
Introduction A software implementation

Software for the numerical integration of ODE by
means of high-order Taylor methods (I)

Àngel Jorba
angel@maia.ub.es

University of Barcelona

Advanced Course on Long Term Integrations

1 / 39

Introduction A software implementation

Outline

1 Introduction

2 A software implementation
Step size control

2 / 39

Introduction A software implementation

Problem: find a function x : [a, b] → Rm such that{
x ′(t) = f (t, x(t)),
x(a) = x0,

Taylor method:

x0 = x(a),

xm+1 = xm + x ′(tm)h + · · ·+ x (p)(tm)

p!
hp,

for m = 0, . . . ,N − 1.

3 / 39

Introduction A software implementation

A first approach is to compute the derivatives by means of the
direct application of the chain rule,

x ′(tm) = f (tm, x(tm)),

x ′′(tm) = ft(tm, x(tm)) + fx(tm, x(tm))x ′(tm),

and so on.

These expressions have to be obtained explicitly for each equation
we want to integrate.

4 / 39

Introduction A software implementation

Example: Van der Pol equation.

x ′ = y ,
y ′ = (1− x2)y − x .

}
.

The nth order Taylor method for the initial value problem is

xm+1 = xm + x ′mh +
1

2!
x ′′mh2 + · · ·+ 1

n!
x

(n)
m hn,

ym+1 = ym + y ′mh +
1

2!
y ′′mh2 + · · ·+ 1

n!
y

(n)
m hn.

There are several ways of obtaining the derivatives of the solution
w.r.t. time.

5 / 39

Introduction A software implementation

A standard way is to take derivatives on the differential equation,

x ′′ = (1− x2)y − x ,

y ′′ = −2xy2 + [(1− x2)2 − 1]y − x(1− x2),

x ′′′ = −2xy2 + [(1− x2)2 − 1]y − x(1− x2),

y ′′′ = 2y3 − 8x(1− x2)y2 + [4x2 − 2 + (1− x2)3]y

+x [1− (1− x2)2],
...

Note how the expressions become increasingly complicated.

6 / 39

Introduction A software implementation

These closed formulas allow for the evaluation of the derivatives at
any point, so they have to be computed only once (for each vector
field).

For a long time integration,

the effort needed to produce these formulas is not relevant,

the effort to evaluate them is very relevant

7 / 39

Introduction A software implementation

These closed formulas allow for the evaluation of the derivatives at
any point, so they have to be computed only once (for each vector
field).

For a long time integration,

the effort needed to produce these formulas is not relevant,

the effort to evaluate them is very relevant

7 / 39

Introduction A software implementation

There is an alternative procedure to compute derivatives:
Automatic differentiation

Automatic differentiation is a recursive algorithm to evaluate the
derivatives of a closed expression on a given point.

Automatic differentiation does not produce closed formulas for the
derivatives.

A good reference book is:
A. Griewank: Evaluating derivatives, SIAM (2000).
ISBN: 0-89871-284-X

8 / 39

Introduction A software implementation

Assume that a is a real function of a real variable.

Definition

The normalized j-th derivative of a at the point t is

a[j](t) =
1

j!
a(j)(t).

Normalized derivatives are the coefficients of the power expansion
of the solution.

9 / 39

Introduction A software implementation

Lemma

If a(t) = b(t)c(t), then a[n](t) =
n∑

i=0

b[n−i](t)c [i](t).

Proof.

It follows from Leibniz formula:

a[n](t) =
1

n!
a(n)(t) =

1

n!

n∑
i=0

(
n

i

)
b(n−i)(t)c(i)(t)

=
1

n!

n∑
i=0

n!

(n − i)!i !
b(n−i)(t)c(i)(t) =

n∑
i=0

b[n−i](t)c [i](t).

If we know the (normalized) derivatives of b and c at t, up to
order n, we can compute the nth derivative of a at t.

10 / 39

Introduction A software implementation

Lemma

If a(t) = b(t)c(t), then a[n](t) =
n∑

i=0

b[n−i](t)c [i](t).

Proof.

It follows from Leibniz formula:

a[n](t) =
1

n!
a(n)(t) =

1

n!

n∑
i=0

(
n

i

)
b(n−i)(t)c(i)(t)

=
1

n!

n∑
i=0

n!

(n − i)!i !
b(n−i)(t)c(i)(t) =

n∑
i=0

b[n−i](t)c [i](t).

If we know the (normalized) derivatives of b and c at t, up to
order n, we can compute the nth derivative of a at t.

10 / 39

Introduction A software implementation

Example: Van der Pol equation.

x ′ = y ,
y ′ = (1− x2)y − x .

