (0,1)/1 4.93325¢ — 01 -

2 | (1,1)/1 6.44160e — 01 -

3 1(L,2)/3 3.12010e — 01 | 2.06017
4 | (7,13)/18 4.88971e — 01 | 1.24753
5 | (8,14)/19 1.58658e — 01 | 1.62525
6 | (17,30)/41 2.22640e — 02 | 2.02456
7 | (108,191)/261 1.27678e¢ — 01 | 1.36989
8 | (116,205)/280 3.27481e — 02 | 1.60675
9 | (133,235)/321 3.92290e — 02 | 1.56110
10 | (490,866)/1183 2.17678¢ — 02 | 1.54090
11 | (606,1071)/1463 1.11523e — 02 | 1.61690
12 | (7431, 13133)/17940 1.21652e¢ — 02 | 1.45016
13 | (7921,13999)/19123 9.64868¢ — 03 | 1.47075
14 | (23879,42202)/57649 3.80201e — 03 | 1.50832
15 | (10898028,19260379)/26310167 || 4.81910e — 04 | 1.44703
16 | (32749763,57879540)/79064922 || 5.98948e — 04 | 1.40803

Finally, we can also introduce golden-means of the Jacobi-Perron algorithm. They
are those points w such that the integer coefficients associated are constant: k, = k, [, =
[. We shall write w = (k,[)*. Then, we define the characteristic polynomial of w as

P,(t) =3 — kt* —

[t — 1 and then:

e k<T<k+1, 0<]|r| |m| <1, where 7 is the maximal absolute root of P, and
Ti, T» the remaining roots;

° (wl,w2) —

(=&, 2);

)T

o |niw — (p},p?)|e < C(w)k!, where k = max(|r],|m|) <1

For instance, (1,1)>

=(r—1,- 1)

, where

l

i

1.839286755.

/19
27

1
3

We shall refer to it as the golden vector. Its first convergents are



e | elriyw) [ n(riw) |

0 | (0,0)/1 1.00000e+00 | -

1| (1,1)/1 4.83786e-01 -

2 | (2,1)/2 3.33091e-01 | 2.58601
3 1(3,2)/4 3.97610e-01 | 1.66529
4] (64))7 2.30928¢-01 | 1.75319
5 | (11,7)/13 1.12195¢-01 | 1.85285
6 | (20,13)/24 1.50901e-01 | 1.59506
7 | (37,24)/44 1.05500e-01 | 1.59433
8 | (68,44)/81 4.26860e-02 | 1.71770
9 | (125,81)/149 5.458860-02 | 1.58113
10 | (230,149)/274 4.59181e-02 | 1.54887
11 | (423,274)/504 1.92695¢-02 | 1.63466
12 | (778,504) /927 1.88242¢-02 | 1.58147
13 | (1431,927)/1705 1.90621e-02 | 1.53217
14 | (2632,1705)/3136 9.33328e-03 | 1.58059
15 | (4841,3136)/5768 6.26089e-03 | 1.58584
16 | (8904,5768)/10609 7.55551e-03 | 1.52705
17 | (16377,10609) /19513 4.44399e-03 | 1.54826
18 | (30122,19513)/35890 2.11794e-03 | 1.58707
19 | (55403,35890)/66012 2.85827e-03 | 1.52782
20 | (101902,66012)/121415 2.02360e-03 | 1.52984
21 | (187427, 121415)/223317 8.15577e-04 | 1.57741
22 | (344732,223317)/410744 | 1.03057e-03 | 1.53209

A ‘false’ 4D example.- Consider the Froeschlé map with parameters K; = K, = 0.
Then it depends on the parameter A and it is given by

A
Y= — Dy sin(2m(xy + 22)), 2’y =21 +y'; (mod 1),

A
Yy =12 — o sin(2m(xy + 22)), @'s =2+ 1y’ (mod 1).

We shall work on the universal covering space R? x R?. On it, we perform the change
of variables
Uy =1 — T2, U1 =Y1— Yo,
{ Up = T1 + To, V2= Y1+ Y2,
and our symplectomorphism is decomposed in the product of an integrable one and the
standard map, with parameter 2\.

! ! !
{Ulzvh U = Uy + vy,

vy = vy — 22 sin(2mug)), u'y = ugp + V).
2

We can project now into the cylinder, making u; (mod 1),uy (mod 1). Then, an
orbit with rotation vector w = (w1, wy) becomes another one with rotation vector @ =
(w1 — wo, W +ws). We must point out that this is seen on R* x R? and not on T? x R?,
because such a change does not define a diffeomorphism on the last manifold. Then, as
the rotational part does not influence, then we obtain that

1

_Kw1+w2'

A(Wl w2) 9
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For instance, if we take our quadratic pair w = (\/5 -1, V3 — 1) we obtain that
)‘(\/571,\/@1) ~ 0.308287753633196.

We have arrived to this result applying our variational criterion to an orbit of rotation
number 154850/135091, the tenth convergent of /2 4+ /3 — 2. The previous one,
3989/3480, agrees with that in the first three figures.

Remark

If we had chosen the change of variables

L1—T2

U == U
Ug = $1;I27 (%

Yi—y2

2 )
y1+y2
2 )

we would have arrived to the product of an integrable map and a standard-
like map with potential

Viug) = —(2—2)2 cos(4mus),

and we would have had to compute the critical value corresponding to %(wﬁ—
ws).

For instance, if we use the previous example, then the critical value cor-
responding to the twelfth convergent of (v/2 + v/3 — 2), (77425,135091),
agrees with that in 14 figures. <

A numerical study of the breakdown of invariant tori.- We shall consider the
Froeschlé map (but we can choose any of its family). We want to study the breakdown
of an invariant torus with frequencies (w;,ws), which exists in the uncoupled case (we
shall select the values of the K parameters less than the corresponding critical values).
We shall follow the next steps.

1. Construction of a sequence of rational rotation vectors tending to the selected
one. We shall use the Jacobi-Perron algorithm, but one could also use other
‘good’ rational vectors (with ‘big’ Roth exponent and ‘small’ reduced error). We
have chosen the Jacobi-Perron algorithm because it has good scaling properties,
given by the convergence of the Roth exponents of the approximates.

2. For each rational rotation vectors:

e we compute a periodic orbit for the product of standard maps (A = 0),

e and it is continued with respect to the coupling parameter, .

In both cases we use the symmetries of the maps (they are reversible). We have
used periodic orbits which are symmetric with respect to {z; = 0,2z, = 0} (the
minimum of the potential). Those periodic orbits are elliptic.

Recall that Olvera and Vargas [83] observed certain bifurcation phenomena when
they continued periodic orbits of rotation vectors with at least one reducible
component.
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3. For A = 0 the orbit must be minimizing. We detect the critical parameter A,
when the orbit stop being minimizing. We shall perform a table with such critical
values, showing also the residues (R, Ry) of the critical periodic orbit. Note that
in all the examples seem to have a period doubling bifurcation, because one of the
residues tend to 1. It is curious that this has been the case in all the examples we
have studied. Another possibility would be a Krein crunch, in which two pair of
elliptic eigenvalues collapse and transform in a complex hyperbolic quadruplet.

4. In order to ‘see’ the breakdown of the invariant torus, we shall draw several peri-
odic orbits, when A increases. We shall obtain different kinds of metamorphoses,
depending on how far of the breakdown we are for A = 0. In the pictures, we show
the angular components of the orbits in the square (in fact, the torus) [0, 1] x [0, 1],
that is, we shall see the projections of such orbits on the zero-section. When we
increase the parameter A the residues of the orbits increase very fast, being the
continuation more difficult.

5. We must compare the drawings corresponding to the same value of the parameter
A (and different rational rotation vectors), in order to discover to which kind
of object the sequence of periodic orbits tends. We would like to know how
are the higher dimensional Aubry-Mather sets, named cantorus by Percival. We
distinguish two kinds of breakdown: a I x C type and a C x C type. Here, [
means an interval (a 1 dimensional set) and C means a Cantor set (possibly with
dimension 0). Sometimes we shall see certain resonances, associated to periodic
orbits with rotation vectors near to our irrational rotation vector.

Examples

1) A quadratic pair

First, we have applied the previous scheme to the torus with frequencies w =
(V2 —1,v/3 — 1). We have considered the next three cases:

a) First, the values K; = 0.1 and Ky = 0.2 have been taken. When we in-
crease A a resonance phenomenon is observed, and the reason for that will
be analyzed. The critical value has been estimated A\, ~ 0.030.

b) Second, we have taken small values for K; and K, for instance K; = K, =
1075, Tt is known that for K| = K, = 0 the torus breaks for A ~ 0.308, and
it must be a I x C breakdown, since the map is the product of a rotation and
a standard map. For small values of K; and K5 the breakdown must be of
the same type, and this agrees with the experimental results displayed in the
figures. For the same reason, some strips of approximate slope —1 show up.
The critical value is A, ~ 0.303, quite far from 0.308. Then, the coupling
influences strongly on our map.

c¢) Finally, we have taken K; = 0.94 and K, = 0.86, that is, close to the
corresponding critical values. For larger values the torus would break in the
form C x C (well, this is not true). A similar breakdown must be expected.
The experimental results displayed in the figures confirm this expectation.
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Moreover, the critical value is very small, A, ~ 0.000017. Possibly there is a
very short transition between a I x C cantorus and a C x C cantorus.

