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Centre Manifold of L1,2

Let us consider the dynamics near the points L1,2 of the RTBP.
We recall that the linearization of the vectorfield at these points is
of the type centre×centre×saddle.
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To give an accurate description of the dynamics close to L1,2 one
can perform the so-called reduction to the centre manifold.

The idea is the following: assume that the diagonal form of H2 is

H2 = λq1p1 +
√
−1ω2q2p2 +

√
−1ω3q3p3, λ, ω2, ω3 ∈ R.

Hence, the hyperbolic direction is given (at first order) by the
variables (q1, p1).
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Introduction

Let us perform canonical transformations on the Hamiltonian,
cancelling monomials such that the exponent of q1 is different
from the exponent of p1.

After a finite number of transformations, H takes the form

H = H(0)(q1p1, q2, p2, q3, p3) + R(q1, p1, q2, p2, q3, p3),

where H(0) is the part that we have arranged and R is the
remainder.

As H(0) depends on the product q1p1 we can perform the change
I1 = q1p1 to produce

H = H(0)(I1, q2, p2, q3, p3) + R(I1, ϕ1, q2, p2, q3, p3),

where ϕ is the conjugate variable of I1. If we drop R then I1 is a
first integral of the system and putting I1 = 0 we are skipping the
hyperbolic part of the Hamiltonian H(0).
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Introduction

The resulting two degrees of freedom Hamiltonian represents the
flow inside the (approximation to the) centre manifold.

So, near the origin, the phase space of the original Hamiltonian
must be the phase space of H(0)(0, q2, p2, q3, p3) times an
hyperbolic direction.

To visualize the phase space of H(0) one can fix the value of the
Hamiltonian and then use a Poincaré section.

Varying the value of the Hamiltonian we will obtain a collection of
2-D plots representing the dynamics in the phase space.
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Expansion of the Hamiltonian

Let us start by translating the origin of coordinates to the selected
point L1,2.

It is well known that the distance from Lj to the closest primary, γj ,
is given by the only positive solution of the Euler quintic equation,

γ5
j ∓ (3− µ)γ4

j + (3− 2µ)γ3
j − µγ2

j ± 2µγj − µ = 0, j = 1, 2,

where the upper sign in the first equation is for L1 and the lower
one for L2.

These equations can be solved numerically by the Newton method,
using as starting point (µ/3)1/3.
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Expansion of the Hamiltonian

To have good numerical properties for the coefficients of the
Taylor expansion it is very convenient to introduce some scaling.

The translation to the equilibrium point plus the scaling is given by

X = ∓γjx + µ + a,

Y = ∓γjy ,

Z = γjz ,

where the upper sign corresponds to L1,2, the lower one to L3,
a = −1 + γ1 for L1, a = −1− γ2 for L2 and a = γ for L3.

Note that this change redefines the unit of distance as the distance
from the equilibrium point to the closest primary. As scalings are
not canonical transformations, they have to be applied on the
equations of motion.
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Expansion of the Hamiltonian

To expand the nonlinear terms, we will use that

1√
(x − A)2 + (y − B)2 + (z − C )2

=

=
1

D

∞∑
n=0

( ρ

D

)n
Pn

(
Ax + By + Cz

Dρ

)
,

where D2 = A2 + B2 + C 2, ρ2 = x2 + y2 + z2 and Pn is the
polynomial of Legendre of degree n.
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Expansion of the Hamiltonian

After some calculations, one obtains that the Hamiltonian can be
expressed as

H =
1

2

(
p2
x + p2

y + p2
z

)
+ ypx − xpy −

∑
n≥2

cn(µ)ρnPn

(
x

ρ

)
,

where ρ2 = x2 + y2 + z2 and the coefficients cn(µ) are given by

cn(µ) =
1

γ3
j

(
(±1)nµ + (−1)n

(1− µ)γn+1
j

(1∓ γj)n+1

)
, for Lj , j = 1, 2

As usual, the upper sign is for L1 and the lower one for L2.