}
u1 = x ,
u2 = y ,
u3 = u1u1,
u4 = 1− u3,
u5 = u4u2,
u6 = u5 − u1,
x ′ = u2,
y ′ = u6.

11 / 39

Introduction A software implementation

u1 = x ,
u2 = y ,
u3 = u1u1,
u4 = 1− u3,
u5 = u4u2,
u6 = u5 − u1,
x ′ = u2,
y ′ = u6.

u
[n]
1 = x [n],

u
[n]
2 = y [n],

u
[n]
3 =

n∑
i=0

u
[n−i]
1 u

[i]
1 ,

u
[n]
4 = −u

[n]
3 (if n > 0),

u
[n]
5 =

n∑
i=0

u
[n−i]
4 u

[i]
2 ,

u
[n]
6 = u

[n]
5 − u

[n]
1 ,

x [n+1] =
1

n + 1
u

[n]
2 ,

y [n+1] =
1

n + 1
u

[n]
6 .

12 / 39

Introduction A software implementation

The recurrence can be applied up to a suitable order p.

It is not necessary to select the value p in advance.

13 / 39

Introduction A software implementation

If the functions b and c are of class Cn, we have

1. If a(t) = b(t)± c(t), then a[n](t) =
n∑

i=0

b[i](t)± c [i](t).

2. If a(t) = b(t)c(t), then a[n](t) =
n∑

i=0

b[n−i](t)c [i](t).

3. If a(t) =
b(t)

c(t)
, then

a[n](t) =
1

c [0](t)

[
b[n](t)−

n∑
i=1

c [i](t)a[n−i](t)

]
.

14 / 39

Introduction A software implementation

4. If α ∈ R \ {0} and a(t) = b(t)α, then

a[n](t) =
1

nb[0](t)

n−1∑
i=0

(nα− i(α + 1)) b[n−i](t)a[i](t).

5. If a(t) = eb(t), then a[n](t) =
1

n

n−1∑
i=0

(n − i) a[i](t)b[n−i](t).

6. If a(t) = ln b(t), then

a[n](t) =
1

b[0](t)

[
b[n](t)− 1

n

n−1∑
i=1

(n − i)b[i](t)a[n−i](t)

]
.

15 / 39

Introduction A software implementation

7. If a(t) = cos c(t) and b(t) = sin c(t), then

a[n](t) = −1

n

n∑
i=1

ib[n−i](t)c [i](t)

b[n](t) =
1

n

n∑
i=1

ia[n−i](t)c [i](t)

16 / 39

Introduction A software implementation

Many ODE can be “decomposed” as a sequence of binary
operations, so it is possible to produce the jet of derivatives of the
solution at a given point, in a recursive way.

This includes ODEs involving special functions. We will see some
examples later on.

17 / 39

Introduction A software implementation

Next step is to find an order p and a step size h such that

the error is smaller than ε.

the total number of operations is minimal.

18 / 39

Introduction A software implementation

Lemma (C. Simó, 2001)

Assume that the function h 7→ x(tn + h) is analytic on a disk of
radius ρm. Let Am be a positive constant such that

|x [j]
m | ≤ Am

ρj
m

, ∀ j ∈ N.

Then, if the required accuracy ε tends to 0, the values of hm and
pm that give the required accuracy and minimize the global
number of operations tend to

hm =
ρm

e2
, pm = −1

2
ln

(
ε

Am

)
− 1

19 / 39

Introduction A software implementation

Proof.

The error is of the order of the first neglected term E ≈ A
(

h
ρ

)p+1
.

To obtain an error of order ε we select h ≈ ρ
(

ε
A

) 1
p+1 .

The operations to obtain the jet of is O(p2) ≈ c(p + 1)2.

So, the number of floating point operations per unit of time is

given, in order of magnitude, by φ(p) = c(p+1)2

ρ(ε
A)

1
p+1

.

Solving φ′(p) = 0, we obtain p = −1
2 ln

(
ε
A

)
− 1.

We use this order with the largest step size that keeps the local
error below ε: inserting this value of p in the formula for h we have

h =
ρ

e2
.

20 / 39

Introduction A software implementation

Dangerous step sizes

ẋ = −x , x(0) = 1,

We are interested in computing x(10) = exp(−10) ≈ 0.0000454.

The Taylor series at x(0) is very simple to obtain:

x(h) = 1 +
∑
n≥1

(−1)n
hn

n!
.

Due to the entire character of this function, the optimal step size
is h = 10, and the degree is selected to have a truncation error
smaller than a given precision.

From a numerical point of view, this is a disaster!

21 / 39

Introduction A software implementation

High accuracy and varying order

For instance, assume that the truncation error is exactly hp. If
ε = 10−16 and p = 8, then the step size has to be h = 0.01.