As a summary, the next figure shows the decimal logarithm of the relative error
in the estimate of A\, e, versus the number of convergent. For the error, we have
compared with the value obtained in the last convergent considered, with has

denominator equal to 57649.

1

> T T

© o

‘a.ce’
'b.ce’
'c.ce’

o+

r =1,y =log;g er

K1 E 0]_, K2 E 02

The table of results is:

[ ri

A

Ry

Ry

= = = = =
R oo m > © 00~ Ot s,

(1,2)/3
(7,13)/18
(8,14)/19
(17,30) /41
(108,191) /261
(116,205) /280
(133,235) /321
(490,866) /1183
(606,1071) /1463
(7431,13133)/17940
(7921,13999)/19123
(23879,42202) /57649

0.272976557421
0.111785385270
0.150247552464
0.103536552368
0.074380323309
0.052630030576
0.048332068032
0.039307855107
0.034883517948
0.032887285817
0.033070341918
0.030712699108

0.825718606803
0.960372322656
0.882801627681
0.959031282283
0.997121454610
0.999824785516
0.999950580298
0.995169228849
0.997998791594
0.999738839558
0.999991850955
0.999999999996

0.001363062671
0.010533041999
0.031086109893
0.013623857907
-0.003454697886
-0.000000000000
-0.000000000000
0.000000000214
0.000000000000
0.000000000000
0.000000000001
-0.000000000001

b= & s A Vs
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First, we have drawn the two orbits of periods 17940 and 19123 for a value
A = 0.05, rather far of the critical value.

K1 =0.1 (7431,13133) (7921,13999)
Ky =02 17940 (S0,0,0)) 19123 (S0,(0,0))

A =0.05

Where are the 1183 points that we have added to the first figure to obtain the second one?

Secondly, we show a pair of periodic orbits of period 1463, when A is bigger.

Ky =0.1 (606,1071) (606,1071)
Ky =02 iz (S0,00) iz (So,a,1)

The torus is completely destroyed

The transition in the breakdown of the torus is shown in the next page with
orbits of period 19123 and 57649.
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(7921,13999) (23879,42202)
19123 (50,(0,0)) 57649 (50,(0,0))

A =0.025
A =0.030
A =0.035

A =0.040
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Next figures show two details of the Sy g )-periodic orbit of period 57649,
for the value A = 0.04. We have zoomed in twice the center of that figure.

[0.45,0.55] x [0.45,0.55] [0.495,0.505] x [0.495, 0.505]

Finally, if we count the number of ‘holes’ in the figures, we obtain 41. This
number is the denominator of one of the convergents of our rotation vector.
These holes must correspond to the resonances associated to the elliptic
orbit of period 41 (<).The boundaries of these resonances must be given by
the center-stable and center-unstable manifolds of the two elliptic-hyperbolic
orbits of period 41 (+ and x). We also have a hyperbolic orbit (O). Next
figure is taken for A = 0.05.

The Sy, (1,1)-periodic orbit of period 19123 and his 4 companions of period 41 (A = 0.05)

This periodic orbit is more concentrated that its previous Sy 9,0y companion,
since it is minimizing, and it is nearer the cantorus.
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‘ 1 ‘ i A R1 R2
3 1(1,2)/3 0.292891968810 | 0.853551515595 | 0.000000000000
4 | (7,13)/18 0.295191864175 | 0.999978886269 | 0.000000008677
5 | (8,14)/19 0.364380487804 | 0.843365834932 | 0.000001710212
6 | (17,30)/41 0.325382849433 | 0.987358946905 | -0.000007996227
7 | (108,191)/261 0.307395589261 | 0.997248343099 | 0.000000176114
8 | (116,205)/280 0.313165554710 | 0.952751102828 | -0.000315002378
9 | (133,235)/321 0.312299224162 | 0.993633039655 | -0.000452394769
10 | (490,866)/1183 0.309103110006 | 0.999978399073 | 0.000287486704
11 | (606,1071)/1463 0.304002649577 | 0.999918395275 | 0.000020112440
12 | (7431,13133)/17940 0.303466845552 | 0.999999848362 | -0.002338850071
13 | (7921,13999)/19123 0.303277941143 | 0.999259232489 | -0.000007686291
14 | (23879,42202)/57649 || 0.303111559878 | 0.999994042680 | -0.000433986339

Next two periodic orbits are Sp (1 1)-symmetric. They are far of the break-
down of the tori and approximate the cantorus. The transition of two Sy (o,0)-
periodic orbits is shown in the next page. Compare the results.

Ky =10"5 (7921,13999) (23879,42202)
Ky =103 19123 (So,1,1)) 57649 (So,(1,1))
A =0.305

A=0.31
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Ky =10"5%

Ko =105 (79211911;;)99\ (S‘;:O:)“vu CETT (So,0,0))
0.25 - - :\\;
- 1
A =0.305 ‘ )\
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c) K1 =0.94, K, = 0.86
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We have obtained the next results. Note that the behaviour of the second
residue is different to the previous two examples.

A

Ry

Ry

10
11
12
13
14

(1,2)/3
(7,13)/18
(8,14)/19
(17,30) /41
(108,191) /261
(116,205) /280
(133,235)/321
(490,866) /1183
(606,1071)/1463
(7431,13133) /17940
(7921,13999)/19123
(23879,42202) /57649

0.124921658131
0.014768948858
0.007814850007
0.004191587946
0.000373119336
0.000087867986
0.000081067026
0.000051633508
0.000015468654
0.000015734182
0.000017174735

0.711509182606
0.942919846053
0.896167498887
0.937863129428
0.993048446490
0.996415524230
0.994841117815
0.998707133037
0.999969606977
0.999765776280
0.999973116450

0.206761394118
0.295565747971
0.320005353044
0.181525757409
0.153376290067
-0.410568359983
-0.037850561360
-0.335583474019
0.113443090278
-0.041139390566

-1.58212087845 10°

Notice that the value corresponding to period 261 has not been found. The
problem is that the corresponding orbit is not minimizing for A = 0. Notice
also that this number is the worst of the convergents of the list.

The Sy (1,1)-periodic orbits of periods 17940 and 19123 for a value A = 0.0001
are shown in the next figure.

K1 =0.94
K> =0.86

(7431,13133)
17940

(So,(1,1))

(7921,13999)

19123

(So,(1,1))

A =0.05

Where are the 1183 points that we have added to the first figure to obtain the second one?

The transition is given in the next page using So,(,0)-periodic orbits.
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K1 =0.94 (7921,13999) (23879,42202)
Ko = 0.86 19123 (So,(1,1)) 57649 (So,1,1))

DR,
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R O R e e e I b e
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A=25-10"5
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Next orbits have period 1463 and A is very far of the breakdown.

Ko 086 COBLTL) (50,10,09) (G051071) (5, (1,1)
A = 0.0005
A =.001
A = 0.005

We also glimpse 41 holes. Next figure shows the Sy 1,1)-periodic orbit of
period 1463, and the four periodic orbits of period 41, for A = 0.005. In this
case, these orbits of period 41 are elliptic-hyperbolic.



The Sy, (1,1)-periodic orbit of period 1463 and his 4 companions of period 41 (A = 0.005)

2) The golden vector

We have consider the golden vector w = (1,1)*°, and the first case considered for

our quadratic pair.

L] K1 = O.I,KQ = 02

-

H A

Ry

Ry |

2,1)/2
3,2)/4
6,4)/7

11,

20,13) /24
37,24) /44
68,44) /81
125,81) /149

230,149) /274
423,274) /504

1431,927) /1705
2632,1705)/3136
4841,3136) /5768
8904,5768) /10609
16377,10609) /19513
30122,19513) /35890
55403,35890) /66012
101902,66012) /121415

I e S T T = T ot
© 0T DU R WRN — O L XTI B WD

[\
o

(
(
(
(
(
(
(
(
E
(778,504) /927
(
(
(
(
(
(
(
(
(

[\
—_

187427,121415) /223317

0.786227600212
0.481430637556
0.429570033995
0.368616829728
0.311328212367
0.220740693678
0.157621577267
0.141810443381
0.122484691284
0.108609469112
0.107588222922
0.102866041606
0.105091037580
0.104336702842
0.103735028331
0.103959442764
0.102726762387
0.103035786604
0.102393165561
0.100814420276

0.750000000000
0.790957312802
0.823454787306
0.897819757731
0.951851420005
0.985991614228
0.978690403484
0.999964581010
0.994117007449
0.993252159255
0.999446646095
0.999999168218
0.999330828476
0.998734403769
0.999831870987
0.999999692232
0.999999702857
0.999745115697
0.999978181375
0.999999999999

0.054276599357
0.043314778374
0.042317240583
0.043241227669
0.072736980399
0.006120647432
0.000005049403
0.000000001302
0.000037318042
0.000046591875
-0.000057864885
0.000000000017
0.000082011541
0.000006384543
0.000174165462
0.000121240453
-0.000000000001
-0.000004215211
-0.000000006441
-0.000000000001
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Next figure shows the relation between the error in the estimation of the
critical value and the corresponding convergent.