Pn denotes the Legendre polynomial of degree n.
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Expansion of the Hamiltonian

For instance, if we define

Tn(x , y , z) = ρnPn

(
x

ρ

)
,

then, it is not difficult to check that Tn is a homogeneous
polynomial of degree n that satisfies the recurrence

Tn =
2n − 1

n
xTn−1 −

n − 1

n
(x2 + y2 + z2)Tn−2,

starting with T0 = 1 and T1 = x .
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Expansion of the Hamiltonian

The linearization around the equilibrium point is given by the
second order terms (linear terms must vanish) of the Hamiltonian
that, after some rearranging, takes the form,

H2 =
1

2

(
p2
x + p2

y

)
+ ypx − xpy − c2x

2 +
c2

2
y2 +

1

2
p2
z +

c2

2
z2.

As c2 > 0 (for the three collinear points), the vertical direction is
an harmonic oscillator with frequency ω2 =

√
c2.

As the vertical direction is already uncoupled from the planar ones,
in what follows we will focus on the planar directions, i.e.,

H2 =
1

2

(
p2
x + p2

y

)
+ ypx − xpy − c2x

2 +
c2

2
y2,

where, for simplicity, we keep the name H2 for the Hamiltonian.
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Expansion of the Hamiltonian

Next step will be to compute a symplectic change of variable such
that Hamiltonian takes a simpler (diagonal) form.
This change is given by the symplectic matrix

0BBBBBBBBB@

2λ1
s1

0 0 −2λ1
s1

2ω1
s2

0
λ2

1−2c2−1

s1

−ω2
1−2c2−1

s2
0

λ2
1−2c2−1

s1
0 0

0 0 1√
ω2

0 0 0
λ2

1+2c2+1

s1

−ω2
1+2c2+1

s2
0

λ2
1+2c2+1

s1
0 0

λ3
1+(1−2c2)λ1

s1
0 0

−λ3
1−(1−2c2)λ1

s1

−ω3
1+(1−2c2)ω1

s2
0

0 0 0 0 0
√

ω2

1CCCCCCCCCA
,

and casts the second order Hamiltonian into its real normal form,

H2 = λ1xpx +
ω1

2
(y2 + p2

y ) +
ω2

2
(z2 + p2

z ),

where, for simplicity, we have kept the same name for the variables.
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Expansion of the Hamiltonian

To simplify the computations, we have used a complex normal
form for H2 because this allows to solve very easily the homological
equations that determine the generating functions used during the
computations of the center manifold. This complexification is
given by

x = q1, y =
q2 +

√
−1p2√
2

, z =
q3 +

√
−1p3√
2

,

px = p1, py =

√
−1q2 + p2√

2
, pz =

√
−1q3 + p3√

2
,

that puts the 2nd order Hamiltonian into its complex normal form,

H2 = λ1q1p1 +
√
−1ω1q2p2 +

√
−1ω2q3p3,

being λ1, ω1 and ω2 real (and positive) numbers.
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Expansion of the Hamiltonian

Summarizing:

We have a real Hamiltonian

H =
1

2
(P2

X + P2
Y + P2

Z ) + YPX − XPY −
1− µ

r1
− µ

r2
,

with an equilibrium point.

We want to expand it around that point, composing the expansion
with a linear change,

U = CV + d ,
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The Lie series method

Now, the Hamiltonian takes the form

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p),

where H2 = λ1q1p1 +
√
−1ω1q2p2 +

√
−1ω2q3p3 and Hn denotes

an homogeneous polynomial of degree n.
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The Lie series method

The changes of variables are implemented by means of the Lie
series method: if G (q, p) is a Hamiltonian system, then the
function Ĥ defined by

Ĥ ≡ H + {H,G}+
1

2!
{{H,G} ,G}+

1

3!
{{{H,G} ,G} ,G}+ · · · ,

is the result of applying a canonical change to H. This change is
the time one flow corresponding to the Hamiltonian G . G is
usually called the generating function of the transformation.
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The Lie series method

It is easy to check that, if P and Q are two homogeneous
polynomials of degree r and s respectively, then {P,Q} is a
homogeneous polynomial of degree r + s − 2.

This property is very useful to implement in a computer a
transformation given by a generating transformation G .