Note that, if p is fixed, to achieve an accuracy of 10−32 we have to
use h = 10−4, that forces to use 100 times more steps (hence, 100
times more operations) than for the ε = 10−16 case.

Changing the value of p from 8 to 16 allows to keep the same step
size h = 0.01 while the computational effort required to obtain the
derivatives is only increased by a factor 4.

If the required precision were higher, these differences would be
even more dramatic.

22 / 39

Introduction A software implementation

We will present a concrete implementation of the Taylor method.

The software has been released under the GNU Public License, so
everybody is free to use it, to modify it and to redistribute it.

It has been written to run under the GNU/Linux operating system.

The software can be retrieved from
http://www.maia.ub.es/~angel/taylor/

For more information:
A. Jorba, M.Zou, A software package for the Numerical Integration
of ODEs by means of High-Order Taylor Methods, Experimental
Mathematics 14:1 pp. 99–117 (2005).

23 / 39

Introduction A software implementation

The package reads a system of ODEs in a quite natural form, and
it can output several ANSI C routines:

a routine that computes the jet of derivatives of the solution
(up to an order given at runtime),

routines to estimate an order and, from the jet of derivatives,
a suitable step size (for a local error below given thresholds),

a routine to use the previous data to advance the solution in
one time step.

It supports different arithmetics (i.e., extended precision), including
user-defined types.

In the next slides we will explain the algorithms used by taylor.

24 / 39

Introduction A software implementation

Taylor supports a tiny language using three kind of statements:

extern MY_FLOAT var;

id = expr;

diff(v, t) = expr;

where t is the independent variable and v is a state variable.

We use the first statement to declare external variables. These
declarations re copied to the output routine without modification.
External variables are treated as constants.

We use the second statement to define a constant, or a shorthand
notation for a complex expression used in the differential equations.
It is normally used to help the translater to factor out common
expressions, which in turn, may generate smaller and faster codes.

25 / 39

Introduction A software implementation

Expressions are made from numbers, the time variable, the state
variables, external variables, elementary functions sin, cos, tan,
arctan, sinh, cosh, tanh, √ , exp, and log, using the four

arithmetic operators, (.)(.) and function composition.

A branching construct if(bexpr) {expr} else { expr} is also
supported, here bexpr is a boolean expression as defined in the C
programming language.

26 / 39

Introduction A software implementation

The translation process consists of several phases each of which
passes its output to the next phase.

The first phase is the lexical phase. Here characters from the input
stream is grouped into lexical units called tokens by a scanner
(lexical anaylizer). Regular expressions are used to define tokens
recognized by the scanner. The scanner is implemented as a finite
state automata. The actual code for the scanner is generated by
Lex. The input to Lex is a file containing definitions of tokens
using regular expressions. The output is a C procedure yylex()
that is called repeatedly by the parser to fetch the next token from
the input stream.

27 / 39

Introduction A software implementation

The next phase is syntax analysis. Here a parser groups tokens into
syntactical units and verifies that the input is syntactically valid
according to a prescribed set of grammatical rules. The output of
the parser the parse tree, a graphical representation of the input.
Our parser is generated by Yacc. The input to Yacc is a file
containting a set of grammar rules. The output of Yacc is a
procedure yyparse() which is used to generate the parse tree.

28 / 39

Introduction A software implementation

To illustrate the parsing process, let’s look at this example:

x ′ = x(1− x2 − y2) + y ,

y ′ = y(1− x2 − y2)− x .

The scanner breaks the input the following list of tokens:

x ’ = x * (1 - x ^ 2 - y ^ 2) + y ; y ’ = x * (1 - x ^ 2 - y ^ 2) - x ;

A graphical representation of the parsed input could be:
=

*

x-

^

2

-

y^

2x

1

x’

y

+

=

-

*

-

^

2

-

y^

2x

1

y’

y

x

29 / 39

Introduction A software implementation

The next phase is optimization. The crucial tasks are:

Identify and mark constant expressions (constant expressions
are easy to handle when computing derivatives...)

Eliminate common subexpressions. Algebraic simplifications is
not implemented except for the trivial commutative
substituations ab = ba, a + b = b + a. For example, the
expressions 5x2 + 3 and 3 + 5x2 are considered the same while
2x2 + 3, 2x2 + 2 + 1 and x2 + x2 + 3 are considered all
different.

Introduce auxiliary variables for some elementary functions.
For example, a new variable v = cos(x) is added to the
symbol table if sin(x) appears on the parse tree.

Build dependency graphs among all the variables, and order
the variables according to the dependency graph.

