
On the dynamics of a Solar Sail near L1

Ariadna Farrés Àngel Jorba
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What is a Solar Sail ?

• A Solar Sail is a form of spacecraft propulsion that uses the pressure of

light from the Sun to push a satellite.

• The impact of the photons emitted by the Sun onto the surface of the sail

and its further reflection produce momentum on it.

• Solar Sails open a new wide range of possible mission that are not

accessible for a traditional spacecraft.
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The Sail

• We have considered a flat and perfectly reflecting Solar Sail. Hence, the

force due to the solar pressure is in the normal direction to the surface of

the sail (~n).

~ur ~ui
α

Sail
~n

• The sail orientation is given by the normal vector to the surface of the sail

(~n), parametrised by two angles, α and δ.

• The effectiveness of the sail is given by the dimensionless parameter β,

the lightness number.
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Technicalities ...

The force due to the sail given by:

~Fsail = β
ms

r2
ps

〈~rs, ~n〉
2~n.

The parameter β measures the performance of the sail, and relates the ratio
between the mass of the spacecraft and the size of the sail.

β =
σ∗

σ
, σ∗ =

Ls

2πGmsc
≈ 1.53 g/m2.

Where, σ is know as the sail’s loading. With nowadays technology, it is

considered reasonable to take σ ≈ 30 g/m2, hence for a spacecraft of 100 kg

we need a square sail of 58 m2.

( Reference: C. McInnes, “Solar Sail: Technology, Dynamics and Mission Applications.”, Springer-Praxis,

1999. )
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Equations of Motion (I)

We use the Restricted Three Body Problem (RTBP) taking the Sun and Earth

as primaries and including the solar radiation pressure to model the motion of

the sail.

1 − µ µ

~FEarth

~FSun

Sail~n

X

Y

Z

Earth
Sun
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Equations of Motion (II)

The equations of motion are:

ẍ = 2ẏ + x− (1 − µ)
x− µ

r3ps

− µ
x+ 1 − µ

r3pe

+ β
1 − µ

r2ps

〈~rs, ~n〉
2nx,

ÿ = −2ẋ+ y −

(
1 − µ

r3ps

+
µ

r3pe

)
y + β

1 − µ

r2ps

〈~rs, ~n〉
2ny,

z̈ = −

(
1 − µ

r3ps

+
µ

r3pe

)
z + β

1 − µ

r2ps

〈~rs, ~n〉
2nz,

where,

nx = cos(φ(x, y) + α) cos(ψ(x, y, z) + δ),

ny = sin(φ(x, y, z) + α) cos(ψ(x, y, z) + δ),

nz = sin(ψ(x, y, z) + δ),

with φ(x, y) and ψ(x, y, z) defining the Sun - Sail direction in spherical

coordinates (~rs = ~rps/rps ).
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Equilibrium Points (I)

• The RTBP has 5 equilibrium points (Li). For small β, these 5 points are

replaced by 5 continuous families of equilibria, parametrised by α and δ.

• For a fixed small value of β, we have 5 disconnected family of equilibria

around the classical Li.

• For a fixed and larger β, these families merge into each other. We end up

having two disconnected surfaces, S1 and S2. Where S1 is like a sphere

and S2 is like a torus around the Sun.

• All these families can be computed numerically by means of a continuation

method.
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Equilibrium Points (II)

Family of Equilibria on the {X, Y } plane.
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Equilibrium Points (III) [Zoom Close to the Earth]
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Some Interesting Missions

• Observations of the Sun provide information of the geomagnetic storms, as

in the Geostorm Warning Mission.
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• Observations of the Earth’s poles, as in the Polar Observer.
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AIM of the WORK

We want to:

• understand the natural dynamics of a Solar Sail around an equilibrium

point.

• understand the bounded motion around equilibria, periodic orbits, invariant

tori.

• understand the geometry of the phase space and how it varies when the

sail orientation is changed to derive strategies to control the motion of a

Solar Sail.
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Station Keeping for a Solar Sail

• Mainly, in all these applications, the equilibrium points are of the class T2.

We want to find a station keeping algorithm for a Solar Sail using

Dynamical System Tools.

• We need to understand the linear dynamics and how it varies when the sail

orientation is changed.