For instance, let us assume that we want to eliminate the
monomials of degree 3, as it is usually done in a normal form
scheme.
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The Lie series method

Let us select as a generating function a homogeneous polynomial
of degree 3, G3. Then, it is immediate to check that the terms of
Ĥ satisfy

degree 2: Ĥ2 = H2,

degree 3: Ĥ3 = H3 + {H2,G3},
degree 4: Ĥ4 = H4 + {H3,G3}+ 1

2! {{H2,G3} ,G3},
...

Hence, to kill the monomials of degree 3 one has to look for a G3

such that {H2,G3} = −H3.
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The Lie series method

Let us denote

H3(q, p) =
∑

|kq |+|kp |=3

hkq ,kpq
kqpkp ,

G3(q, p) =
∑

|kq |+|kp |=3

gkq ,kpq
kqpkp ,

where η1 = λ1, η2 =
√
−1ω1 and η3 =

√
−1ω2. As

{H2,G3} =
∑

|kq |+|kp |=3

〈kp − kq, η〉 gkq ,kpq
kqpkp , η = (η1, η2, η3),

it is immediate to obtain

G3(q, p) =
∑

|kq |+|kp |=3

−hkq ,kp

〈kp − kq, η〉
qkqpkp .

Observe that |kq|+ |kp| = 3 implies 〈kp − kq, η〉 6= 0. Note that
G3 is so easily obtained because of the “diagonal” form of H2.
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The Lie series method

We are not interested in a complete normal form, but only in
uncoupling the central directions from the hyperbolic one.

Hence, it is not necessary to cancel all the monomials in H3 but
only some of them. Moreover, as we want the radius of
convergence of the transformed Hamiltonian to be as big as
possible, we will try to choose the change of variables as close to
the identity as possible. This means that we will kill the least
possible number of monomials in the Hamiltonian.

To produce an approximate first integral having the center
manifold as a level surface (see below), it is enough to kill the
monomials qkqpkp such that the first component of kq is different
from the first component of kp
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The Lie series method

This implies that the generating function G3 is

G3(q, p) =
∑

(kq ,kp)∈S3

−hkq ,kp

〈kp − kq, η〉
qkqpkp ,

where Sn, n ≥ 3, is the set of indices (kq, kp) such that
|kq|+ |kp| = n and the first component of kq is different from the
first component of kp.

Then, the transformed Hamiltonian Ĥ takes the form

Ĥ(q, p) = H2(q, p) + Ĥ3(q, p) + Ĥ4(q, p) + · · · ,

where Ĥ3(q, p) ≡ Ĥ3(q1p1, q2, p2, q3, p3) (note that Ĥ3 depends on
the product q1p1, not on each variable separately).

22 / 52



Centre Manifold of L1,2 Results Efficiency Extensions References

The Lie series method

This process can be carried out up to a finite order N, to obtain a
Hamiltonian of the form

H̄(q, p) = H̄N(q, p) + RN(q, p),

where HN(q, p) ≡ HN(q1p1, q2, p2, q3, p3) is a polynomial of
degree N and RN is a remainder of order N + 1 (note that HN

depends on the product q1p1 while the remainder depends on the
two variables q1 and p1 separately).

Neglecting the remainder and applying the canonical change given
by I1 = q1p1, we obtain the Hamiltonian H̄N(I1, q2, p2, q3, p3) that
has I1 as a first integral.

Setting I1 = 0 we obtain a 2DOF Hamiltonian, H̄N(0, q̄, p̄),
q̄ = (q2, q3), p̄ = (p2, p3), that represents (up to some finite order
N) the dynamics inside the center manifold.
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The Lie series method

Note the absence of small divisors during this process.

The denominators that appear in the generating functions,
〈kp − kq, η〉, can be bounded from below when (kq, kp) ∈ SN :
using that η1 is real and that η2,3 are purely imaginary, we have

|〈kp − kq, η〉| ≥ |λ1|, for all (kq, kp) ∈ SN , N ≥ 3.