30 / 39

Introduction A software implementation

The following user controlled “optimization” is also performed at
this stage.

Expand power function as a series of products. This procedure
is controlled by the -expandpower command line switch. For
example, y = x7 will be replaced by
u = x ∗ x , v = u ∗ u,w = u ∗ v , y = x ∗ w if taylor is invoked
with the option -expandpower 7. One reason to expand a
power function using products is to avoid singularities (at the
origin).

The flag -sqrt forces the parser to treat exponents like n/2 as
the nth power of a square root (instead of using log and exp).

31 / 39

Introduction A software implementation

Step size control

Step size control

We use and absolute (εa) and a relative (εr) tolerance.

We define

εm =

{
εa if εr‖xm‖∞ ≤ εa,
εr otherwise,

pm =

⌈
−1

2
ln εm + 1

⌉
.

where d.e stands for the ceiling function.

To derive the step size, we will also distinguish the same two cases
as before.

32 / 39

Introduction A software implementation

Step size control

If εr‖xm‖∞ ≤ εa, we define

ρ
(j)
m =

(
1

‖x [j]
m ‖∞

) 1
j

, 1 ≤ j ≤ p,

and, if εr‖xm‖∞ > εa,

ρ
(j)
m =

(
‖xm‖∞
‖x [j]

m ‖∞

) 1
j

, 1 ≤ j ≤ p.

33 / 39

Introduction A software implementation

Step size control

In any case, we estimate the radius of convergence as the
minimum of the last two terms,

ρm = min
{

ρ
(p−1)
m , ρ

(p)
m

}
,

and the estimated time step is

hm =
ρm

e2
.

34 / 39

Introduction A software implementation

Step size control

Lemma

With the previous notations and definitions:

1. If εr‖xm‖∞ ≤ εa, we have

‖x [pm−1]
m hpm−1

m ‖∞ ≤ εa, ‖x [pm]
m hpm

m ‖∞ ≤ εa

e2
.

2. If εr‖xm‖∞ > εa, we have

‖x [pm−1]
m hpm−1

m ‖∞
‖xm‖∞

≤ εr ,
‖x [pm]

m hpm
m ‖∞

‖xm‖∞
≤ εr

e2
.

Hence, the proposed strategy is similar to the more straightforward
method of looking for an hm such that the last terms in the series
are of the order of the error wanted.

35 / 39

Introduction A software implementation

Step size control

Lemma

With the previous notations and definitions:

1. If εr‖xm‖∞ ≤ εa, we have

‖x [pm−1]
m hpm−1

m ‖∞ ≤ εa, ‖x [pm]
m hpm

m ‖∞ ≤ εa

e2
.

2. If εr‖xm‖∞ > εa, we have

‖x [pm−1]
m hpm−1

m ‖∞
‖xm‖∞

≤ εr ,
‖x [pm]

m hpm
m ‖∞

‖xm‖∞
≤ εr

e2
.

Hence, the proposed strategy is similar to the more straightforward
method of looking for an hm such that the last terms in the series
are of the order of the error wanted.

35 / 39

Introduction A software implementation

Step size control

Fact

If the solution is entire, the Cauchy bounds are far from optimal.

Then, the computed values for pm and hm still satisfy the accuracy
requirements but they do not need to be the ones that minimise
the global number of operations.

36 / 39

Introduction A software implementation

Step size control

The previous formulas have been used for the first order and time
step control, but with a safety factor: Instead of using

hm =
ρm

e2

we use

hm =
ρm

e2
exp

(
− 0.7

pm − 1

)
.

For instance, for pm = 8 the safety factor is 0.90 and for pm = 16
is 0.95. Those are typical safety factors found in the literature.

37 / 39

Introduction A software implementation

Step size control

The code provides a second step size control, which is a minor
correction of the previous one.

The idea is to avoid too large step sizes that could lead to
cancellations when adding the Taylor series.

A natural solution is to look for an step size such that the resulting
series has all the terms decreasing in modulus. However, if the
solution x(t) has some intermediate Taylor coefficients that are
very small, this technique could lead to a very drastic (and
unnecessary) step reductions.

Therefore, we have used a weaker criterion.

38 / 39

Introduction A software implementation

Step size control

Let h̄m be the step size control obtained previously. Let us define z
as

z =

{
1 if εr‖xm‖∞ ≤ εa,
‖xm‖∞ otherwise.

Let hm ≤ h̄m be the largest value such that

‖x [j]
m ‖∞hj

m ≤ z , j = 1, . . . , p.

We note that, in many cases, it is enough to take hm = h̄m to
meet this condition.

The generated code allows for used-defined order and step size
controls.

39 / 39

	Introduction
	A software implementation
	Step size control