• As a first approach, we can think that the dynamics close to an equilibrium

point is centre × centre × saddle.

• For small variations of the sail orientation, the fixed points slightly shifts and

the eigenvalues and eigendirections also vary slightly.
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Schematic Idea of the Control Strategy (I)

In the saddle projection:
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Schematic Idea of the Control Strategy (I)

In the saddle projection:
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Schematic Idea of the Control Strategy (II)

In each of the elliptic projections:
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Schematic Idea of the Control Strategy (II)

In each of the elliptic projections:
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Station Keeping for a Solar Sail

Observations:

• We need to have expressions for the variation of the fixed point position

and eigenvalues and eigevectors with respect to α and δ.

• There are some restrictions of the position of the new equilibria when we

change α and δ. We have 2 unknowns and at least 6 conditions.

• We will not always be able to control the solar sail, it all depends on the

dynamics close to the equilibrium point.

• All the simulations have been done using the full set of equations, the linear

dynamics is just used to decide the change on the sails orientation.
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Simulation for the Geostorm Mission (I)

Trajectory with No Errors during manoeuvres

Trajectory with Errors during manoeuvres
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Simulation for the Geostorm Mission (II)

Saddle x Centre x Centre Projection (No Errors)

Saddle x Centre x Centre Projection (Errors)
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From now on we fix α = 0

Here:

• The system is not Hamiltonian but time reversible by

R : (t, X, Y, Z, Ẋ, Ẏ , Ż) 7→ (−t, X,−Y, Z,−Ẋ, Ẏ ,−Ż).

• We have 5 disconnected families of equilibrium points parametrised by δ.

We call them SLi for i = 1, . . . , 5.

• Three of these families (SL1,2,3) are on the Y = 0 plane and remain fixed

by the reversibility R. The behaviour is of the type

centre × centre × saddle.

• The other two families (SL4,5) are close to L4,5 and are not fixed by R. The

behaviour is of the type sink × sink × source or sink × source × source.
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Family of equilibria for α = 0

SL1, SL2 and SL3 families of equilibria
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From now on we will focus on the family of equilibrium points around SL1 for

β = 0.051689.

• First we will describe the periodic motion around an equilibrium point, and

how it varies when δ varies.

• Second we will describe the dynamics around an equilibrium point, and

how it varies when δ varies.

NOTE:

• This system is time reversible by R and conservative ∀δ ∈ [−π/2, π/2].

• For the particular case δ = 0, δ = ±π/2 this system is also Hamiltonian.
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Periodic Motion

Devaney - Lyapunov Centre Theorem:

Let ẋ = f(x), with f ∈ C2 and x ∈ R
2n be an autonomous R-reversible

dynamical system, where dim(Fix(R)) = n. Let p0 be a fixed point such that

R(p0) = p0, and with ±iω, ±λ2, . . . , ±λn as eigenvalues.

Then, if ∀λi we have that iω/λi /∈ Z, there exists a one-parametric family of

periodic orbits emanating from p0, where the period of these orbits tends to

2π/ω when approaching p0.
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Motion around the equilibrium points

If we linearise around a certain equilibrium point for a fixed δ:

φ(t) = A0[cos(ω1t+ ψ1)~v1 + sin(ω1t+ ψ1)~u1]

+ B0[cos(ω2t+ ψ2)~v2 + sin(ω2t+ ψ2)~u2]

+ C0e
λt~vλ +D0e

−λt~v−λ

From the Devaney - Lyapunov Centre Theorem, if ω1/ω2 /∈ Z then we have

two families of periodic orbits.

Let us assume that the periodic orbits emanating from ω2 have a larger Z

oscillation that ω1.

◦ We call P - Family, to the family emanating from ω1.

◦ We call V - Family, to the family emanating from ω2.
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P - Family of Periodic Orbits (I)

• We have computed the planar family for δ = 0. (i.e. sail perpendicular to

Sun - line direction).
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P - Family of Periodic Orbits (II)

Periodic Orbits for δ = 0.
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P - Family of Periodic Orbits (III)

• We have computed the planar family for δ = 0.01.
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P - Family of Periodic Orbits (IV)

From δ = 0 to δ = 0.01
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P - Family of Periodic Orbits (V)

Periodic Orbits for δ = 0.01.
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P - Family of Periodic Orbits (VI)
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V - Family of Periodic Orbits
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Quasi-Periodic Motion

• We want to understand the dynamics in an extended neighbourhood of an

equilibrium point. We are interested in the trajectories that remain close to

the equilibrium point.