For this reason, the divergence of this process is very mild.
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The Lie series method

An explicit expression for the change of variables that goes from
the coordinates of the center manifold to the initial coordinates
can be obtained in the following way: once the generating function
G3 has been obtained, we can compute

q̃j = qj + {qj ,G3}+
1

2!
{{qj ,G3} ,G3}+

1

3!
{{{qj ,G3} ,G3} ,G3}+ · · · ,

p̃j = pj + {pj ,G3}+
1

2!
{{pj ,G3} ,G3}+

1

3!
{{{pj ,G3} ,G3} ,G3}+ · · · ,

that produces the transformation that sends the old coordinates,
given by the variables (q̃, p̃) to the new coordinates represented by
the variables (q, p).

In the next step, the generating function G4 is used to obtain the
change corresponding to fourth order, and so on.

25 / 52



Centre Manifold of L1,2 Results Efficiency Extensions References

The Lie series method

Substituting q1 = p1 = 0 one obtains six power expansions
(corresponding to the six initial variables), each one depending on
the four variables of the center manifold.

Finally, these expansions are put into real form in the same way as
the Hamiltonian.
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As a first example we focus on the L1 point corresponding to the
mass parameter µ = 3.0404233984441761× 10−6.

This is an approximate value for the Earth-Sun case.

All the expansions have been performed up to degree N = 32.

Let us see a run of the program.
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Poincaré sections
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Poincaré sections
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Poincaré sections
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Poincaré sections
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Poincaré sections

To estimate the radius of convergence of this series, we have
computed (numerically) the values

r
(1)
n =

‖Hn‖1
‖Hn−1‖1

, r
(2)
n = n

√
‖Hn‖1

where
‖Hn‖1 =

∑
|k|=n

|hk |, 3 ≤ n ≤ N,

being hk the coefficient of the monomial of exponent k.

The values r
(2)
n have been plotted in the next figure.
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Poincaré sections
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Poincaré sections

Numerical (and very realistic) estimates of the radius of
convergence are obtained as follows:

take an initial condition inside the center manifold and, by
means of a numerical integration of the reduced Hamiltonian,
produce a sequence of points for the corresponding trajectory.

Use the change of variables to send these points back to the
initial RTBP coordinates.

Use a numerical integration of the RTBP to test if those
points belong to the same orbit (note that we can not use a
very long time span for those integrations, since the
hyperbolic character of the center manifold in the RTBP
amplifies the errors exponentially).

This gives an idea of the error we have in the determination of the
center manifold.
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Note that the normalizing method used here is slightly different
than the standard Lie triangle.

The main difference is that this process uses less computer
memory, since it does not require to store the complete triangle.

Let us discuss this with more detail.
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Transforming the Hamiltonian

Assume we are working with an expansion of H up to degree N:

H = H2 + H3 + · · ·+ HN−1 + HN ,

and, for instance, we want to transform it using a generating
function G3 (of degree 3):

H ′ = H+{H,G3}+
1

2!
{{H,G3} ,G3}+

1

3!
{{{H,G3} ,G3} ,G3}+· · · ,

To save memory the result is stored in the same space used for H.
To give the idea, let us write explicitly the firsts steps:

step 1.1 HN ← HN + {HN−1,G3}
step 2.1 HN−1 ← HN−1 + {HN−2,G3}
step 2.2 HN ← HN + 1

2! {{HN−2,G3} ,G3}
step 3.1 HN−2 ← HN−2 + {HN−3,G3}
step 3.2 HN−1 ← HN−1 + 1

2! {{HN−3,G3} ,G3}
step 3.3 HN ← HN + 1

3! {{{HN−3,G3} ,G3} ,G3}
...
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Transforming the Hamiltonian

step 1.1 HN ← HN + {HN−1,G3}
step 2.1 HN−1 ← HN−1 + {HN−2,G3}
step 2.2 HN ← HN + 1

2! {{HN−2,G3} ,G3}
step 3.1 HN−2 ← HN−2 + {HN−3,G3}
step 3.2 HN−1 ← HN−1 + 1

2! {{HN−3,G3} ,G3}
step 3.3 HN ← HN + 1

3! {{{HN−3,G3} ,G3} ,G3}
...