O T T T T T T T T
11.ce’ ©
05 F © B
<
i
i
-1+ -
i
i
15 | B
i
-2+ -
i
<o
i
o

-25 o o E

<o o <

&

_3 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20

T =i,y =logyger;
Two orbits of periods 10609 and 19513 for a value A = 0.12, greater than

the critical value, have the next appearance:

K1 =0.1 (8904,5768) (16377,10609)
Ky =02 Tosos ~ (50,(0,0)) et (S0,0,0))

A=0.12

The transition in the breakdown of the torus is shown in the next page with
orbits of period 35890 and 66012.
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K; =0.1 (30122,19513)

(55403,35890)
Ky

0.2 35890 (S0,(0,0)) 66012 (S0,(0,0))
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Next figure shows an orbit of period 121415 and a magnification of its center.
We have chosen A\ = 0.105, one of the values of the previous table.
K1 =0.1 (101902,66012)

. 101902,66012 .
Ko = 0.2 —1s1415 (SO,(O,O)) n [0,1] X [0,1] W (SO,(O,O)) n [04,06] X [04,06]

A =0.105

Remark

Notice that this torus breaks later that the torus corresponding
to the quadratic pair! The simple idea that good cubic vectors
are more robust than quadratic ones seems to be quite natural.
However, Bollt and Meiss [21] observed, for the 4D semi-standard
map (which is complex), that a torus with a quadratic rotation
vector (7, () is more robust than a torus with the spiral mean vector
(072,071). On one hand, (v,() is given by the golden mean v and
¢ = (1++/2)/(5+4v/2) is one real root of 7¢2—6¢ +1 = 0. On the
other hand, the spiral mean is the golden vector for the Kim-Ostlund
tree, and o is the real root of 03 — o — 1 = 0. N



Appendix D

Applications to symplectic
skew-products

As we know, the time-1 flow of a 1-periodic Hamiltonian is a model of symplec-
tomorphism. An example is given by the Newton’s equation

T = f(xat)a

where the force is 1-periodic and the variable z is d-dimensional. Suppose that
we perturb quasi-periodically our system, and the equation of the motion is

ji‘ = f($7 t? wt)?

where f = f(xz,t,0) is 1-periodic in ¢ and 0, and w is an irrational number. We
can unfold the equation on the extended phase space R?¢ x R as

T=y
g = f(aj? t7 0)
0=w
Then, the time-1 flow is like
x Z(z,y,0)
Yy — Ig(x7y7 9) )
0 0+ w

and the first two variables behave symplectically. It is a model of symplectic skew
product.

We are going to extend to these kind of systems the results already obtained for
exact symplectomorphisms. We shall give the results without proofs, and, for the
sake of simplicity, we shall work on the standard symplectic manifold (or in the
annulus).

D.1 Symplectic skew-products

D.1.1 Definitions

We shall consider the standard symplectic structure in R? x R¢, endowed with the space-
momentum coordinates (z,y). We extend our phase space by adding new variables
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§ € RP. Then, our extended phase space will be R2¢P_ The f variables will behave as
temporal coordinates.

A symplectic skew-product on R?? over R? is a diffecomorphism F' : R2P — R2d+p
given by

T f(z,y,0)
Y — 9(z,y,0) |,
6 w()

where each diffeomorphism Fy = (fy, g9), with fy = f(-,-,0) and gy = g(-,-,0)), is
symplectomorphic. It is a coupled family of #-parametric symplectic maps. It is a model
of non-autonomous discrete mechanical system, and in order to known the trajectory
of a point (z,y) we also must know the initial time 6.

In such a case, there exists a function S : R?**? — R satisfying the exactness
equations

9S - oy .
%(Iayag) —g(fE,y,g) 8$(x’y’0) Y
oS - . of

a_y(‘rayag) —g(fE,y,g) ay (x,y,@)

It is the primitive function of our skew-product and it is defined up to additive 6-
functions. Of course, Sy = S(-, -, 0) is the primitive function of Fj.

We shall say that F' is monotone iff each Fj is monotone. Analogously, we can define
monotone positiveness.

D.1.2 Variational principles

Let F : R?4P — R?P be a symplectic skew-product, being S its primitive function. In
order to look for the fixed points of F' we can look for the critical points of S restricted
to the vertically transformed set

K = {(2,9,0) e R% xR | f(x,y,0) = z,w(0) = 0}

We can also define variational principles for the orbits. Then, if F' is monotone,
we get that the extremal character of a segment of orbit of length n beginning at
(%0, Y0, 00) = (x,y,0) is given by the Hessian matrix

A B
Bl A, B,
HO,n = e e e )
BJ_?, filn72 B;n72
BJ—Q An

where the matrices As and Bs are given by

A; = DB} + B4
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and

B; = —-Bl.

In this case, the coefficients of the matrix depend not only on the space-momentum
coordinates, but also on the temporal coordinates, that is, on the iteration number
itself. We can use the MMS iteration in order to know if our segment is minimizing,
that is, if the matrix is definite positive.

Remark

This method is similar to that used by Mather in [75], where he extended
several properties of twist maps of the annulus to finite compositions of
twists maps. N

D.1.3 Extended Lagrangian graphs

The extended Lagrangian graph on R?¢*? generated by the function [ : R2? — R is
given by

y = V.l(z,0).

It is family of Lagrangian graphs on R??, parametrized by 6.
Our graph is invariant for a certain symplectic skew-product F iff Vo € R?,6 € RP

g(x, Vi l(z,0),0) = V(f(x,Vl(z,0),0),w(d)).

Then, we define a function ® on our extended phase space by

~

(I)($aya0) = S($aya0) o (l(f(x,y,H),w(G)) o l(x?e))

We obtain that this function restricted to our graph depends only on 6, because the
partial derivatives of o respect to x,y vanish on the graph.

In particular, fixed an extended fiber by (z, ), then @D(x, -,0) has a critical point in
y = V,l(x,0). If it is a minimum, and this condition is satisfied for all the extended
fibers, we shall say that our graph is minimizing. We also obtain that the orbits on a
minimizing graph are minimizing.
Remark

We can extend symplectically the extended phase space by adding conjugate
variables to 6, I. If we have a symplectic skew-product F, we can extend
it to this big extended phase space, by taking F' : R? x R? — R?*¢ x R?

defined as
T f(z,y,0)
y g(z,y,0)
0] w(0)
I Dw(6) 1
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F is not symplectic, but it is volume-preserving. It is a skew-product of two
symplectomorphisms.

Moreover, an extended Lagrangian graph y = V,I(z, 8) can be also extended
by adding I = Vyl(z,d), but this kind of extension does not necessarily
preserve the invariance condition. If we extend our graph adding I = 0, then
it will be invariant for the extension, but it is not necessarily a Lagrangian
graph. <

D.2 Converse KAM theory

In this section our extended phase space will be T¢ x R? x T?, endowed with the
coordinates (z,y,0). Let F': T¢ x R? x TP — T? x R? x TP be a symplectic skew-
product, where the dynamics on the time-periodic components € is given by an ergodic
translation by a vector w € TP. We shall consider its lift [ : R xR xRP — RYxR? xR,
whose primitive function is S : R2? — R.

Let ¢ : T¢ x TP — R? be a differentiable map, whose graph £, is an F-invariant
extended Lagrangian torus. Thus, we can write

P(x,0) = a(f) + Vil(z,8),

where a : T? € R? is the average function and [ : T¢ x T? — R. So, the generating
function (on R?*¢ x TP) of the graph is

L(x,0) = a(0)x + I(2,0).
~ The dynamics on the (d + p)-torus is like (z,6) — (f(x,0),0 + w), that is to say,
f(z,0) = f(z,v¥(x,0),0). We shall suppose that our torus is monotone.

D.2.1 A non-existence criterion of invariant tori

Similarly to the results in Appendix B, we can prove that a monotone positive invariant
extended Lagrangian torus is minimizing and, then, its orbits are minimizing. This also
provides a non-existence criterion:

if the orbit by (x,y,0) € T? x R? x TP yields on a monotone positive region,
and has a segment which does not have non-degenerate minimal action then
it does not lie on any invariant extended Lagrangian graph included into
such a region.