• Due to the instability of the fixed point, we cannot take arbitrary initial

conditions and integrate them numerically, as they will quickly escape from

the vicinity of the fixed point.

• We will decouple up to high order the elliptic from the hyperbolic behaviour,

and use this high order approximation of the centre manifold to understand

the dynamics.

• As the system is not always Hamiltonian, we will compute formally the

power expansion of the graph of the centre manifold.
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Reduction to the Centre Manifold

Using an appropriate linear transformation, the equations around the fixed

point can be written as,

ẋ = Ax + f(x, y), x ∈ R
4,

ẏ = By + g(x, y), y ∈ R
2,

where A is an elliptic matrix and B an hyperbolic one, and

f(0, 0) = g(0, 0) = 0 and Df(0, 0) = Dg(0, 0) = 0.

• We want to obtain y = v(x), with v(0) = 0, Dv(0) = 0, the local

expression of the centre manifold.

• The flow restricted to the invariant manifold is

ẋ = Ax + f(x, v(x)).
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Approximating the Centre Manifold (I)

To find y = v(x) we substitute this expression on the differential equations.

Hence, v(x) must satisfy,

Dv(x)Ax−Bv(x) = g(x, v(x)) −Dv(x)f(x, v(x)). (1)

We take,
v(x) =

∑

|k|≥2

vkx
k, k ∈ (N ∪ {0})4,

its expansion as power series. Then we solve equation (1) to find the

coefficients vk up to high degree (|k| = N).

• v̂(x) =

N∑

|k|=2

vkx
k is a high order approximation of the centre manifold.

• ẋ = Ax+ f(x, v̂(x)) gives a high order approximation of the motion on the

centre manifold.
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Approximating the Centre Manifold (II)

• The left hand side of equation (1),

L(x) = Dv(x)Ax − Bv(x),

is a linear operator w.r.t v(x) that diagonalizes if A and B are diagonal.

• The right hand side of equation (1),

h(x) = g(x, v(x)) − Dv(x)f(x, v(x)),

can be expressed as, h(x) =
∑

|k|≥2

hkx
k, where hk depend on vj in a known

way.

• It can be seen that for a fixed degree |k| = n, the hk depend only on the

vj such that |j| < n.
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Approximating the Centre Manifold (III)

We can solve equation (1) in an iterative way, equalising the left and the right

hand side degree by degree.

Notice:

• It is important to have a fast way to find the hk to go up to high degrees.

• We do not recommend to expand f(x, y) y g(x, y), and then compose

with y = v(x). One should find other alternative ways, faster in terms of

computational time.

• For instance, compute the terms in a recurrent way and use the recurrence

to define an efficient algorithm.

• The matrices A and B don’t have to be diagonal, but then one must solve

a larger linear system at each degree.
Semimari UB-UPC – p. 36



Equations of Motion

For α = 0 the equation of motion can be written as:

Ẍ − 2Ẏ =
∂Ω

∂X
− β

(1 − µ)

r3PS

(X − µ)Z

r2
cos2 δ sin δ,

Ÿ + 2Ẋ =
∂Ω

∂Y
− β

(1 − µ)

r3PS

Y Z

r2
cos2 δ sin δ,

Z̈ =
∂Ω

∂Z
+ β

(1 − µ)

r3PS

r2 cos2 δ sin δ,

where,

Ω(X,Y, Z) =
1

2

(
X2 + Y 2

)
+

(1 − µ)(1 − β cos3 δ)

rPS

+
µ

rPE

,

and,

rPS =
√

(X − µ)2 + Y 2 + Z2, rPE =
√

(X − µ+ 1)2 + Y 2 + Z2,

r2 =
√

(X − µ)2 + Y 2.
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Equations of Motion

After translating the fixed point (X∗, 0, Z∗) to the origin, and expanding the

equations of motions, we have,

ẍ = 2ẏ + x −
X∗

ξ
− KS

[ ∑
n≥0

cnTSn

]
3

(
x −

X∗−µ
ξ

)
− KE

[ ∑
n≥0

TEn

]
3

(
x −

X∗−µ+1

ξ

)