Note that the Poisson bracket done in step 2.1 can be re-used to
compute step 2.2, the one in 3.1 can be used in 3.2 and this last
one in 3.3, and so on.
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Transforming the Hamiltonian

In this way,

we are minimizing the number of arithmetic operations (each
Poisson bracket is done only once),

we can work on the initial Hamiltonian (the parts of it that
are overwritten are not needed in further steps),

the need of working space is not very big: we need working
space for two homogeneous polynomial of degree N in the
worst case (one is used to store the Poisson bracket done in
i.j-1 to be used in i.j, the other one is to compute the next
Poisson bracket).

This has been implemented in routine traham.
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Efficiency considerations

When one considers the optimality of a given calculation, there are
two main things to be taken into account: the algorithm used and
its implementation.

We are not going to discuss the efficiency of the algorithm
selected, we are only going to focus on their implementation.

We will focus on the memory and speed used.
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Efficiency considerations

As the memory is allocated and freed dynamically, we will focus on
the “worst moment” of the program, that is, when the maximum
amount of memory is needed.

Next table is for normal forms and reduction to centre manifols.

degree RAM HD
8 0.058 0.025
12 0.306 0.153
16 1.218 0.609
24 9.595 4.798
32 44.435 22.217

Note: a series of degree 32 has 1,388,577 monomials.
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Efficiency considerations

Next, we can use a profiler on the code.

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

40.15 51.96 51.96 269 193.16 347.79 papu6s

26.48 86.23 34.27 mcount

26.46 120.47 34.24 84136095 0.00 0.00 exll6s

6.02 128.26 7.79 55490539 0.00 0.00 llex6s

0.58 129.01 0.75 14 53.57 6737.27 traham

0.24 129.32 0.31 66 4.70 11.02 pph6s

0.04 129.37 0.05 14 3.57 3.95 cage

0.01 129.38 0.01 14 0.71 1.10 put0

0.01 129.39 0.01 1 10.00 747.48 exp_l5

0.01 129.40 0.01 1 10.00 54.09 reste

0.01 129.41 0.01 1 10.00 15.34 rnf6s

0.00 129.41 0.00 76062 0.00 0.00 kill_nf

0.00 129.41 0.00 38044 0.00 0.00 check_rlf

0.00 129.41 0.00 38032 0.00 0.00 prxk6s

0.00 129.41 0.00 1474 0.00 0.00 ntph6s

0.00 129.41 0.00 164 0.00 0.00 exll3

0.00 129.41 0.00 164 0.00 0.00 llex3

0.00 129.41 0.00 156 0.00 0.00 prxk3

0.00 129.41 0.00 26 0.00 0.00 ntph3

0.00 129.41 0.00 14 0.00 0.00 wpb6s

0.00 129.41 0.00 5 0.00 0.00 uneix

0.00 129.41 0.00 2 0.00 341.69 exrec
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Tests

We have done some checks on the software, to (try to) be sure
that there are no bugs present.

One of them is the following.

We select an initial condition at distance h from the origin,

say x
(0)
h .

We integrate the corresponding orbit for a short time T , to

obtain a new point x
(1)
h .

We send both points to the initial (RTBP) coordinates, let us

call them y
(0)
h and y

(1)
h

We integrate (in the RTBP) from y
(0)
h to obtain a point ȳ

(1)
h .

We compute the “error” eh = ‖ȳ (1)
h − y

(1)
h ‖.

42 / 52



Centre Manifold of L1,2 Results Efficiency Extensions References

Tests

We have done some checks on the software, to (try to) be sure
that there are no bugs present.

One of them is the following.

We select an initial condition at distance h from the origin,

say x
(0)
h .

We integrate the corresponding orbit for a short time T , to

obtain a new point x
(1)
h .

We send both points to the initial (RTBP) coordinates, let us

call them y
(0)
h and y

(1)
h

We integrate (in the RTBP) from y
(0)
h to obtain a point ȳ

(1)
h .

We compute the “error” eh = ‖ȳ (1)
h − y

(1)
h ‖.
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Tests

The idea is that, if the numerical integrations are sufficiently
accurate, eh is determined by the truncation of the series.

Let us illustrate this.

h eh

0.00001 2.4828078245222093e-16
0.00002 5.1198523403369423e-15
0.00004 1.3192410121093586e-12
0.00008 3.4023375555581652e-10
0.00016 8.8211434435268124e-08
0.00032 2.3101212284736493e-05
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Tests

If the software is working properly, eh is due to the truncation of
the power series.