On one side, we can study the points on the extended phase space in order to
check if it is possible that a Lagrangian invariant torus pass through them, following
Appendix B. On the other side, we can wonder if a certain torus can exist, as in
Appendix C. That is, we can ask ourselves if a torus whose dynamics is given by a
diophantine rotation @ = (wp, w) can exists.
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D.2.2 An example: the rotating standard map

A generalized rotating standard-like map on T x R x TP of potentials V : T¢ x TP — R
and W : R? x T? — R and rotation vector w € RP is given by

Yy =y—VV(r,0)
¥ =x+VIW(y,0) (mod 1)
0 =0+w (mod1l)

It is not only an exact symplectic skew-product, but also it is an exact volume preserving
map (the volume is given by the product of the two standard volumes: Q = dyAdxAdf =
d(y dx A df)). If W(y,0) = 1y® we obtain a rotating standard-like map, and it is
monotone (+4). For the rest of the section, we shall consider d = p = 1.
The potential of the rotating standard map [10, 95] is the 2-parameter function
V(z,0) = —— cos(2mz) (K + A cos(270)).
(2m)?

For A = 0, it is decomposed in the product of a standard map and a rotation.

The extended Lagrangian graphs are surfaces that divide the extended phase space
in two connected components. We are interested in the existence of such invariant tori.
First of all, we shall apply the first step in variational criterion. Like in Appendix B,
we shall choose the slice {z = 0, § = 0}. Since

~

A(z,y,0) = 2—=V"(x,0)
= 2 —cos(2mz)(K + Acos(270))

then

~

A0,y,0) = 2—(K+\).
Hence, we obtain that
there are no invariant extended Lagrangian graphs (tori) if K + A\ > 2.

Notice that this bound does not depend on w. We can also apply the MMS iteration
to the points of a 2-dimensional slice 6 = 6.

Fix now an irrational rotation vector @ = (wp,w) (w already fixed) and a small
enough K, such that the corresponding invariant torus exist for A = 0. We shall apply
the variational Greene method in order to detect which is the critical value \; when
the torus breaks down. As our map has not periodic orbits, we shall use almost periodic
orbits with nearby rotation vectors. That is, we shall construct a sequence of rationals

converging to wy, say (ﬁ—i) ,, and for each ¢ we shall continue with respect to A a point
(x,y,0) satisfying
F;Z(aja Y, 90) = ($ + bi,Y, 00 + niW).

For A = ),, the segment stop being minimizing. In the tables of results we shall also
show the ‘residues’ of the critical orbits, and they seem to tend to 1.
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In order to avoid unpleasant accumulations in our rational approximations, we must
obtain good sequences of rational vectors approximating the pair (wp,w), and then
choose the corresponding components. We shall use the Jacobi-Perron algorithm.

We have also used the symmetries of our rotating standard map. For each a,b €
{0,1} and 6, € T' we define the axis

= Ly +0),00) | y e R,

Sualbe) = {(o =3

We have used the symmetry axis S(g)(0), and we have distributed the points of the
almost periodic orbits symmetrically respect to that axis, in order to detect the critical
value of the breakdown. Before this, we have continued some periodic orbits in order to
know how is the breakdown. Their projections onto the zero-section are also displayed.
Remarks

i) As far as I know, the rotating standard map was introduced by Artuso, Casati and
Shepelyansky in [10], where properties of the map and existence of tori were also
investigated. This example was also studied by Tompaidis [95], by considering the
residues of periodic orbits, that is, with a method nearer to the Greene’s method.
He should approximate also the rotation w by rationals. Although in the next
examples we have used almost periodic points, we have also used a ‘Tompaidis
variational method’. The results are similar.

ii) The existence of codimension-1 invariant tori for small values of the parameters

K and ) is given by some Herman’s theorems about translated tori [102]. As a

particular case, he considered the cylinder B? = T¢ xR, endowed with coordinates

(x1,...,2q4,y) and volume form Q = d(ydz; A...Adz,). He assured that an exact

volume preserving diffeomorphism F' close enough to another one Fj satisfying

Fy(x,0) = (x+a,0), being « a Diophantine vector, has many rotational invariant

tori which, moreover, are graphs.

Examples
1) K=0,o = (wp,w) = (1,1).

e H X R
13 927/1705 0.574507055719 | 0.996556455390
14 | 1705/3136 0.572804188415 | 0.998111118230
15 3136/5768 0.571201029424 | 0.997442128220
16 | 5768/10609 0.570310482777 | 0.998642500860
17 10609/19513 0.569776631252 | 1.000258991261
18 | 19513/35890 0.569800602434 | 0.999374706969
19 35890/66012 0.569272536214 | 1.001051155865
20 | 66012/121415 || 0.568578818316 | 1.000160489209

The value of \; estimated by Tompaidis was A; ~ 3.55/(27) ~ 0.565, by means

a periodic orbit of period 10609. It seems too small.

The transition in the breakdown is shown in the next page with almost periodic
orbits of ‘periods’ 10609 and 19513.
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If we continue the almost periodic orbit of period 19513 until the value A = 0.7
we obtain the next figure.

A Sp,0(0) almost periodic orbit of period 19513 (A = 0.7)

The number of ‘holes’ in the picture is 68. But 68 does not appear in the list
of convergents! Do not worry, 68 is a good denominator, in the sense that the
corresponding best rational vector, r = (57,37)/68, has good reduced error and
Roth exponent: e(r,w) ~ 7.72121 10~2 and n(r, o) ~ 1.60699.

K =02, = (wy,w) = (1,1)™.

Li [ri H A | R |
13 | 927/1705 0.285273715732 | 0.996946926969
14 | 1705/3136 0.282087268528 | 0.999047942222
15 | 3136/5768 0.273526134343 | 0.998988310660
16 | 5768/10609 0.269290262474 | 1.000603738593
17 | 10609/19513 | 0.267458379552 | 1.000294359525
18 | 19513/35890 || 0.264701735661 | 0.999655512304
19 | 35890/66012 | 0.264355564769 | 1.000339035331

The value of \; estimated by Tompaidis was A\, ~ 1.75/(27) ~ 0.279, by means
a periodic orbit of period 10609. It seems too big.

The breakdown is shown in the next page with almost periodic orbits of ‘periods’
10609 and 35890.
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K=o | 3165 (50,0(0)) L9813 (5, (0))

A =0.26
A =0.265
A =0.27

A=0.28
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ROTATIHG STAHNDARD MAP: K= @.2000688, L- 8.380880 (T- @.888888)

g A i

Dynamics MMS iteration, 128 steps Extremal orbits, 128 steps

ROTATING STAHDARD MAP: K= @.2008688, L= B.300860 (T= 0.508000)

Dynamics MHS iteration, 128 steps Extremal orbits, 128 steps
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In the previous pictures we have taken A\ = 0.3, quite far of the breakdown of the
golden torus. They show, for 6, = 0, %:

e the dynamics, taking points on 6 = 6y and projecting their orbits on such a
slice;
e the extremal character of the orbits of the fiber 6 = 0,;

e the corresponding minimizing orbits.

It seems that the golden torus is not so robust, because there are many minimizing
orbits. Compare also the number of minimizing bands in the two pictures. Inside
these bands can be the sections of invariant tori with the slices. Recall that these
tori bound the motion of the points.
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Appendix E

Towards a geometrical explanation
of the breakdown

It is expected that the reasons for the breakdown of invariant tori are related to
geometrical obstructions that can be seen as a generalization of the results given
by Olvera and Sim6 [82]. In the case of area preserving maps, they performed
a method to determine the critical value of breakdown of a certain invariant
curve, based in the computation of heteroclinic connections of nearby hyperbolic
periodic orbits. In higher dimensions, these geometrical obstructions must be
given by codimension-1 invariant manifolds, as center-stable and center-unstable
manifolds of nearby elliptic-hyperbolic periodic orbits (with only a hyperbolic
plane).

Moreover, while heteroclinic connections of periodic hyperbolic orbits in area
preserving maps have been useful in order to bound resonance zones which are
useful in order to explain transport [76], in higher dimensions these ‘bags’ should
be bounded by pieces of center-stable and center-unstable manifolds of elliptic-
hyperbolic periodic orbits. Generally speaking, the codimension-1 invariant man-
ifolds are the skeleton of the dynamical system.

In order to show the importance of these manifolds in higher dimensional symplec-
tic maps, in this chapter we have performed an easier example. We shall consider
several aspects related with the global and local behaviour of a 4D symplectic
map, the Froeschlé map. In fact, we shall study a neighborhood of the (0,0) res-
onance, that is, the resonance zone associated to the origin, which is an elliptic
fixed point (for small enough values of the parameters). We shall see that this
zone is bounded by the center-stable and center-unstable manifolds associated to
the two (0,0) elliptic-hyperbolic fixed points.

As all of this is hard to see in 4D, we shall restrict our attention on the points of
the zero-section {y = 0}. In order to ‘see’ the resonance zone we shall consider
two properties of the points of our phase space: their rate of escape and their
extremal character. Before this, we shall intersect the center-stable and center-
unstable manifolds of the two elliptic-hyperbolic fixed points (on {y = 0}) with
such a slice.

193
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E.1 Escape-time and extremal character

E.1.1 The escape-time algorithm

The escape-time algorithm is used to draw beautiful pictures like the Mandelbrot’s set
or Newtonians fractals [17]. Here, we apply this algorithm to know what points turn
some of its angular coordinates (not turn on the totally elliptic point). We say that an
orbit by a point (x,y) is non-rotating iff

|72 (F" (2, y)) — 2llo <1, ¥n €N

(i.e., any of the angular coordinates have gone around to the corresponding S*).