−Kss

[ ∑
n≥0

cnTSn

]
3

[ ∑
n≥0

dnTbn

] (
x −

X∗−µ
ξ

) (
z + Z∗

ξ

)
,

ÿ = −2ẋ +

(
1 − KS

[ ∑
n≥0

cnTSn

]
3

− KE

[ ∑
n≥0

TEn

]
3

−Kss

[ ∑
n≥0

cnTSn

]
3

[ ∑
n≥0

dnTbn

] (
z + Z∗

ξ

))
y,

z̈ = −

(
KS

[ ∑
n≥0

cnTSn

]
3

+ KE

[ ∑
n≥0

TEn

]
3
) (

z + Z∗

ξ

)

+Kss

[ ∑
n≥0

cnTSn

]
3

[ ∑
n≥0

dnTbn

]−1

.

where KS = (1 − µ)(1 − β cos3 δ)/ξ3, KE = µ/ξ3, Kss = β(1 − µ) cos2 δ sin δ/ξ3,

and ξ is the distance between the fixed point and the Earth.
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On the Centre Manifold

We have computed the centre manifold around Sub-L1 up to degree 16.

• After this reduction we are in a four dimensional phase space

(x1, x2, x3, x4).

• We need to perform suitable Poincaré sections to help us visualise the

phase space.

• For δ = 0, we have a first integral, and we can take advantage of this. For

the other sail orientations we will use similar ideas.
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Dynamics for δ = 0

Here we have a first integral:

Jc =
1

2
(Ẋ2 + Ẏ 2 + Ż2) − 2Ω(X, Y, Z).

• We fix a Poincaré section x3 = 0 to reduce the system to a three

dimensional phase space. (Taking x3 = 0 is like taking Z = 0).

• We fix the energy level to determine x4 and reduce the system to a two

dimensional phase space that is easy to visualise. (Taking x4(Jc, x) is like

taking Ż(Jc, x)).

• We have taken several initial conditions and computed their successive

images on the Poincaré section.
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Dynamics for δ = 0 (x3 = 0 section)
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Dynamics for δ 6= 0

Here we take an “approximated first integral” :

Jc =
1

2
(Ẋ2 + Ẏ 2 + Ż2) − 2Ω(X, Y, Z) + β(1 − µ)

Zr2

r3
PS

cos2 δ sin δ

• We fix a Poincaré section x3 = 0 to reduce the system to a three

dimensional phase space. (Taking x3 = 0 is similar to taking Z = Z∗).

• We fix Jc to determine x4 and reduce the system to a two dimensional

phase space that is easy to visualise. (Taking x4(Jc, x) is like taking Ż(Jc, x)).

• We have taken several initial conditions and computed their successive

images on the Poincaré section.
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Dynamics for δ = 0.005 (x3 = 0 section)
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Dynamics for δ = 0.01 (x3 = 0 section)
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A different Poincaré section: x2 = 0

Notice that x3 = 0 is not the only section one can take.

• Now we fix the Poincaré section x2 = 0 to reduce the system to a three

dimensional phase space. (Taking x2 = 0 is similar to taking Y = 0).

• We fix Jc to determine x1 and reduce the system to a two dimensional

phase space that is easy to visualise. (Taking x1(Jc, x) is similar to taking

Ẏ (Jc, x)).

• We have taken several initial conditions and computed their successive

images on the Poincaré section.
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Dynamics for δ = 0 (x2 = 0 section)
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Dynamics for δ = 0.005 (x2 = 0 section)
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Dynamics for δ = 0.01 (x2 = 0 section)
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Conclusions & Future Work

Conclusions:

• We have understood the dynamics around an equilibrium point for a solar

sail with α = 0 and small δ.

• We have designed strategies for the station keeping and surfing around

equilibria for a Solar Sail.

Future Work:

• Understand the dynamics for the α 6= 0 close to the SL1 family (the

system is no longer reversible).

• Extend the station keeping strategies to periodic orbits.

• Consider more complex models, for example adding the effect of the Moon,

non-perfectly reflecting sail, ... .
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The End

Thank You !!!
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