Hence, eh should behave like chn, where n is the last order in the
expansions that we have taken into account.

Then, one has that the order of the error can be approximated by

n ≈
ln
(

e1
e2

)
ln

(
h

(1)
0

h
(2)
0

) .
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Tests

Applying this to the results in the previous table we obtain:

h
(1)
0 h

(2)
0 n

0.00001 0.00002 4.366
0.00002 0.00004 8.009
0.00004 0.00008 8.011
0.00008 0.00016 8.018
0.00016 0.00032 8.033
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The code we have presented admit several extensions, the more
natural are to change the kind of coefficients for the polynomial
expansions.

The use of C++ allows for a quite clean substitution of these
types.

Standard options are extended precision or intervalar arithmetic.
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Intervalar arithmetic

Intervalar arithmetic is based on using intervals instead of real
numbers.

In this way, an interval [a, b] accounts for the error of the true
quantity.

When we add two intervals, the lower bounds are added using
rounding to −∞, upper bounds use rounding towards +∞.

Therefore, we can guarantee that the final result is included in the
final interval.
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Intervalar arithmetic

lower bound upper bound

1 0 0 9.5450087346978552e-01 9.5450087346991741e-01

0 1 0 -2.9820811951634596e-01 -2.9820811951573489e-01

0 0 1 1.0000000000000000e+00 1.0000000000000000e+00

2 0 0 1.1568661303889360e-01 1.1568661401345537e-01

1 1 0 -1.7127952451731403e+00 -1.7127952303486182e+00

0 2 0 3.3855424323176919e-01 3.3855425662676453e-01

1 0 1 8.9130919836368838e-02 8.9130920112820977e-02

0 1 1 2.2531870640182916e-01 2.2531870757604811e-01

0 0 2 -2.2354591590257877e-03 -2.2354591074729147e-03

3 0 0 -2.9479121860441637e-01 -2.9478447589701773e-01

2 1 0 8.1656201621290165e+00 8.1657691558011720e+00

1 2 0 -5.4586913901624575e+02 -5.4586860598896601e+02

0 3 0 -5.1021371160130911e+01 -5.1021185629532283e+01

2 0 1 -4.3799836956028315e-01 -4.3799552187429924e-01

1 1 1 1.4116969490546651e+01 1.4116998940124972e+01

0 2 1 2.0186927381142823e+00 2.0187190572228246e+00

1 0 2 -5.5905224456048508e-02 -5.5904854484518651e-02

0 1 2 -1.7898271680742539e-01 -1.7898147963031263e-01

0 0 3 -5.1334316020434586e-05 -5.1317165340935330e-05
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Intervalar arithmetic

lower bound upper bound

4 0 0 1.2677680341002997e+00 1.2873345241823699e+00

3 1 0 -3.5434024811722338e+01 -3.4703682770952582e+01

2 2 0 -5.4877274309542030e+04 -5.4872743283411488e+04

1 3 0 3.2220252371445298e+04 3.2226686164319515e+04

0 4 0 3.5177942440398037e+03 3.5192072384618223e+03

3 0 1 2.1707021092443028e+00 2.1811671985342400e+00

2 1 1 1.9986363951466046e+01 2.0216307091992348e+01

1 2 1 1.3647290105217136e+04 1.3647973048501415e+04

0 3 1 1.4506020027436316e+03 1.4508753202967346e+03

2 0 2 2.1927585054381780e+00 2.1948837131021719e+00

1 1 2 -4.9551211330863225e+01 -4.9529208559599283e+01

0 2 2 -1.0188391081203008e+01 -1.0169093839605921e+01

1 0 3 3.5386579632358917e-02 3.5564130055718124e-02

0 1 3 7.0933774363425073e-02 7.1488715816371950e-02

0 0 4 5.1925348264703075e-04 5.2452355219756441e-04
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Intervalar arithmetic

A more interesting option is to use, instead of numeric coefficients,
Fourier series.

This allows to deal with autonomous systems affected of a periodic
or quasiperiodic perturbation.
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