In order to simplify we shall consider the section of such set with the torus {y =
0}. We have drawn pictures sized 500 x 500 pixels (the unit-square [—3, 3] X [—3, 5]

representing the torus), choosing N = 10000 and following the next steps (for each
pixel):

—

1. we transform the pixel to a point of the unit-square;
2. we apply the lift of Froeschlé map to the point for N times (maximum);

3. if for some iteration n, some of the angular coordinates have gone around once,
we draw the corresponding pixel with a grey colour (the smaller n, the darker is
the colour);

4. if at the end of iterations the point has not round, we draw the pixel with white
colour.

The figure appears at the end of this chapter. Although all the points around the
center of the box, which correspond to the elliptic fixed point, seem do not escape,
in fact they escape in an exponentially long time, due to the phenomenon known as
Arnold diffusion and the theory of Nekhoroshev.

E.1.2 Extremal character in polar coordinates

The second picture that we have made shows the extremal character of the points
belonging to the zero-section. This extremal character has been computed with respect
to the symplectic polar coordinates with respect to the origin.

In such coordinates, our symplectomorphism is not monotone positive. In fact, there
is a monotone positive region and a monotone undefinite region. This behaviour appear
in the figure. The grid is also 500 x 500, and we have iterated the points 128 times.
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E.2 Calculus of center-stable and center-unstable
manifolds of an EH fixed point

E.2.1 Computation via power series

Given an elliptic-hyperbolic fixed point (that we suppose the origin), we can write our
diffeomorphism as

@ a 0 b 0 T

xh _ 0 p 0 O T n

Y1 —b 0 a O i o
Ys 000 p* Y2

where a®> + b> = 1 and |p| < 1,p # 0. Moreover, we can do, if necessary, symplectic
lineal change of variables (in order to preserve the symplectic structure), via Williamson
normal form [101].

Then, the (local) center manifold Wy, . is given by the graph of

To = 901:2/1 Z¢k $1,y1

k>2
Yo = Ihyl g @/)k $1,y1
k>2

where subscripts denote the degree of the homogeneous terms of the series. The equa-
tions that we have to solve Yk > 2 are like

{ or(ax + by, —bx + ay) — p dr(x,y) = ri(z,y)
Ve(ax + by, —bx + ay) — p~ Yz, y) = se(z,y)

On the other side, the (local) center-stable manifold Wi, (and, similarly, W(Y) is
given by

Y2 = 1‘1,1‘2,?;1 E Ak $1,$2,y1
k>2

and the equations are, Vk > 2,
Agaz + by, pv, —bx + ay) — p~ Ap(z,0,y) = Li(z,0,y)

If we write

k k
(@, 0,9) = > Az, )", Li(z,v,9) = Lz, y)0" ™"

m=0 m=0

then, Vm =0+ k&
Am(az + by, =bx + ay) — P " N2, y) = P (,y)

All these homological equations are, then, of the same type.
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E.2.2 Calculus of the sections with the torus {y =0}
Let be:
e 2y, the EH fixed point, and M = DF(zy);
e I/, the matrix of the change of base (to reduce L to normal form);
e (, the new variables: ( =V !(z — z;);

e (4 = ¢((1, (2, C3), the local parametrization of the center-stable manifold W (z;)
(at the new coordinates), calculated until certain order.

Fixed a small enough R, we shall accept that if ||z||; < R and ¢ = V7'(z — zy)
verifies (4 = ¢(C1, (2, (3), then z € W (z;). It is very important to have calculated ¢
till high order (because the expansion of a center-stable manifold through the center
directions is hard, because its points go around the fixed point).

So, the equation we have to solve is (for a certain k € N):

7T4(V71Fk(x1) x?) Oa O)T - Zf) - ¢(7T1,2,3(V71Fk($1) x?) O? O)T - Zf)) = O

with the condition ||F*(zy,1,0,0)||; < R. Obviously, the solution of this equation is a
curve, and we can find different patches of it by continuation and varying k.

Of course, we can do the same with W (z;), but then —k € N. In our example,
this is not necessary, due to the symmetries of the Froechlé map.

E.3 Pictures at an exhibition

Let ze, = (0, %, 0,0), zep = (%, 0,0,0) be the two elliptic-hyperbolic fixed points of the

Froeschlé map, and T the torus {y = 0} (represented by the square [—3, 1] x [—3, 3]).

We have chosen the parameters K; = 0.5, Ky = 0.3, A = 0.1. The four pictures are:

e Levels of escape-time with N = 10000. The grey color is chosen using a logarith-
mic scale, that is g = l%ogg% € [0, 1].

e Extremal character with respect to symplectic polar coordinates, after 128 itera-
tions.

e Different sections of W¢(z,) with Ta.
e Different sections of W (zy.) with Tz.

Compare the pictures!
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As we see, the resonance zone associated to the elliptic fixed point seems to be
bounded by pieces of center-stable and center-unstable manifolds of its elliptic-hyperbolic
companions. These manifolds have really many folds, and we think they arrive to the
elliptic fixed point (after a very long time). A similar picture of the resonance zone
using escape-times appear in [31], but they did not explain its shape in terms of these
manifolds.

On the other side, the monotone positive invariant tori surrounding the origin, if
they exist, seem to accumulate around a curve. We recall that the invariant tori intersect
the zero-section in a point, generically.



“ 4L £ A T LA A S ST T T ALAVEAESANS 442 MV TS A AVE VL A e AL AL A T A A AT T



Appendix F

Normal forms

Here, we show the necessary steps in order to simplify the dynamics around an
exact Lagrangian invariant manifold of an exact symplectomorphism. The first
step is to transport the invariant manifold to the zero-section of its cotangent
bundle, but this is possible thanks to Weinstein’s theorems [97, 98]. In the case
that our symplectic manifold is a cotangent bundle and our invariant manifold is
a graph this can be easily done by means of a fiberwise translation. The second
one, if the dynamics on the invariant manifold is conjugated to an easier one, we
can get it via the lift of the corresponding conjugation. The rest of steps try to
kill the ‘vertical’ jet of the symplectomorphism, that is to say, the dependence on
the y-variables. Generally, this is not possible.

We shall apply our method in order to obtain the already known normal forms
for invariant tori and for hyperbolic points (cf. [20, 65]).

F.1 Set up

F.1.1 Step 1: Simplification of the dynamics on the zero-
section

Suppose we have an exact symplectomorphism F' : T*M — T*M, with pf(F) = S and

F-invariant zero-section: Fez = zoqoeFoz. We suppose that the dynamics on the base

space, qoFz is conjugated (via J) to the diffeomorphism ¢ : M — M. We can perform

an exact symplectic change of variables such that the dynamics on the base space be ¢.
Since

quoZ — 5o¢0571’

we must just define

where 4 is the lift of § to T*M (and doq = go0). Then:
o pf (F) = pf (F)%,

199
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e the zero-section is F-invariant, and its dynamics is given by ¢. As a matter of
fact,
Foz = § YoFoboz =0 oFoze0
e 5_lozoquozo5 — Zoé_loéod)o(s_lo(s
= Z°¢.

F.1.2 Step k: Elimination of the k-terms

In order to make easier the problem, we now assume that our manifold M¢ is paral-
lelizable, i.e., T*M ~ M x R? (for instance, M = R? or M = T?).

Suppose that we have done k£ — 1 steps of normal form and that our exact sym-
plectomorphism is Fy | : T*M — T*M. As the the zero-section is fixed, being the
diffeomorphism ¢ : M — M its dynamics, our primitive function is

Ska(r,y) = Neg—1(z,y) + Rop-1(,y),

where

Nep-1(z,y) = Z Ni(z,y)
2<i<k—1
and
R>k71(xay) = ZRz(xay)

i>k

Each function N;(z,y) is y-homogeneous of degree i. The same for the functions
R;(x,y). Then, we also shall write

Ni(z,y) = D valo)y”
|n|=i
and
Ri(z,y) = Y pal2)y™
|n|=i

N<j—1 corresponds to the terms that we have not able to eliminate, and it is the normal
form until degree k — 1. R-x_1 is the corresponding residue.

In order to eliminate all the terms of order £ in gk_l, we want to find an exact
symplectomorphism Gy, with primitive function

Tk(‘ray) = Zﬂ(x,y),

i>k

and leaving all the points of the zero-section fixed. We keep the notation by y-
homogeneous degrees: Tj(z,y) = >, _; Tn(z)y". We shall look for this diffeomorphism
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as the time-1 flow of a Hamiltonian H, = Hy(z,y), which is y-homogeneous of degree
k. Hence, we can compute G and G,;l by the Lie series method. The relationship
between Hj and T} is given by

i = YA

m!
m>1

and, in particular
The new symplectomorphism is Fy, = G_loﬁk_lon, whose primitive function is Sk.

Se(z,y) = pf(Fy) = pf (G o Fy 1°Gy) = Sp_1°Gy, + Ty — Tk"G;l"qu"Gk

= Ne1(z,y) + Re(z,y) + ...+
Ti(z,y) +...—
Ti(p(x), Do(x)~Ty) + . ..

= Nepi(z,y) + Ri(w,y) + Tz, y) = Te($(x), Do(z) ™ Ty) + ...,

where means terms with y-degree greater that k. Then, the homological equation
that we must solve is:

Ti(p(x),Dp(z)” Ty) — Ti(z,y) = Ri(z,y).

If we know how to solve these equation, we obtain the main terms of Ty.
So, we have a linear operator on the space of y-homogeneous functions of degree k
Fi, given by

13 ”

LyTy(,y) = Ti(d(x), Dg(2)~"y) — Ti(z, y)-

Of course, we can define this operator on the graded algebra €, , Fj. Formally speak-
ing, this space is the space of all the functions, F.
Then, we must solve equations as

LyT, = Ry,
but it is not always possible. For instance, if we have the splitting
F =ker L, @ Lys(F)
(i.e., Ly is an isomorphism on its image L,(F)), then Ry can be written as
Ry, = Ny + Ly,

and we can only solve LT}, = Ly, being N}, the remainder 1. So, the normal form until
degree k is N<j, which belongs to ker L,. The new primitive function is

Sk(x,y) = Nej, + Ry

'Tn fact, we do not need that the sum be direct, but in such a case we can obtain different normal
forms.
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F.2 On a neighborhood of an invariant torus

If we are working on T? x R? (or in its covering space), then the functions are 1-
periodic in their z-variables. If the dynamics on the zero-section is a shift by w, then
the homological equations that we have to solve are like

Ti(z +w,y) = Ti(z,y) = Ri(z,y).
That is to say, the operator that we must consider is

L,Ty(z,y) = Ti(z+w,y)—Ti(z,y)

= ) (Talz+w) — m(2))y"

[n|=k

It is decomposed in ‘smaller’ ones: [,7(x) = 7(x +w) — 7(z). [, acts on the space of
functions defined on the d-torus: F(T¢). If w is a Diophantine vector 2 | then we can
eliminate all the terms except the constants in z ® because F(T%) = ker [, ® [, (F(T?)),
being ker [, the space of constant functions and [,(F(T¢)) the space of null average
functions (see [6, 88]). So, the normal form until degree & is

Ngk(y) - Z Vnyna

2<n|<k

where the v, are constants.
Hence, if we apply the results of Section 4.3, we get that the normal form until

degree k is
flzy) =w+z+ Q% (y) +O0y")

9(z,y) = y(I + O(y*))
where

k
1
=2

= Vka(y).

That is to say, €2z is the gradient of a certain polynomial of degree k£ and order 2, Hy,
and A(Hj) = N<j. This is the Birkhoff’s normal form.

2That is to say, there exists C' > 0 and 7 > 1 such that

lg-w—n|>C/lql] Vg€ Z%VneZ.

3Not only formally, but also analytically.
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Remarks

i) Note that the normal form until order & (eliminating the terms of the remainder) is
interpolated by the time-1 flow of the time-independent Hamiltonian w-y+ H(y).
This Hamiltonian is integrable. This is equivalent to construct d approximate
integrals of F' in a small neighborhood of the invariant manifold [32, 94].

ii) This kind of normal form has been useful in order to obtain partial justifications
of Greene’s criterion (see [65, 32] for the case d = 1 and [94] in higher dimensions).

N

F.3 On a neighborhood of a hyperbolic point

Suppose that we have a symplectomorphism in a neighborhood of the origin of R? x R?.
As we know, the stable and the unstable manifolds are exact Lagrangian. Anyway, we
shall work in a neighborhood of the origin.

e We can put one of them (or a piece of them), for instance, the unstable, on
R? x {0}.

e Suppose that the linear part can be diagonalized: A = diag(\;,...,\q) is the
diagonal matrix of unstables eigenvalues (|]A\;| > 1,Vi = 1 + d). By a Poincaré’s
theorem, we can get that the dynamics on the unstable manifold be z = Ax,
provided the next non resonance condition be satisfied *: V|n| > 2 \; # A"

Then, the homological equation of order & is
Tk(Axa Aily) - Tk(‘ra y) = Rk(xa y)

If we expand these functions in powers of y, the equations are

S O () = @)yt = > pala)y”

[n|=k [n|=k
and we get the set of operators
bam(z) = A" (Ax) — o (2)

Expanding 7,(z) = Z Tom®™ and pp(x) = Z Pn,ma™, we obtain that

meNd meNd
AinAan,m —Tam —  Pam,
that is to say
- Pn,m
n,m ym—n _ 1"

*We use multi-index notation, and A" means A" ...}
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In fact, this is not possible if the denominator vanishes, for instance if m = n. If this is
the only case when the denominator vanishes, we shall say that \ satisfies a strong non
resonance condition. In such a case, the formal normal form has a primitive function

N(z,y) = Y valzy)"

2<]n|

= P(xy).

(P(xy) means a function P(x1y1,...,Zqyq), and we shall write z; = ;1;).
Then, we can prove that our formal symplectomorphism is

f(x,y) = A(x + Z fn($)($y) )

nl>1
=AY gal@)(ay
In|>1
where the vector functions f, = (f!,... f9) and g, = (g},...,gl) are given by

fi(x) = ola%
and
gi(x) = Plz™.

(If a subscript has not sense, the corresponding coefficient will be zero). The constants
are given by the next recurrence (for the notations, see Section 4.3):

e Step 1: Vi,5 =1-=d: _
Vi, = i
(pgi = (1 + (5ij)l/6i+6j
e Step k: Vin| =k, Vj=1+d:
v =]
vl = (nj +1)oj, — @},

where

\IIZL = njl/n_z Z (UJ"“SzJ)QsZ f}—eia

i utv=n
@, = (nj + 1)nte, — Zd)

Z > (1)@, ()

ut+v=mn

o] # 1
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and
j_ 1 i
On = % Z q)n-l—ej—ei‘

For instance, if d = 1, the primitive function of the formal normal form is N(z,y) =
P(zy) and the symplectomorphism is given by

{szm@w

y=y/p(ry)

)

where p(0) = A, P(0) = 0 and P'(0) = 0. The relation between p and P is given by

(where z = zy and ' means the derivative respect to z). As Moser proved [77] this
normal form is not only formal, but also is analytic.
As we know, this normal form is not only formal, but also is analytic.

F.4 On a neighborhood of a hyperbolic isotropic
torus

Suppose we have on T% x R x R% x R% with coordinates (x1, s, y1,%2), an exact
symplectomorphism leaving the d;-dimensional torus {zs = 0,y; = 0,y, = 0} fixed.
We suppose that its dynamics is a shift by w = (wi,...,wq,) € R%, and that it is
hyperbolic. We suppose that we can put the unstable manifold W*(T% ) on the zero
section {y; = 0,4, = 0} and that the dynamics on it is decomposed in a shift by w and

an homothetic transformation by a diagonal matrix A = diag(Ay, ..., Ag,):
=2 +w
To = AZL’Q '

This is a reducibility hypothesis. Of course, we suppose Vi = 1 =+ ds, |\;| > 1.

Under some non resonance conditions, as w be a Diophantine vector and A be
strongly non resonant (see Section F.3), we can get a formal normal form with primitive
function

N(xhx?aylay?) = Z Vn,y (nyQ)y?la
In1|=0
being 1(2) of order 2 and v,,(z) of order 1, where z = (zys,..., 232y5?). This is a

mixed situation of the two previous sections.
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Appendix G

Action forms, foliations and
variational principles

The philosophy underlying in the constructions that we have made is that the
geometry of the Hamiltonian mechanics is given by the Liouville form and the
standard foliation of the phase space (the cotangent bundle of a manifold). This
have been useful in order to study Lagrangian graphs, which are transversal to
such a foliation.

If we are interesting in the study of other Lagrangian manifolds, other foliations
and action forms must be considered. There are some results about this subject
that we shall recall.

Finally, plans for future work about this subject are stated.

G.1 Examples

For the sake of simplicity, we shall work on the standard symplectic manifold R? x R?,
and we shall use the standard notations.
Let F' be the symplectomorphism in R?? given by

{:r’zf(:r,y)

)

y' = g(z,y)

with S as primitive function.

G.1.1 Changing the beginning and the ending
Lagrangian manifolds

Next example is essentially due to Tabacman [93], where he used this kind of construc-
tion in order to prove the existence of heteroclinic connections.

Suppose we have two Lagrangian graphs £, and L., given by the corresponding gen-
erating functions Iy, [, : R? — R (it can be also defined in a certain open neighborhood
in R?).

We want to seek the orbits connecting these two Lagrangian graphs (in Section 5.4
we considered orbits connecting two ‘horizontal” Lagrangian manifolds). That is, given

207
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n > m + 1, we want to look for the orbits connecting them after n — m steps, the
(n—m)-sequences of R*

(@m, Ym), (Tt 1s Yms1)s - - - (Tne1, Yn1)
such that
o Y = Viy(rn),
e Vi=m-+n—2, F(x;,y;) = (Tiy1, Yis1),
® 9(Tn_1,Yn-1) = VIe(f(Tn-1,Yn-1))-
These segments of orbit are extremal of the action

n—1

S (T Yms Tty Ymets - -2 Tnets Y1) = D S(@i, 45) + I(0) = Le(f (@no1, Yn1)),

i=m
restricted to the set of sequences satisfying
e Y, = Vi(zy,),
o Vi=m-=n—2, f(x;y;) = Tit1,

® 9(Tn-1,Yn-1) = VIe(f(Tn-1,Yn-1))-

G.1.2 Changing the Lagrangian foliation

We are going to change the ‘orientation’ in our phase space, and instead of to seek
orbits connecting two ‘vertical’ fibers we shall connect two ‘horizontal’ ones. That is to
say, given two y-points y,,, v, € R?, where n > m + 1, we want to look for the orbits
connecting them after n — m steps, i.e., the (n—m)-sequences of R?¢

(T Ym)s (Tt Ymes1)s -+ - (Tn1, Yn1)
such that
® Ym = Ym:
o Vi=m+n=2, F(z;,y:) = (Ti+1,Yi+1),
® 9(Tn-1,Yn-1) = Ya-
Instead of considering ‘horizontal’ chains we shall consider ‘vertical” ones:
® Ym = Ym:
o Vi=m+n—2, ¢(z; i) = Vi1,

e §(Tp-1,Yn-1) = Yn-
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Finally, the action on such a set will be

n—1

Sm,n(xma Yms Tm4+15 Ym+1y -+, Tn—1, ynfl) = Z(S(xza yz) + y;% - g(aju yz)Tf(xu yz)
nil
= > (S(iys) + 9 (@ — f (i, 9:))-

i=m

The set of chains is a d(n—m—1)-submanifold of R?*™~™)  provided the rank of the
matrix

Cm 0 -1
Crmt1 Dy 0 —1

Cn—? Dn—2 0 -1
Cn—l Dn—l

is maximal (= n—m) in all the chains. For instance, this transversality condition is
satisfied when F' is ‘vertically’ monotone, that is to say, if C(z) is regular for all the
points.

We obtain that:

e The connecting orbits are critical chains of Sm,n.

o If F' is ‘vertically’ monotone, the critical chains of Sm,n are connecting orbits of
F.

In particular, if we look for fixed points, we can consider the fixed action

8(z,y) = S(x,y)+y' (x— f(z,y))

restricted to the horizontally transformed set

A~

K = {(z,y) e R | g(z,y) = y}.

From a geometrical point of view, the horizontal foliation is associated to the 1-
form & = —x dy, which is also an action form for the symplectic form w = dy A dx.
The function S(z,y) = S(z,y) +y 'z — g(z,y)" f(x,y) is the corresponding primitive
function, that is, F*a — a = dS. The exactness equations relative to this action form
are:

a5 i,

a_x(xay) = _f(xay)—r a_g,(xay)

S %,

a_y(xay) = _f(xay)—r 8_Z(xay) +xT

Any 1-form like ay = y do — dU(xz,y), being U : R? x R — R a function, is an
action form for our symplectic form w = dy A dz. In fact, thanks to the topological
properties of R? x R¢, all the action forms are constructed in this way. So, to each
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function U = U(x,y) we can associate a primitive function Sy. The relation between
Sy and the original primitive function is

SU(Iay) = S(Iay)_UOF(Iay)+U(Iay)

In the previous example we have taken U(z,y) = = - y. If, for instance, y = Vi(x)
is an invariant graph, then we can take U(x,y) = [(z), and the resulting action form is
a; = (y — Vi(x)) dz, which vanish on such a graph and on vertical vectors. Moreover,
the corresponding primitive function is

Sl(‘ray) = S(x,y)—l(f(:z:,y))—i—l(:l:)

It is the function ® introduced in Section 6.1!

G.2 Lagrangian foliations

G.2.1 Whatever we need

As we have seen, the election of the action form determines the geometry of our phase
space (given by the action form and the corresponding Lagrangian foliation) and the
mechanics that we do on it (given by variational principles). We recall that dynamics
is independent of such elections.

It seems that whatever we need in order to define variational principles for the orbits
of a certain symplectomorphis is:

e a Lagrangian foliation, that is, a foliation whose leaves are Lagrangian manifolds;

e a Lagrangian manifold, transversal to the Lagrangian foliation, and which is the
basis of such foliation;

e an associated 1-form, which vanish on the basis and acting on tangent vectors to
the foliation.

There are several theorems which relate these ingredients, and generalize the canon-
ical exact symplectic geometry of the cotangent bundle. In fact, they let us generalize
the results that we have obtained. A survey of results is given in [61]. We have pick
out a few ones.

G.2.2 Some Darboux-Weinstein’s theorems
The first ones are due to Weinstein [97], and extend Darboux’s theorem.
Theorem G.1 :

Let L be a Lagrangian submanifold of a symplectic manifold (N, w) of di-
mension 2d, T*L be its cotangent bundle and oz its Liouville form. Then:
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o There exists a diffeomorphism 1 from an open neighborhood V of L in
M onto an open neighborhood (V) of the image of the zero-section in
T*L which satisfies the following properties:

1. the restriction Yz of ¥ to L is the zero-section so of T*L;
2. the diffeomorphism 1 is a symplectomorphism, i.e., V*da, = w.

o If we are given a Lagrangian complement E of TL in the symplectic
vector bundle TN, which is the restriction of TN to L, then:

we may choose Y such that, for every point x € L, Tpip(Ey) =
VT (T*L).

o If we assume that our manifold N is equipped with a Lagrangian fo-
liation, defined by a completely integrable Lagrangian subbundle E of
TN transverse to L, then:

we may choose v such that it maps each leaf of the foliation
E)y into a fiber of T*L.

We remark that if our symplectic manifold is exact and our Lagrangian manifold is
also exact then the symplectomorphism 1) is also exact. Using lifts of diffeomorphisms
(see Section 7.2.2), the next result was easily proven in [61].

Corollary G.1 :

Let (N1, w1) and (Na,ws) be symplectic manifolds of the same dimension,
Ly and Ly be Lagrangian submanifolds of N1 and N, respectively, such that
there exists a diffeomorphism ¢ from Lq onto Ly. Then:

There exists a diffeomorphism 1 from an open neighborhood U,
of L1 in N7 onto an open neighborhood Us of Ly in Ny which
satisfies:

7/)|£1 = ¢, V'wy = w.

Next theorem by Guillemin and Sternberg [37] show us the relationship between
Lagrangian foliations and action forms.

Corollary G.2 :

Let L be a Lagrangian submanifold of the symplectic manifold (N, w), and
E be a completely integrable Lagrangian subbundle of T'M transverse to L.
Then, there exists an open neighborhood V of L in M upon which a unique
1-form a is defined which satisfies the following properties:

1. da = wyy,

2. By Ckera,

3. a|£ =0.

The 1-form « is said to be associated with L and E.
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Kostant, Guillemin and Sternberg [37] have proven a converse of the previous result.
Independently, Cohen [25] has proven a similar result.

Theorem G.2 :

Let (N, w) be a symplectic manifold of dimension 2d, and o be an action
form. We assume that the set of zeros of «,

L = {zeN | a(z) =0},

s a submanifold of dimension d. Then L is Lagrangian, and there exists an
open neighborhood of L in N equipped with a Lagrangian foliation transverse
to L such that «c is the 1-form associated to L and with this foliation.

.3 Final discussion

As we have recalled in Section F.2, the Birkhoff normal form until degree k of a dio-
phantine torus 7" for a symplectomorphism F of a certain symplectic manifold (N, w),
is given by

flz,y) =w+z+ > V,Hiy)+ 0y

=2

9(z,y) = y(I +O(y"))

where each H; is a homogeneous polynomial of degree i. Then, the torsion of the
torus T is the quadratic form given by H, (or the symmetric matrix D*H,. Its inertia
is independent of the way that we have moved our torus to its zero-section and the
steps in the normal form. Then, we can say that our torus has degenerated, positive,
negative, undefinite or null torsion. This is an intrinsic characteristic of the torus.

Hence, suppose our torus be positive. In a neighborhood of it we can write the
dynamics as in the normal form until degree 2. In such coordinates, the torus is mini-
mizing and the orbits on it are also minimizing. This is a local property. This extremal
character depends on the vertical Lagrangian foliation and the Liouville form, which is
the associated action form. All of this around our zero-section. Finally, if we go back
to our initial torus, we obtain that it has a transversal Lagrangian foliation upon which
the orbits of the torus are minimizing with respect to the variational principles induced
by such a foliation. The problem is to choose this foliation.

For instance, in the examples given in Section B.2.1 relative to the quadratic stan-
dard map (similarly for the trigonometric standard map), the upper r.i.c. have positive
torsion, and the lower ones have negative torsion. In the middle, although the r.i.c. are
not graphs and they cross the non-monotone curve, may be their torsions have a type.
May be only one has null torsion and it could be ‘the last’. It should be interesting
to adapt foliations to the folds of these curves, and check the extremal character of
the orbits respect to these foliations. On the other side, we could take profit that the
dynamical character of the orbits do not change by transformations of the phase space.



e RS & A4 T4 A A AN Y VW RS E RS LT S

So then, we saw in the examples given in Appendix C, that the elliptic periodic
orbits near the torus transformed to reflection hyperbolic-elliptic periodic orbit when
the torus broke dowm. That is, two eigenvalues, which were on the unit circle, collide in
the negative real axis and transformed into a reflection hyperbolic pair, giving a period
doubling bifurcation. Another possibility of collision is the called Krein crunch, where
two pairs of elliptic eigenvalues collide and transform into a hyperbolic quadruplet.
Why this is not our case? We think that the reason is the following. As our torus
have positive torsion, we can do the previous reduction. Periodic orbits are, of course,
fixed points of a power of F' and the corresponding matrix B must be positive definite
if such orbits are near enough the torus, and complex hyperbolic quadruplets are not
possible (Section 5.5.2). The relationship between extremal and dynamical character of
the orbits must be more deeply studied. We think they are also related with the kind
of breakdown, that is, with the kind of object which remains after such breakdown.

A more difficult problem correspond to undefinite or degenerated torsion. These
tori do no let to obtain a priori inequalities as in Section B.1 and they produce more
complicated dynamics, as Herman shown in [43]. It should be interesting to test the
proportion of positive and negative eigenvalues that we obtain when we apply the MMS
iteration. For instance, once we have done two steps in the normal form around our
torus, we have

f(z,y) =w+z+ By + O(y?)

g(z,y) = y(I +O(y?))
where the symmetric matrix B gives the torsion. Suppose it is non-degenerated. Then,

the Hessian matrix associated to segments of orbit of length n over our torus has
constant entries are they are

2B~ —B7! 0
-B~! 2B7! B!

-B7! 2B7! —-B!
0 —-B7! 2B!

The eigenvalues of such a matrix are (see Section 5.5)
o(Hont1) = U(2 —¢j)o (B7),
7=1

where the ¢; are cosinus. Then, the proportion of positive eigenvalues in the matrix
Hy 41 is the same that in the matrix B (we can also use the MMS iteration). Another
question is which are the bifurcations of periodic orbits associated to the breakdown of
these tori.

We think that it could be useful to experiment with different dynamics around an
invariant Lagrangian torus. In Section 4.3 we show how to do this, and in Chapter 10
we proved that the algorithm produces convergent expansions. In fact, in this chapter
also find another algorithm, getting a time-dependent Hamiltonian which produce such
dynamics. In both of cases, an algebraic manipulator of Fourier-Taylor series is needed.
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Finally, in order to study invariant Lagrangian manifolds with folds, that is, those
that are not graphs, should be interesting to generate them with Morse families, so called
phase functions. A phase function of a Lagrangian manifold defined into a cotangent
bundle is similar to a generating function, but it contains additional parameters which
let the folds (see [98] or [61] for details). Some results of this report can be extended
to this more general context, but we have not found how to apply them.



Notes and notations
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Notes on Differential Geometry

We shall use the next standard notations and results of Differential Geometry (see, for
instance, [2]). For the sake of simplicity, all the objects (manifolds, vector fields, forms,
etc) will be C°.

Let M be a manifold of dimension m.

e X (M) is the set of vector fields on M. A vector field X € X(M) is a section of
the tangent bundle T M.

o X*(M) = QY(M) is the set of 1-forms or Pfaffian forms on M. A 1-form is a
section of the cotangent bundle T* M.

o QM) =P, (M) is the set of all exterior differential forms on M. A k-form
is an element of 2%(M), and it is a section of the vector bundle of exterior k-forms
on the tangent space of M, A¥(M) = A¥(TM).

1. Vector fields and forms

e Vectors fields act on functions by derivation:
X(f) = Df(X).
e (Pull-forward)
(Po0)s X = dup X
e (Pull-back)
(Po) o = p 9"
2. Lie bracket

e The Lie bracket of two vector fields on M is defined by
(X, Y] (f) = X(V(/)) - Y X))

Vector fields on M with the Lie bracket form a Lie algebra; that is, [X, Y]
is real bilinear, skew symmetric, and Jacobi’s identity holds:

(X Y], 2] +[[Zz X], Y] +1[Y,2] ,X] = 0
e For diffeomorphisms ¢, 9:
O [X, Y] = [9.(X), 0 (Y] -
3. Exterior product

e The set of forms on M, Q(M), are a real associative algebra with A as
multiplication. Furthermore,

aNB = (-D)¥BAa
for k£ and [-forms « and [, respectively.

e For maps ¢, ¢:
P (anp) = dane™f.



-~ s £ AL UAEALL T A A4S NN AAM T A AT A2 AUV A o~

4. Exterior derivative

e For a a k-form we define a (k 4 1)-form da by

k
da(Xo,...,Xp) = Y (1) Xj(a(Xo,..., X; ..., X)) +
=0
S (-)Ha([X;, X)), X, Xy, X XG)
1<j

e d is an antiderivation, that is, d is a real linear map on forms and
dl@npB) = daAB+ (-1)fandp
for o a k-form. Moreover:

ddae = 0.

e For a map ¢:
o*'d = do.
5. Poincaré’s lemma
If daw = 0, then « is locally exact.
That is, there exist a neighborhood about each point on which a = dg.

6. Interior product

e iy is real bilinear in X,a. Also ixixa =0, and

ixaAB = ixaAB+ (—1DfaNixp,

for o a k-form. So then, fixed X, ix is an antiderivation.

e For a diffeomorphism ¢:
qﬁ*iXa == i¢*X¢*Oé.
7. Lie derivative

e For a a k-form and X a vectorial field, Lxa is a k-form given by

Lya(Xi,...,Xp) = X(o(Xy,..., Xp) =D a(Xy,.. . [X,X5] ..., Xp).

i=1
e Ly« is real bilinear in X,«, and
LXa/\ﬁ = LXaA,B+OZALx,8.

Hence, fixed X, Ly is a derivation.
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e For a diffeomorphism ¢:
qﬁ*LXa == L¢*X¢*Oé.
8. Cartan’s formula

LXCY = dix& + ideé.

9. The following identities hold:

Lonz = fLXa —+ df VAN iXa,

L[X,Y] a = LxLyOé - LnyOé,

== fiXa = ixfOé,

i[X,Y] o = LXiy& — iyLXoé,
Ldeé = dLXa,

inXoé == ixLXoé.

ichY
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on symmetric matrices

As we shall use several properties of symmetric matrices, and specially of positive
definite ones, we shall recall some definitions (see [45]).

e Eigenvalues of a symmetric matrix

All the eigenvalues of a symmetric matrix are real, and moreover, it diagonalizes
via an orthogonal matrix. That is, if A is a symmetric matrix, there exist a
diagonal matrix A = diag(\y, ..., Ag), given by the eigenvalues, and a dxd matrix
U satisfying:

The

UAUT =N, UTU =1,

spectral radius is p(A) = max; |\].

If all the eigenvalues of A are positive we say that A is positive definite, and we
also define p(A) = min; A;.

e Inertia, index and signature

The inertia of A is the ordered triple

i(4) = (i4(4),i-(4),10(4))
of numbers of positive, negative and zero eigenvalues of the matrix A, re-
spectively, all counting multiplicity.

The rank of A is the number of non-zero eigenvalues:
r(4) = i(A)+i (A4).
If the rank coincides with the dimension, that is ig(A) = 0, we shall say that

the matrix is non degenerated. Otherwise we shall say that it is degenerated.

The signature of A is the difference
s(4) = i (A)—i (A).

If i (A) = 0 we shall say that the matrix A is positive semidefinite, and if,
moreover, ig(A) = 0, we shall say that it is positive definite. If i, (A) = 0
we shall say that the matrix A is negative semidefinite, and if, moreover,
ip(A) = 0, we shall say that it is negative definite. Otherwise we shall say
that A is undefinite.

Finally, the index of a non degenerated matrix A is the number of negative
eigenvalues.

e The Loewner partial order

In the space of d x d real symmetric matrices, we consider the next orders:

A=< B& v Av <v'Bu, Yo e R\ {0};



“ T & A 44T 4T Aqa 2L AT L TRAS

— A< B&vTAv <v' By, Yv € R4\ {0}.

Meanwhile < is an order relation (the Loewner partial order), < does not means
< and #. So, A > 0 means that A is positive definite, and A > 0 means that A
is positive semidefinite.

¢ FEuclidean norm of a symmetric matrix

If we consider the Euclidean norm on R, |u], = /3¢, vZ, then the Euclidean
norm of a symmetric matrix is its spectral radius:

Av
4], = sup 1222 — o,

w0 vl

e Some formulae

— A= p(A)l;

— B 2 A= By = p(4) < max(p(B1), p(B2));
— 02 A= p(A)l; 2 4

—0<A=0< A
—~0<A<XB=0<B1=<A4"
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